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Abstract

This paper is concerned with the identification of important edges in a network, in
both their roles as transmitters and receivers of information. We propose a method
based on computing the matrix exponential of a matrix associated with a line graph
of the given network. Both undirected and directed networks are considered. Edges
may be given positive weights. Computed examples illustrate the performance of the
proposed method.
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1 Introduction

Many complex systems can be modeled as networks. Informally, a network is a col-
lection of objects or individuals, referred to as nodes or vertices, which are connected
to each other in some fashion; the nature of the nodes and the connections may vary
widely from application to application. Networks are formalized mathematically as
graphs. Connections between nodes are referred to as edges (see Section 2.1 for more
details). Like all models, network models leave out many details of reality; how-
ever, they are able to capture a substantial part of the complexity of a system in a
way that is amenable to mathematical and computational analysis. Networks arise
in social science, ecology, telecommunications, transportation, molecular biology,
national security, and many other fields (see, e.g., [10, 21] for many examples).
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One often is interested in determining which nodes are “important” in some sense.
Aside from any intrinsic characteristics of a node, the importance of a node in a
network is due to its connections to other nodes, as well as the importance of the
nodes to which it is connected. Various measures have been proposed to quantify the
importance of a node in a network. The importance commonly is referred to as the
centrality (see, e.g., [3, 7, 12, 14, 19, 20]).

We are interested in measuring the importance of edges in a network. This is
a problem that arises in various applications. For example, in [5], the authors are
concerned about highway sections with congestion that reduces the overall highway
network efficiency. Intuitively, an important edge is a good target for deletion when
the goal is to disrupt the network and, therefore, worthy of protection when the goal is
to preserve it. On the other hand, unimportant edges may possibly be eliminated (say,
to save resources) with a small overall effect. Estrada [9] and Gutman and Estrada
[18] describe applications in chemistry.

Our approach to study the importance of edges is to regard them as nodes in a
line graph (see Section 3) and apply node centrality measures determined by a matrix
function, in particular the matrix exponential. This works in a straightforward way for
undirected networks, but becomes more complex for directed ones. We also consider
the effect of edge weights.

This paper is organized as follows. Section 2 introduces graphs and associated
matrices. Line graphs are discussed in Section 3. Line graphs for both undirected and
directed graphs are considered. For directed graphs, we define several line graphs.
Section 4 is concerned with graphs that have weighted edges. The identification of
the most important edges of an undirected graph with uniform weights by using the
exponential function is discussed in Section 5, while Section 6 considers the analo-
gous task for a directed graph with uniform weights. The computation of the most
important edges of a directed weighted graph is discussed in Section 7. Computed
illustrations are provided in most sections. Section 8 discusses the computations
required to apply the described method, and Section 9 contains concluding remarks.

2 Networks as graphs
2.1 Graphs

We represent networks by graphs. A graph G = (V, £) consists of a set V of nodes
or vertices, and a set £ of edges, which are the links between the nodes. If the edges
have a direction, then the graph is said to be directed or oriented; otherwise, it is
undirected. In the directed case, each element of £ is an ordered pair e = (vy, v2) of
elements of ), and we say that e incides on v, exsurges from v, and connects v
and v;. In the undirected case, each element of £ is an unordered pair e = {v{, v2} of
elements of )V, and we say that e incides on both v; and v,, and connects v; and v;
(and also v, and vp). Notice that in either case, it is possible that v; = vy; in specific
cases, we will require that such “self-loops” do not exist. We assume that there are
no multiple edges between any pair of vertices. Both unweighted graphs, in which
each edge has weight one, and weighted graphs, in which each edge has a positive
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weight, are considered. For unweighted undirected graphs, the degree of a node is
the number of edges inciding on it; for unweighted directed graphs, we distinguish
between the indegree of a node, which is the number of edges inciding on it, and the
outdegree of a node, which is the number of edges exsurging from it.

2.2 Matrix representations of graphs

Algebraic Graph Theory uses algebraic methods to study graphs. In particular, the
use of Linear Algebra has proved useful for the analysis of networks. Detailed expo-
sitions can be found, for example, in [8, 10, 15]. In this section, we will develop only
concepts that will be needed below; some notations and definitions are non-standard.

Consider an unweighted graph G = (V, £) with vertices V = {vy, ..., v,} and
edges £ = {ey, ..., ey}. The adjacency matrix of G is an n X n matrix A = [a;;] with
ajj = 1 if there exists an edge that connects nodes v; and v}, and a;; = 0 otherwise.
A walk vy, ..., vy is a sequence of vertices such that vy -1 is connected to v, for
g = 2,3,..., k. The (ij)™ entry of A* is the number of walks vj,, ..., v, with
I =i and l; = j. For undirected graphs, the adjacency matrix A is symmetric; for
directed graphs, A generally is nonsymmetric. If the adjacency matrix of a directed
unweighted graph turns out to be symmetric, then the graph can be identified with an
undirected unweighted graph.

Let the graph G be undirected and unweighted. Then, the incidence matrix of G is
an n X m matrix B = [b;;] with b;; = 1if ¢; incides on v;, and b;; = 0 otherwise.
Notice that each column of B has exactly two entries equal to 1 (and the rest zero),
unless the corresponding edge is a self-loop, in which case exactly one entry is 1. If
there are no self-loops, then B BT = A+ D, where D = [d; 71 1is a diagonal matrix
with the diagonal entry d;; equal to the degree of v;. Here and below, the superscript
T denotes transposition.

Assume now that G is directed and unweighted. We then define the incidence
and exsurgence matrices of G as the n x m matrices Bl = [b; j] and B® = [bfj],
respectively, with b}j = 1l if e; incides on v;, bfj = 1 if e; exsurges from v;, and
entries zero otherwise.

Proposition 1 Let G be a directed unweighted graph, and let B = [b} j] and B® =
[biej] denote the associated incidence and exsurgence matrices. Then

() each column of B' and of B® contains exactly one entry equal to 1, with the
remaining entries of the column zero,
(i) A=laj]= BB Moreover, the entries of B¢ and B! are such that in each

sum
m

e pi .
aje =) bybl, 1<jk=<n, @.1)
=1
there is at most one nonvanishing term. Each nonvanishing element b‘;’. ¢, of B®

is paired with precisely one nonvanishing entry b}( 0 of Bi. It follows that each
nonvanishing entry aji can be written as b?lb;{( for precisely one index £ €
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{1,2,...,m}. Moreover, each entry bjz and each entry b}d determine precisely
one entry aji.

Proof Statement (i) follows from the definition of the matrices B' and B®. The fac-
torization in (ii) expresses the entries of A in terms of inciding and exsurging edges.
Each nonvanishing term of the sum (2.1) represents an edge from node v; to node
vk. Since the network is assumed to have simple edges only, there can be at most
one nonvanishing term in each one of the sums (2.1). The fact that each nonvanish-
ing element b; ¢ 18 paired with precisely one nonvanishing entry b}( ; Tollows from the
observation that an exsurgent edge has to lead somewhere, and cannot have more
than one destination. O]

We remark that there is a more commonly used version of the incidence matrix for
directed graphs, defined as an n x m matrix B = [b;;] with entries b;;; = —1 and

bi,j = 11if e; connects v;, and v;,; see [6, 15]. This definition requires that there be
no self-loops. If this is the case, then B = B — B

3 Line graphs
3.1 Line graphs of an undirected graph

Given an undirected graph G = (V, &), the line graph of G is an undirected graph
G* = (€, F), in which there is an edge f € F that connects the nodes e, ¢’ € £ if and
only if there is a node v € V such that both e and ¢’ incide on v in G. Line graphs have
particular characteristics. For example, each node v in G induces a clique (a complete
subgraph, that is, a set of nodes that are all connected to each other) in G*, containing
all e € £ that incide on v. In fact, the collection of cliques produced by nodes in G
with degree at least 2 creates a partition of F (see [23]). If B is the incidence matrix
for G, then it can be easily shown that E = BT B — 21 is the adjacency matrix for
G*. Throughout this paper, I stands for the identity matrix of suitable order. We refer
to E as the line graph adjacency matrix.

3.2 Line graphs of a directed graph

Defining a single line graph for a directed graph is difficult, as there are some non-
canonical choices. We therefore introduce four line graphs that capture different
relationships between the edges of a directed graph.

Definition 1 Let G = (V, £) be a directed graph. We define the following associated
line graphs:

1. The undirected co-incidence line graph G¥ = (£, F"), in which distinct edges
e, e’ € £ are connected if and only if both ¢ and ¢’ incide on the same node in G.
2. The undirected co-exsurgence line graph G* = (£, F”), in which distinct edges
e, ¢ € & are connected if and only if both e and ¢’ exsurge from the same node

ingG.
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3. The directed continuation line graph G = (&£, F ), in which the edge e is
connected to the edge ¢’ if e incides on v and ¢’ exsurges from v for some node
ving.

For completeness, we also define a fourth line graph: the reverse continuation line
graph G = (€, F), where (e, ¢’) € F< if and only if (¢/,¢) € F—. The line
graph G is well known; it is described, e.g., in [17, page 265]. The line graphs G
and G are new. It is worth noting that for an undirected graph G¥ = G" = 7 =
G, because there is no distinction between the types of edge connections described
above.

The following properties are easily shown:

Proposition 2 Let G = (V, £) be a directed graph.

1. GY and G" have no self-loops; e € £ has a self-loop in G~ if and only if e is a
self-loop in G.

2. GY partitions € into edge- and vertex-disjoint cliques, with one clique for each
v € V with positive indegree. The same happens with G, with one clique for
each v with positive outdegree.

3. Suppose (e,e’) € F~. Then {e,e"} € FV implies that (¢",¢') € F~, and
{e/,e"} € F" implies that (e, ") € F.

4. B°B°T and B'B'T are n x n diagonal matrices containing the outdegrees and
indegrees, respectively, of the nodes of G.

5. The adjacency matrices for G¥, G, G, and G are given by EY = BT B},
EN = BTBe, E~ = BITB® and E- = BT Bi respectively. Note that for
undirected graphs E¥Y = E" = E~ = E< = E.

6. Let BT =[B® B'] € R"*®" and define E* = BT Bt € R?*2"_ Then

+ | EN ET
£ _[E% EV] @3.1)

The matrix £~ is known as the line graph adjacency matrix associated with the
graph G (see [24]). To distinguish this matrix from the adjacency matrices for other
line graphs, we refer to E™ as the extended line graph adjacency matrix of G. It is a
symmetric matrix, and it can be interpreted as the adjacency matrix of an undirected
graph with two copies of the set of edges €.

4 Weights

The algebraic approach is, clearly, crucial for the use of matrix functions like the
matrix exponential (see Section 5.1 below) which are important tools to assess the
importance of a node or an edge. However, the choice of a particular matrix rep-
resentation implies some assumptions about the network, as well as limitations in
the kinds of networks that can be represented. For example, a node-node adjacency
matrix with all entries zero or one cannot accommodate multiple edges between the
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same pair of nodes, unless we are willing to represent them with weights that count
the number of edges.

This section considers directed graphs with weighted edges. The weights are
assumed to be positive. The interpretation of the weights depends on the application.
In general, edge weights correspond to a capacity or speed of transportation, or the
reciprocal of a transfer or communication cost.

Let A denote an edge-weighted adjacency matrix. This matrix is obtained by asso-
ciating a positive weight with each edge. Thus, the (i/)™ entry of A is the weight
of the edge from node v; to node v;. We refer to this matrix as edge-scaled. The
“unweighted” adjacency matrix A that is associated with A has all edge weights equal
to one. Thus, the entries of A belong to {0, 1}.

Theorem 1 Let A = [&; i1 be the n x n weighted adjacency matrix of a directed edge-
weighted graph G of n nodes and m edges. Let z; > 0 denote the weight of edge ey,
for 1 < k < m. Define the diagonal matrix Z with diagonal entries 21,22, ..., Zm
in some order. Let A = B¢B'T be the adjacency matrix for the unweighted directed
graph associated with G, where Bl = [bi ] and B® = [be] denote the incidence

and exsurgence matrices for the unweighted graph; see Proposition 1. Then A=
B°ZBT . In particular, each nonvanishing entry of A equals one of the diagonal
entries of the matrix Z, and each diagonal entry of Z corresponds to precisely one
nonvanishing entry of A.

Proof The result follows from Proposition 1. Each column of B¢ has precisely one
nonvanishing entry 1. Therefore, B®Z is a weighted exsurgence matrix, with each
diagonal entry z; appearing in exactly one column. The theorem now follows from
part (i) of Proposition 1 with B® replaced by B°Z. O

The matrix Z = diag[zy, z2, ..., Zm] of Theorem 1 can be factored accordlng to
Z = Z°7!, where Z¢ = dlag[zl,z2,...,z ]and Z! = dlag[zl,zz, ..., 2] have
positive diagonal entries. Then B¢ = B¢Z¢ is a weighted exsurgence matrix, such
that each entry z§ of Z¢ appears in exactly one column. Similarly, B'=B'Z'isa

weighted incidence matrix, such that each entry zij of Z! appears in precisely one

column. The weighted line graph G~ is defined by the matrix E~ = BiT B®. We
will use the matrices Z¢ = Z' = Z!/2 in the computed examples reported in this
paper, but other choices of Z¢ and Z! also are possible.

For certain (unweighted) adjacency matrices A = BeB'T and weighting matrices
Z, the weighted adjacency matrix A = B°Z BT can be expressed by row and/or
column scaling of A. We summarize this in the following proposition, whose proof
is straightforward.

Proposition 3 Let A = [a;;] = BB be an n x n unweighted adjacency matrix
with m edges, let A = laij] = B¢ZBiT e R™" be an associated edge-weighted
adjacency matrix, and let W = diag[wi, wa, ..., wy] be a diagonal matrix with
positive diagonal entries. Then (i) A =AW if and only if the weighting matrix Z is

@ Springer



Numerical Algorithms (2020) 83:807-832 813

such that a;; = a;jjw;j forall 1 <i, j < n, (ii) A=WA if and only if the weighting
matrix Z is such that a;; = a;jw; for all 1 < i, j < n, (iii) A = WAW if and only if
the weighting matrix Z is such that a;j = a;jw;w; forall 1 < i, j <n.

The significance of the above result is that we may express the edge-weighting
defined by the edge-weighted adjacency matrix A in terms of row or column scaling
of the “unweighted” adjacency matrix A.

4.1 Example

Consider the cyclic upper Hessenberg adjacency matrix

F00 0 017
10000
01000

A=l g togo|SRT

00
0 010)]

Then, for any weighting matrix Z, the edge-weighted matrix A can be expressed as
A= AW and A= W, A for suitable diagonal weighting matrices W1 and W, with
positive diagonal entries.

5 Computing the most important edges in an undirected network
by the matrix exponential
5.1 Review of the adjacency matrix exponential

In [12], the authors use matrix functions to rank the nodes in undirected networks.
For a symmetric unweighted adjacency matrix A € R"*", the (ij)™ entry of A?

gives the number of walks of length p between nodes v; and v;. The (ij )" entry of
the matrix function
oo
f(A) = ZcpA” (5.1)
p=0

gives a weighted average of the number of walks of various lengths between the nodes
v; and v;. The coefficients c;, are chosen to penalize walks that traverse many edges,
because such walks are considered less important than walks that traverse few edges.
The coefficients ¢, are therefore, generally, chosen to be nonnegative and decreasing
as a function of p. A common choice is ¢, = 1/p!. Then f(A) = exp(A). The term
col is of no significance.

The entry of [ f(A)];; defines the subgraph centrality of the node v;, and the entry
[f(A)];j, with i # j, defines the communicability between the nodes v; and v;. A
relatively large value [ f(A)];; indicates that node v; is important, and a relatively
large value [ f(A)];j, i # j, suggests that communication between the nodes v; and

@ Springer



814 Numerical Algorithms (2020) 83:807-832

v; is relatively easy (see, e.g., [10, 12]). Another importance measure for nodes is
furnished by row sums of the function (5.1), i.e., by the entries [ f(A)1];, 1 <i <n,
where1=1[1,1,...,1]7. A relatively large value of [ f (A)1]; suggests that the node
v; is important (see [4] as well as [14, Section 2] and [19]).

5.2 Exponential of the line graph adjacency matrix for undirected graphs

We seek to rank the edges of graphs and first consider undirected graphs. Let E €
R™>™ be the line graph adjacency matrix for an undirected graph with n nodes and
m edges (see Section 3.1 for its definition). We compute the matrix exponential of E
and obtain, analogously to (5.1),

exp(E) = Z l‘E”. (5.2)
p=0 "

Similarly to the discussion in [12] and above, we can interpret the entries of exp(E)
as indicators of the centrality and communicability of the edges of the graph. For
instance, a relatively large diagonal entry [exp(E)]xx indicates that the edge ej is
important. Similarly, a relatively large off-diagonal entry [exp(E)]xi, k 7#~ [, suggests
that information that travels via edge ey is likely to also travel via edge e;. One also
may define the centrality of the edge ey as [exp(E)1];. We will use the latter measure
and define the edge line graph centrality of an edge e, between the nodes v; and v; as

°LCy = [exp(E)1]k. (5.3)
The following examples illustrate the ranking of edges using this measure.
5.2.1 Example
Consider the graph of Fig. 1 and the associated line graph of Fig. 2. We can see from

the graph and the line graph that edge e3 is the most important edge, because it is
directly connected to all the other edges in the graph. The symmetry of the graph and

Fig.1 Graph of Example 5.2.1 e 1

V20 (U1

e4 es €9

V40 QU3
es5
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Fig.2 Line graph of Example
5.2.1

the line graph suggests that the edges e, ez, e4, and e5 are equally important. Table 1
confirms this by computing the edge line graph centrality (5.3).

5.2.2 Example

The graph for this example is shown in Fig. 3. Visual inspection suggests that the
edge e; is the most important edge of the graph. Looking at the graph, one might
guess that e is the next most important edge. However, Table 2 shows the edges e3,
e4, and eg to be ranked higher. The line graph for the graph, shown in Fig. 4, sheds
light on this ordering. It shows the edges e», e3, e4, and eg to be well connected. This
example illustrates that looking at a graph may not always give a good idea of which
edges are the most important ones.

5.3 A comparison of downdating methods for undirected graphs

Let the adjacency matrix A define an undirected graph. We would like to remove an
edge from this graph so that the total network communicability, defined by

TC(A) = 17 exp(A)1, (5.4)

and considered by Benzi and Klymko [4], decreases the least. This problem is dis-
cussed by Arrigo and Benzi [2]. Another communicability measure used in the latter
paper is the Estrada Index [11, 12] defined by

n

EE(A) = trace(exp(A)) = Z[exp(A)],-i. (5.5)

i=1

Table 1 Ranking of the edges of
Example 5.2.1 by the centrality ~ Edge ek ¢LCy
measure (5.3)

e3 29.73
e 24.11
eq 24.11
el 24.11
es 24.11
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Fig.3 Graph of Example 5.2.2

There are several ways to measure the importance of an edge. Arrigo and Benzi
[2] define the edge total communicability centrality of an existing edge between the
nodes v; and v; as

“TC(vi, vj) = [exp(A)1];[exp(A)1];, (5.6)
and the edge subgraph centrality of an edge between the nodes v; and v; as
“SC(vi, vj) = [exp(A)]ii[exp(A)]};. (5.7

In this paper, we propose to compute the exponential of the line graph adjacency
matrix and remove edges with the lowest centrality defined by (5.3). For this purpose,
we introduce the total line graph centrality measure of the network with line graph
adjacency matrix E,

m
LC(A) = Z{exp(E)l}k =17 exp(E)1. (5.8)
k=1
This approach is shown to be competitive with the approach of removing edges with
the lowest edge centralities defined by (5.6) and (5.7), as proposed in [2], and we
will show examples where it decreases the total communicability less than the other
approaches.

The following examples illustrate the use of the measures described above. We
show two examples, for which removing the three least important edges from a graph,
using the exponential of the edge line graph to identify these edges, results in a graph
with a higher communicability with respect to all the measures (5.3), (5.5), and (5.6).

Table 2 Ranking of the edges of
Example 5.2.2 by using the Edge ex “LCy
centrality measure (5.3)

e 28.07
ey 23.68
e3 23.68
e 23.68
el 17.23
e7 10.61
es 10.61
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€2 €1

es €6 €5 €7

€4

Fig.4 Line graph of Example 5.2.2

In the first example, we compute the exponential of the line graph, remove the
three least important edges, and then calculate the measures after removal. This
approach is referred to as nongreedy downdating in [4]. The second example recalcu-
lates the measures after the removal of each edge, to make the decision of removal of
the next edge based on the updated graph. This approach is called greedy downdating
in [4].

5.3.1 Nongreedy downdating example

Consider the connected network shown in Fig. 5. We use different edge centrality
measures to decide which three edges should be eliminated from the network so that
the total communicability is decreased the least, with the constraint that the graph
obtained after edge removal should be connected.

Table 3 shows the edges with the lowest centrality measured by several centrality
measures defined above. The first method computes the edge total communicability
(5.6), the second one ranks the edges according the edge subgraph centrality measure
(5.7), and the third one uses the edge line graph centrality (5.3). We then remove

7 €11 V6

(a) The graph for Example 5.3.1 (b) The line graph of Example 5.3.1

Fig.5 a, b Undirected graph and associated line graph
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Table 3 The least important edges in Fig. 5a ordered according to increasing importance by using the
edge total communicability, the edge subgraph centrality, and the edge line graph centrality

Edge ex ¢TC(vi, vj) Edge ex “SC(v;, vj) Edge e ‘LCr
ey 549.51 e 18.82 e7 85.08
30 549.51 e10 18.82 ey 85.08
e 581.11 e 18.96 es 85.08
€9 581.11 ey 18.96 e 97.91

The edge e, connects the nodes v; and v

the three edges with the lowest centrality and determine which method decreases the
total communicability the least.

When using the edge total communicability centrality measure or the edge sub-
graph centrality measure, as suggested in [2], the first four columns of Table 3
indicate that the edges ez, eg, and eg are to be removed. The graph obtained after
removal of these edges is shown in Fig. 6a. We note that while some edges have
smaller centrality measure than the ones we remove, those edges are not removable
because this would disconnect the graph. We then use the edge line graph centrality
measure (see the last two columns of Table 3 for the edge ranking) to conclude that
the edges es, e7, and eg are to be removed. The graph obtained after removal of these
edges is shown in Fig. 6b.

We compute the centrality measures TC(A), EE(A), and LC(A) for both graphs
of Fig. 6 and report them in Table 4. In each case, we obtain better connectivity of the
graph of Fig. 6b than of the graph of Fig. 6a, i.e., when we use the edge line graph
centrality measure to determine which edges to remove.

5.3.2 Greedy downdating example

We again consider the network in Fig. 5 and remove the three edges with the lowest
centrality using the same measures as in the previous example, but here we update

€1

U7 el U6 U7 e11
(a) Graph obtained by removing edges using (b) Graph obtained by removing edges using
the technique in [2]. the exponential of the line graph matrix.

Fig.6 a, b The nongreedy downdated network of Fig. Sa
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Table 4 Comparison of various network connectivity measures for the nongreedily downdated graphs in
Fig. 6 obtained by the method in [2] versus the using the exponential of the line graph

Graph in Fig. 6a Graph in Fig. 6b
Total network communicability TC(A) 86.22 92.31
Estrada Index EE(A) 20.68 21.16
Total line graph centrality LC(A) 2144.41 3104.77

The reduced graph is required to be connected

the measures after each edge removal. Like in the previous example, we require the
graph obtained after edge removal to be connected. The edge total communicability
centrality and the edge subgraph centrality yield the graph in Fig. 7a, while using the
exponential of the adjacency matrix for the line graph gives the graph of Fig. 7b.

We compute the network centrality measures TC(A), EE(A), and LC(A) for the
graphs of Fig. 7. These measures are reported in Table 5 and are larger than the
entries of Table 4 for the nongreedy algorithm. This means that the greedy approach
gives graphs with better connectivity than the nongreedy one. Moreover, the graph of
Fig. 7b has better connectivity than the graph of Fig. 7a. This also holds for numerous
other examples. We conclude that edge removal by the greedy approach based on
using the exponential of the line graph adjacency matrix generally is preferable.

5.3.3 Downdating example when the reduced graph is not required to be connected

In Examples 5.3.1 and 5.3.2, we downdated the graphs with the requirement that
the reduced graph be connected, as was done in [4]. In this example, we remove
three edges with the smallest centrality of the graph of Fig. 5a without requiring the
reduced graph to be connected. The edge centrality measures used are the same as in
Examples 5.3.1 and 5.3.2.

When measuring edge importance by the edge total communicability centrality
and the edge subgraph centrality, we obtain the disconnected reduced graph in Fig. 8

U3 V4 v3 V4

O
7 U6 U7 U6

(a) Graph obtained by using the greedy (b) Graph obtained by using the exponential
technique in [2]. of the line graph.

Fig.7 a, b The greedy downdated network of Fig. 5a
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Table 5 Comparison of network connectivity measures for the greedily downdated graphs in Fig. 7
obtained by the method in [2] versus the use of the exponential of the adjacency matrix for the line graph

Graph in Fig. 7a Graph in Fig. 7b
Total network communicability TC(A) 89.04 92.52
Estrada Index EE(A) 20.91 22.11
Total line graph centrality LC(A) 2507.77 3119.72

The reduced graph is required to be connected

when we apply both the nongreedy and greedy methods described in Examples 5.3.1
and 5.3.2, respectively. Using the exponential of the adjacency matrix for the line
graph gives the graph of Fig. 6b for the nongreedy method, and the graph of Fig. 7b
for the greedy method.

Table 6 reports the network centrality measures TC(A), EE(A), and LC(A) for
the graphs obtained. The graphs of Figs. 6b and 7b have larger connectivity measures
than the graph of Fig. 8, except for the Estrada Index, which is smaller but close.
We conclude that edge removal by using the exponential of the line graph adjacency
matrix E can be competitive also when we do not require the reduced graph to be
connected.

5.4 A comparison of downdating methods for directed graphs

In this section, the adjacency matrix A corresponds to a directed graph. We would
like to remove edges of a directed graph so that communicability of the network is
decreased the least. A measure used by Arrigo and Benzi [1] is the total network
communicability, the same as in (5.4), with A nonsymmetric. They also use a measure
that takes into account alternating walks in a directed network. This measure assigns
the network a value of its hub strength, referred to as the total hub communicability,

T,C(A) = 17 cosh(vV AAT)H1,

and a value of its authority strength, referred to as the total authority communicability,

T,C(A) = 17 cosh(v/ AT A)1.

Fig.8 Downdated graph of U5
Fig. 5a obtained by using the
nongreedy or greedy techniques
in [2] without requiring the
network to stay connected

V3 V4

v7 V6
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Table 6 Comparison of network connectivity measures after downdating the graph in Fig. 5a using the
methods in [2] versus the use of the exponential of the adjacency matrix for the line graph

Figure 8 Figure 6b Figure 7b
Total network communicability TC(A) 91.5 92.31 92.52
Estrada Index EE(A) 22.33 21.16 22.11
Total line graph centrality LC(A) 2501.24 3104.77 3119.72

The reduced graph is not required to be connected

To evaluate the total communicability of the network, the authors of [1] compute the
sum T, C(A) + T,C(A). This method is based on the idea of expressing a directed
graph by an undirected graph with twice the number of nodes, and applying the
matrix exponential to the adjacency matrix associated with the latter graph,

0 A
A=[ATO}; (5.9)

see [3] for details.

This section extends the total line graph centrality measure defined in (5.8) to
directed graphs. Taking into account the existing edges ex, we use the line graph
adjacency matrix E~ to define the total line graph centrality by

m
LC(A) = Z[exp(E*)l]k =17 exp(E™)1. (5.10)
k=1
Note that when assessing the effect of removing an edge on the communicability of a
network, the measure T, C(A)+T,C(A) may yield significantly different values than
the measures TC(A) and LC(A), since the latter measures capture the flow deeply in
the network, whereas the first measure does not.

We review some of the edge measures used in [1] for ranking edges to identify
the least connected edges, which are to be removed. The edge total communicability
centrality of an existing edge going from node v; to v; is given by

“TC(v;, vj) = [exp(A)1];[17 exp(A)];,
and its application to the corresponding matrix (5.9) yields the measure
“TC(vi, vj) = [exp(ALL[1T exp(A)]ns -

Based on ideas in [3], the authors of [1] use the generalized hyperbolic sine to define
the edge total communicability,

“gTC(vi, vj) = Ch()Cu()),

where the total hub communicability of node v; and the total authority communica-
bility of node v; are defined by

Cy(i) = [Usinh(2)VT1]; and C,(j) = [V sinh(2)UT1];,

respectively. The matrices U, X, and V are determined by the singular value
decomposition A = U X vT (see, e.g., [16] for a discussion of the latter).
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Analogously to our definition of the edge centrality (5.3), we define the edge line
graph centrality of a directed edge e; pointing from node v; to v; as

‘LCk = [exp(E™)11k;
see also (5.10).

5.4.1 Nongreedy downdating example

Consider the directed graph in Fig. 9a. We would like to remove the three edges
with the lowest edge centrality as measured by “TC, ¢7C, ¢gTC, or °LC. The graphs
obtained after removing the three edges identified by these measures are shown in
Fig. 9b—d. In this example, we allow the resulting graph to be disconnected.

We compute the communicability of the graphs of Fig. 9. Table 7 shows that when
removing the edges with the lowest edge line graph centrality, all the measures of
network communicability have a larger value than when we remove edges using one

U3 v7

(b) Downdated graph determined by
removing three edges with the smallest
¢TC(v;,v;) values.

(a) Graph for Example 5.4.1.

v3 U7 V3 U7
V6 Ve
V4 V4
y
’U5‘ U1 1)05 U1
(c) Downdated graph determined by (d) Downdated graph determined by
removing three edges with the smallest removing three edges with the smallest ¢LCy,
¢TC(vi,vj) and ¢gTC(v;,v;) values. values.

Fig.9 a—d The nongreedy downdating of a directed graph
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Table 7 Comparison of network communicability measures for the downdated graphs in Fig. 9

Figure 9b Figure 9¢ Figure 9d
Total network communicability TC(A) 69.62 69.32 94.97
TpC(A) + T,C(A) 61 61 62
Total line graph centrality LC(A) 160.13 158.99 261.41

of the other edge centrality measures. While this is not the case for every example we
may encounter, it nevertheless suggests that edge line graph centrality is an important
measure of edge centrality.

5.4.2 Greedy downdating example

This example differs from the previous one only in that we now update the com-
municability measures of the graph after each edge removal. Removing edges based
on the measure °LC(v;, v;) performed as well as removing edges by using the
measure “TC(v;, v;). These two measures outperform the other measures. The down-
dated graphs obtained by using the various edge centrality measures are displayed in
Fig. 10, and the communicability measures for the downdated measures are reported
in Table 8. Note that the graph of Fig. 10a is disconnected, while the graphs of
Fig. 10b and c are connected.

6 Computing the most important edges in a directed unweighted
network using the matrix exponential

We introduced in Section 3 three types of connections between adjacent edges of a
directed graph. Each one of these connection types yields a line graph, and the expo-
nentials of the adjacency matrices associated with these line graphs define centrality

v3 v7 v3 U7
V6
V4 V4

(e]
U5 V1 U5 v1

(a) Downdated graph (b) Downdated graph (c) Downdated graph

determined by removing determined by removing determined by removing

three edges with the smallest three edges with the smallest three edges with the smallest
€TC(vs,v5) and °LCy, values. €T C(vi,v;5) values. €gTC(vs,v5) values.

Fig. 10 a—c The greedy downdating of the directed graph in Fig. 9a
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Table 8 Comparison of network communicability measures for the downdated graphs in Fig. 10

Figure 10a Figure 10b Figure 10c
Total network communicability TC(A) 94.97 60.91 84.78
TpC(A) + T,C(A) 62 61 61
Total line graph centrality LC(A) 261.41 127.59 219.59

measures for edges. We are interested in determining which edges are the most and
least important ones in a directed network and investigate the application of the
matrix exponential to these line graph adjacency matrices.

6.1 The exponential of the extended line graph adjacency matrix E*

We defined in Section 3.2 the symmetric line graph adjacency matrix E™ to represent
the connections between the edges in a directed graph G by using the corresponding
undirected bipartite graph. A centrality measure for edges based on E™ is given by

the matrix exponential
o

1
+y — Lopr
exp(EY) =) p!E ,
p=0
which has an interesting structure. To exploit this structure, it is helpful to introduce
the notion of the total degree of a node in G, which is the sum of the indegree and
outdegree of the node.

Proposition 4 Let the extended line graph adjacency matrix E* for a directed
unweighted graph G be given by (3.1). Then E* = B+" B+, where B* = [B® Bl];
see Proposition 2. Let m; denote the total degree of node v; of G. Then

exp(mp)—1 0 0
mi
0 epm-l o
exp(EY) =1+ B 0 T ewe-t | BT. 6D
m3

Thus, the structure of the matrix exp(E™) is related to the structure of BT B+, but

the entries of the former matrix depend on the total degree of the nodes. Since the

function x — e S 0, s increasing, the importance of a node generally

increases with its total degree.

Proof We have
(ENHY? = BT BHYB B = BT (BB )BT = BT (B°B°T + B'BIT)BT,

where we note that the matrix M = B¢B¢! + B'B'T is diagonal. Its nontrivial entries
are the total degrees of the nodes of G. It is easy to show that for any integer p > 1,
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we have (E+)? = B+T MP~1 B, from which it follows that

BT"MBY  (B*TM2BY)
o + 3 ...
= I+ B M~ (exp(M) — I)BY.

This shows (6.1). O]

exp(EY) = I+ (BY BT +

Let us take the simple example in Fig. 11 to test how meaningful the use of
exp(E™T) is for measuring the importance of the edges of this graph. Proposition 2
describes the construction of the adjacency matrix ET associated with the graph. Its
matrix exponential, with non-vanishing entries rounded to three significant decimal
digits, is given by

(272 0 0 0 0 0
0 419 0 319 0 0
0 0 419 0 3.19 0
+y —
XP(ED) = 319 0 419 0 0
0 0 319 0 419 0
0 0 0 0 0 272

The top right quarter of the above matrix represents the propagation of signals from
edges traveling through the network. The fact that the entry [exp(E™)]i¢ vanishes
indicates that the edge e; cannot connect to the edge e3 by any number of steps. But
we easily see in Fig. 11 that these edges are connected by two steps: e to e, followed
by e to e3. This illustrates that the matrix exp(E™) is poorly suited to indicate the
importance of edges. We conclude that a matrix other than E™ is needed to make the
exponential function meaningful for edges.

6.2 The exponential of the line graph adjacency matrix E~

Thulasiraman and Swamy [24] discuss the line graph adjacency matrix E~ =
BT B®. It has an entry 1 in position (i, j) if and only if the edge e; passes information
to the edge e; through anode, i.e., if and only if the head of edge e; coincides with the
tail of edge ¢;. The entries of the matrix (E™ )2 tell us whether information is passed
from an edge to another one through two nodes. In other words, [(E _’)2],~ ;= Lif
there exists an edge pointing from the target node of ¢; to the source node of e;. Sim-
ilarly, [(E™)?];; counts the number of ways information is transferred from the edge
e; to the edge e; through p nodes. The matrix exponential exp(E ™) is a weighted
sum of positive powers of E~, with transfers of information via many nodes having
a smaller weight than transfers via few nodes (cf. (5.2)). Note that the matrix £~
generally is nonsymmetric. Each row of exp(E™) represents an edge in its emit-
ter role, and each column expresses its role in receiving information. Similar to the

U1 €1

€2 €3

V4
2

Y
oS
Y

oS

Fig. 11 Simple directed network
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€1
€2
es3 €4
U5
es €6 €5 €6
Ve v7
(a) Graph of a directed tree. (b) Line graph of a directed tree.

Fig. 12 a, b Graph and line graph for Example 6.2.1

discussion in Section 5.3, we can determine the ability of an edge to transmit infor-
mation through the network by ordering the elements of the row sums of the matrix
exp(E™), i.e., of exp(E™)1. The largest entry of this vector corresponds to the most
important transmitter. Similarly, the vector 17 exp(E™) provides an ordering of the
edges in their role as information receivers, where the largest entry corresponds to
the most important receiver. We will use these measures in the following examples.

We note that powers of EY and E” defined in Proposition 2 do not add any infor-
mation about propagation through the network because of the nature of connections
between edges that they provide. Moreover, E = (E~)T. Therefore, calculating
exp(E )1 is equivalent to evaluating 17 exp(E ™).

6.2.1 Example

We consider the ranking of edges of a graph G that is the small tree shown in Fig. 12a.
The corresponding line graph is displayed in Fig. 12b. Table 9 displays the centrality
measures exp(E~1) and 17 exp(E ™). The edge e, contributes the most to broad-
casting information through the network, because it is the only edge that points to a
node from which two edges emerge. The edge e; is the next most important edge,
because it is one step further away from the split at the node v3 than the edge e;. The

Table9 Ranking of the edges of
Fig. 12 using the exponential of ~ Edge e [exp(E7)1]k Edge ex (17 exp(E™)1k
the matrix E~

e 4 es 2.67
el 333 €6 2.67
e3 2 e3 2.5
ey 2 e4 2.5
es 1 e 2

e6 1 el 1
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U5 V4 €4
O, es
O\ el e3
es
€6
er
(a) Graph with a loop. (b) Line graph.

Fig. 13 a, b Graph and line graph for Example 6.2.2

edges es and eg are dead ends and therefore are ranked as the least important trans-
mitters. On the other hand, the latter edges have the highest capability of receiving
information and therefore are ranked as the most important receivers. We conclude
that the ranking of transmitters and receivers determined by the measures exp(£ )1
and 17 exp(E™) is in agreement with intuition based on the graphs in Fig. 12.

6.2.2 Example

This example illustrates the effect of a loop in a directed graph shown in Fig. 13.
Table 10 shows the edge e¢ to be both the highest ranked broadcaster and the highest
ranked receiver. The directed loop between the nodes vy, v4, and vg makes edges
between these nodes be strong broadcasters.

6.2.3 Flight examplel

The last example of this section uses a directed unweighted network determined
by domestic flights in the USA during year 2016, as reported by the Bureau of
Transportation Statistics of the US Department of Transportation [22]. The airports
are nodes and the flight segments are edges. This yields a nonsymmetric adjacency
matrix A € R7%*705_ Since most flights have return flights, the matrix A is close to
symmetric.

We determine the matrix £~ using the adjacency matrix for the flights network,
and rank the departing flights by computing exp(E~)1. The six largest entries of

Table 10 Ranking of the edges
of Fig. 13 using the exponential ~ Edge ek [exp(E7 )1k Edge e 17 exp(E™)]k
of the matrix E~

€6 4.78 €6 3.76
e 3.97 el 3.23
es 3.56 e 3.23
e7 3.56 e3 2.89
el 2 e4 2.89
e3 1 es 2.89
ey 1 e7 1
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this vector determine the most important flights. They are displayed in Table 11. We
rank the arriving flights by computing the largest entries of 17 exp(E~). However,
the computation of exp(E )1 and 17 exp(E™) may result in numerical overflow on
many computers. To avoid this difficulty, we compute the spectral radius u of E~
and evaluate exp(E~ —uI)1and 17 exp(E™ —u ) instead. This eliminates overflow
and does not affect the relative size of the entries of the computed vectors. Therefore,
the ordering is not affected by this modification. This approach of avoiding overflow
has previously been applied in computations reported in [14].

We conclude that a flight from the George Bush Intercontinental Airport in
Houston to the Hartsfield-Jackson Airport in Atlanta transmits the best through the
network of all domestic flights in the USA. The flight from the Cleveland-Hopkins
International Airport to Atlanta comes second, followed by the flight from the Tampa
International Airport to Atlanta. Similarly, the flight from the Raleigh-Durham Inter-
national Airport in North Carolina to Atlanta absorbs the most flights through the
network of national flights. We remark that although the Los Angeles International
Airport and the Chicago O’Hare International Airport are among the three top ranked
airports according to the Federal Aviation Administration [13], these airports are not
among the ones shown in Table 11. This depends on that our model disregards the
number of flights (if larger than one) and the number of passengers on each segment.

7 Computing the most important edges in a directed weighted
network using the matrix exponential

Similarly as in the previous section, we can rank the edges of a directed weighted
network in their role as transmitters of information by calculating the entries of the
vector exp(E )1, where the matrix E~ = B! B® is determined by taking weights
into account as described in Section 4. The relative size of the entries of the vector
17 exp(E ™) provides an ordering of the edges in their role as information receivers
and the relative size of the elements of exp(E 7)1 furnishes an ordering of the edges
as information transmitters.

Table 11 Ranking of flight

segments in the domestic flights ~ Most departing flights Most landing flights

network using the exponential of

the matrix E~ From airport To airport From airport To airport
IAH ATL ATL RDU
CLE ATL ATL DSM
TPA ATL ATL BHM
GRR ATL ATL GSP
ALB ATL ATL FSD
PIT ATL ATL BTV
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V4

Ve

(a) Weighted graph. (b) Line graph.

Fig. 14 a, b A directed weighted tree with line graph

7.1 Example

The graph of this example is displayed in Fig. 14a, with the edge weight shown
for each edge. Let the diagonal entries of the diagonal matrix Z contain positive
edge weights. Figure 14b shows the associated line graph for Zi = Z¢ = Z1/2 (see
Section 4 for the definition of the matrices Z! and Z¢).

Table 12 ranks the edges according to the importance as transmitters and receivers.
Although the edge es has weight 1, and e¢ has weight 3, and these edges are posi-
tioned in a similar way, the output of our algorithm suggests that the edge es is more
absorbing of information than edge e¢.

7.2 Flight examplell

We take the same example studied in Section 6.2.3, but this time we include a weight
with each edge. The weight is set equal to the total number of enplanements on all the
flights for that segment, as reported by the Bureau of Transportation Statistics [22].
The weights define the diagonal matrix Z and determine an edge-weighted adjacency

Table 12 Ranking of the edges

of Fig. 14 using the exponential ~ Edge ek {exp(E7) 1) Edge ex {17 exp(E™ )l
of exp(E™)

el 10.77 es 6.89

e 6.87 e3 5.83

e3 3.00 e 4.41

e4 2.73 e 3.83

es 1.00 e4 341

€6 1.00 el 1.00
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matrix A as in Theorem 1. Due to the weights, a flight segment with thousands of
passengers will affect the flow more than a flight segment with only a few passengers.

To avoid overflow, we evaluate exp(E~ — ul), where p is the spectral radius
of E, similarly as in Section 6.2.3. Table 13 displays the six top ranked edges of
the network. All of the segments of the table start and end at one of the top airports
as described by the Federal Aviation Administration [13]. In particular, the segment
from the Hartsfield-Jackson Airport in Atlanta to the O’Hare Airport in Chicago
is the one that dissipates the highest number of passengers through the network of
domestic flights in the USA, and the same segment in the opposite direction receives
the most passengers through the network. These two airports are among the top three
busiest airports in the USA according to the Federal Aviation Administration of the
US Department of Transportation [13]. This example attests to the validity of our
model.

8 Computational aspects

We comment in this section on the computations required to evaluate
exp(E7)1 or 17 exp(E7). 8.1

Generally, the matrix £~ is nonsymmetric. For small networks, this matrix is small
and can be explicitly formed. The exponential exp(E ™) then easily can be evaluated,
such as by the MATLAB function expm, and the desired quantities (8.1) can be
determined. If the matrix E~ is large enough so that overflow may occur when
evaluating its exponential, the spectral factorization of E~ may be computed. This
yields the spectral radius p of E~. Moreover, the spectral factorization can be used
to evaluate exp(E~ — ul)1 and 17 exp(E~ — ul). These matrices may only be
computable with reduced accuracy when the eigenvector matrix of E™ is severely
ill-conditioned. This has not been an issue in our computations.

When the matrix E™ is large, it may be attractive to evaluate approximations of
the quantities (8.1) with the aid of the nonsymmetric Lanczos process or the Arnoldi
process. Their application does not require the matrix £~ to be formed; only matrix-
vector products with £, and possibly with its transpose, have to be computed (see

Table 13 Ranking of the

segments in the domestic flights ~ Most dissipating flights Most absorbing flights

network, taking the passengers

enplanement as the segments From airport To airport From airport To airport

weights, and using the

exponential of the line graph ATL ORD ORD ATL

adjacency matrix DTW ORD ORD DTW
OGG LAX LAX LAS
PHL DEN DEN PHL
LAS LAX LAX SEA
SEA LAX DEN LAX
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[7, 14]) for details. The eigenvalues of the reduced matrix computed with the non-
symmetric Lanczos or Arnoldi processes yield sufficiently accurate approximations
of the spectral radius to avoid overflow in the computation of exp(E~ — wI)1 and
17 exp(E~ — ul).

9 Conclusion

This paper discusses the determination of the most important edges of an undirected
or directed graph by using an associated line graph. For directed graphs, several line
graphs are described and their usefulness for ranking edges is discussed. We also
consider the task of removing unimportant edges. Computed examples illustrate the
feasibility of the methods described.
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