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Abstract
This paper is concerned with the identification of important edges in a network, in
both their roles as transmitters and receivers of information. We propose a method
based on computing the matrix exponential of a matrix associated with a line graph
of the given network. Both undirected and directed networks are considered. Edges
may be given positive weights. Computed examples illustrate the performance of the
proposed method.
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1 Introduction

Many complex systems can be modeled as networks. Informally, a network is a col-
lection of objects or individuals, referred to as nodes or vertices, which are connected
to each other in some fashion; the nature of the nodes and the connections may vary
widely from application to application. Networks are formalized mathematically as
graphs. Connections between nodes are referred to as edges (see Section 2.1 for more
details). Like all models, network models leave out many details of reality; how-
ever, they are able to capture a substantial part of the complexity of a system in a
way that is amenable to mathematical and computational analysis. Networks arise
in social science, ecology, telecommunications, transportation, molecular biology,
national security, and many other fields (see, e.g., [10, 21] for many examples).
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One often is interested in determining which nodes are “important” in some sense.
Aside from any intrinsic characteristics of a node, the importance of a node in a
network is due to its connections to other nodes, as well as the importance of the
nodes to which it is connected. Various measures have been proposed to quantify the
importance of a node in a network. The importance commonly is referred to as the
centrality (see, e.g., [3, 7, 12, 14, 19, 20]).

We are interested in measuring the importance of edges in a network. This is
a problem that arises in various applications. For example, in [5], the authors are
concerned about highway sections with congestion that reduces the overall highway
network efficiency. Intuitively, an important edge is a good target for deletion when
the goal is to disrupt the network and, therefore, worthy of protection when the goal is
to preserve it. On the other hand, unimportant edges may possibly be eliminated (say,
to save resources) with a small overall effect. Estrada [9] and Gutman and Estrada
[18] describe applications in chemistry.

Our approach to study the importance of edges is to regard them as nodes in a
line graph (see Section 3) and apply node centrality measures determined by a matrix
function, in particular the matrix exponential. This works in a straightforward way for
undirected networks, but becomes more complex for directed ones. We also consider
the effect of edge weights.

This paper is organized as follows. Section 2 introduces graphs and associated
matrices. Line graphs are discussed in Section 3. Line graphs for both undirected and
directed graphs are considered. For directed graphs, we define several line graphs.
Section 4 is concerned with graphs that have weighted edges. The identification of
the most important edges of an undirected graph with uniform weights by using the
exponential function is discussed in Section 5, while Section 6 considers the analo-
gous task for a directed graph with uniform weights. The computation of the most
important edges of a directed weighted graph is discussed in Section 7. Computed
illustrations are provided in most sections. Section 8 discusses the computations
required to apply the described method, and Section 9 contains concluding remarks.

2 Networks as graphs

2.1 Graphs

We represent networks by graphs. A graph G = (V, E) consists of a set V of nodes
or vertices, and a set E of edges, which are the links between the nodes. If the edges
have a direction, then the graph is said to be directed or oriented; otherwise, it is
undirected. In the directed case, each element of E is an ordered pair e = (v1, v2) of
elements of V , and we say that e incides on v2, exsurges from v1, and connects v1
and v2. In the undirected case, each element of E is an unordered pair e = {v1, v2} of
elements of V , and we say that e incides on both v1 and v2, and connects v1 and v2
(and also v2 and v1). Notice that in either case, it is possible that v1 = v2; in specific
cases, we will require that such “self-loops” do not exist. We assume that there are
no multiple edges between any pair of vertices. Both unweighted graphs, in which
each edge has weight one, and weighted graphs, in which each edge has a positive
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weight, are considered. For unweighted undirected graphs, the degree of a node is
the number of edges inciding on it; for unweighted directed graphs, we distinguish
between the indegree of a node, which is the number of edges inciding on it, and the
outdegree of a node, which is the number of edges exsurging from it.

2.2 Matrix representations of graphs

Algebraic Graph Theory uses algebraic methods to study graphs. In particular, the
use of Linear Algebra has proved useful for the analysis of networks. Detailed expo-
sitions can be found, for example, in [8, 10, 15]. In this section, we will develop only
concepts that will be needed below; some notations and definitions are non-standard.

Consider an unweighted graph G = (V, E) with vertices V = {v1, . . . , vn} and
edges E = {e1, . . . , em}. The adjacency matrix of G is an n×n matrix A = [aij ] with
aij = 1 if there exists an edge that connects nodes vi and vj , and aij = 0 otherwise.
A walk vl1 , . . . , vlk is a sequence of vertices such that vlq−1 is connected to vlq for
q = 2, 3, . . . , k. The (ij)th entry of Ak is the number of walks vl1 , . . . , vlk with
l1 = i and lk = j . For undirected graphs, the adjacency matrix A is symmetric; for
directed graphs, A generally is nonsymmetric. If the adjacency matrix of a directed
unweighted graph turns out to be symmetric, then the graph can be identified with an
undirected unweighted graph.

Let the graph G be undirected and unweighted. Then, the incidence matrix of G is
an n × m matrix B = [bij ] with bij = 1 if ej incides on vi , and bij = 0 otherwise.
Notice that each column of B has exactly two entries equal to 1 (and the rest zero),
unless the corresponding edge is a self-loop, in which case exactly one entry is 1. If
there are no self-loops, then BBT = A + D, where D = [dij ] is a diagonal matrix
with the diagonal entry dii equal to the degree of vi . Here and below, the superscript
T denotes transposition.

Assume now that G is directed and unweighted. We then define the incidence
and exsurgence matrices of G as the n × m matrices B i = [biij ] and Be = [beij ],
respectively, with biij = 1 if ej incides on vi , beij = 1 if ej exsurges from vi , and
entries zero otherwise.

Proposition 1 Let G be a directed unweighted graph, and let B i = [biij ] and Be =
[beij ] denote the associated incidence and exsurgence matrices. Then
(i) each column of B i and of Be contains exactly one entry equal to 1, with the

remaining entries of the column zero,
(ii) A = [ajk] = BeB iT . Moreover, the entries of Be and B i are such that in each

sum

ajk =
m∑

�=1

bej�b
i
k�, 1 ≤ j, k ≤ n, (2.1)

there is at most one nonvanishing term. Each nonvanishing element bej� of Be

is paired with precisely one nonvanishing entry bik� of B i. It follows that each
nonvanishing entry ajk can be written as bej�b

i
k� for precisely one index � ∈
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{1, 2, . . . , m}. Moreover, each entry bej� and each entry bik� determine precisely
one entry ajk .

Proof Statement (i) follows from the definition of the matrices B i and Be. The fac-
torization in (ii) expresses the entries of A in terms of inciding and exsurging edges.
Each nonvanishing term of the sum (2.1) represents an edge from node vj to node
vk . Since the network is assumed to have simple edges only, there can be at most
one nonvanishing term in each one of the sums (2.1). The fact that each nonvanish-
ing element bej� is paired with precisely one nonvanishing entry bik� follows from the
observation that an exsurgent edge has to lead somewhere, and cannot have more
than one destination.

We remark that there is a more commonly used version of the incidence matrix for
directed graphs, defined as an n × m matrix B̂ = [b̂ij ] with entries b̂i1j = −1 and
b̂i2j = 1 if ej connects vi1 and vi2 ; see [6, 15]. This definition requires that there be
no self-loops. If this is the case, then B̂ = B i − Be.

3 Line graphs

3.1 Line graphs of an undirected graph

Given an undirected graph G = (V, E), the line graph of G is an undirected graph
G∗ = (E,F), in which there is an edge f ∈ F that connects the nodes e, e′ ∈ E if and
only if there is a node v ∈ V such that both e and e′ incide on v in G. Line graphs have
particular characteristics. For example, each node v in G induces a clique (a complete
subgraph, that is, a set of nodes that are all connected to each other) in G∗, containing
all e ∈ E that incide on v. In fact, the collection of cliques produced by nodes in G
with degree at least 2 creates a partition of F (see [23]). If B is the incidence matrix
for G, then it can be easily shown that E = BT B − 2I is the adjacency matrix for
G∗. Throughout this paper, I stands for the identity matrix of suitable order. We refer
to E as the line graph adjacency matrix.

3.2 Line graphs of a directed graph

Defining a single line graph for a directed graph is difficult, as there are some non-
canonical choices. We therefore introduce four line graphs that capture different
relationships between the edges of a directed graph.

Definition 1 Let G = (V, E) be a directed graph. We define the following associated
line graphs:

1. The undirected co-incidence line graph G∨ = (E,F∨), in which distinct edges
e, e′ ∈ E are connected if and only if both e and e′ incide on the same node in G.

2. The undirected co-exsurgence line graph G∧ = (E,F∧), in which distinct edges
e, e′ ∈ E are connected if and only if both e and e′ exsurge from the same node
in G.
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3. The directed continuation line graph G→ = (E,F→), in which the edge e is
connected to the edge e′ if e incides on v and e′ exsurges from v for some node
v in G.

For completeness, we also define a fourth line graph: the reverse continuation line
graph G← = (E,F←), where (e, e′) ∈ F← if and only if (e′, e) ∈ F→. The line
graph G→ is well known; it is described, e.g., in [17, page 265]. The line graphs G∨
and G∧ are new. It is worth noting that for an undirected graph G∨ = G∧ = G→ =
G←, because there is no distinction between the types of edge connections described
above.

The following properties are easily shown:

Proposition 2 Let G = (V, E) be a directed graph.

1. G∨ and G∧ have no self-loops; e ∈ E has a self-loop in G→ if and only if e is a
self-loop in G.

2. G∨ partitions E into edge- and vertex-disjoint cliques, with one clique for each
v ∈ V with positive indegree. The same happens with G∧, with one clique for
each v with positive outdegree.

3. Suppose (e, e′) ∈ F→. Then {e, e′′} ∈ F∨ implies that (e′′, e′) ∈ F→, and
{e′, e′′} ∈ F∧ implies that (e, e′′) ∈ F→.

4. BeBeT and B iB iT are n × n diagonal matrices containing the outdegrees and
indegrees, respectively, of the nodes of G.

5. The adjacency matrices for G∨, G∧, G→, and G← are given by E∨ = B iT B i,
E∧ = BeT Be, E→ = B iT Be, and E← = BeT B i, respectively. Note that for
undirected graphs E∨ = E∧ = E→ = E← = E.

6. Let B+ = [Be B i] ∈ R
n×2m and define E+ = B+T B+ ∈ R

2m×2m. Then

E+ =
[

E∧ E←
E→ E∨

]
. (3.1)

The matrix E→ is known as the line graph adjacency matrix associated with the
graph G (see [24]). To distinguish this matrix from the adjacency matrices for other
line graphs, we refer to E+ as the extended line graph adjacency matrix of G. It is a
symmetric matrix, and it can be interpreted as the adjacency matrix of an undirected
graph with two copies of the set of edges E .

4 Weights

The algebraic approach is, clearly, crucial for the use of matrix functions like the
matrix exponential (see Section 5.1 below) which are important tools to assess the
importance of a node or an edge. However, the choice of a particular matrix rep-
resentation implies some assumptions about the network, as well as limitations in
the kinds of networks that can be represented. For example, a node-node adjacency
matrix with all entries zero or one cannot accommodate multiple edges between the
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same pair of nodes, unless we are willing to represent them with weights that count
the number of edges.

This section considers directed graphs with weighted edges. The weights are
assumed to be positive. The interpretation of the weights depends on the application.
In general, edge weights correspond to a capacity or speed of transportation, or the
reciprocal of a transfer or communication cost.

Let Ã denote an edge-weighted adjacency matrix. This matrix is obtained by asso-
ciating a positive weight with each edge. Thus, the (ij)th entry of Ã is the weight
of the edge from node vi to node vj . We refer to this matrix as edge-scaled. The
“unweighted” adjacency matrixA that is associated with Ã has all edge weights equal
to one. Thus, the entries of A belong to {0, 1}.

Theorem 1 Let Ã = [ãij ] be the n×n weighted adjacency matrix of a directed edge-
weighted graph G of n nodes and m edges. Let zk > 0 denote the weight of edge ek

for 1 ≤ k ≤ m. Define the diagonal matrix Z with diagonal entries z1, z2, . . . , zm

in some order. Let A = BeB iT be the adjacency matrix for the unweighted directed
graph associated with G, where B i = [biij ] and Be = [beij ] denote the incidence

and exsurgence matrices for the unweighted graph; see Proposition 1. Then Ã =
BeZB iT . In particular, each nonvanishing entry of Ã equals one of the diagonal
entries of the matrix Z, and each diagonal entry of Z corresponds to precisely one
nonvanishing entry of Ã.

Proof The result follows from Proposition 1. Each column of Be has precisely one
nonvanishing entry 1. Therefore, BeZ is a weighted exsurgence matrix, with each
diagonal entry zj appearing in exactly one column. The theorem now follows from
part (ii) of Proposition 1 with Be replaced by BeZ.

The matrix Z = diag[z1, z2, . . . , zm] of Theorem 1 can be factored according to
Z = ZeZi, where Ze = diag[ze1, ze2, . . . , zem] and Zi = diag[zi1, zi2, . . . , zim] have
positive diagonal entries. Then B̃e = BeZe is a weighted exsurgence matrix, such
that each entry zej of Ze appears in exactly one column. Similarly, B̃ i = B iZi is a

weighted incidence matrix, such that each entry zij of Zi appears in precisely one

column. The weighted line graph G→ is defined by the matrix Ẽ→ = B̃ iT B̃e. We
will use the matrices Ze = Zi = Z1/2 in the computed examples reported in this
paper, but other choices of Ze and Zi also are possible.

For certain (unweighted) adjacency matrices A = BeB iT and weighting matrices
Z, the weighted adjacency matrix Ã = BeZB iT can be expressed by row and/or
column scaling of A. We summarize this in the following proposition, whose proof
is straightforward.

Proposition 3 Let A = [aij ] = BeB iT be an n × n unweighted adjacency matrix
with m edges, let Ã = [ãij ] = BeZB iT ∈ R

n×n be an associated edge-weighted
adjacency matrix, and let W = diag[w1, w2, . . . , wn] be a diagonal matrix with
positive diagonal entries. Then (i) Ã = AW if and only if the weighting matrix Z is
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such that ãij = aijwj for all 1 ≤ i, j ≤ n, (ii) Ã = WA if and only if the weighting
matrix Z is such that ãij = aijwi for all 1 ≤ i, j ≤ n, (iii) Ã = WAW if and only if
the weighting matrix Z is such that ãij = aijwiwj for all 1 ≤ i, j ≤ n.

The significance of the above result is that we may express the edge-weighting
defined by the edge-weighted adjacency matrix Ã in terms of row or column scaling
of the “unweighted” adjacency matrix A.

4.1 Example

Consider the cyclic upper Hessenberg adjacency matrix

A =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 · · · 0 1
1 0 0 · · · 0 0
0 1 0 · · · 0 0

0
. . .

... 0 0
. . . 0 0

0 0 1 0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎦

∈ R
n×n.

Then, for any weighting matrix Z, the edge-weighted matrix Ã can be expressed as
Ã = AW1 and Ã = W2A for suitable diagonal weighting matrices W1 and W2 with
positive diagonal entries.

5 Computing themost important edges in an undirected network
by thematrix exponential

5.1 Review of the adjacencymatrix exponential

In [12], the authors use matrix functions to rank the nodes in undirected networks.
For a symmetric unweighted adjacency matrix A ∈ R

n×n, the (ij)th entry of Ap

gives the number of walks of length p between nodes vi and vj . The (ij)th entry of
the matrix function

f (A) =
∞∑

p=0

cpAp (5.1)

gives a weighted average of the number of walks of various lengths between the nodes
vi and vj . The coefficients cp are chosen to penalize walks that traverse many edges,
because such walks are considered less important than walks that traverse few edges.
The coefficients cp are therefore, generally, chosen to be nonnegative and decreasing
as a function of p. A common choice is cp = 1/p!. Then f (A) = exp(A). The term
c0I is of no significance.

The entry of [f (A)]ii defines the subgraph centrality of the node vi , and the entry
[f (A)]ij , with i �= j , defines the communicability between the nodes vi and vj . A
relatively large value [f (A)]ii indicates that node vi is important, and a relatively
large value [f (A)]ij , i �= j , suggests that communication between the nodes vi and
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vj is relatively easy (see, e.g., [10, 12]). Another importance measure for nodes is
furnished by row sums of the function (5.1), i.e., by the entries [f (A)1]i , 1 ≤ i ≤ n,
where 1 = [1, 1, . . . , 1]T . A relatively large value of [f (A)1]i suggests that the node
vi is important (see [4] as well as [14, Section 2] and [19]).

5.2 Exponential of the line graph adjacencymatrix for undirected graphs

We seek to rank the edges of graphs and first consider undirected graphs. Let E ∈
R

m×m be the line graph adjacency matrix for an undirected graph with n nodes and
m edges (see Section 3.1 for its definition). We compute the matrix exponential of E

and obtain, analogously to (5.1),

exp(E) =
∞∑

p=0

1

p!E
p. (5.2)

Similarly to the discussion in [12] and above, we can interpret the entries of exp(E)

as indicators of the centrality and communicability of the edges of the graph. For
instance, a relatively large diagonal entry [exp(E)]kk indicates that the edge ek is
important. Similarly, a relatively large off-diagonal entry [exp(E)]kl , k �= l, suggests
that information that travels via edge ek is likely to also travel via edge el . One also
may define the centrality of the edge ek as [exp(E)1]k . We will use the latter measure
and define the edge line graph centrality of an edge ek between the nodes vi and vj as

eLCk = [exp(E)1]k . (5.3)

The following examples illustrate the ranking of edges using this measure.

5.2.1 Example

Consider the graph of Fig. 1 and the associated line graph of Fig. 2. We can see from
the graph and the line graph that edge e3 is the most important edge, because it is
directly connected to all the other edges in the graph. The symmetry of the graph and

Fig. 1 Graph of Example 5.2.1
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Fig. 2 Line graph of Example
5.2.1

the line graph suggests that the edges e1, e2, e4, and e5 are equally important. Table 1
confirms this by computing the edge line graph centrality (5.3).

5.2.2 Example

The graph for this example is shown in Fig. 3. Visual inspection suggests that the
edge e2 is the most important edge of the graph. Looking at the graph, one might
guess that e1 is the next most important edge. However, Table 2 shows the edges e3,
e4, and e6 to be ranked higher. The line graph for the graph, shown in Fig. 4, sheds
light on this ordering. It shows the edges e2, e3, e4, and e6 to be well connected. This
example illustrates that looking at a graph may not always give a good idea of which
edges are the most important ones.

5.3 A comparison of downdatingmethods for undirected graphs

Let the adjacency matrix A define an undirected graph. We would like to remove an
edge from this graph so that the total network communicability, defined by

TC(A) = 1T exp(A)1, (5.4)

and considered by Benzi and Klymko [4], decreases the least. This problem is dis-
cussed by Arrigo and Benzi [2]. Another communicability measure used in the latter
paper is the Estrada Index [11, 12] defined by

EE(A) = trace(exp(A)) =
n∑

i=1

[exp(A)]ii . (5.5)

Table 1 Ranking of the edges of
Example 5.2.1 by the centrality
measure (5.3)

Edge ek
eLCk

e3 29.73

e2 24.11

e4 24.11

e1 24.11

e5 24.11
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Fig. 3 Graph of Example 5.2.2

There are several ways to measure the importance of an edge. Arrigo and Benzi
[2] define the edge total communicability centrality of an existing edge between the
nodes vi and vj as

eTC(vi, vj ) = [exp(A)1]i[exp(A)1]j , (5.6)

and the edge subgraph centrality of an edge between the nodes vi and vj as

eSC(vi, vj ) = [exp(A)]ii[exp(A)]jj . (5.7)

In this paper, we propose to compute the exponential of the line graph adjacency
matrix and remove edges with the lowest centrality defined by (5.3). For this purpose,
we introduce the total line graph centrality measure of the network with line graph
adjacency matrix E,

LC(A) =
m∑

k=1

{exp(E)1}k = 1T exp(E)1. (5.8)

This approach is shown to be competitive with the approach of removing edges with
the lowest edge centralities defined by (5.6) and (5.7), as proposed in [2], and we
will show examples where it decreases the total communicability less than the other
approaches.

The following examples illustrate the use of the measures described above. We
show two examples, for which removing the three least important edges from a graph,
using the exponential of the edge line graph to identify these edges, results in a graph
with a higher communicability with respect to all the measures (5.3), (5.5), and (5.6).

Table 2 Ranking of the edges of
Example 5.2.2 by using the
centrality measure (5.3)

Edge ek
eLCk

e2 28.07

e4 23.68

e3 23.68

e6 23.68

e1 17.23

e7 10.61

e5 10.61
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Fig. 4 Line graph of Example 5.2.2

In the first example, we compute the exponential of the line graph, remove the
three least important edges, and then calculate the measures after removal. This
approach is referred to as nongreedy downdating in [4]. The second example recalcu-
lates the measures after the removal of each edge, to make the decision of removal of
the next edge based on the updated graph. This approach is called greedy downdating
in [4].

5.3.1 Nongreedy downdating example

Consider the connected network shown in Fig. 5. We use different edge centrality
measures to decide which three edges should be eliminated from the network so that
the total communicability is decreased the least, with the constraint that the graph
obtained after edge removal should be connected.

Table 3 shows the edges with the lowest centrality measured by several centrality
measures defined above. The first method computes the edge total communicability
(5.6), the second one ranks the edges according the edge subgraph centrality measure
(5.7), and the third one uses the edge line graph centrality (5.3). We then remove

Fig. 5 a, b Undirected graph and associated line graph
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Table 3 The least important edges in Fig. 5a ordered according to increasing importance by using the
edge total communicability, the edge subgraph centrality, and the edge line graph centrality

Edge ek
eTC(vi , vj ) Edge ek

eSC(vi , vj ) Edge ek
eLCk

e2 549.51 e2 18.82 e7 85.08

e10 549.51 e10 18.82 e9 85.08

e6 581.11 e6 18.96 e5 85.08

e9 581.11 e9 18.96 e6 97.91

The edge ek connects the nodes vi and vj

the three edges with the lowest centrality and determine which method decreases the
total communicability the least.

When using the edge total communicability centrality measure or the edge sub-
graph centrality measure, as suggested in [2], the first four columns of Table 3
indicate that the edges e2, e6, and e9 are to be removed. The graph obtained after
removal of these edges is shown in Fig. 6a. We note that while some edges have
smaller centrality measure than the ones we remove, those edges are not removable
because this would disconnect the graph. We then use the edge line graph centrality
measure (see the last two columns of Table 3 for the edge ranking) to conclude that
the edges e5, e7, and e9 are to be removed. The graph obtained after removal of these
edges is shown in Fig. 6b.

We compute the centrality measures TC(A), EE(A), and LC(A) for both graphs
of Fig. 6 and report them in Table 4. In each case, we obtain better connectivity of the
graph of Fig. 6b than of the graph of Fig. 6a, i.e., when we use the edge line graph
centrality measure to determine which edges to remove.

5.3.2 Greedy downdating example

We again consider the network in Fig. 5 and remove the three edges with the lowest
centrality using the same measures as in the previous example, but here we update

Fig. 6 a, b The nongreedy downdated network of Fig. 5a
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Table 4 Comparison of various network connectivity measures for the nongreedily downdated graphs in
Fig. 6 obtained by the method in [2] versus the using the exponential of the line graph

Graph in Fig. 6a Graph in Fig. 6b

Total network communicability TC(A) 86.22 92.31

Estrada Index EE(A) 20.68 21.16

Total line graph centrality LC(A) 2144.41 3104.77

The reduced graph is required to be connected

the measures after each edge removal. Like in the previous example, we require the
graph obtained after edge removal to be connected. The edge total communicability
centrality and the edge subgraph centrality yield the graph in Fig. 7a, while using the
exponential of the adjacency matrix for the line graph gives the graph of Fig. 7b.

We compute the network centrality measures TC(A), EE(A), and LC(A) for the
graphs of Fig. 7. These measures are reported in Table 5 and are larger than the
entries of Table 4 for the nongreedy algorithm. This means that the greedy approach
gives graphs with better connectivity than the nongreedy one. Moreover, the graph of
Fig. 7b has better connectivity than the graph of Fig. 7a. This also holds for numerous
other examples. We conclude that edge removal by the greedy approach based on
using the exponential of the line graph adjacency matrix generally is preferable.

5.3.3 Downdating example when the reduced graph is not required to be connected

In Examples 5.3.1 and 5.3.2, we downdated the graphs with the requirement that
the reduced graph be connected, as was done in [4]. In this example, we remove
three edges with the smallest centrality of the graph of Fig. 5a without requiring the
reduced graph to be connected. The edge centrality measures used are the same as in
Examples 5.3.1 and 5.3.2.

When measuring edge importance by the edge total communicability centrality
and the edge subgraph centrality, we obtain the disconnected reduced graph in Fig. 8

Fig. 7 a, b The greedy downdated network of Fig. 5a
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Table 5 Comparison of network connectivity measures for the greedily downdated graphs in Fig. 7
obtained by the method in [2] versus the use of the exponential of the adjacency matrix for the line graph

Graph in Fig. 7a Graph in Fig. 7b

Total network communicability TC(A) 89.04 92.52

Estrada Index EE(A) 20.91 22.11

Total line graph centrality LC(A) 2507.77 3119.72

The reduced graph is required to be connected

when we apply both the nongreedy and greedy methods described in Examples 5.3.1
and 5.3.2, respectively. Using the exponential of the adjacency matrix for the line
graph gives the graph of Fig. 6b for the nongreedy method, and the graph of Fig. 7b
for the greedy method.

Table 6 reports the network centrality measures TC(A), EE(A), and LC(A) for
the graphs obtained. The graphs of Figs. 6b and 7b have larger connectivity measures
than the graph of Fig. 8, except for the Estrada Index, which is smaller but close.
We conclude that edge removal by using the exponential of the line graph adjacency
matrix E can be competitive also when we do not require the reduced graph to be
connected.

5.4 A comparison of downdatingmethods for directed graphs

In this section, the adjacency matrix A corresponds to a directed graph. We would
like to remove edges of a directed graph so that communicability of the network is
decreased the least. A measure used by Arrigo and Benzi [1] is the total network
communicability, the same as in (5.4), withA nonsymmetric. They also use a measure
that takes into account alternating walks in a directed network. This measure assigns
the network a value of its hub strength, referred to as the total hub communicability,

ThC(A) = 1T cosh(
√

AAT )1,

and a value of its authority strength, referred to as the total authority communicability,

TaC(A) = 1T cosh(
√

AT A)1.

Fig. 8 Downdated graph of
Fig. 5a obtained by using the
nongreedy or greedy techniques
in [2] without requiring the
network to stay connected
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Table 6 Comparison of network connectivity measures after downdating the graph in Fig. 5a using the
methods in [2] versus the use of the exponential of the adjacency matrix for the line graph

Figure 8 Figure 6b Figure 7b

Total network communicability TC(A) 91.5 92.31 92.52

Estrada Index EE(A) 22.33 21.16 22.11

Total line graph centrality LC(A) 2501.24 3104.77 3119.72

The reduced graph is not required to be connected

To evaluate the total communicability of the network, the authors of [1] compute the
sum ThC(A) + TaC(A). This method is based on the idea of expressing a directed
graph by an undirected graph with twice the number of nodes, and applying the
matrix exponential to the adjacency matrix associated with the latter graph,

A =
[

0 A

AT 0

]
; (5.9)

see [3] for details.
This section extends the total line graph centrality measure defined in (5.8) to

directed graphs. Taking into account the existing edges ek , we use the line graph
adjacency matrix E→ to define the total line graph centrality by

LC(A) =
m∑

k=1

[exp(E→)1]k = 1T exp(E→)1. (5.10)

Note that when assessing the effect of removing an edge on the communicability of a
network, the measure ThC(A)+TaC(A) may yield significantly different values than
the measures TC(A) and LC(A), since the latter measures capture the flow deeply in
the network, whereas the first measure does not.

We review some of the edge measures used in [1] for ranking edges to identify
the least connected edges, which are to be removed. The edge total communicability
centrality of an existing edge going from node vi to vj is given by

eTC(vi, vj ) = [exp(A)1]i[1T exp(A)]j ,
and its application to the corresponding matrix (5.9) yields the measure

eT C(vi, vj ) = [exp(A)1]i[1T exp(A)]n+j .

Based on ideas in [3], the authors of [1] use the generalized hyperbolic sine to define
the edge total communicability,

egTC(vi, vj ) = Ch(i)Ca(j),

where the total hub communicability of node vi and the total authority communica-
bility of node vj are defined by

Ch(i) = [U sinh(Σ)V T 1]i and Ca(j) = [V sinh(Σ)UT 1]j ,
respectively. The matrices U , Σ , and V are determined by the singular value
decomposition A = UΣV T (see, e.g., [16] for a discussion of the latter).
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Analogously to our definition of the edge centrality (5.3), we define the edge line
graph centrality of a directed edge ek pointing from node vi to vj as

eLCk = [exp(E→)1]k;
see also (5.10).

5.4.1 Nongreedy downdating example

Consider the directed graph in Fig. 9a. We would like to remove the three edges
with the lowest edge centrality as measured by eTC, eT C, egTC, or eLC. The graphs
obtained after removing the three edges identified by these measures are shown in
Fig. 9b–d. In this example, we allow the resulting graph to be disconnected.

We compute the communicability of the graphs of Fig. 9. Table 7 shows that when
removing the edges with the lowest edge line graph centrality, all the measures of
network communicability have a larger value than when we remove edges using one

Fig. 9 a–d The nongreedy downdating of a directed graph
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Table 7 Comparison of network communicability measures for the downdated graphs in Fig. 9

Figure 9b Figure 9c Figure 9d

Total network communicability TC(A) 69.62 69.32 94.97

ThC(A) + TaC(A) 61 61 62

Total line graph centrality LC(A) 160.13 158.99 261.41

of the other edge centrality measures. While this is not the case for every example we
may encounter, it nevertheless suggests that edge line graph centrality is an important
measure of edge centrality.

5.4.2 Greedy downdating example

This example differs from the previous one only in that we now update the com-
municability measures of the graph after each edge removal. Removing edges based
on the measure eLC(vi, vj ) performed as well as removing edges by using the
measure eTC(vi, vj ). These two measures outperform the other measures. The down-
dated graphs obtained by using the various edge centrality measures are displayed in
Fig. 10, and the communicability measures for the downdated measures are reported
in Table 8. Note that the graph of Fig. 10a is disconnected, while the graphs of
Fig. 10b and c are connected.

6 Computing themost important edges in a directed unweighted
network using thematrix exponential

We introduced in Section 3 three types of connections between adjacent edges of a
directed graph. Each one of these connection types yields a line graph, and the expo-
nentials of the adjacency matrices associated with these line graphs define centrality

Fig. 10 a–c The greedy downdating of the directed graph in Fig. 9a
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Table 8 Comparison of network communicability measures for the downdated graphs in Fig. 10

Figure 10a Figure 10b Figure 10c

Total network communicability TC(A) 94.97 60.91 84.78

ThC(A) + TaC(A) 62 61 61

Total line graph centrality LC(A) 261.41 127.59 219.59

measures for edges. We are interested in determining which edges are the most and
least important ones in a directed network and investigate the application of the
matrix exponential to these line graph adjacency matrices.

6.1 The exponential of the extended line graph adjacencymatrix E+

We defined in Section 3.2 the symmetric line graph adjacency matrix E+ to represent
the connections between the edges in a directed graph G by using the corresponding
undirected bipartite graph. A centrality measure for edges based on E+ is given by
the matrix exponential

exp(E+) =
∞∑

p=0

1

p!E
+p

,

which has an interesting structure. To exploit this structure, it is helpful to introduce
the notion of the total degree of a node in G, which is the sum of the indegree and
outdegree of the node.

Proposition 4 Let the extended line graph adjacency matrix E+ for a directed
unweighted graph G be given by (3.1). Then E+ = B+T

B+, where B+ = [Be B i];
see Proposition 2. Let mi denote the total degree of node vi of G. Then

exp(E+) = I + B+T

⎡

⎢⎢⎢⎢⎣

exp(m1)−1
m1

0 0 · · ·
0 exp(m2)−1

m2
0 · · ·

0 0 exp(m3)−1
m3

· · ·
...

...
...

⎤

⎥⎥⎥⎥⎦
B+. (6.1)

Thus, the structure of the matrix exp(E+) is related to the structure of B+T
B+, but

the entries of the former matrix depend on the total degree of the nodes. Since the
function x → exp(x)−1

x
, x > 0, is increasing, the importance of a node generally

increases with its total degree.

Proof We have

(E+)2 = (B+T
B+)(B+T

B+) = B+T
(B+B+T

)B+ = B+T
(BeBeT + B iB iT )B+,

where we note that the matrix M = BeBeT +B iB iT is diagonal. Its nontrivial entries
are the total degrees of the nodes of G. It is easy to show that for any integer p ≥ 1,
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we have (E+)p = B+T
Mp−1B+, from which it follows that

exp(E+) = I + (B+T
B+) + (B+T

MB+)

2! + (B+T
M2B+)

3! + . . .

= I + B+T
M−1(exp(M) − I )B+.

This shows (6.1).

Let us take the simple example in Fig. 11 to test how meaningful the use of
exp(E+) is for measuring the importance of the edges of this graph. Proposition 2
describes the construction of the adjacency matrix E+ associated with the graph. Its
matrix exponential, with non-vanishing entries rounded to three significant decimal
digits, is given by

exp(E+) =

⎡

⎢⎢⎢⎢⎢⎢⎣

2.72 0 0 0 0 0
0 4.19 0 3.19 0 0
0 0 4.19 0 3.19 0
0 3.19 0 4.19 0 0
0 0 3.19 0 4.19 0
0 0 0 0 0 2.72

⎤

⎥⎥⎥⎥⎥⎥⎦
.

The top right quarter of the above matrix represents the propagation of signals from
edges traveling through the network. The fact that the entry [exp(E+)]16 vanishes
indicates that the edge e1 cannot connect to the edge e3 by any number of steps. But
we easily see in Fig. 11 that these edges are connected by two steps: e1 to e2 followed
by e2 to e3. This illustrates that the matrix exp(E+) is poorly suited to indicate the
importance of edges. We conclude that a matrix other than E+ is needed to make the
exponential function meaningful for edges.

6.2 The exponential of the line graph adjacencymatrix E→

Thulasiraman and Swamy [24] discuss the line graph adjacency matrix E→ =
B iT Be. It has an entry 1 in position (i, j) if and only if the edge ej passes information
to the edge ei through a node, i.e., if and only if the head of edge ej coincides with the
tail of edge ei . The entries of the matrix (E→)2 tell us whether information is passed
from an edge to another one through two nodes. In other words, [(E→)2]ij = 1 if
there exists an edge pointing from the target node of ei to the source node of ej . Sim-
ilarly, [(E→)p]ij counts the number of ways information is transferred from the edge
ei to the edge ej through p nodes. The matrix exponential exp(E→) is a weighted
sum of positive powers of E→, with transfers of information via many nodes having
a smaller weight than transfers via few nodes (cf. (5.2)). Note that the matrix E→
generally is nonsymmetric. Each row of exp(E→) represents an edge in its emit-
ter role, and each column expresses its role in receiving information. Similar to the

Fig. 11 Simple directed network
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Fig. 12 a, b Graph and line graph for Example 6.2.1

discussion in Section 5.3, we can determine the ability of an edge to transmit infor-
mation through the network by ordering the elements of the row sums of the matrix
exp(E→), i.e., of exp(E→)1. The largest entry of this vector corresponds to the most
important transmitter. Similarly, the vector 1T exp(E→) provides an ordering of the
edges in their role as information receivers, where the largest entry corresponds to
the most important receiver. We will use these measures in the following examples.

We note that powers of E∨ and E∧ defined in Proposition 2 do not add any infor-
mation about propagation through the network because of the nature of connections
between edges that they provide. Moreover, E← = (E→)T . Therefore, calculating
exp(E←)1 is equivalent to evaluating 1T exp(E→).

6.2.1 Example

We consider the ranking of edges of a graph G that is the small tree shown in Fig. 12a.
The corresponding line graph is displayed in Fig. 12b. Table 9 displays the centrality
measures exp(E→1) and 1T exp(E→). The edge e2 contributes the most to broad-
casting information through the network, because it is the only edge that points to a
node from which two edges emerge. The edge e1 is the next most important edge,
because it is one step further away from the split at the node v3 than the edge e2. The

Table 9 Ranking of the edges of
Fig. 12 using the exponential of
the matrix E→

Edge ek [exp(E→)1]k Edge ek [1T exp(E→)]k

e2 4 e5 2.67

e1 3.33 e6 2.67

e3 2 e3 2.5

e4 2 e4 2.5

e5 1 e2 2

e6 1 e1 1
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Fig. 13 a, b Graph and line graph for Example 6.2.2

edges e5 and e6 are dead ends and therefore are ranked as the least important trans-
mitters. On the other hand, the latter edges have the highest capability of receiving
information and therefore are ranked as the most important receivers. We conclude
that the ranking of transmitters and receivers determined by the measures exp(E→)1
and 1T exp(E→) is in agreement with intuition based on the graphs in Fig. 12.

6.2.2 Example

This example illustrates the effect of a loop in a directed graph shown in Fig. 13.
Table 10 shows the edge e6 to be both the highest ranked broadcaster and the highest
ranked receiver. The directed loop between the nodes v1, v4, and v6 makes edges
between these nodes be strong broadcasters.

6.2.3 Flight example I

The last example of this section uses a directed unweighted network determined
by domestic flights in the USA during year 2016, as reported by the Bureau of
Transportation Statistics of the US Department of Transportation [22]. The airports
are nodes and the flight segments are edges. This yields a nonsymmetric adjacency
matrix A ∈ R

705×705. Since most flights have return flights, the matrix A is close to
symmetric.

We determine the matrix E→ using the adjacency matrix for the flights network,
and rank the departing flights by computing exp(E→)1. The six largest entries of

Table 10 Ranking of the edges
of Fig. 13 using the exponential
of the matrix E→

Edge ek [exp(E→)1]k Edge ek [1T exp(E→)]k

e6 4.78 e6 3.76

e2 3.97 e1 3.23

e5 3.56 e2 3.23

e7 3.56 e3 2.89

e1 2 e4 2.89

e3 1 e5 2.89

e4 1 e7 1
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this vector determine the most important flights. They are displayed in Table 11. We
rank the arriving flights by computing the largest entries of 1T exp(E→). However,
the computation of exp(E→)1 and 1T exp(E→) may result in numerical overflow on
many computers. To avoid this difficulty, we compute the spectral radius μ of E→
and evaluate exp(E→−μI)1 and 1T exp(E→−μI) instead. This eliminates overflow
and does not affect the relative size of the entries of the computed vectors. Therefore,
the ordering is not affected by this modification. This approach of avoiding overflow
has previously been applied in computations reported in [14].

We conclude that a flight from the George Bush Intercontinental Airport in
Houston to the Hartsfield-Jackson Airport in Atlanta transmits the best through the
network of all domestic flights in the USA. The flight from the Cleveland-Hopkins
International Airport to Atlanta comes second, followed by the flight from the Tampa
International Airport to Atlanta. Similarly, the flight from the Raleigh-Durham Inter-
national Airport in North Carolina to Atlanta absorbs the most flights through the
network of national flights. We remark that although the Los Angeles International
Airport and the Chicago O’Hare International Airport are among the three top ranked
airports according to the Federal Aviation Administration [13], these airports are not
among the ones shown in Table 11. This depends on that our model disregards the
number of flights (if larger than one) and the number of passengers on each segment.

7 Computing themost important edges in a directed weighted
network using thematrix exponential

Similarly as in the previous section, we can rank the edges of a directed weighted
network in their role as transmitters of information by calculating the entries of the
vector exp(Ẽ→)1, where the matrix Ẽ→ = B̃ iT B̃e is determined by taking weights
into account as described in Section 4. The relative size of the entries of the vector
1T exp(Ẽ→) provides an ordering of the edges in their role as information receivers
and the relative size of the elements of exp(Ẽ→)1 furnishes an ordering of the edges
as information transmitters.

Table 11 Ranking of flight
segments in the domestic flights
network using the exponential of
the matrix E→

Most departing flights Most landing flights

From airport To airport From airport To airport

IAH ATL ATL RDU

CLE ATL ATL DSM

TPA ATL ATL BHM

GRR ATL ATL GSP

ALB ATL ATL FSD

PIT ATL ATL BTV
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Fig. 14 a, b A directed weighted tree with line graph

7.1 Example

The graph of this example is displayed in Fig. 14a, with the edge weight shown
for each edge. Let the diagonal entries of the diagonal matrix Z contain positive
edge weights. Figure 14b shows the associated line graph for Zi = Ze = Z1/2 (see
Section 4 for the definition of the matrices Zi and Ze).

Table 12 ranks the edges according to the importance as transmitters and receivers.
Although the edge e5 has weight 1, and e6 has weight 3, and these edges are posi-
tioned in a similar way, the output of our algorithm suggests that the edge e5 is more
absorbing of information than edge e6.

7.2 Flight example II

We take the same example studied in Section 6.2.3, but this time we include a weight
with each edge. The weight is set equal to the total number of enplanements on all the
flights for that segment, as reported by the Bureau of Transportation Statistics [22].
The weights define the diagonal matrix Z and determine an edge-weighted adjacency

Table 12 Ranking of the edges
of Fig. 14 using the exponential
of exp(E→)

Edge ek {exp(E→)1}k Edge ek {1T exp(E→)}k

e1 10.77 e5 6.89

e2 6.87 e3 5.83

e3 3.00 e6 4.41

e4 2.73 e2 3.83

e5 1.00 e4 3.41

e6 1.00 e1 1.00
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matrix Ã as in Theorem 1. Due to the weights, a flight segment with thousands of
passengers will affect the flowmore than a flight segment with only a few passengers.

To avoid overflow, we evaluate exp(E→ − μI), where μ is the spectral radius
of E→, similarly as in Section 6.2.3. Table 13 displays the six top ranked edges of
the network. All of the segments of the table start and end at one of the top airports
as described by the Federal Aviation Administration [13]. In particular, the segment
from the Hartsfield-Jackson Airport in Atlanta to the O’Hare Airport in Chicago
is the one that dissipates the highest number of passengers through the network of
domestic flights in the USA, and the same segment in the opposite direction receives
the most passengers through the network. These two airports are among the top three
busiest airports in the USA according to the Federal Aviation Administration of the
US Department of Transportation [13]. This example attests to the validity of our
model.

8 Computational aspects

We comment in this section on the computations required to evaluate

exp(E→)1 or 1T exp(E→). (8.1)

Generally, the matrix E→ is nonsymmetric. For small networks, this matrix is small
and can be explicitly formed. The exponential exp(E→) then easily can be evaluated,
such as by the MATLAB function expm, and the desired quantities (8.1) can be
determined. If the matrix E→ is large enough so that overflow may occur when
evaluating its exponential, the spectral factorization of E→ may be computed. This
yields the spectral radius μ of E→. Moreover, the spectral factorization can be used
to evaluate exp(E→ − μI)1 and 1T exp(E→ − μI). These matrices may only be
computable with reduced accuracy when the eigenvector matrix of E→ is severely
ill-conditioned. This has not been an issue in our computations.

When the matrix E→ is large, it may be attractive to evaluate approximations of
the quantities (8.1) with the aid of the nonsymmetric Lanczos process or the Arnoldi
process. Their application does not require the matrix E→ to be formed; only matrix-
vector products with E→, and possibly with its transpose, have to be computed (see

Table 13 Ranking of the
segments in the domestic flights
network, taking the passengers
enplanement as the segments
weights, and using the
exponential of the line graph
adjacency matrix

Most dissipating flights Most absorbing flights

From airport To airport From airport To airport

ATL ORD ORD ATL

DTW ORD ORD DTW

OGG LAX LAX LAS

PHL DEN DEN PHL

LAS LAX LAX SEA

SEA LAX DEN LAX
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[7, 14]) for details. The eigenvalues of the reduced matrix computed with the non-
symmetric Lanczos or Arnoldi processes yield sufficiently accurate approximations
of the spectral radius to avoid overflow in the computation of exp(E→ − μI)1 and
1T exp(E→ − μI).

9 Conclusion

This paper discusses the determination of the most important edges of an undirected
or directed graph by using an associated line graph. For directed graphs, several line
graphs are described and their usefulness for ranking edges is discussed. We also
consider the task of removing unimportant edges. Computed examples illustrate the
feasibility of the methods described.
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