LAD: Learning Access Control Polices and
Detecting Access Anomalies in Smart Environments

Tomasz Kalbarczyk, Chenguang Liu, Jie Hua, Christine Julien
Department of Electrical and Computer Engineering
The University of Texas at Austin
Austin, TX, USA
{tkalbar, liuchg, mich94hj, c.julien} @utexas.edu

Abstract—The domain of access control has long suffered from
a lack of expressiveness in specifying access control policies.
Recent approaches have leveraged contextual fingerprinting to
formulate access control frameworks for both generating and
enforcing access control policies. However, effectively and auto-
matically identifying the context attributes relevant for access has
proven challenging and cumbersome. An approach that shows
promise in supporting more expressive and easy-to-use attribute-
based access control relies on recent advances in continuous
neighbor discovery protocols and low cost wireless commu-
nication technologies such as Bluetooth Low Energy (BLE).
These technologies have created opportunities to build smart
environments that can seamlessly and inexpensively provide
rich contextual data. These capabilities have the potential to
enable new transparent and automatic approaches to defining
and evaluating access control policies for mobile users and
for detecting anomalous access patterns in smart environments.
In this paper, we present the LAD framework that uses raw
contextual data available via technologies such as BLE to derive
real-time attributes defined by the presence of mobile and static
nodes in the nearby environment. Based on user interactions
in these environments, our framework learns appropriate access
control policies and enforces these policies based on attributes
that change in real-time as users move in the smart environment.

Index Terms—access control, pervasive computing, smart en-
vironments, anomaly detection

I. INTRODUCTION

Our everyday environments are increasingly “smart”. In this
new world, from controlling physical door locks to browsing
virtual data that is pervasively available via cloud connections,
our mobile devices serve as gateways for access to both phys-
ical and virtual resources. Advances in low-power wireless
communication and cloud computing are enabling flexible, dy-
namic, and seamless access to these resources. However, these
new environments come with copious new security challenges.
Mobile devices increasingly represent single points of failure
as the primary user interaction points into these systems. If
attackers can gain unauthorized access to a user’s device, they
have broad access to a multitude of systems. Work in context-
aware computing [1]-[3] has focused on protecting access
to personal mobile devices using on-device characteristics
and measurements from on-device sensors. While some of
these approaches use contextual data from the environment
to protect access or to authenticate users, they focus solely on

controlling access to a given user’s personal mobile device.
The problem of ensuring that the users (and their devices) have
access to the appropriate shared resources within the “smart”
environment remains.

While the field of access control is well-established, these
new shared and collaborative environments demand new ac-
cess control paradigms [4] that are less rigid than traditional
approaches that rely exclusively on user roles or identities [5]
placing undue burden on system administrators to assign the
appropriate roles and identities. Attribute-based access control
(ABAC) [6] is a promising model that relieves the burden on
the system administrator and allows for dynamic and flexible
access control policy specifications. At a high-level, users are
assigned arttributes, and resources are secured via policies
that reference these attributes. If a user’s attributes satisfy a
given policy, the user is granted access. ABAC lends itself to
generating the expressive, fine-grained access control policies
that are necessary in dynamic “smart” environments where
access control decisions could benefit from considering a wide
range of environmental contexts. However, determining how to
generate user attributes remains a challenge. Work in tag-based
access control [7] leverages user-generated tags associated
with data to create and assign attributes that prove useful
for access control. However, this work still relies on manual
tagging from users, which inherently limits the granularity of
access control rules that can be expressed via these attributes.

In this paper, we explore automatically generating attributes
using context information that users’ devices transparently
collect from the smart environment. Recent advances in contin-
uous neighbor discovery [8]-[11] that leverage communication
protocols such as Bluetooth Low Energy (BLE) have made it
feasible for mobile applications running on user devices to
have real-time access to contextual data that reaches beyond
the capabilities of the user device. This real-time contextual
data includes information regarding proximity to other user
devices, static devices in the environment, and sensor read-
ings [12], [13].

Our LAD framework captures contextual data available
in the proximal environment from which it seamlessly and
automatically generates explicit spatiotemporal, context-based
attributes. LAD derives attributes via BLE beacons that a
user’s mobile device receives from inexpensive, low-powered
static devices built into the environment and from mobile

devices carried by other users, though conceptually LAD is
generalizable to signals received on any wireless interface. As
users move and spend time in the environment, their devices
receive beacons, from which LAD derives attributes. We refer
to these attributes as spatiotemporal attributes because they
capture the relationship between the user and the space the
user occupies over time.

In LAD, the user’s device stores all received beacons in a
local beacon repository. In the simplest sense, a user’s device
captures an attribute just based on having been in the presence
of a specific beacon (e.g., the beacon near a building’s main
entrance). Alternatively, the user’s device can compute more
complex attributes. For instance, to capture an attribute derived
from the presence of another user’s mobile device, the current
user’s device may need to receive multiple beacons from the
other user’s device for an extended period of time [14].

Over time, a user’s attribute set can grow quite large,
however not all of the captured attributes are relevant at a given
time, a given place, or to a given access control challenge. Fur-
ther, a user’s attribute set might itself be quite revealing, from
a personal privacy perspective. For these reasons, at the time
of an access control request, a user device can automatically
filter the set of attributes based on either space, time, or both.
In addition, the resource to which access is being requested
may have its own interests in terms of attributes relevant to
the access control decision. Conceptually, the resource also
provides a filter on the attribute set. Together, these filters over
a user device’s attribute set define a partition of attributes over
which an access control policy will be evaluated.

Consider a scenario in which a user, Carla, moves from the
main entrance of a smart building to a lab on a upper floor of
the building. In doing so, Carla’s device captures a sequence of
beacons from the main entrance, through the elevator lobbies
and down a hallway on the upper floor. As she arrives in
front of the room’s locked door, the resource (i.e., the smart
lock that secures the room) must either grant Carla access to
the locked room or deny access. The decision can be based
on the spatiotemporal history captured in Carla’s attribute
set. Further, the resource (i.e., the lock) can use additional
information as part of the decision process. For instance, if
the current time is within the building’s operating hours, the
access decision might be granted based on Carla’s captured
attributes. If it is after hours, the request might be denied.
However, if it is after hours and Carla’s device has captured
the beacon of an authorized person’s device within the very
near past (e.g., 2 seconds), the request might be granted, even
after hours. Note that, to navigate this access control decision,
Carla was able to be completely passive and let her movements
in the smart space do all of the work.

A key contribution of our approach is the automated deriva-
tion of spatiotemporal attributes. However, to allow Carla
access to the door, we also need a way to generate a rule or
set of rules against which to verify her attributes. Similar to
existing work in generating access control rules [1], [15], we
assume a training period during which users must use manual
access to the resources. This training period allows us to gather

a representative set of access logs correlated with attributes.
That is, for some period of time, Carla’s device must capture
attributes and provide partitions, while she manually unlocks
the door to the secured lab.

We utilize work in association rule mining (ARM) [16]—
[18] as a basis for generating frequent item sets from our logs.
These are subsets of attributes that occur together within some
threshold of frequency. We devise a parameterized, rule mining
algorithm that uses these item sets to iteratively generate a
representative set of rules for access control. The primary
parameters to our algorithm consist of: the length of an itemset
in terms of the number of attributes, the coverage of the
itemset in terms of the number of partitions it covers from
our logs, and the similarity of an itemset to existing rules.

For a given resource, the LAD framework executes this
rule mining algorithm across a range of hyperparameters to
generate a candidate set of policies (rule sets) that govern
access to the resource. Each rule set has varying performance
in terms of its true positive rate (TPR) and false positive
rate (FPR). Certain access control use cases might be more
sensitive to TPR or FPR. Providing a candidate set of policies
makes our framework tunable to the rigor of the access
control use case and/or the requirements laid out by a system
administrator.

Our evaluation demonstrates that, in terms of access control
accuracy measured by TPR and FPR, our algorithm out
performs existing state of the art, binary classification machine
learning approaches such as extreme gradient boosting (XGB)
and random forests (RF). Moreover, our approach benefits
from generating human interpretable rules. To our knowledge,
our framework is the first to derive explicit attributes from a
real-life sensor testbed deployed in an industrial-sized, multi-
story, large occupancy building, to use these attributes to
generate access control logs, and to learn access control poli-
cies or detect access control anomalies based on application
requirements.

Our concrete contributions are the following:

o We transparently generate spatiotemporal attributes from
raw contextual data received from both static and mobile
devices in the environment.

o We use context-derived attributes to automatically learn
access control rules for both enforcing access control and
detecting access anomalies.

o We create a novel rule-mining algorithm that iteratively
generates human-interpretable access control rules.

o We deploy an extensive sensor testbed across 4 floors of
an engineering building, including 24 static devices and
7 mobile devices each carried by a participant recruited
to capture data over the course of 45 days.

o« We evaluate our approach against two other machine
learning approaches (XGB and RF) based on the data
collected from the testbed.

In the next section, we present the related work, section III
discusses the details of the LAD framework, and section IV
demonstrates the performance of our framework in terms of
access control accuracy.

II. BACKGROUND AND RELATED WORKS

The LAD framework lies at the intersection of several fields,
including access control, trajectory mining, anomaly detection
and association rule mining. In this section, we review the
related works in each of these fields as they pertain to LAD,
highlight the current gaps in the research, and show how LAD
addresses these gaps.

Attribute-based and Context-aware Access Control. The
closest related work to LAD is in the field of ABAC [6],
[7], [19] and context-aware access control [1], [20] for mobile
devices. Most of the works in the former rely on user-defined
policies and attributes, which must be specified manually.
LAD provides automatically generated attributes and policies.
Existing work in mining access logs to generate ABAC
rules [15], [21] focuses on generating comprehensive, strictly
satisfied rule sets over strictly defined synthetic attributes. Our
attributes are derived from real-world raw contextual data that
is ever-changing and inherently noisy. These types of attributes
necessitate a flexible rule mining algorithm that is probabilistic
in nature to accommodate changes and noise in the environ-
ment. Existing approaches impose strict constraints on rule
generation that are not suitable to the types of environmentally-
derived attributes that we employ.

Works in context-aware access control focus on protecting
access depending on the status of device sensors, and sensors
in the environment. For example, ConXsense [1] uses the
notion of context familiarity based on recurring presence of
bluetooth signals to designate an environment as “safe” or
“unsafe” for device use. These approaches derive features
from the environment, and apply machine learning algorithms
to automatically make access control decisions. Much like
LAD, they automate the binary classification task of providing
access control. These approaches only focus on access to a
user’s mobile device, and necessitate user feedback regarding
when the environment is not safe. In other words, they require
negative, supervised feedback, which is not realistic for most
access control use cases, where intruders are rare. LAD is
designed to automatically provide access control in scenarios
where negative feedback is sparse or entirely unavailable.

Trajectory Mining. The attribute sets derived via the LAD
framework share similarities to temporal trajectories. The
field of trajectory mining is burgeoning due to the recent
explosion of user location and check-in data. Most of these
approaches [22]-[24] focus on predicting future user move-
ment patterns based on social media feeds, like Facebook and
Twitter check-ins. However, these approaches are focused on
massive datasets at the “city” scale. Meanwhile, LAD targets
the “building” scale, where datasets are smaller and pro-
viding pin precise localization is challenging and expensive.
Accurate indoor localization solutions necessitate extensive
environmental tuning [25], [26], are sensitive to changes in the
environment [27] and/or require the use of expensive hardware
such as cameras [28], [29]. LAD performs at the “building”
scale, uses cheap, off the shelf environmental sensors and
does not necessitate sensors that are finely calibrated to the

mining
service

.
resource E—

nodes
@) - (B d

eacons

'
'

'

'

h '

user device :

1

'

: '

«---

v

o g

authority

Fig. 1: LAD Conceptual Architecture and Key Components

environment.

Anomaly Detection Lots of work has been done focusing
solely on trajectory-based anomaly detection at the “building”
scale. Most of this work comes from the computer vision
community and focuses on using cameras to track users in
the environment [28], [30]. Our approach does not actively
monitor or track users, since we use passive sensors in the
environment that transmit beacons. The user devices capture
the attributes and only reveal the attributes that they want to
reveal at the time of access.

Association Rule Mining The rule mining algorithm at the
heart of LAD leverages long-standing advances in the field of
association rule mining [16]-[18]. Specifically, we make use
of the FP-growth ARM algorithm to efficiently generate sets
of potential rules. Recent work in trajectory-mining has also
leveraged ARM [31] for mining trajectories using grids. This
work splits the environment into grids based on localization
data. As mentioned earlier, LAD does not require precise
localization.

III. LAD FRAMEWORK

At a high level, the LAD framework comprises five logical
components that interact with one another, as shown in Fig. 1:
(1) nodes are static and mobile devices that are capable
of transmitting periodic wireless beacons; (2) a user device
receives wireless beacons from the nodes, constructs a user’s
personalized captured attributes for use in access control and
anomaly detection, and may serve as a node itself; (3) a
resource is a physical or virtual object to which the user (or
the user device) wants access; (4) the authority validates the
authenticity of attributes presented by the user device; and (5)
the mining service uses access logs and provided attributes to
learn access control rules for the resource.

A. An Overview of LAD

The primary goal of our framework is to manage access
to a given resource or set of resources. We define a resource
to be any physical or virtual object to which access can be
granted or not granted based on a physical or virtual barrier
imposed by a system administrator. Our evaluation considers
access to physical resources, such as elevators, rooms, drawers,
computers, or lab equipment; however, our approach is also

directly applicable to virtual resources such as files stored at
the cloud or on edge devices.

We use Fig. 1, which depicts the conceptual architecture
of our framework to help describe the necessary steps for a
user device to gain access to a specific resource. First, nodes
in the environment transmit beacons that are received at the
user device. These beacons are processed and stored in the
device’s beacon repository; they are then captured and stored
as attributes in the device’s attribute set. Since only a subset
of user attributes are relevant to a specific resource, whenever
a user device requests access to a resource, as part of the
handshake, the resource provides a filter to the user device.
The user device filters its set of attributes based on this filter
and its own local filter for releasing its attributes and generates
a partition that is specific to a particular access request. To
complete the handshake with the resource, the user device
provides the partition for validation. For now let us assume
that we already have an access control policy. The resource
first validates the attributes in the partition with the authority,
then the resource checks whether the attributes satisfy the
resource’s access control policy. If satisfied, the user device is
granted access to the resource. This entire process is depicted
in Fig. 1 using solid arrows. Periodically (e.g., according to the
system administrator), LAD mines access control rules from
the provided attribute partitions and generates access control
policies; this process is shown via the dashed arrows in Fig. 1.

B. Access Control Policies in LAD

Before delving into the details of how attributes are cap-
tured, partitions are constructed, and access control policies
are learned, we next define how policies are represented

An access control rule is logically represented as a conjunc-
tive clause where each literal denotes an attribute. As such,
a rule is satisfied if all of its attributes exist in the partition
provided by a user device. A access control policy is logically
represented as a disjunction of rules, meaning that in terms of
attributes each access control policy is logically represented
in disjunctive normal form (DNF). If any one of the rules is
satisfied, then the access control policy is satisfied, and the user
is granted access to the resource. Note that this rigid structure
may seem restrictive, but any boolean formula over attributes
can be rewritten in DNF. The structured nature of this approach
allows LAD to learn each of the clauses independently, with
the assistance of the rule mining service.

C. Use Cases of LAD

We next provide a series of access control and anomaly
detection use cases made possible by the LAD framework.
These example use cases differ in the importance they place
on false positives and false negatives. A false positive over
provisions access, granting access to a user who should not
have been granted access. If the resources are particularly
sensitive, false positives can be completely unacceptable. A
false negative, in contrast, under provisions access, preventing
a user from having access to resources that they should have
access to. An ideal system would obviously be perfectly

provisioned, with zero false positives and zero false negatives,
but this is not realistically feasible since, over time, anomalies
and errors are inevitable. Unlike other approaches, LAD is
tunable in terms of false positives and false negatives to fit
the access control use case. We discuss this tunability in
Section III-E; here we motivate why this flexibility is essential,
by presenting a set of potential use cases.

Detecting Anomalous Access Attempts. Certain organiza-
tions (such as the military) have strict policies that require a
rigid, identity-based, mandatory access control (MAC) system
despite the expense (in time and resources) of provisioning
each user with specific access to a resource. These systems
are designed such that any false positives are strictly related
to errors in the manual provisioning process. In this case,
our framework could be used in parallel to an existing MAC
system to detect access control anomalies, e.g., instances
when a user used access that he or she was provisioned,
but something else about the context of that resource usage
is out of the ordinary. This can be useful in scenarios such
as detecting insider threats, where users who have been
provisioned access behave in atypical ways prior to requesting
access. Our framework generates rules based on typical access
and raises flags in real time whenever these rules are violated.

Alternatively, at similar organizations where strict policies
are needed, our framework could be used as a second line
of defense. For example, each access control policy could
be joined with the attributes derived from a secure credential
(such as a Personal Identity Verification (PIV) card) reflecting
the manual provisioning process described above. Our frame-
work could prevent anomalous access in the case of errors
in manual provisioning. For example, if the secure credential
were stolen or forged and used without the presence of other
users, without walking through the front door, or without the
bearer having captured any number of attributes that typically
are captured, our framework would be able to detect the
improper access.

Learning Access Control Rules. A system administrator in
charge of access to a sensitive room within a private company
building may want to prevent invalid access requests and needs
an appropriate access control policy to enforce this desire.
Since the room is sensitive, the administrator will want to
keep false positives to a minimum (potentially even at the
expense of some false negatives). No probabilistic system has a
complete guarantee that there will be no false positives, but we
contend that less rigid organizations would trust a framework
with minimal false positives over a potentially error prone
manual provisioning process.

This provisioning process becomes even more complex as
the number of resources and users grows. In fact, the same
system administrator may have different needs depending on
the resource in question. For example, access to a particular
room/lab may not carry any direct security implications (e.g.,
any employee might have access rights to the lab). However,
expected usage of this space may involve the supervision of
a lab member during a particular time of day. The system
administrator would prefer that access is only granted under

these conditions, but there are no security consequences other-
wise. In this case, the administrator likely wants a policy with
minimal false negatives (so as not to be bothered with manual
access requests), even at the expense of some false positives.

Enabling Convenience. Finally, a building manager may
simply want to provide convenience for occupants of a build-
ing by leveraging smart capabilities. Rather than provisioning
access cards or handing out lock codes, the building manager
may want users to automatically have access to appropriate
elevators, rooms, or hallways. Users would have applications
on their mobile devices that leverage the LAD framework in
order to provide the automated access. No unintended access
could occur that could not otherwise be provided by sharing
a lock code or access card. In this case our framework is
not for improving access control accuracy, but for providing
convenience through automation.

D. Deriving Attributes and Attribute Partitions

On the user device, the beacons in the beacon repository are
abstracted into an attribute set. For each access request from a
user device to a specific resource, LAD creates of a partition
(i.e., a subset of atrributes relevant to the access control
decision). We first describe how we capture spatiotemporal
attributes using the beacons received from the static and
mobile nodes and consequently, how we generate partitions.

In our framework, each node periodically transmits a dis-
crete wireless signal with in a discrete beacon. While we deal
chiefly with BLE beacons, our approach is generalizable to any
discrete, periodic wireless signal. To capture an attribute, the
user device first receives a beacon, timestamps it, and stores
it in the device’s local beacon repository (as shown in Fig. 1).
As new beacons are received, the user device applies a set
of local constraints that determine whether the received set of
beacons allows the device to derive a higher level attribute. In
the simplest form, a constraint may simply be “if a beacon is
received from a node, an attribute with that node’s identifier
is added to the attribute set.” More complex constraints are
also possible; for instance a different constraint could be “if
k consecutive beacons have been received from a single node,
an attribute with that node’s identifier is added to the attribute
set.” Even given the simple “presence” indication that beacon
capture gives us, there is a wide diversity of attributes that
could be specified in this way, and different user devices and
resources may have different desired attributes. While LAD
supports this diversity, for simplicity throughout the remainder
of the paper, we assume the first attribute capture example, i.e.,
a single beacon received from a node results in capture of the
corresponding attribute.

For practical reasons, LAD only captures positive attributes
(i.e., a captured attribute indicates that a beacon was received).
This is because there is no practical way to validate a negative
attribute with the authority. A rule based on a negative
attribute would require that the attribute is not captured which
is simple to spoof by removing beacons from the beacon
repository.

We have discussed how attributes are captured and stored at
the user device. For the user device to use these attributes to
request access to a resource, we need a mechanism to select
the relevant artributes. As mentioned before, each resource
may be interested in a separate subset of the set of attributes
at the user device. To request access to a resource, a user
device begins a handshake. The resource provides the device
with a filter containing two constraints: (1) the time window
over which attributes must be captured; and (2) a template
for the attributes of interest. The user device constructs a
partition of its attributes using this resource-provided filter in
conjunction with any additional filters the user device has on
releasing attributes (e.g., for privacy reasons). The user device
then sends this partition to the resource.

The resource uses the partition to either grant or deny
access to the user device. This decision is made via an
enforcement process that relies on the access control policy
at the resource. The details of the enforcement process are
described in Section III-F. Relative to other approaches that
use sensors or cameras to track users, LAD offers a privacy
benefit to the user device, by allowing the device to determine
what attributes it wants to share, and to only share attributes
directly with the resource at the time of access.

We next turn our attention to the dashed lines in Fig. 1.
When a user device attempts to access a resource, the resource
adds the user device’s provided partition to the resource’s own
log. These partitions are sent to the mining service shown
in Fig 1 on a periodic basis to allow LAD’s rule mining
algorithm to learn the resource’s access control policy based
on access logs. The rule mining algorithm and its parameters
are described in the next section.

E. Rule Mining

In this section we describe how our framework uses the
partitions collected at each resource as a training data set over
which to learn access control policies. We discuss the details of
our rule mining algorithm and the intuition behind our general
approach to learning access control policies.

We can view the access control problem for a given resource
to be a binary classification problem. Either the user device
should be granted or denied access to the resource. Our first
observation is that the frequency that subsets of attributes
occur together can help us probabilistically determine a set
of rules representative of the partitions used to gain access.

Traditional clustering algorithms, such as K-means, group
feature vectors (in our case partitions) that are similar, while
association rule mining (ARM) algorithms (such as a-priori
or FP-growth), group feature dimensions (in our case the
attributes themselves). As far as generating rules, we are pri-
marily concerned with the latter. Specifically, we are interested
in what attributes often occur together to allow access to a
resource.

Therefore, our rule mining algorithm employs an ARM
algorithm. For a given data set, ARM algorithms generate
frequent item sets. In our case, the data set is a set of
partitions, and each item corresponds to an attribute. For

example, the ARM algorithm may tell us that the item
set [location_7, location_9] occurs in 20% of par-
titions, while the more restrictive item set [location_7,
location_9, location_1] occurs only in 12% of par-
titions.

Our algorithm described in Algorithm 2 leverages the FP-
Growth ARM algorithm to generate a list of item sets. Recall
that our rules are conjunctions of attributes, and so each
item set is a potential rule. The primary challenge of our
algorithm is to reduce this list of item sets to a set of rules,
combined together via disjunction, that is representative of a
desired access control policy for a specific resource. In an
ideal world, the policy would have neither false positives nor
false negatives. However, leveraging former access logs to
predict future access decisions is inherently probabilistic in
nature. Our discussion of potential use cases demonstrates that
depending on the resource and/or other system requirements
it is useful to generate different rule sets.

To accomplish this, our rule mining algorithm uses a number
of parameters, tunable via corresponding hyperparameters, to
compute a utility function for each potential rule in the list of
item sets. We now describe the parameters used by the utility
function shown in Definition 1, and the intuition associated
with each parameter.

Definition 1. Utility Function

utzlzty(len, SUPoveralls SUPuncovered SZle) =

« B8 Y s s1\0
len® * sup, ... xsup) % (1 — simil)

The parameter len refers to the number of attributes in
the item set. Longer rules are more restrictive and in gen-
eral lower the number of false positives, at the expense of
false negatives. The parameters Supoyeran and SuUpyucoverea are
fractional values from O to 1 that represent the “support” of
the item set as determined via the ARM algorithm. Referring
to our previous example, if an item set appears in 12% of all
partitions, it has a sup e of 0.12. Our rule mining algorithm
operates iteratively by continually selecting the next “best”
item set, according to the utility function in Definition 1,
to add to the rule set. This means that gradually the list
of partitions “covered” by our rule set increases while the
“uncovered” portion decreases. To represent the “support” of
the item set amongst the “uncovered” attribute sets, we define
the supyucoverea parameter. Heavier weighting of these two
“support” parameters generally favors less restrictive rules.
We execute our rule mining algorithm over ranges of the
hyperparameters «, 3, v and §, and compute the TPR and FPR
for each permutation of parameters. Each resource provides
the mining service a roc.ign; parameter, valued from 0 to 1, to
indicate the preference between TPR and FPR, for the mining
service to select the “ideal” rule set for a given use case.

The simil parameter refers to the similarity of the current
item set to its most similar rule currently in the rule set. Refer
to Algorithm 1 for details of how this similarity metric is
computed. We use a modified version of Jaccard similarity,
where the importance of attribute intersection is weighted via

Algorithm 1: Modified Jaccard Similarity:

Function SIMILARITY: itemset, fintersect
s = 0 for rule in ruleset do
|[I| = len(rule Nitemset)
|U| = len(rule U itemset)
6=|Ul—|]
- finte'rsect * ‘[|

s =max(s, /(5 + [))

end
end

the fintersect parameter. The fiptersect parameter is used as
another hyper parameter over which we train our rule mining
algorithm.

Our rule mining algorithm is an iterative algorithm that has
three terminating conditions: first, the entire list of partitions
is covered; second, there are no more valid item sets available;
and third, the utility function for the “best” rule is 0. We
discuss how each of these terminating conditions is reached,
and how it influences our final rule set.

1) Coverage of Attribute Sets: On each iteration of our al-
gorithm, we recompute the utility function for each remaining
valid item set, and add the item set with the highest utility
score to our rule set. Depending on the hyperparameters, each
rule may or may not add increase the coverage of our list of
attributes. When the [and ~ hyperparameters are higher, we
generally see smaller rule sets since the partitions are covered
more quickly.

2) Exhaustion of Item Sets: Our rule mining algorithm
filters out item sets that are subsets of rules in our rule set. If
the a hyperparameter is higher, we expect to see longer rules,
and consequently more rules, since longer rules are typically
more restrictive in terms of coverage.

3) Zero Utility Score: A zero utility score occurs when
either the Sup,yerar O SUPuncovered Parameters are zero. This
indicates that none of the remaining valid item sets contribute
to the coverage of the partitions.

4) Convergence: Our algorithm is guaranteed to converge
since in the worst case every single item set is chosen as a
rule. In practice, however, this is incredibly unlikely since one
of the underlying assumptions of our framework is that we
expect to see partitions that repeat frequently. Our evaluation
validates this assumption against a real-life data set.

5) Other Parameters: Our rule mining algorithm uses one
other hyperparameter not yet discussed: min_support. This
hyperparameter is used directly by the ARM algorithm used
to compute frequent item sets. It indicates the minimum
“support” required for an item set to be returned for use by
our rule mining algorithm. For example, if min_support is 0.1,
then only item sets that “cover” at least 10% of the attribute
sets are considered as potential rules.

F. Enforcing Access Control Rules

Rule enforcement is a matter of collecting the relevant
partition from a user device at the time an access request
is made. Fig. 1 shows the components involved in validating

Algorithm 2: Rule Mining Algorithm:

IHPUt: a, ,67 Y, 5, fintersect, min_support

Qlﬂut: ruleset

i,len, m = FP-Growth (partition, min_support)
uncovered = partition

ruleset = () .

while M}coverecﬂ > 0 and |i| > 0 do

- _ -
i,len, Supoverall = remove_subsets(i, ruleset)
simal = similarity(i, fintersect)

SUPuncovered = compute_uncovered(i, uncovered)

g T T —_—
utlllty(l, len7 SUPoverally SUPuncovered, 52mll7 a, ﬁ? Y5 6)
ruleset < max(u)
uncovered = prune(uncovered, ruleset)

end
return ruleset

the partition. The partition is first sent from the user device to
the resource. The resource sends the partition to the authority
to validate the fidelity of the attributes. Finally, the resource
determines whether the partition satisfies the policy and sends
the access decision back to the user device.

Our attributes are derived from BLE beacons that like
all wireless signals are susceptible to overhearing. In order
to prevent attribute spoofing, our framework requires that
BLE beacons change their identifiers over time. The authority
maintains a temporal mapping such that beacons retrieved
outside the specified time window are invalidated.

G. Threat Model

Our framework is designed to prevent unauthorized access
to resources that are protected via access control policies.
From an authentication perspective, our approach does no
worse than traditional approaches to authentication that rely on
provisioned credentials such as personal identity verification
(PIV) cards and RSA SecurID software and hardware tokens.
All beacons from the environment used in the capturing of
attributes are verified using these credentials. In fact, our
framework inadvertently improves authentication since our
attributes serve as additional factors for authentication.

We assume that users are trusted in so far as any members
of an organization are trusted. For example, employees at a
company or faculty/staff at a university are generally trusted
to have little incentive to participate in collusion or replay
attacks. Our system is no more susceptible to attacks, than a
scenario in which an employee decides to share a PIV card or
SecurID token with an outside party or another employee.

From the perspective of a single party, as discussed in
Section III-F, we prevent temporal forging of context by using
rolling / time-based ephemeral identifiers. Specifically, the
BLE beacon identifiers change value over time. In this way,
access is revoked over time, since beacons retrieved during
a given time interval cannot be used to derive attributes to
provide access at a different time interval.

IV. EVALUATION

In this section, we describe how we evaluated the LAD
framework using a real-life, testbed deployed throughout a
multi-story academic building. First, we discuss the details
of our deployment, and the associated experimental setup. We
then evaluate the accuracy of our rule mining algorithm against
ML approaches for binary classification. We compare against
decision tree based approaches, XGB and REF, that are the state
of the art for small to medium sized datasets like those at the
“building-scale,” the target of the LAD framework.

A. Deployment and Experimental Setup

We deployed an extensive sensor testbed across 4 floors of
an engineering building on our campus. We deployed 24 static
Nordic Thingy devices ! across the building and recruited
7 mobile participants to carry the same devices over the
course of 45 days. The Nordic Thingy is an inexpensive,
multi-function low-power sensor built around the nRF52832
Bluetooth 5 SoC and capable of transmitting BLE beacons.
We flashed these devices with a continuous neighbor dis-
covery protocol to make them periodically transmit unique
BLE beacons. The 7 mobile participants were also asked
to carry Moto E 2nd generation Android devices running
Android 5.1. These devices scanned continuously in the back-
ground for BLE beacons from the Nordic Thingy devices.
Within our framework, these Nordic thingy devices serve as
nodes that transmit beacons to be received by the Android
devices and processed into attributes. The static nodes are
placed near resources and common areas where we expected
human foot traffic. Unlike indoor localization systems, our
deployment does not necessitate arduous effort in determining
node placement. The LAD framework functions within an
inexpensive smart environment both in terms of node cost and
deployment labor. We collected over 10 million BLE beacons
over the course of the experiment (the dataset is publically
available [32]). The richness of the dataset is a secondary
contribution of our work that we aim to leverage in the future.

We also placed 3 Android Nexus 9 tablet devices in lo-
cations of common use and interest to our participants. Our
participants were instructed to “check-in” at these devices by
pressing their names when they entered the area. These tablets
serve as resources to which the participant devices request
access. Each check-in generates a partition at a resource based
on the attributes collected by the participant device prior to the
time of check-in. Tablet A corresponds to a work area where
the 7 participants spend some portion of their day working and
hold impromptu meetings. Tablet B and Tablet C correspond
to opposite doors of a lab area where the 7 participants spend
a smaller portion of their day, and hold scheduled meetings.
Since Tablet B and Tablet C logically restrict access to the
same resource, we grouped these check-ins together.

From here on, we refer to the resource at Tablet A as Work,
and the resource at Tablets B and C as Lab. Across the 7
participants, we observed 642 check-ins at Work, and 317

Uhttps://www.nordicsemi.com

g
o
=
=)

o
©
o
©

LAD(lab)
LAD(work)
RF(lab)
RF(work)
XGB(lab)
XGB(work)

LAD(lab)
LAD(work)
RF(lab)
RF(work)
XGB(lab)
XGB(work)

o
o
o
o

o
~
IN
IS

o
N

True Positive Rate
o
N

True Positive Rate

o
=)
o
o

g
o
=
o

—

g LAD(lab)
LAD(work)
RF(lab)
RF(work)
XGB(lab)
XGB(work)

o
©
o
©

LAD(lab)
LAD(work)
RF(lab)
RF(work)
XGB(lab)
XGB(work)

o
o
o
o
N\

o
~
N
IS

o
N

True Positive Rate
o
N

True Positive Rate

>

o
=)
e
o

0.0 0.2 0.4 0.6 1.0

False Positive Rate

(a) Absent

0.8 1.0 0.0 0.2 0.4 0.6

False Positive Rate

(b) Known

0.8

0.4 0.6
False Positive Rate

0.0 0.2 0.4 0.6 0.8 1.0

False Positive Rate

0.8 1.0 0.0 0.2

(¢) Unknown (d) Injected Anomalies

Fig. 2: Receiver operating characteristic (ROC) curves for LAD, XGB and RF for providing access to Lab and Work resources for varying

types of access control violations

check-ins at Lab. To evaluate LAD’s performance we split
our data set into two sets, consecutive in time. We wanted
to measure that the rules generated during the first part of
the experiment were applicable to participant behavior in the
latter part. We used the first 21 days of the experiment for
the training set, gathering partitions at the resources from
participant devices. Our test set comprises the latter 24 days
of the experiment, where instead we use the partitions from
participant devices to determine whether access should be
granted or denied.

In the subsequent sections we demonstrate LAD’s per-
formance against varying slices of this dataset, and against
existing ML approaches. Recall that existing work in mining
rules for ABAC [15], [21] is not suitable to attributes derived
from contextual data that is constantly changing and inherently
noisy. These types of attributes necessitate a probabilistic
approach to rule learning, which is why we compare against
ML approaches that offer the closest alternative.

To simplify discussion, we define two possible labels for
each partition of attributes in our dataset: (1) valid implies
that the partition should grant access, and (2) invalid implies
that partition should not grant access.

B. Performance in Absence of Access Control Violations

By nature of typical user interaction with resources, we
expect the majority of access requests to be valid. Therefore,
for our first experiment, we label each partition at the time of
checkin as valid. LAD, XGB and RF all employ parameteri-
zable learning models. As such, to compare performance, we
generate receiver operating characteristic (ROC) curves for all
3 approaches against both the Work and Lab resources.

Since there are no invalid labels in the training set, we
expect XGB and RF to mark each checkin in the test set as
valid. This is reflected in Fig. 2a where XGB and RF achieve
perfect performance for both resources (these 4 curves are
overlapping). This experiment serves as a good benchmark
for LAD since the rules generated from the training set will
not be completely representative of behavior during testing.
While LAD does not exhibit perfect performance, it is not far
behind. For example, it achieves a 90% TPR at an 11% FPR
for Work. The experiment shows that LAD is functional and
useful in the “steady-state” where there are no invalid access
attempts.

C. Performance against Known Types of Access Control Vio-
lations

While LAD does not require invalid labels to learn its access
control policy, we wanted to demonstrate that even in the
presence of an external mechanism for specifying partitions
that are labeled invalid, where we expect XGB and RF to
shine, LAD performs comparably. For example, in the future,
labeled data including invalid labels may available from a
similar environment, and adapted to the current environment.

To design this experiment, we manually labeled all par-
titions that involved entry into the building as valid, and
labeled all other partitions invalid. This is deliberately a perfect
scenario for decision tree based ML approaches. Meanwhile,
LAD is not perfectly suited because rules are generated based
on nodes along the user’s entire path through the building,
even when the attribute associated with a node is not critical
to labeling a partition as valid or invalid.

As shown via the ROC curve in Fig. 2b, and as expected,
XGB and RF outperform LAD. For example, for Work, XGB
achieves a 90% TPR with only a 1% FPR while LAD achieves
a 90% TPR with an 8% FPR. This experiment demonstrates
some of the flexibility of LAD since it performs reasonably
well even in a scenario for which it is not perfectly suited.

D. Performance against Unknown Types of Access Control
Violations

Invalid access attempts occur infrequently. Moreover, access
control systems desire to detect these invalid access attempts
before they ever occur. We construct two experiments that
demonstrate LAD’s performance in face of two related sce-
narios: (1) no invalid partitions are used to request access
during training, but invalid partitions are used to request access
during testing, and (2) some invalid partitions are used to
request access during training, but new, unpredictable invalid
partitions are used to request access during testing.

For the first experiment, we modify the experiment in
section IV-C by removing all of the invalid partitions from
the training set. The goal is to see if we distinguish between
valid and invalid partitions in the training set, without apriori
knowledge regarding what may constitute an invalid partition.
Without invalid access attempts to learn from, XGB and RF
fail to classify future invalid access attempts (as shown by
the 4 overlapping diagonal lines in Fig. 2c). Meanwhile, LAD
exhibits substantially superior performance, and performs sim-
ilarly to how it did in the previous experiments. For example,

LAD achieves a 99% TPR with a 18% FPR for Work in both
Fig. 2b and Fig. 2c. Note that for use cases more sensitive
to FPR, we still achieve a 67% TPR with a 3% FPR. The
experiment demonstrates LAD’s power in detecting invalid
access attempts without ever having seen any.

For the second experiment, we modify the experiment in
section IV-C by injecting additional invalid partitions into the
testing set. These partitions are generated by walking atypical
paths from outside the building to Work and Lab. These paths
emulate an intruder who might enter the building through
the back door and proceed up the stairs instead of using the
elevator to remain unseen. The goal is to see how performance
changes if there exist some invalid partitions on which to learn.

Fig 2d shows that XGB and RF improve marginally relative
to the prior experiment. This is because the training set consists
of partitions labeled both valid (involving building entry) and
invalid (not involving building entry) instead of only those
labeled valid. However, yet again, XGB and RF are unable to
perform as well as LAD in the face of “new” invalid access
attempts such as those from the atypical paths. For example,
for Work, XGB achieves only a 23% TPR with a 10% FPR
while LAD achieves a 82% TPR with a 10% FPR. This
experiment further demonstrates LAD’s power in detecting
unpredictable anomalies.

V. CONCLUSIONS AND FUTURE WORK

In this paper, we showed how LAD is able to automat-
ically generate spatiotemporal attributes for use in learning
and enforcing access control policies. We demonstrate that a
probabilistic approach to mining policies can be effective and
flexible, making it applicable to a wide range of use cases. We
evaluated our approach by deploying a real-life, building-scale
testbed including active human users and passive static sen-
sors. In the future, we hope to expand the attribute space of our
approach by deriving meta-attributes from our existing ones,
and by evaluating LAD against a wider range of resources. In
conclusion, LAD provides an important step in the direction
of building flexible, automated access control systems that are
applicable at the building-scale.

ACKNOWLEDGEMENTS

This work was funded in part by the National Science
Foundation, Grant #CNS-1703497.

REFERENCES

[1] M. Miettinen et al., “Conxsense: automated context classification for
context-aware access control,” in Proc. of the 9th ACM symposium on
Information, computer and communications security, ACM, 2014,

[2] E. Hayashi, S. Das, S. Amini, J. Hong, and I. Oakley, “Casa: Context-
aware scalable authentication,” in Proc. of ACM SOUPS, ACM, 2013.

[3] K. Olejnik et al., “Smarper: Context-aware and automatic runtime-
permissions for mobile devices,” in IEEE Symposium on Security and
Privacy (SP), IEEE, 2017.

[4] F. Paci, A. Squicciarini, and N. Zannone, “Survey on access control for
community-centered collaborative systems,” ACM Computing Surveys
(CSUR), vol. 51, no. 1, p. 6, 2018.

[5] S. Osborn, “Mandatory access control and role-based access control
revisited,” in Proc. of ACM Workshop on Role-based Access Control,
Citeseer, 1997.

[6]
[7]

[8]

[9]

(10]

[11]

[12]
[13]

[14]

[15]

[16]

(17]

(18]
[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]
(28]
[29]
[30]

(31]

[32]

V. C. Hu, D. R. Kuhn, D. F. Ferraiolo, and J. Voas, “Attribute-based
access control,” Computer, vol. 48, no. 2, pp. 85-88, 2015.

M. L. Mazurek et al., “Toward strong, usable access control for shared
distributed data,” in Proc. of the 12th USENIX conf. on File and Storage
Technologies, pp. 89—103, USENIX, 2014.

C. Julien, C. Liu, A. L. Murphy, and G. P. Picco, “Blend: practical
continuous neighbor discovery for bluetooth low energy,” in Proceed-
ings of the 16th ACM/IEEE International Conference on Information
Processing in Sensor Networks, pp. 105-116, ACM, 2017.

Y. Qiu, S. Li, X. Xu, and Z. Li, “Talk more listen less: Energy efficient
neighbor discovery in wireless sensor networks,” in Proceedings of the
35th Annual IEEE International Conference on Computer Communica-
tions, pp. 1-9, IEEE, 2016.

L. Wei, B. Zhou, X. Ma, D. Chen, J. Zhang, J. Peng, Q. Luo, L. Sun,
D. Li, and L. Chen, “Lightning: A high-efficient neighbor discovery
protocol for low duty cycle wsns,” IEEE Communications Letters,
vol. 20, no. 5, pp. 966-969, 2016.

T. Kalbarczyk and C. Julien, “Omni: An application framework for
seamless device-to-device interaction in the wild,” in Proceedings of the
19th International Middleware Conference, pp. 161-173, ACM, 2018.
C. Liu, J. Hua, and C. Julien, “Scents: Collaborative sensing in proximity
iot networks,” in Proc. of IEEE PerCom Workshops, 2019.

C. Liu, C. Julien, and A. Murphy, “PINCH: Self-organized context
neighborhoods for smart environments,” in Proc. of IEEE SASO, 2018.
A. Montanari, S. Nawaz, C. Mascolo, and K. Sailer, “A study of
bluetooth low energy performance for human proximity detection in
the workplace,” in Proc. of PerCom, 2017.

Z. Xu and S. D. Stoller, “Mining attribute-based access control policies,”
IEEE Transactions on Dependable and Secure Computing, vol. 12, no. 5,
pp- 533-545, 2014.

R. Agrawal, R. Srikant, et al., “Fast algorithms for mining association
rules,” in Proc. 20th int. conf. very large data bases, VLDB, vol. 1215,
pp. 487-499, 1994.

R. Agrawal, T. Imielifiski, and A. Swami, “Mining association rules
between sets of items in large databases,” in Acm sigmod record, vol. 22,
pp- 207-216, ACM, 1993.

J. Han, J. Pei, and Y. Yin, “Mining frequent patterns without candidate
generation,” in ACM sigmod record, vol. 29, pp. 1-12, ACM, 2000.
M. L. Mazurek et al., “Access control for home data sharing: Attitudes,
needs and practices,” in Proc. of SIGCHI, ACM, 2010.

A. Gupta et al., “Intuitive security policy configuration in mobile
devices using context profiling,” in 2012 International Conf. on Privacy,
Security, Risk and Trust, IEEE, 2012.

Z. Xu and S. D. Stoller, “Mining attribute-based access control policies
from rbac policies,” in 2013 10th International Conf. on Emerging
Technologies for a Smarter World (CEWIT), pp. 1-6, IEEE, 2013.

C. Zhang, J. Han, L. Shou, J. Lu, and T. La Porta, “Splitter: Mining
fine-grained sequential patterns in semantic trajectories,” Proc. of VLDB
Endowment, vol. 7, no. 9, pp. 769-780, 2014.

C. Zhang et al., “Gmove: Group-level mobility modeling using geo-
tagged social media,” in Proc. of SIGKDD, pp. 1305-1314, ACM, 2016.
N. Zhou et al., “A general multi-context embedding model for mining
human trajectory data,” IEEE transactions on knowledge and data
engineering, vol. 28, no. 8, pp. 1945-1958, 2016.

N. Rajagopal et al., “Enhancing indoor smartphone location acquisition
using floor plans,” in Proc. of IPSN, IEEE, 2018.

D. Oosterlinck, D. F. Benoit, P. Baecke, and N. Van de Weghe,
“Bluetooth tracking of humans in an indoor environment: An application
to shopping mall visits,” Applied geography, vol. 78, pp. 55-65, 2017.
P. Lazik er al., “Alps: A bluetooth and ultrasound platform for mapping
and localization,” in Proc. of ACM SenSys, ACM, 2015.

F. Maiorano and A. Petrosino, “Granular trajectory based anomaly
detection for surveillance,” in Proc. of ICPR, IEEE, 2016.

J. Xiao et al., “A survey on wireless indoor localization from the device
perspective,” ACM Computing Surveys (CSUR), 2016.

C. Piciarelli et al., “Trajectory-based anomalous event detection,” IEEE
Transactions on Circuits and Systems for video Technology, 2008.

Y. Chen, P. Yuan, M. Qiu, and D. Pi, “An indoor trajectory frequent
pattern mining algorithm based on vague grid sequence,” Expert Systems
with Applications, vol. 118, pp. 614-624, 2019.

C. Liu, J. Hua, T. Kalbarczyk, S. Lee, and C. Julien, “Dataset: User
side acquisition of People-Centric sensing in the Internet-of-Things,” in
Second workshop on Data Acquisition To Analysis, (New York, NY),
ACM, 2019.

