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Abstract. We propose a new method for computing Dynamic Mode Decomposition (DMD) evolution matrices,
which we use to analyze dynamical systems. Unlike the majority of existing methods, our approach
is based on a variational formulation consisting of data alignment penalty terms and constitutive
orthogonality constraints. Our method does not make any assumptions on the structure of the data
or their size, and thus it is applicable to a wide range of problems including non-linear scenarios or
extremely small observation sets. In addition, our technique is robust to noise that is independent
of the dynamics and it does not require input data to be sequential. Our key idea is to introduce a
regularization term for the forward and backward dynamics. The obtained minimization problem is
solved efficiently using the Alternating Method of Multipliers (ADMM) which requires two Sylvester
equation solves per iteration. Our numerical scheme converges empirically and is similar to a provably
convergent ADMM scheme. We compare our approach to various state-of-the-art methods on several
benchmark dynamical systems.
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1. Introduction. Over the last few years, data-driven approaches became prevalent in
analyzing dynamical systems [22]. In the common scenario, a collection of system observations
is provided and a linear object that encodes the dynamics is generated based solely on the data.
These data-driven approaches are advantageous in that they make minimal assumptions on
the governing equations of the system, and in particular, these techniques are applicable even
to non-linear dynamics. In this context, Dynamic Mode Decomposition (DMD) [30] methods
gained a lot of attention lately, in part due to their computational efficiency as well as their
analysis capabilities of the system at hand. DMD-based methods were successfully applied to
various flows including detonation waves, cavity flows and jets [25, 32, 31]. In short, DMD
computes a matrix whose spectrum, represented by the eigenvalues and eigenvectors, provides
meaningful information such as growth and decay rates of the system or dominant coherent
structures in the flow. The goal of this paper is to propose a new method for computing DMD
matrices that is based on interpreting the problem in a variational form, taking into account
the forward and backward dynamics and solving it efficiently via splitting.

Developing data-driven methodologies for the analysis of non-linear dynamical systems
is an active research domain with DMD being one of its main avenues. In particular, DMD
was recently generalized and extended in several works having the objective of alleviating
some of the shortcomings in the original technique. For instance, a limiting assumption
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in [29, 30] requires that the data is given in a sequential form, namely, the input snapshots
represent an equally spaced time series of observations. In Tu et al. [34] and other works, this
limitation is relaxed and pairs of equispaced observations are used instead, whereas in [15, 24,
1], no assumption is made on the regularity of the temporal sampling. Another drawback of
several DMD methods is the bias they exhibit in the presence of noise and whether the noise
interacts with the dynamics [2] or not [7]. To address this challenge, variants of DMD were
proposed in the literature based on solving jointly for the basis and the evolution operator [36],
formulating the problem as a total least squares minimization [17], and fitting an exponential
model [1]. Other methods cope with noise by utilizing Kalman filters [26, 27], adapting DMD
to online data [18, 16], and developing a Rayleigh-Ritz modal decomposition [8], among other
approaches [7]. Under this classification, our method is applicable to non-sequential data and
it performs extremely well when sensor noise corrupts the data, as we show in Section 5.

Perhaps closest to our approach is the work of Dawson et al. [7] where the idea of making
DMD more robust to noise by considering the forward and backward evolution is investigated.
More specifically, in forward-backward DMD (fbDMD) [7], the DMD matrix is estimated via
the square root of the product of the forward model with the inverse of the backward DMD
matrix. The backward estimate is generated by switching the “before” and “after” roles of
the snapshots. Our machinery is based on the same observation of exploiting the forward
and backward dynamics, but in a completely different way. Inspired by ideas from Computer
Graphics [28, 19], we formulate the task of computing the DMD matrix in a variational form
that includes penalties for both directions. The obtained minimization is unfortunately highly
non-linear and non-convex, and thus we introduce an auxiliary variable that represents the
backward dynamics, arriving at an optimization problem with quadratic objective terms and
bilinear constraints. This problem can be solved efficiently using splitting techniques such
as the Alternating Direction Method of Multipliers (ADMM) [5]. The obtained scheme is
iterative, where at each step we solve two Sylvester equations and perform a trivial update.
In addition, we show that our problem can be modified such that a provably convergent scheme
can be devised. Overall, we obtain an efficient algorithm that exhibits fast convergence rates
in practice and provides improved estimates of various properties of the dynamical system.

The rest of the paper is organized as follows. In Section 2 we provide background details
related to dynamic mode decomposition techniques and the alternating method of multipliers.
Section 3 details our approach for generating consistent DMD evolution matrices where we
derive the variational formulation, and we propose an effective ADMM splitting scheme to
solve it in practice. In Section 4, we prove that the problem we consider can be changed so
that it admits an ADMM-type algorithm which is provably converging. Section 5 provides a
quantitative and qualitative evaluation of our method with respect to several DMD algorithms.
Section 6 concludes our work, discusses limitations, and offers a few potential directions for
future work.

2. Background. In what follows, we briefly present the most relevant details regarding
DMD algorithms. We refer to [22] for a more comprehensive text on the recent developments
and applications of DMD-based techniques. In addition, we describe the essential components
of ADMM and their link to our work, where we point to the paper by Boyd et al. [5] for
additional information.
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Figure 1. The dynamical system ¢ maps from the manifold M at time 1 to time 2 (left), whereas the
associated Koopman operator maps between scalar functions defined on M (right).

2.1. DMD. Dynamic Mode Decomposition (DMD) emerged in the fluid dynamics field [30]J}
as a data driven approach for analyzing a dynamical system based on observational data. DMD
is strongly related to Koopman theory [21], where a non-linear dynamical system ¢ acting
on a finite-dimensional manifold M is encoded using an infinite-dimensional linear Koopman
operator K. In this context, DMD can be viewed as a practical approach to produce a matrix
A whose spectrum approximates the spectrum of the operator K. Thus, A is an informative
object and its dominant eigenvalues and eigenvectors are directly linked to dynamical features
of the system such as growth, decay, frequency and flow modes. These results encourage the
community to investigate DMD as an effective tool for analyzing various linear and nonlinear
dynamical systems [22].

A common scenario, considered in several DMD-based techniques, is to assume to be given
a set of temporally related pairs of observations Z; and g;,j = 1,2,..,n, such that

(2.1) 9i(2) = Z(¢(2)) ,

where z € M, the dynamical system is ¢ : M — M, and z;, y; : M — R. Namely, if Z;
represents some quantity at time ¢, then ¢; measures the same quantity at a later time ¢ 4 At,
as it changes due to the dynamics ¢, see Fig. 1 for an illustration of this setup. Examples of
the input observations could be the spatial coordinates [7] or the scalar vorticity [34], among
other system-related data. The time series of observations {Z;}7_; and {g;}}_; is used to

construct matrices X and Y such that

(2.2) X =[#1 &g ... #n) ER™™ YV = [ Gz ... fin] € R™™

where the manifold M is of dimension |[M| = m. We note that our data is equispaced in time,
i.e., At is the same for every j, as is commonly assumed in the DMD literature, although
other scenarios were considered, e.g., [33]. Using the above notation, the goal of many DMD
algorithms is to find a matrix A € R™*™ such that AX =Y.

In practice, solving directly for A could be challenging, especially when m is extremely
large or when m > n, leading to an underdetermined system. One way to mitigate these
difficulties is to reduce the spatial dimension of the input data. Many dimensionality reduction
techniques have been developed in recent years, where the Proper Orthogonal Decomposition
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(POD) [4] is typically chosen mostly due to its algorithmic simplicity and computational
efficiency. One of the outputs of POD is a set of r orthogonal modes B € C™*" such that the
linear subspace spanned by B approximates R™ well enough. From now on, we denote by X
and Y the projection of X and Y onto the first » POD modes. Formally,

(2.3) X=B'XecR™, Y =BY ecR™*",

where B* is the conjugate transpose of B. To compute the matrix B, we facilitate the Singular
Value Decomposition (SVD) to obtain the expression X = USV* and B = U,, i.e., the first
r left singular vectors that correspond to the dominant r singular values. In this reduced
form, the problem of DMD is to solve the equation AX = Y, for which the least squares
solution is analytically given by A = Y X+, where X is the Moore-Penrose pseudoinverse of
X. The DMD algorithms we will present next can be thought of as various approaches for
approximating such A matrices.

The following Algorithm 2.1 was introduced in Tu et al. [34] and is known as the Exact
DMD method. While this approach is not one of the original DMD techniques as was proposed
in [29, 30], it is a close variant of these methods and it serves as the baseline algorithm for
many extensions and comparisons in the DMD literature. We note that in Step (3), instead of
taking the pseudoinverse X T, the authors took its projection onto the first » modes. Indeed,
we have that

X+ = (B*X'>+ _ (ﬁ:ﬁSV*>+ ~ (ﬁ:mgrxz*f — V.5

Also, Step (4) involves the eigendecomposition (EIG) of A, typically yielding a complex-valued
spectrum since A does not exhibit a special structure in general. Finally, in many DMD-based
algorithms, Steps (1 —2) and (4 —5) are shared, whereas Step (3) is different. This is also the
case in our Algorithm 3.1 where the main change is the way we construct the matrix A.

Algorithm 2.1 Exact Dynamic Mode Decomposition (Exact DMD)

1: Input matrices X,Y € R™*" and a scalar r € R

2. Compute the SVD of X = USV*, and generate X = U:X, Y = U;‘f/

3: Denote A = YV, S

4: Compute the EIG of A, with Av; = A\jv;, where v; € C", A; € C

5: The DMD spectrum is defined as the set of eigenvalues \;, and vectors ¢; = )\j_lf/f/qn . 1vj

2.2. Regularizing DMD. In many scenarios, the time sequence of data is generated using
sensory devices. For example, Schmid et al. [31] applied DMD to snapshots of a helium jet,
collected using particle-image-velocimetry (PIV) measurements. Naturally, in these settings,
the observations are assumed to be corrupted with various types of noise. The existence of
process or sensor noise results in a certain bias in traditional DMD algorithms such as Exact
DMD, as was recently shown in [7, 17, 1]. To address these shortcomings, several extensions
to DMD were recently proposed in the literature. From an optimization standpoint, these
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modified DMD methods as well as our approach can be viewed as regularizing the original
minimization problem, introducing algorithms that are more robust in the presence of noise.
In our discussion here, we focus on the methods £bDMD [7], t1sDMD [17] and Optimized DMD [1].

The main idea behind the forward-backward DMD (£fbDMD) technique is to take into
account the forward dynamics, i.e., transforming X into Y, as well as the backward system
where Y is mapped to X. The motivation is that by considering both directions, much of the
bias to noise can be eliminated. In fact, we build on the exact same observation, however,
we arrive at a completely different method. The algorithm fbDMD follows the same steps
of Algorithm 2.1, except for the matrix construction which is given by

(2.4) A= (apa "7

where Ay = U}}}VXS’)}I is the forward estimate, and A, = f]{"/f(f/yg;l is the backward one.
Notice that the SVD of both X = UXSXV)’§ and Y = Uygyf/; are used. Assuming that
efficient routines for computing the square root of a matrix such as sqrtm of MATLAB are
available, the time complexity for this algorithm is O (min{an, m2n} + 7“3), and thus it is
governed by the SVD part as we typically have r < m, n.

In a different paper [17], the authors propose another algorithm known as the total least
squares DMD (t1sDMD). Intuitively, this approach tries to symmetrize the way noise is being
handled so that it assumes noise polluted both X and Y, whereas other methods implicitly
account only for noise in Y. Similarly to the latter algorithm, t1sDMD provides an alternative
definition for the A matrix. Specifically,

(2.5) A=U,U,", with <§5> =USV*and U = (Utr Utr) '

Ubr ubr

Namely, the projected observations X and Y are combined into a matrix of size 2r x n, whose
r dominant left singular vectors are used to compute A. The matrix Uz € C™*" encodes the
top left part of U and Uy, € C"*" represents the bottom left part of U. The scalar r satisfies
r < n/2 in this method. Overall, the computational requirements of t1sDMD are on the order
of O (min{mn? m?n} + 3.

Finally, a recent development for computing DMD matrices was introduced in [1] resulting
in the Optimized DMD method. Essentially, the authors formulate DMD as a non-linear least
squares minimization problem. To this end, the ensemble of observations is put together,
eg., Z = (X Y) € R™*2" and the goal is to fit Z with a linear combination of non-linear
functions ® € R?"*!. In practice, ® is taken from a family of exponential functions such
as ®(a,t); = exp(ayt), where the set of parameters a € C* is unknown. The optimization
problem takes the form of
(2.6) mir(lli%lize |ZT — ®(a)B|% ,
where B € C*™ is the set of unknown coefficients which determine the linear superposition
of non-linear functions from ®. Observing that B can be eliminated from the optimization,
problem (2.6) may be efficiently solved using the variable projection method [14]. We note
that the DMD spectrum and the matrix A could be constructed using the computed outputs
® and B, and we refer to [1] for further details.
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2.3. ADMM. The Alternating Direction Method of Multipliers (ADMM) is a numerical
optimization approach for efficiently solving separable objective functions. ADMM was first
introduced in 1970’s in [12, 10], recently popularized by [13, 5], and generalized for nonconvex
optimization in [35, 11]). A general scenario for which ADMM is effective involves the following
minimization problem,

(2.7) minimize f(z) +g(z), st. Ar+Bz=c,

T,z

where f(x) : R™ — R and g(z) : R™ — R are convex functions, the linear constraints include
matrices A € RP*" B € RP*™ and a vector ¢ € RP. To solve (2.7), we define the following
augmented Lagrangian,

(2.8) Ly(x,z,y) = f(x) +9(2) +y" (Az + Bz —¢) + g]Ax +Bz—cl3.

ADMM exploits the fact that £, can be decomposed with respect to the variables x and z,
leading to a numerical splitting scheme consisting of the iterations

k+1

2" = argmin £,(z, 2¥, y¥)

(2.9) 2F*1 = argmin Lp(azk‘H, z, %)

yk+1 _ yk —|—p(A.%’k+1 +sz+1 —C) ’

where p > 0 is the penalty parameter in the augmented Lagrangian. The advantage of utilizing
ADMM is twofold, solving alternately for x and z typically involves simpler minimization
problems compared to a joint optimization, and convergence results require mild assumptions.

It is often useful to facilitate a change of variables and to define a scaled version for the
dual variable y, denoted by pu = y. This choice significantly reduces the length of formulas,
and thus we will opt for this version throughout the paper. We denote by r(x, z) = Ax+Bz—c,
and we re-write the scaled augmented Lagrangian in terms of w,

Ly(w,20) = f(@) +g(2) + Sl +ul3 = EJul} .

The associated splitting scheme is similar in the z and z updates where we replace y* with
uF in (2.9), whereas for the u update we have w1 = u¥ 4 r(zF+1, A1),

3. Consistent Dynamic Mode Decomposition. In this section we describe our main
algorithm for computing an approximation of the DMD operator that is associated with some
known dynamical observations. The key observation in our approach is the consideration of
the forward and backward dynamics within the same framework. In this context, we propose
a variational formulation of the problem where we simultaneously solve for the forward and
backward DMD operators. Unfortunately, the formulation we arrive at is highly non-linear and
non-convex, and thus challenging to solve in practice. Our main contribution is an effective
splitting numerical scheme which is efficient yet easy to code.
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Figure 2. Our method penalizes the obtained inconsistency of composing the forward and backward evolution

operators, A, B. In practice, employing consistency constraints in our optimization reqularizes the problem

significantly, yielding robust estimates in the presence of noise as we show in Section 5. In the plots above,

we demonstrate the consistency error for the sine example (5.2) as achieved by various DMD techniques. Our
method yields extremely low error rates, whereas Exact DMD, fbDMD and t1sDMD obtain higher rates that decrease
as the number of observations n increases. Finally, optimized DMD generates the second to best consistency
estimates with the exception of low number of observations, where their error rates are the highest.

3.1. Forward and backward dynamics. Let the two matrices X,Y € R"*" represent our
POD-projected data such that each column in X is associated with the corresponding column
in Y under the dynamics (see Subsection 2.1). Several Dynamic Mode Decomposition (DMD)
algorithms study the forward dynamics, i.e., find A such that AX ~ Y. We advocate the
consideration of the backward dynamics, namely, we also want that A7'Y ~ X. This idea
was previously explored in [7, Section 2.4], where the authors proposed the fbDMD algorithm
which takes into account both directions. However, there are a few key differences between
our approach and theirs, as we detail below. Formally, we consider the following variational
problem,

1 1
(3.1) minimize 5 |AX ~ Y[; + 3 X — A |2,

where | - | is the Frobenius norm. We note that if A is orthogonal, i.e., A=' = AT then the
above addends are equal, however in the general case we have

AX — Y5 = Tr(XTATAX — 2xTATY +YTY)
ATr(XTX —2XTA7 Y +YTATTA YY) = | X A7 'Y[% .

3.2. Change of variables. The optimization problem (3.1) is highly non-linear and non-
convex due to the A~! term. Therefore, instead of directly solving this challenging problem,
we introduce the auxiliary variable B = A~!, and we re-formulate to arrive at,

1 1
(3.2) minimize - |AX — Y5+ 51X - BY|3 , st. AB=I1,BA=1,
where the constitutive constraints AB = I and BA = I guarantee that minimizers of (3.2) are
inverse of each other. From an optimization point of a view, if one of the constraints is satisfied
then the second constraint holds as well. However, in practice, adding both constraints is a
reasonable choice as they symmetrize the approximate invertible relations of A and B. We
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refer to the above re-formulation as the Consistent Dynamic Mode Decomposition (CDMD)
problem. To motivate our methodology, we quantify the consistency error |AB — I|r obtained
by several existing methods including ours, and we plot the results in Figure 2. Indeed, our
technique is highly consistent compared to the other approaches, almost independently of the
number of observations n. We note that when the consistency error is large, it may hint of
overfitting to data, since the forward and backward estimations represent systems that are far
from being inverse of each other.

The CDMD functional (3.2) appeared previously in Computer Graphics applications where
a discrete map between two dimensional surfaces is being sought. Namely, given two geometric
shapes such as two different poses of the same person, the goal is to determine where each
point on one shape is mapped to its corresponding point on the second shape. DMD operators
(also known as functional maps [28]) arise in this application as they allow to align features
in the spectral domain and to extract a point to point map as a post processing step. With
respect to CDMD, Eynard et al. [9] investigate a close variant of our CDMD problem, and
solved it directly using a non-linear conjugate gradients approach. An alternative formulation
was studied in [19], based on the observation that the matrix

(4

is low-rank when AB = I. Instead of minimizing the rank of Z, Huang et al. [19] replace the
low-rank constraint with its convex relaxation expressed via the nuclear norm [6].

Our approach depends on the following straightforward insight. Under the change of
variables B, the energy functional in (3.2) becomes fully separable. Namely, if we denote

(33) fA4) = JIAX ~Y . J(B)= X - BY]}.

then we seek to minimize f(A)+ f(B) subject to the constitutive invertibility constraints. This
understanding calls for the development of an Alternating Direction Method of Multipliers
(ADMM)-type approach [5]. ADMM is advantageous in effectively solving separable opti-
mization problems, since it systematically leads to splitting schemes composed of potentially
simpler minimization tasks. Moreover, the theory associated with ADMM-based techniques is
well-developed with several general results related to convergence, optimality conditions and
stopping criteria. Unfortunately, the constraints associated with our problem are non-linear,
and thus while one can employ an ADMM approach, the theoretical guarantees of standard
ADMM do not apply. Recently, Gao et al. [11] showed that under mild assumptions, ADMM
with multiaffine constraints converges if the penalty parameter in the augmented Lagrangian
is sufficiently large. In Section 4, we show that CDMD can be modified to fit a family of
optimization problems that are considered in [11] for which converging ADMM schemes can
be devised.

3.3. A splitting scheme. We now turn to present the main algorithm in this work. Our
starting point is to define the augmented Lagrangian for problem (3.2) given by,

(3.4) L(A,B.Q) = f(A) + J(B) + LIR(A, B) + QI - £1Q1% |
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where p € RT is a scalar penalty parameter, the matrix R(A, B) combines the constitutive
constraints into a single matrix, and the matrix @ is the scaled dual variable (see e.g., [5,
Section 3.1.1]). Specifically, the matrices R and @ are given by

R4, B) = (gij) eER™, Q= <g;> € R¥*T

We note that if one adopts the method of multipliers approach, the augmented Lagrangian
L(A, B, Q) could be directly minimized, as was done in [9]. However, the term |R(A, B) +Q|%
includes a quartic combination of unknowns, and thus the optimization problem (3.4) is highly
non-linear. Instead, our numerical scheme splits the updates so that A and B are not updated
jointly but in an alternate fashion. Specifically, given initial A%, B®, Q° and p, ADMM takes
the form of

1AM = argmin, f(A) + 2|R(A, B*) + Q"%

2. BF! = argming f(B) + §|R(Ak+1, B) + Qkﬁ;

3. Qk—i-l — Qk + R(Ak+1,Bk+1)
Below, we show that minimizing Steps (1) and (2) lead in both cases to a Sylvester Equation
which can be efficiently solved using the QR decomposition, see [3] for further details. The
update in Step (3) is trivial and requires a single evaluation of R. Overall, we obtain an efficient
algorithm with time complexity of O(Kr?), where K is the total number of iterations.

The minimization tasks in Steps (1) and (2) are relatively simple as they comprise of
energy functionals that are quadratic in A and in B, respectively. Thus, the associated first
order optimality conditions are linear. For instance, the Jacobian of the energy in Step (1) is

Va [£(4, B Q)] = Va f(4) + £Va (|R(A, BY) + QU1 )
= (AX =Y)XT +p (AB* ~ 1+ Q) (BN + p(BY)T (B*A-1+Q})

After re-arrangement and equating to zero, we arrive at the following Sylvester Fquation,
C1A + ACy = (5, which is linear in A. The matrices C1, Cy and C5 are given by

Cl — p(Bk)TBk ,
(3.5) Cy = XXT + pB*(BMT |
Cs =YX +2p(B*)" — pQ¥(BM)" — p(B*)"Q5 .

The derivation for Step (2) follows along the same lines, yielding a different Sylvester Equation
DB + BDy = D3 with coefficient matrices given by

Dl _ p(Ak+1)TAk+1
(3.6) Dy =YYT 4 pAFt (AR
Dy = XY T 4 2p(AFH)T — p(AMTQY — pQ5(AFHT .
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3.4. The numerical algorithm. We summarize our technique for computing consistent
dynamic mode decomposition in Algorithm 3.1. Note that Steps 1 — 2 and 10 — 11 are
shared with Algorithm 2.1, whereas our main contribution is provided in Steps 3 — 9 where
the construction of the DMD matrix A is described. We note that the algorithm below
describes how to compute an approximation of the forward dynamics A and its associated
decomposition, however, an estimate of the backward dynamics can be extracted as well by
defining B = B¥, where k is the last iteration index.

Algorithm 3.1 Consistent Dynamic Mode Decomposition (CDMD)
1: Input matrices X,Y € R™ " and scalars r, peR

2: Compute the SVD of X = USV*, and generate X = (?:X, Y = [7:}7

Initialize A =YX+ B = XY+, Q=0

for k=0,1,2,... do
Solve A¥+1 = sylvester(C, Cy, C3), using Eq. (3.5)
Solve B¥*! = sylvester(D1, Do, D3), using Eq. (3.6)
Update Qk—i—l — ka + R(Ak+1,Bk+1)
Update p following Eq. (3.8)

end for

10: Compute the EIG of the last A, with Av; = A\jv;, where v; € C", \j € C
11: The DMD spectrum is defined as the set of eigenvalues A;, and vectors ¢; = )\;1}7\7,”5_11)]-

r

3.5. Stopping criteria. To establish a practical stopping condition, we keep track of two
residual quantities that are related to the primal and dual problems. A similar termination
approach is described in [5]. We define the following primal residual and dual residual,

Ak _ Akl)

(37) Tk = R(Ak7Bk) ’ Sk =p <Bk o Bk—l

where the termination rule we employ is given by |[r*|p < eP™ and |s¥|r < €?al, The tolerances
e and €' can be computed using absolute and relative thresholds, such as

P — \frebs 4 el maX{‘AkBk‘F7 ‘BkAk’F} 7
6dual — @Eabs + 61relp‘cgk|F )

3.6. Dynamic update of the penalty parameter p. In general, varying p based on the

current estimates of the primal and dual residuals may lead to faster convergence rates. We

implement a simple scheme that was proposed in e.g., [5] and is given by

" 7ok if [7k|p > p|sk|p
(3.8) pPl= 0 o i |sM e > plr e
ok otherwise,

where we take 7 = 2 and p = 5 in practice.
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Figure 3. The empirical convergence of our Algorithm 3.1 when applied to non-linear data with high levels
of noise is demonstrated in the above plot. Our method terminates in ~ 100 steps, where the objective function
1s stabilized on an optimal value (left) and the primal and dual residuals converge rapidly (middle and right).
We repeat this test N = 1000 times, and we show the variance in convergence via the shaded areas where the
average is represented by bold curves.

4. Provably Convergent CDMD Scheme. Unfortunately, while the above Algorithm 3.1
is effective and behaves well in practice as we show in Section 5 and in Fig. 3, it is not
provably convergent. In what follows, we address this shortcoming and propose an alternative
converging scheme, which requires only an additional negligible amount of computations.
To this end, we follow the recent work of Gao et al. [11] which showed that under certain
conditions, ADMM and its convergence can be extended to include multiaffine constraints.
In particular, we show that by introducing additional variables to the CDMD problem (3.2),
the obtained minimization problem is of the required form, while satisfying all the necessary
conditions in [11].

Gao et al. investigate the convergence of ADMM for problems taking the form,

(4.1) minimize h(A,B,C), st. P(AB)+ Q) =0,

s~y

where A = (Ao, A1, ..., An,), B = (By, B1, ..., By, ), and a variable block C. In addition, we
have that h(A, B,C) = f(A,B)+g(C). Finally, Q is a linear map and, in contrast to “standard”
ADMM problems, P is a multiaffine map. Namely, the transformation obtained from fixing
all variables A; and B; but one, is affine. It is shown in [11] that when several assumptions
on h,P,Q are met, an ADMM scheme converges to a constrained stationary point, i.e., the
sequence {AF, B* Ck }22 o is bounded, and that every limit point (A*, B*,C*) is a constrained
stationary point. While various configurations of assumptions are considered in [11], we list
here a more restrictive set of conditions that hold in our case.

Assumption 4.1. Solving problem (4.1), the following hold.

1. The update order is Ay, A, ..., An,, Bo, B1, ..., Bp, and a single block C.
2. Im(Q) 2 Im(P).

3. The objective h(A,B,C) is coercive on the feasible set

Q= {(A,B,C): P(A,B) + Q(C) =0} .
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4. The function f(A,B) can be written as

np

FAB) =32 A + D2 Fi(By)

J

where every f; and fj are (my, M;)- and (mj, M;)-strongly convex functions.
5. The function g(C) is a (m, M)-strongly convex function.
6. For sufficiently large penalty p, every ADMM subproblem attains its optimal value.

To motivate our discussion, we present an illustrative example related to Nonnegative
Matrix Factorization (NMF). As we show below, this problem is similar to ours with respect
to the biaffine constraints, and thus it provides a natural starting point for our case. Given
a matrix Z, its NMF involves the task of finding a pair of nonnegative matrices A > 0 and
B > 0 such that Z = AB [23]. An ADMM formulation to NMF was originally proposed in [5],
yielding the following problem,

1
(4.2) HM?MeZM%H@ﬂ+jC—Z%,SL C=AB,
where ¢ is the indicator function, i.e., 2(A) = 0 if A > 0 and 1(A) = oo otherwise. Gao and
colleagues reformulate (4.2) to arrive at an optimization problem whose subproblems are easy
to solve while meeting the assumptions required for convergence. The modified version is
given by

o 1 I 1
Al Bl - C_Z2 It AIIQ Ll B/12
(4.3) Ayggg@B”Z()+d )+ 5 F+ 5147 + 518 F

subject to C=AB, A=A+ A" B=B +B".

The update order of the variables is B, B', A, A" and (C, A”, B"). We stress that problem (4.3)
satisfies a different set of assumptions than those appear in Assumption 4.1, but it is well
within the family of problems considered in [11]. We refer to their paper for additional details
of the NMF problem considered in relation to converging ADMM schemes.

We now turn to modify the CDMD problem (3.2) to a form which fits all the conditions
in Assumption 4.1 and thus its ADMM is provably convergent, due to [11]. We observe that our
invertibility constraints AB = I and BA = I are reminiscent of the NMF constraints, and, in
particular, they are biaffine with respect to (A, B). Moreover, our objective function consists
of highly smooth Frobenius norm terms. Encouraged by these similarities, we introduce the
auxiliary variables C, A", A” B’ B”, and we modify the above (3.2) to arrive at the following
minimization,

s s 1 / 2 1 AVaV v 2 a2 Ky g2
(4.4) AATEEIZE Q\A X-Yp+ §|X - BY|p + §|C — 1%+ 5\14 =+ 5\3 7
subject to C=AB,C=BA, A=A'"+A" B=DB+B",

where v, u € RT are penalty parameters for the C, A” and B” variables.
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Algorithm 4.1 Provably Convergent CDMD (CDMD2)
1: Input matrices X,Y € R™ " and scalars r, p, u € R
2: Compute the SVD of X = USV*, and generate X = U;X,Y = UY

3: Initialize A= A? =YX B'= B0 = XY+ AW =pB" =0,C°=1,Q° =0
4: for k=0,1,2,... do
5. Solve A¥*1 = sylvester(Aj, As, A3), where

Ay =1+ (BM'B",
Ay = BF(BMT
Ag = (C* = Q)BT + (BYT(CF = Q) + A" + A™ - Q5.
6:  Solve A" =1linsolve (pI + XX, YXT 4 p(AF+1 — A7k + Q%))
7. Solve B¥t! = sylvester (B, By, B3), where
B1 =7 + (Ak+1)TAk+1 ’
By = Ak+1(Ak+1)T 7
By = (A1 (CF - Q) + (C* — Q5 (A + B 4+ B" — Q).

8. Solve B*! = linsolve (pl + YYT,XYT 4 p(B*+! — B" 4 QF))
9:  Solve CF+1 = _L_ (A1 Bk+1 . ph+1l AR+1 L QF 4 QF) 4 S

- 2p4v 2p+v
10:  Solve A"F+1 = T-pkp(AkH — AL 4 QF)
11: Solve B = _Ao(BFHT — B4 Q)

19 Update Qk+1 — Qk 4 R(Ak+1, Bk+1’ck+1)
13:  Update p following Eq. (3.8)
14: end for

15: Execute steps (10) — (11) of Algorithm 3.1

To verify that (4.4) meets all the required conditions, we denote f(A’) = HA'X - Y%,
f(B) =X - B'Y%, and g(C, A", B") = 4|C — I|% + &|A"|% + &|B"|%. Also, we define the
following residual

AB —-C
R(A,B,)=P(4, A, B,B) + o, 4B = | P4 | F
B- B —B"

The conditions in Assumption 4.1 hold because the update order is A, A’, B, B’ and (C, A”, B")
as we show below in Algorithm 4.1. The image of Q is indeed a superset of P’s image, since
it is the (minus) identity transformation in each of its entries, and thus span the entire space.
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The objective function h is coercive on the feasible set, because its terms behave as |z|%, and
therefore whenever |z|r — 0o so does |z|%. Under some mild conditions, namely, that X and
Y are full rank matrices, the function f is composed of (m, M)-strongly convex functions as
we show in Appendix A. Similarly, g is a strongly convex function because the Hessian of its
terms is positive definite. Finally, the subproblems in our formulation are trivial, linear or a
Sylvester-type equation and thus attain their optimal value when p is sufficiently large.

We conclude this section with presenting our convergent ADMM scheme along with the
specification of its subproblems. The derivation of the matrix expressions that take part in
lines 5 and 7 could be carried over in a fashion similar to Egs. (3.5) and (3.6). We note that
lines 6 and 8 of Algorithm 4.1 involve a call to X = linsolve(A, B) which numerically solves
the system XA = B.

5. Results. In this section, we evaluate the proposed CDMD approach and compare it to
several state-of-the-art techniques for computing DMD matrices. In particular, we compare
against Exact DMD [34], £bDMD [7], t1sDMD [17] and optimized DMD [1]. The dynamical systems
we consider appeared previously e.g., in [7, 1], and thus can be considered as “benchmark”
examples for quantitative and qualitative study of DMD algorithms.

/\n: 16

0 n =32

_ ,
N (©
o) —— D @

2 . -2 -2
-1 0 1 0 1 0 1
Re(N) Re(N) Re(N)

\—DMD [34] —fbDMD [7] —tlsDMD [17] —optimized DMD [1] —CDMD A true eigenvalue\

0 n=38 0

Im()

Im()
¢

Figure 4. We plot 95% confidence ellipses (see [7]) for estimating one of the eigenvalues of a periodic
linear system (5.1) when varying number of observations n = 8,16, 32 are given. The zoom in boxes show the
average estimation for each method. The results above indicate that CDMD is second to best in terms of accuracy
and variance for all values of n.

5.1. A periodic linear system. In this example, we use the following linear and non-
normal system

(5.1) 3= G :f) z,

where the system has purely imaginary eigenvalues that are given by A = +i. Eq. (5.1) is
integrated over the [0, 27] temporal segment, starting from the initial point zo = [1 0.1]7. To
stress test our method, we investigate this system when relatively low number of observations is
given and high levels of white Gaussian noise affect the data. Specifically, we show in Figure 4
the performance of various methods for computing the eigenvalue —i when noise with variance
02 = 0.1 and Signal-to-Noise (SNR) ratio of 8.6 dB is introduced. We repeat our experiment
N = 10* times, and the average of each of the methods is marked by a dot with a corresponding
color. Additionally, we plot the ellipses which enclose the region of 95% of the estimates that
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Figure 5. We compare the above methods based on their approzimation for the eigenvalue of System (5.1)
when various levels of noise are introduced, —4 < SNR < 4. Interestingly, while optimized DMD is extremely
accurate when SNR > 0, it fails for higher levels of noise, and thus it does not appear on these graphs. The
methods fbDMD and t1sDMD perform well in terms of average, but their spread is much larger than our results
which maintain relatively small spread as well as accurate average.

are closest to the true eigenvalue for each of the techniques. We use the values n = 8,16, 32 for
the number of observations, which make the system overdetermined as it is two-dimensional.
Nevertheless, these values are relatively small in comparison to related work on this example,
see e.g., [7].

Overall, optimized DMD achieves excellent results in terms of spread and average values,
across all values of n. On the other end, exact DMD struggles both in accuracy and spread.
fbDMD and t1sDMD exhibit comparable performance, except for n = 8 where £bDMD produces a
correct mean, but with an extremely large deviation. Finally, our approach outputs consistent
deviation and averages, regardless of the value of n. We additionally experiment with various
high level of noise —4 < SNR < 4 and present the results in Figure 5. Note that the bottom
row axes are twice as large as the axes in the top row. As can be seen in the graphs, optimized
DMD is very accurate as long as SNR > 0, but fails when the signal-to-noise ratio drops below
zero, and therefore it is omitted from the other graphs. In most cases, Exact DMD produces
poor approximations when compared to the other methods. In comparison, £bDMD and t1sDMD
generate estimates that are centered around the eigenvalue in general, with growing spread as
the SNR decreases. Remarkably, our approach exhibits the least increase in deviation when
compared to all other techniques, while producing a relatively accurate average.

In addition, we reconstruct the trajectory using the approximations of the dynamics pro-
vided by each of the methods, and we plot the results in Fig. 6 separated to y-coordinate
(top row) and z-coordinate (bottom row) over time. It is evident that Exact DMD yields a
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o? = 0.0625, SNR=9.98 o? = 0.125, SNR=6.96 | o? =0.25, SNR=3.95

—DMD [34] —fbDMD [7] —tisDMD [17] —optimized DMD [1] —CDMD =-true path|

Figure 6. We reconstruct the trajectory of the periodic system (5.1) using the computed DMD matrices for
various noise variances with 32 observations. Most methods yield paths that are close to the true trajectory,
where optimized DMD and our method obtain the best results.

highly distorted path, whereas the other methods are generally close to the true trajectory.
As the amount of noise increases, fbDMD and t1sDMD develop a significant shift in phase. We
measure the distance between the computed paths to the desired curve and we observe that
our method achieves second to best results after optimized DMD. Specifically, for o2 = 0.125,
the Lo error between the computed path to the ground-truth trajectory divided by the length
of the latter is 0.0837 and 0.2611 for optimized DMD and CDMD, respectively. When o2 = 0.25,
the error is 0.1403 and 0.7844 for optimized DMD and CDMD. In comparison, the other methods
yield errors that are five times larger or more.

5.2. Dominant and hidden dynamics. The next system is a superposition of a growing
sine function and a decaying sine function given by

(5.2) z(z,t) = sin(k1x — wit) exp(y1t) + sin(kex — wat) exp(vat) ,

where in our experiments we used k1 =1, w; = 1,71 =1 and kg = 0.4, wy = 3.7, 7o = —0.2.
This example is more challenging than the previous one since it involves dynamical features
which are of lower magnitude alongside dominant structures. The eigenvalues of this system
are of the form +; = w;,7 = 1,2, where the “dominant” mode is associated with ¢ = 1 and the
“hidden” mode is linked to i = 2. In Figure 7, we compute N = 10* times the eigenvalues of
the system while employing a noise level of 02 = 0.25, SNR = 30 dB over the observations. The
results show that for the dominant dynamics, most methods perform well where optimized
DMD obtains improved estimates as n increases (top row). For the hidden mode, similar results
are obtained for n = 16, 32, whereas for the lowest n = 8, £bDMD does not appear in the plot
and t1sDMD is shifted differently than the other approaches (bottom row).
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Figure 7. Given a noisy superposition of sine functions, we estimate the system’s eigenvalues for various
number of observations n and noise with variance o = 0.25 and SNR = 30 dB. We observe that the dominant
eigenvalue is approzimated well (top row), whereas the hidden dynamics is achieved by most methods with
decreasing error as n grows (bottom row).

In addition, we investigate this system across different levels of noise. In particular, we
set 02 = 272, 271 .. 210 corresponding to SNR in the range [—10,30]. Each noise level is
used N = 103 times, for which we compute both the dominant and hidden DMD eigenvalues.
We show the error results of the different methods in Fig. Figure 8, where the error is a linear
combination of the average error between the computed eigenvalue and the ground-truth and
the minimum radius of the deviation ellipse. Formally,

(5'3) &= a|)\avg - >\gt| + (1 - a)rmin s

where A,y is the average taken over all eigenvalue estimates, Agt is the analytic eigenvalue, and
Tmin 1S the minimum radius. In our experiments, we used a = 0.9. Similar to Fig. Figure 5,
when SNR approaches zero, optimized DMD fails and thus its graphs are shorter. Interestingly,
up to a certain SNR, all methods present similar error behavior, where at SNR ~ 17 there
is an exponential increase in the error estimates. When inspecting the individual results, it
seems like this high level of noise leads to an extremely large deviation in results, which further
affects our error measure.

5.3. Cylinder wake. The last example we consider in this work is of a fluid flow past a
cylinder simulated using a numerical solver. We obtain a time series of fluid vorticity fields
consisting of n = 150 snapshots regularly sampled in time with At = 0.2. We refer to [22]
for additional details regarding this dataset such as the chosen physical parameters and other
numerical considerations. It is important to note that this particular flow is inherently non-
linear and thus the underlying assumptions of methods such as optimized DMD may not hold.
Specifically, it is unclear which functions to fit and whether exponential functions are a good
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Figure 8. We compute approximations of the dominant and hidden DMD eigenvalues for various levels of
noise, —10 < SNR < 30 and we compute the error for each method using Eq. (5.3). Naturally, for low levels of
noise, most methods perform reasonably well, whereas when SNR < 17 the spread becomes orders of magnitude
larger. See the text for further details.

choice in this scenario. In contrast, our approach (as well as other DMD techniques) does
not impose restricting conditions on the input data, making it applicable in such challenging
scenarios. In Figure 9, we repeatedly compute the eigenvalues associated with a noisy version
of the input data for various noise levels, and we plot the average results as compared to the
estimates obtained from the clean observations. Specifically, we repeat this experiment N =
1000 times for noise with variance o2 = 0.001,0.01, 0.1 and SNR = 30, 20, 10 dB, respectively.
Clearly, Exact DMD exhibits a bias in its estimations which is consistent with previous reports
such as [7]. On the other hand, £bDMD and t1sDMD generate improved approximations of the
eigenvalues with less accuracy as the noise increases. Our approach is successful in measuring
nearly zero growth for all eigenvalues and noise levels with a bias in frequencies for the least
dominant eigenvalues. In Figure 10, we demonstrate the averaged dominant DMD modes
obtained for 02 = 0.1. In this case, all methods perform comparably well in the noiseless case,
where the averaged modes associated with less dominant eigenvalues are clearly noisier.

01 o = 0.001, SNR=30 01 o? = 0.01; SNR=20 01 0? = 0.1, SNR=10

.

— —~ . —~ °

= = . = o o ®
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Figure 9. We compute r = 21 eigenvalues using simulation snapshots of a cylinder wake for noise levels
o2 = 0.001,0.01,0.1 respectively SNR = 30,20,10 dB. As the noise increases, our method maintains its zero
growth estimate (notice that the x-axzis represents the real part, cf. Fig. Figure 7), whereas the other methods
produce significant erroneous growth/decay estimates.
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Figure 10. The averaged DMD modes associated with the cylinder wake are shown for data consisting
of noise with variance o® = 0.1. In spite of the large amounts of white Gaussian noise, all methods produce
relatively good estimations when compared to the noiseless scenario (bottom row).

6. Discussion and Future Work. In this work, we presented a new method for computing
Dynamic Mode Decomposition operators that is based on a variational formulation of the
underlying problem, while taking into account the forward and backward dynamics. The
obtained minimization is solved using an effective splitting ADMM scheme, which performs
well in practice in terms of computational requirements and achieved accuracy. Moreover, it
is shown that CDMD could be modified to a provably convergent ADMM scheme at the cost
of insignificant additional computations. We demonstrate the performance of our method on
a few benchmark dynamical systems, compared to several state-of-the-art approaches. Our
conclusion is that the generality of our model, along with its improved accuracy for high levels
of noise and low number of observations, makes it an interesting alternative among current
existing techniques.

One limitation of our approach is related to the non-linearity and non-convexity of the
problem we aim to solve. In particular, it is not clear at this point whether the obtained
minimizers are local or global, which is a general challenge in these type of problems, as was
also noted in [1]. Another difficulty associated with our work involves the interplay between
the chosen value of the penalty parameter p and the obtained solutions. While in general
our technique is robust to the initial value of p due to scheme (3.8), it still affects our results
to some extent, as can be seen in Figure 2, where for large values of n, our consistency
error increases. Finally, our algorithm is more computationally demanding compared to the
alternatives. However, this is highly dependent on the particular implementation and choice
of parameters such as convergence thresholds and thus can be reduced, depending on the
particular application at hand.

We believe that formulating DMD in a variational form is important as other regularizers
may be considered along with our consistency constraints such as sparsity promoting penalty
terms [20]. We leave this consideration for future work. Moreover, we would like to explore the
relation of our approach to existing techniques such as t1sDMD. Another interesting direction
is to combine the current work with methods that numerically compute an optimal basis [36].
The associated problem is extremely challenging as it is of high dimension, non-linear and
typically non-convex. We believe that some of the ideas that we presented in this work could
be generalized to this case and we plan on pursuing this direction in the future.
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Appendix A. Convexity of f(A,B).
The function f(A,B) is (m, M)-strongly convex if each of its terms is strongly convex.
Thus, we show it for the first term f(A’) = |A’X —Y|%, and we note that a similar derivation

could be carried for the other term. We recall the gradient of f (A’) and we vectorize it to
arrive at the following formulation

ViA)=A'X -VXT = AXXT -y XT = (XXT ®I)vec(A') — vee(YXT) .

Therefore, when viewed as a vectorized function, the Hessian of f is given by V2f = X X7 @ 1.
The matrix X € R"*™ can be assumed to have full rank, since r < n, and thus X X7 is positive
definite (PD). It is known that the product of two PD matrices is also PD, which means that
there exists a scalar m > 0 such that the Hessian V? f ml is positive semi-definite, and we
conclude that f is an m-strongly convex function. Finally, f is also M-Lipschitz differentiable
since |(A] — ADXXT|p <|XXT|p - |(A] — AY)|F and | X XT|F is positive and bounded.
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