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Abstract

Many optimization algorithms converge to stationary points. When the underlying
problem is nonconvex, they may get trapped at local minimizers or stagnate near sad-
dle points. We propose the Run-and-Inspect Method, which adds an “inspect” phase to
existing algorithms that helps escape from non-global stationary points. It samples a set
of points in aradius R around the current point. When a sample point yields a sufficient
decrease in the objective, we resume an existing algorithm from that point. If no suffi-
cient decrease is found, the current point is called an approximate R-local minimizer.
We show that an R-local minimizer is globally optimal, up to a specific error depend-
ing on R, if the objective function can be implicitly decomposed into a smooth convex
function plus a restricted function that is possibly nonconvex, nonsmooth. Therefore,
for such nonconvex objective functions, verifying global optimality is fundamentally
easier. For high-dimensional problems, we introduce blockwise inspections to over-
come the curse of dimensionality while still maintaining optimality bounds up to a
factor equal to the number of blocks. We also present the sample complexities of these
methods. When we apply our method to the existing algorithms on a set of artificial
and realistic nonconvex problems, we find significantly improved chances of obtaining
global minima.
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1 Introduction

This paper introduces and analyzes R-local minimizers in a class of nonconvex opti-
mization and develops a Run-and-Inspect Method to find them.
Consider a possibly nonconvex minimization problem:

minimize F (x) = F(xq, ..., Xs), @))

where the variable x € R” can be decomposed into s blocks xp, ..., x5, s > 1. We
assume x; € R™.

We call a point X an R-local minimizer for some R > 0 if it attains the minimum
of F within the ball with center X and radius R.

In nonconvex minimization, it is relatively cheap to find a local minimizer but
difficult to obtain a global minimizer. For a given R > 0, the difficulty of finding
an R-local minimizer lies between those two. Informally, they have the following
relationships: for any R > 0,

F is convex
= {local minimizers} = { R-local minimizers} = {global minimizers};
F' is nonconvex

=> {local minimizers} 2 {R-local minimizers} 2 {global minimizers}.

We are interested in nonconvex problems for which the last “2>” holds with “=,”
indicating that any R-local minimizer (for a sufficiently large R) is global. This is pos-
sible, for example, if F is the sum of a quadratic function and a sinusoidal oscillation:

x2 . 1
F(x):?—f—asm(bn (x—%>>+a, 2)

where x € R and a, b € R. The range of oscillation is specified by amplitude a and
frequency }7’ We use —ﬁ to shift its phase so that the minimizer of F is x* = 0. We
also add a to level the minimal objective at F (x*) = 0.

An example of (2) with a = 0.3 and b = 3 is depicted in Fig. 1.

Observe that F has many local minimizers, and its only global minimizer is x* = 0.
Near each local minimizer x, we look for an escape point x € [x — R, X + R] such
that f(x) < f(x). We claim that by taking R > min{2./a, %}, such an escape point
exists for every local minimizer X except x = x*.

Proposition 1 Consider minimizing F in (2). If R > min{2./a, %}, then the only point
X that satisfies the condition

F(¥) =min{F(x) : x € [ — R, X + R]} ©)
is the global minimizer x* = 0.
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Fig.1 F(x)in (2) witha = 0.3,b =3

Proof Suppose x # 0. Without loss of generality we can further assume x > 0. Recall
the global minimizer is x* = 0.

(i) If x < 24/a, then x* € [x — R, X + R] gives F(x) = 0, so x is the global
minimizer. Otherwise, we have F (x — 2./a) < F(x). Indeed,

~ 4+2a=2JaJa—x) <0.

= 2 =2
PG - 20a) - P = S22 L

However, since ¥ — 24/a € [x — R, X + R], (3) fails to hold; contradiction.
(i1) Similar to part (i) above, if x < %, then x is the global minimizer. Otherwise, we

have

__22 _o
(x b) ~Z <o,

F()E—%)—F(i):T 5

This leads to the contradiction similar to part (i).

Proposition 1 indicates that we can find x* of this problem by locating an approxi-
mate local minimizer X (using a proper algorithm) and then inspecting a small region
near X (e.g., by sampling a set of points). Once the inspection finds a point x such that
f(x) < f(x%), resume the algorithm from x and let it find the next approximate local
minimizer x¥*! such that f(x¥*!) < f(x). Alternate such running and inspection
steps until, at a local minimizer X, the inspection fails to find a better point nearby.
Then, X must be an approximate global solution.

We call this procedure the Run-and-Inspect Method. We clarify that this method is
not a standalone method but rather an “add-on” to an existing algorithm.

The coupling of “run” and “inspect” is simple and flexible because, no matter which
point the “run” phase generates, being it a saddle point, local minimizer, or global
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minimizer, the “inspect” phase will either improve upon it or verify its optimality.
Because saddle points are easier to escape from than from a non-global local minimizer,
hereafter, we ignore saddle points in our discussion. Related saddle-point avoiding
algorithms are reviewed below along with other literature.

Sample-based inspection works in low dimensions. However, it suffers from the
curse of dimensionality, as the number of points will increase exponentially with the
dimension. For high-dimensional problems, the cost will be prohibitive. To address
this issue, we define the blockwise R-local minimizer and break the inspection into s

blocks of low dimensions: x = [xlT xZT . xsT]T where x; € R". We call a point X a

blockwise R-local minimizer, where R = [R] Ry --- R]T > 0, if it satisfies
F(xi,...,%,...,%) < min F(x,...,xi,..., %), VI<i<s, (4
X €B(Xi,R;)

where B(x, R) is a closed ball with center x and radius R. To locate a blockwise
R-local minimizer, the inspection is applied to every block while fixing the others. Its
cost grows linearly in the number of blocks when the size of every block is fixed.

This paper studies R-local and blockwise R-local minimizers and develop their
global optimality bounds for a class of function F' that is the sum of a smooth, strongly
convex function and a restricted nonconvex function. (Our analysis assumes a property
weaker than strong convexity.) Roughly speaking, the landscape of F is convex at a
coarse level, and it can have many local minima. (Arguably, if the landscape of F is
overall nonconvex, minimizing F is fundamentally difficult.)

This decomposition is implicit and only used to prove bounds. Our Run-and-Inspect
Method, which does not use the decomposition, can still provably find a solution that
has a bounded distance to a global minimizer and an objective value that is bounded
by the global minimum. Both bounds can be zero with a finite R.

The radius R affects theoretical bounds, solution quality, and inspection cost. If R
is very small, the inspections will be cheap, but the solution returned by our method
will be less likely to be global. On the other hand, an excessive large R leads to
expensive inspection and is unnecessary since the goal of inspection is to escape
local minima rather than decrease the objective. Theoretically, Theorem 3 indicates a
proper choice R = 2./B/L, where B, L are parameters of the functions in the implicit
decomposition. Furthermore, if R is larger than a certain threshold given in Theorem 4,
then X returned by our method must be a global minimizer.

However, as 8, L are associated with the implicit decomposition, they are typically
unavailable to the user. In this sense, our results provide only explanations and a
guidance to the selection of parameters. Like most theoretical analysis, one cannot
use our analytic results to precisely choose parameters.

One can imagine that a good practical choice of R would be the radius of the global-
minimum valley, assuming this valley is larger than all other local-minimum valleys.
This choice is hard to guess, too. Another choice of R is roughly inversely proportional
to |V f]|, where f is the smooth convex component in the implicit decomposition of
F. Tt is possible to estimate ||V f|| using an area maximum of ||V F||, which itself
requires a radius of sampling, unfortunately. (|| V F'|| is zero at any local minimizer, so
its local value is useless.) However, this result indicates that local minimizers that are
far from the global minimizer are easier to escape from.

@ Springer



Run-and-Inspect Method for nonconvex optimization and... 43

We empirically observe that it is both fast and reliable to use a large R and sam-
ple the ball B(X, R) outside-in, for example, to sample on a set of rings of radius
R,R— AR, R — 2AR, ... > 0. In most cases, a point on the first couple of rings
is quickly found, and we escape to that point. The smallest ring is almost never sam-
pled except when X is already an (approximate) global minimizer. Although the final
inspection around a global minimizer is generally unavoidable, global minimizers in
problems such as compressed sensing and matrix decomposition can be identified
without inspection because they have the desired structure or attained a lower bound
to the objective value. Anyway, it appears that choosing R is ad hoc but not difficult.
Throughout our numerical experiments, we use R = O (1) and obtain excellent results
consistently.

The exposition of this paper is limited to deterministic methods though it is possible
to apply stochastic techniques. We can undoubtedly adopt stochastic approximation in
the “run” phase when, for example, the objective function has a large-sum structure.
Also, if the problem has a coordinate-friendly structure [16], we can randomly choose
a coordinate, or a block of coordinates, to update each time. Another direction worth
pursuing is stochastic sampling during the “inspect” phase. These stochastic tech-
niques are attractive in specific settings, but we focus on non-stochastic techniques
and global guarantees in this paper.

1.1 Related work
1.1.1 No spurious local minimum

For certain nonconvex problems, a local minimum is always global or good
enough. Examples include tensor decomposition [6], matrix completion [7], phase
retrieval [22], and dictionary learning [21] under proper assumptions. When those
assumptions are violated to a moderate amount, spurious local minima may appear
and be possibly easy to escape. We will inspect them in our future work.

1.1.2 First-order methods, derivative-free method, and trust-region method

For nonconvex optimization, there has been recent work on first-order methods that can
guarantee convergence to a stationary point. Examples include the block coordinate
update method [25], ADMM for nonconvex optimization [23], the accelerated gradient
algorithm [8], the stochastic variance reduction method [18], and so on.

Because the “inspect” phase of our method uses a radius, it is seemingly related
to the trust-region method [3,12] and derivative-free method [4], both of which also
use a radius at each step. However, the latter methods are not specifically designed to
escape from a non-global local minimizer.

1.1.3 Avoiding saddle points

A recent line of work aims to avoid saddle points and converge to an e-second-order
stationary point X that satisfies
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IVF&| <€ and Aimin(VZF (X)) = —/pe, )

where p is the Lipschitz constant of V2 F (x). Their assumption is the strict saddle prop-
erty, that is, a point satisfying (5) for some p > 0 and € > O must be an approximate
local minimizer. On the algorithmic side, there are second-order algorithms [13,15]
and first-order stochastic methods [6,9,14] that can escape saddle points. The second-
order algorithms use Hessian information and thus are more expensive at each iteration
in high dimensions. Our method can also avoid saddle points.

1.1.4 Simulated annealing

Simulated annealing (SA) [11] is a classical method in global optimization, and ther-

modynamic principles can interpret it. SA uses a Markov chain with a stationary
Fx)

distribution ~ e~ 7 , where T is the temperature parameter. By decreasing 7', the

distribution tends to concentrate on the global minimizer of F(x). However, it is dif-

ficult to know exactly when it converges, and the convergence rate can be extremely

slow.

SA can be also viewed as a method that samples the Gibbs distribution using
Markov-Chain Monte Carlo (MCMC). Hence, we can apply SA in the “inspection’ of
our method. SA will generate more samples in a preferred area that are more likely to
contain a better point, which once found will stop the inspection. Apparently, because
of the hit-and-run nature of our inspection, we do not need to wait for the SA dynamic
to converge.

1.1.5 Flat minima in the training of neural networks

Training a (deep) neural network involves nonconvex optimization. We do not neces-
sarily need to find a global minimizer. A local minimizer will suffice if it generalizes
well to data not used in training. There are many recent attempts [1,2,19] that investi-
gate the optimization landscapes and propose methods to find local minima sitting in
“rather flat valleys.”

Paper [1] uses entropy-SGD iteration to favor flatter minima. It can be seen as a
PDE-based smoothing technique [2], which shows that the optimization landscape
becomes flatter after smoothing. It makes the theoretical analysis easier and provides
explanations for many interesting phenomena in deep neural networks. But, as [24]
has suggested, a better non-local quantity is required to go further.

1.2 Notation
Throughout the paper, || - || denotes the Euclidean norm. Boldface lower-case letters
(e.g., x) denote vectors. However, when a vector is a block in a larger vector, it is

represented with a lower-case letter with a subscript, e.g., X;.
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1.3 Organization

The rest of this paper is organized as follows. Section 2 presents the main analysis of
R-local and blockwise R-local minimizers, and then introduces the Run-and-Inspect
Method. Section 3 presents numerical results of our Run-and-Inspect Method. Finally,
Sect. 4 concludes this paper.

2 Main results

In Sects. 2.1, 2.2 and 2.3, we develop theoretical guarantees for our R-local and R-
local minimizers for a class of nonconvex problems. Then, in Sect. 2.4, we design
algorithms to find those minimizers.

2.1 Global optimality bounds

In this section, we investigate an approach toward deriving error bounds for a point
with certain properties.

Consider problem (1), and let x* denote one of its global minimizers. A global
minimizer owns many nice properties. Finding a global minimizer is equivalent to
finding a point satisfying all these properties. Clearly, it is easier to develop algorithms
that aim at finding a point X satisfying only some of those properties. An example is that
when F is everywhere differentiable, V F (x*) = 0 is a necessary optimality condition.
So, many first-order algorithms that produce a sequence x¥ such that |[VF (x*)|| — 0
may converge to a global minimizer. Below, we focus on choosing the properties of
x* so that a point X satisfying the same properties will enjoy bounds on F (X) — F (x*)
and ||X — x*||. Of course, proper assumptions on F are needed, which we will make
as we proceed.

Let us use Q to represent a certain set of properties of x*, and define

SQ = {x : x satisfies property Q}, 6)
which includes x*. For any point X that also belongs to the set, we have

F(X) - F(x*) < max F(x)— F(y)
X,YESQ

and
X — x*|| < diam(Sg),

where diam(S¢) stands for the diameter of the set Sg. Hence, the problem of construct-
ing an error bound reduces to analyzing the set S under certain assumptions on F.

As an example, consider a pu-strongly convex and differentiable F' and a simple
choice of Qas | VF (x)|| < 8 with§ > 0. This choice is admissible since |V F (x*)|| =
0 < 4. For this choice, we have
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2\ (12 2
IVFX)| 55_

F(X) — F(x*) < o

’

and

VF(x
% xf < IVFOI

1)
[ /1/ 9
where the first “<” in both bounds follows from the strong convexity of F.

We now restrict F to the implicit decomposition

[FO0 = f(®) +r (). (7)

We use the term “implicit” because this decomposition is only used for analysis, not
required by our Run-and-Inspect Method. Define the sets of the global minimizers of
F and f as, respectively,

X' =X Fx) = myin F(y)}

X7 = {x: f(x) =min f(y)}.
y

Below we make three assumptions on (7). The first and third assumptions are used
throughout this section. Only some of our results require the second assumption.

Assumption 1 f(x) is differentiable, and V f(x) is L-Lipschitz continuous.
Assumption 2 f(x) satisfies the Polyak-Lojasiewicz (PL) inequality [17] with u > O:
1
EIIVf(X)II2 > u(fx) — f(x"), VxeR" x*ex;. ®)
Given a point x, we define its projection

xp := argmin{||x* — x||}.
X*E)(jf-

Then, the PL inequality (8) yields the quadratic growth (QG) condition [10]:
n
fx) = fx*) = f(x)— f(xp) = EIIX—XPIIZ, vx € R". )
Clearly, (8) and (9) together imply

IVFf&I = mlix —xpl. (10)

Assumption 2 ensures that the gradient of f bounds its objective error.

Assumption 3 r(x) satisfies |r(x) — r(y)| < «||x — y|| + 28 in which o, § > 0 are
constants.

@ Springer



Run-and-Inspect Method for nonconvex optimization and... 47

Assumption 3 implies that 7 is overall @-Lipschitz continuous with additional oscil-
lations up to 2. In the implicit decomposition (7), though r can cause F to have
non-global local minimizers, its impact on the overall landscape of f is limited. For
example, the Ei (0 < p < 1) penalty in compressed sensing is used to induce sparsity
of solutions. It is nonconvex and satisfies our assumption

xl? = 171 < [l = Iyl]” < plx =yl +1=p, x,y€R. Y

In fact, many sparsity-induced penalties satisfy Assumption 3. Many of them are sharp
near 0 and thus not Lipschitz there. In Assumption 3, 8 models their variation near 0
and o controls their increase elsewhere.

In Sect. 2.2, we will show that every x* € x* satisfies |V f (x*)|| < § for a universal
6 that depends on «, B, L. So, we choose the condition

Q: IV/wIl <3 (12)

To derive the error bound, we introduce yet another assumption:

Assumption 4 The set X;; is bounded. That is, there exists M > 0 such that, for any
X,y € X}, we have [x —y|| < M.

When f has a unique global minimizer, we have M = 0 in Assumption 4.

Theorem 2 Tuke Assumptions 1, 2 and 3, and assume that all points in x * have property
Q in (12). Then, the following properties hold for every X € Sq:

I F&) — F* < & 4 2B, ifa = 0 in Assumption 3;

2. d& x*) < 2+ Mand F&) — F* < 2520 4 oM 126, if o > 0 and
Assumption 4 holds.

Proof To show part 1, we have

FX) - F'=(fX® - f&x)) + (& —rx") < max (f&X - f(x)+28
3112 2
(é) —”Vf(X)” +28 < 8— +2B.
21 2

Part 2: Since f satisfies the PL inequality (8) and X € Sq, we have
10) |V (12) §
a2 1@ 028
0 0
By choosing an x* € x* and noticing x* € Sq, we also have d (x*, X?) < % and thus

28
dX, x*) <d®, xj) +M+dG*, xf) < n + M.
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Below we let Xp and xp, respectively, denote the projections of X and x* onto the set
x}‘-. Since f(Xp) = f(xp), we obtain

FX)— F*=(fX) — f&p) + (fxp) — fF(x)) + (rX) — r(x")
S\ 112 %112
V£l + V£ ta

21 21
82 +2a8
E J

X —x*|| + 28
+aM +28.

O

In the theorem above, we have constructed global optimality bounds for X obeying Q.
In the next two subsections, we show that R-local minimizers, which include global
minimizers, do obey Q under mild conditions. Hence, the bounds apply to any R-local
minimizer.

2.2 R-local minimizers

In this section, we define and analyze R-local minimizers. We discuss its blockwise
version in Sect. 2.3. Throughout this subsection, we assume that R € (0, oo], and
B(x, R) is a closed ball centered at x with radius R.

Definition 1 The point X is called a standard R-local minimizer of F if it satisfies

FX)= min F(x). (13)
x€B(X,R)
Obviously an R-local minimizer is a local minimizer, and when R = oo, it is a global

minimizer. Conversely, a global minimizer is always an R-local minimizer.
We first bound the gradient of f atan R-local minimizer so that Q in (12) is satisfied.

Theorem 3 Suppose, in (7), f and r satisfy Assumptions 1 and 3. Then, a point X
obeys Q in (12) with § given in the following two cases:
1. 8§ = « if r is differentiable with o > 0 and 8 = 0 in (3) and X is a stationary point
of F;
2.0=a+ max{%, 24/BL} if X is a standard R-local minimizer of F.
Proof Under the conditions in part 1, we have § = 0 and VF(X) = 0,s0 |V f(X)| =

IVr(X)|| < o = §. Hence, Q is satisfied.
Under the conditions in part 2, X is an R-local minimizer of F'; hence,

Jpin (F00 = fR) +7() —r ()} 2 0,
gxe?&‘?m”ﬂ +allx — X[l + (Vf(X),x — %) + %IIX —x[*} >0,

Qxe%lé—?m{zﬂ + (@ = IV DIx - x| + %IIX - x|} >0, (14)
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where (a) is due to the assumption on r and that V f(x) is L-Lipschitz continuous;
(b) is because, as ||x — X|| is fixed, the minimum is attained with II::;I =— Hgﬁgl\ .
VS| <, Q isimmediately satisfied. Now assume |V f(x)|| > «. To simplity
(14), we only need to minimize a quadratic function of ||x — X|| over [0, R]. Hence,

the objective equals

28+ (@~ [VF®IDR+ LR, if R < MWl

_ (15)
28 — (IIVf(;ZIIfa)Z’

otherwise.

If R < WO from 28 + (@ — [VFEIDR + LR > 0, we get

Vi@l <t b g TR oo 20 VO

2
_ 48
= IVf®] <o+

< 2
Otherwise, from 28 — W > 0, we get

IVF®I <o+ 2y/BL.

Combining both cases, we have ||V f(X)|| < o + max{“—,f, 24/BL} = § and thus Q. O

The next result is a consequence of part 2 of the theorem above. It presents the values
of R that ensure the escape from a non-global local minimizer. In addition, more
distant local minimizers X are easier to escape in the sense that R is roughly inversely
proportional to ||V f(x)]|.

Corollary 1 Let x be a local minimizer of F and |V f (X)|| > o + 2/BL. As long as
either R > or R > 2,/B/L, there exists y € B(X, R) such that F(y) <
F(x).

48
IVf®—a

Proof Assume that the result does not hold. Then, x is an R-local minimizer of F.
Applying part 2 of Theorem 3, we get [VF(X)|| <6 = o + max{%ﬁ, 2/BL}. Com-
bining this with the assumption |V f(x)|| > « + 2+/BL, we obtain

a+2y/BL < Vx| < a—}—max{%,Z\/ﬁ},

from which we conclude 2/BL < ‘% and |[VfX)| < o + %; We have reached a
contradiction. O

We can further increase R to ensure that any R-local minimizer X is a global
minimizer.
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Theorem 4 Under Assumptions 1, 2 and 3 and R > 2./B/L, we have d(X, x*) <
2@ + M for any R-local minimizer X. Therefore, if R > 2% + M, any
R-local minimizer X is a global minimizer.

Proof According to Theorem 2, part 2, and Theorem 3, part 2,

)

8 2BL
d(i,x*)§2—+M§2u+M
I I

where, for the latter inequality, we haveused R > 2./8/L and thusmax{48/R, 2/BL}
= 2./BL. By convex analysis on f, we have © < L. Using it witho > O and M > 0,

we further get 2% + M > 4/BL/n = 4/BL/L > 2,/B/L. Therefore, if

R > 2%’37 + M, then there exists x* € x™* such that x* € B(X, R). Being an
R-local minimizer means X satisfies F(X) < F(x*), so X is a global minimizer. ]

Remark 1 Since the decomposition (7) is implicit, the constants in our analysis are
difficult to estimate in practice. However, if we have a rough estimate of the distance
between the global minimizer and its nearby local minimizers, then this distance
appears to be a good empirical choice for R.

2.3 Blockwise R-local minimizers

In this section, we focus on problem (1). This blockwise structure of F motivates us to
consider blockwise algorithms. Suppose R € R® and R = (Ry, ..., R;) > 0. When
we fix all blocks but x;, we write F (X, ..., x;, ..., Xs) as F(x;, X_;).

Definition 2 A point X is called a blockwise R-local minimizer of F if it satisfies

F(%,%X-j)= min F(x,X), 1<i<s,
X;€B(x;,R;)

where F(X) = F(%;,X_;).

When R = o0, X is known as a Nash equilibrium point of F.
We can obtain similar estimates on the gradient of f for blockwise R-local mini-
mizers. Recall that S = {x : [Vf(X)| < §}.

Theorem 5 Suppose f and r satisfy Assumptions 1 and 3. If X is a blockwise R-local
minimizer of F, then X € Sq (i.e, the property Q is met) for § = |v| = (3 |vl.2|)%
where v; ‘== a + max{‘;e—’?, 2/BL}, 1 <i <s.

Proof x; is an R;-local minimizer of F(x;,X_;). Since F(x;,X_;) = f(x;j,X—;) +
r(xi,X—;) and f(x;,X_;) and r(x;, X_;) satisfy Assumption 1 and Assumption 3,
Theor(_am 3 shows that |V; f(x;,X-)|| < o + max{%,Za/ﬂL} = v;. Hence
VS = Ivl.
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Remark2 We can also obtain a simplified version of Theorem 5, which is

mi

- 4
IVF®I <8:=s <a + max{ 'nIBR QM}) )
i I
The main difference between the standar and blockwise estimates is the extra factor
/s in the latter.

Remark 3 Since we can set R = 0o, our results apply to Nash equilibrium points.

Generalized from Corollary 1, the following result provides estimates of R; for
escaping from non-global local minimizers. The estimates are smaller when V; f are
larger.

Corollary 2 Letx be a local minimizer of F and |V f (x;i, X_;)|| > a+2+/BL for some
i.Aslong as R; > W"%, there exists y € B(xi, R;), such that F(y,X—;) <
F(xi, x—;).

The theorem below, which follows from Theorems 2 and 5, bounds the distance of an
R-local minimizer to the set of global minimizers. We do not have a vector R to ensure
the global optimality of X due to the blockwise limitation. Of course, after reaching
X, if we switch to standard (non-blockwise) inspection to obtain an standard R-local
minimizer, we will be able to apply Theorem 4.

Theorem 6 Suppose [ and r satisfy Assumptions 1-3. If X is a blockwise R-local
minimizer of F, then

A& x*) < 25 <a +max{ 4P 2@}) + M.

min; R;’
2.4 Run-and-Inspect Method

In this section, we introduce our Run-and-Inspect Method. The “run” phase can use
any algorithm that monotonically converges to an approximate stationary point. When
the algorithm stops at either an approximate local minimizer or a saddle point, our
method starts its “inspection” phase, which either moves to a strictly better point or
verifies that the current point is an approximate (blockwise) R-local minimizer.

2.4.1 Approximate R-local minimizers

We define approximate R-local minimizers. Since an R-local minimizer is a spe-
cial case of a blockwise R-local minimizer, we only deal with the latter. Let
x = [x]---xI17. A point X is called a blockwise R-local minimizer of F up to
n=1I[n---n5]" > 0if it satisfies

F(xj,x_;) < min  F(x;, X)) +n, 1=<i<s;
X €B(x;,R;)
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when s = 1, we say X is an R-local minimizer of F up to 7. It is easy to modify the
proof of Theorem 3 to get:

Theorem 7 Suppose f and r satisfy Assumptions 1 and 3. Then X € Sq if X is a
blockwise R-local minimizer of F up to n and § > |v| = O_ |vi2|)% for v; =

o+ max(#20, J@E+ 2L, 1 <i <.

Whenever the condition X € Sq holds, our previous results for blockwise R-local
minimizers are applicable.

2.4.2 Algorithms

Now we present two algorithms based on our Run-and-Inspect Method. Suppose that
we have implemented an algorithm and it returns a point X. For simplicity let Alg
denote this algorithm. To verify the global optimality of X, we seek to inspect F
around X by sampling some points. Since a global search is apparently too costly, the
inspection is limited in a ball centered at X, and for high-dimensional problems, further
limited to lower-dimensional balls.

The inspection strategy is to sample some points in the ball around the current point
and stop whenever either a better point is found or it finishes the last point. By “better”,
we mean the objective value decreases by at least a constant amount v > 0. We call
this v descent threshold. If a better point is found, we resume Alg at that point. If no
better point is found, the current point is an R-local or R-local minimizer of F up to
n, where n depends on the density of sample points and the Lipschitz constant of F
in the ball.

Algorithm 1 Run-and-Inspect Method

1: Set k = 0 and choose x0 € R";
2: Choose the descent threshold v > 0;

3: loop

4 3K = Algxhy;

5:  Generate a set S of sample points in BEK, R);

6: if there exists y € S such that F(y) < F (ik) — v then
7 Xk+l =vy;

8: k=k+1;

9:  else

10: stop and return %k H

11:  endif

12: end loop

If Alg is a descent method, i.e., F(x¥) < F(x¥), Algorithm 1 will stop and output
a point x** within finitely many iterations: k* < w, where F* is the global
minimum of F.

The sampling step is a hit-and-run, that is, points are only sampled when they
are used, and the sampling stops whenever a better point is obtained (or all points

have been used). The method of sampling and the number of sample points can vary
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throughout iterations and depend on the problem structure. In general, sampling points
from the outside toward the inside is more efficient.

Here, we analyze a simple approach in which sufficiently many well-distributed
points are sampled to ensure that x*" is an approximate R-local minimizer.

Theorem 8 Assume that f(X) is l_,-Lipschitz continuous' in the ball B(X, R)
and the set of sample points S = {yi,¥2,...,Ym} has density r, that is,
MmaXyep(x,R) MiNo<j<m X — ¥l < 7, where we set yo = X. If Algorithm 1 reaches
Step 10, that is, F(y;) > F(X) -V, j=1,2,...,m, then the point X is an R-local
minimizer of F up ton = v + (L + a)r + 28.

Proof Suppose rgl(i_nR) F(x) is attained at X. Since S has density r, we have y; such
xeB(Xx,

that

If & = fypl < L,
lr&X) —r(y)I < ar +28.

From F(X) —v < F(y;) and F(y;) = F(X) + (F(y;) — F (X)), it follows
F(X)< min F(X)+v+ (L+a)F+28.
x€B(X,R)

O

When the dimension of x is high , it is impractical to inspect over a high-dimensional
ball. This motivates us to extend Algorithm 1 to its blockwise version.

Algorithm 2 Run-and-Inspect Method (blockwise version)

1: Set k = 0 and choose x0 € R";
2: Choose the descent threshold v > 0;

3: loop

4: 3K = Algxhy;

5 Generate sets S; of sample points in B(,\?{‘, Rj)fori=1,...,s;
6:  if there exist i and z € S; such that F(z, % ;) < F(¥*, %% ,) — v then
7 xlkJrl =2z

8: xf“ = & forall j #1i;

9: k=k+1;

10:  else

11: stop and return ik;

12: end if

13: end loop

Algorithm 2 samples points in a block while keeping other block variables fixed.
This algorithm ends with an approximate blockwise R-local minimizer.

! Do not confuse with the Lipschitz constant L of V f.
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Theorem 9 Assume that f(x;,X_;) is l_,i-Lipschitz continuous in the ball B(x;, R;)
for 1 <i < s and the set of sample points S; = {zj1,2i2, ..., Zim;}» 1 < i < s has
blockwise-density r, that is, maxy,ep(z; R;) MiNg<j<m; |xi — zijll <7, V1 <i <s,
where we set zjo = X;. If Algorithm 1 reaches Step 11, that is, F(z;j,X—;) > F(X) —
v, j=1,2,....,m;,i =1,2...,s, then X is a blockwise R-local minimizer of F
up ton = [ni,....n5l" forni = v+ (Li + a)F +2B.

The proof is similar to that of Theorem 8.
The next proposition states that inspection around a point with sufficiently large
partial gradient of f ensures a sufficient descent.

Proposition 10 Assume that we sample points in the ball B(x;, R;) with density r <
%. If Vi f(xi, X=)|l > %Lif + 3a + Zﬁrﬁ then there exists at least one sampled
point z; which satisfies

F(zi,%_;) < F(X) — v. (16)

Proof Let x; = x; — 2%?. There exists z; € B(X;, R;) suchthat ||x; — z;|| < 7.
Then o

F(zi, X)) = f(zi, X)) +7(zi, X)) < f(zi, X)) +r(X) + 3ar + 28
_ - - L; _ _
< fO+ (Vif G %), 2= F) + Iz = il 4 r () + 3eF + 28
= FX) + (Vi f(Xi, X—i), zi — xi) + (Vi f (X, X)), xi — X;)
L; 2 -
+ 7”Zi —xi|l© + 3ar +28
_ - _ 9 _ _
< F) = IVif (&, RDIF + S LiF + 3aF + 28
< F(X) —v.
O
Therefore, the constant L; in Theorem 9 can be bounded by %L ir+3a+ zﬂrﬁ +L;R;,
and thereby we set

9
ni=2v+ ELiFZ +4aF + 48 + LiRi7.

2.5 Complexity analysis

We analyze how many samples we take to attain an accuracy. Since Algorithm 2
generalizes Algorithm 1, we analyze only the former.

There are quite many parameters that affect the sample complexity. In this analysis,
we focus on the dimension of the space d and different options to set the dimension d’
of each block, assuming that all blocks have the same dimension d’ < d and d’ evenly
divides d, thus, creating exactly s = d/d’ blocks of variables. We assume that the
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smoothness and strong-convexity parameters of f are L; = L > pu, respectively. Of
course, L, u affect the complexity significantly though not as much as the dimensions
(unless L, u themselves depend on d). Assume the function r satisfies Assumption 3
with parameters «, B € [0, 1). The R-local min tolerance n; of each block i is tied to
B, v, r (density of sample points), and R;. Based on Theorem 9 and Proposition 10
and using free parameters c,, c;, ¢ that will be tuned later, we set

vimep Fim P R ZR=i7 (17)

for some ¢t > 2, and thus get

9
mi=n=2v+ ELifz +4aF + 48 + LiRi7

— <2cv+(g+t>cr+4>ﬁ+4a,/czﬁ.

Remember Theorem 7 gives a bound on § for Algorithm 2,

d 46 +2n d
82\/;<a+max{T, (4/3+217)L}>:\/;(a+c1\/ﬁ), (18)

where

44 2—
€] = max 4 4 2 (19)
\/_
Using this §, Theorem 2 produces global error bounds. We can calculate that our
Algorithm 2 using R; = tr will return an approximate R-local minimizer X satisfying
the global error bound:

i} oo 824208
FX) - FX) < ——+28=c2|
u d J

o+ ci/pB
d (ot 1 VBT ) )
where ¢; = 1—}—2%4—2;‘—2’3 < 4.

For simplicity, we set ¢c; = ¢, = 1, = 6 and assume @ < /BL. By (18), (20),
we will get

21

F(x) — F(X*) < 4( M)

d u
Next, we take three steps to calculate the complexity of Algorithm 2:
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— Since Alg is a descent algorithm and each inspection decreases the objective error
F(x")—F(x*))
o
inspections or loops in Algorithm 2. Under our assumption ¢, = 1, the number of
F(x%)—F(x*)
B

by at least v = ¢, 8, with initial point xY, we need at most O (

inspections is O (

— Ineachloop, Algorithm 2 runs Alg with a complexity Calg and perform an inspec-
tion.

— Each inspection involves at most % blocks. When inspecting each d’-dimensional
block, we sample an 7-net. For simplicity, we just sample the points on a uniform
grid. Now the space are partitioned into many squares. The distance between the
center and grid points of each square should be the density 7, for which the grid

/

2F
width needs to be ﬁ Hence, the volumn of each square is vy (r) = (ﬁ)

4

d'
The volumn of the inspection ball is V(R;) = ;(Z/iil). By Stirling’s formula,
7
r (% + 1)~ 271(%/) T+2¢7. Then the total number of the inspected points is
around
Var(R) 7T RY B (M)dz’ | <R,»)"
var(r) \/E(d')z'f‘Ze 7 (j_f?)d/ 2 rd

(d/(log( F)+4 1og(’”)))

Using our choice R = ¢ and %log (%) ~ 0.54, we get

Var(Ri) _ o(d t0g)+0.5)
va ()

where + = 6 under our assumption.

The sample complexity of Algorithm 2 is the product of the number of loops and
the complexity of each loop, which is

o < w % L0 10g(6)+0.54d’)> . (22)

— If we choose d' = ©(d), then % = O (1). In this case by (21), our algorithm can

(a+7.5m)2)
"

reach a good accuracy of O ( . On the other hand, the inspection

complexity (22) is exponential in d.
— If we go to the other extreme by choosing d’ = ©(1), then < 7 = ©O(d). The
complexity (22) reduce to a polynomial in d, but the accuracy becomes worse,

2
o <d @) In general, it becomes proportional in the dimension d.
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Fig.2 Landscape of Ackley’s function in R?

Except, if the function r is very nice with o = 0(\/%7), B = O(%), then the
relative accuracy is still good at O (1).

— In general, we can choose d’ = ©(dV) for v € (0, 1), where the choice of v
controls the tradeoff between the accuracy and complexity.

3 Numerical experiments

In this section, we apply our Run-and-Inspect Method to a set of nonconvex prob-
lems. We admit that it is difficult to apply our theoretical results because the implicit
decomposition F = f + r with f,r satisfying their assumptions is not known.
Nonetheless, The encouraging experimental results below demonstrate the effective-

ness of our Run-and-Inspect Method on nonconvex problems even though they may
not have the decomposition.

3.1 Test example: Ackley’s function

The Ackley function is widely used for testing optimization algorithms, and in R?, it
has the form (Fig. 2)

flx,y) = _20e 02 0.5(x2+y2) @0-5(cos2mxteos2my) |, 4 9().

The function is symmetric, and its oscillation is regular. To make it less peculiar,
we modify it to an asymmetric function (Fig. 3):

F(x,y) = _206—0.04(x2+y2) _ eO.7(sin(xy)+Siny)+0.2 sin(x?) +20. (23)
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20

6 5

Fig.3 Landscape and contour of F in (23)
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Fig.4 GD iteration with 2D inspection

The function F in (23) has a lot of local minimizers, which are irregularly dis-
tributed. If we simply use the gradient descent (GD) method without a good initial
guess, it will converge to a nearby local minimizer. To escape from local minimiz-
ers, we conduct our Run-and-Inspect Method according to Algorithms 1 and 2. We
sample points starting from the outer of the ball toward the inner. The radius R is
set as 1 and AR as 0.2. Alg is GD and block-coordinate descent (BCD), and we
apply two-dimensional inspection and blockwise one-dimensional inspection to them,
respectively. The step size of GD and BCD is 1/40. The results are shown in Figs. 4
and 5, respectively. Note that the “run” and “inspect” phases can be decoupled, so a
blockwise inspection can be used with either standard descent or blockwise descent
algorithms.

From the figures, we can observe that blockwise inspection, which is much cheaper
than standard inspection, is good at jumping out the valleys of local minimizers. Also,
the inspection usually succeeds very quickly at the large initial value of R, so it is
swift. These observations guide our design of inspection. Although smaller values of
R are sufficient to escape from local minimizers, especially those that are far away
from the global minimizer, we empirically use a rather large R and, to limit the number
of sampled points, a relatively large AR as well.
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Fig.5 BCD iteration with blockwise 1D inspection

When an iterate is already (near) a global minimizer, there is no better point for
inspection to find, so the final inspection will go through all sample points in B (X, R),
taking very long to complete, unlike the rapid early inspections. In most applications,
however, this seems unnecessary. If F is smooth and strongly convex near the global
minimizer x*, we can theoretically eliminate spurious local minimizers in B(X, R')
and thus search only in the smaller region B(X, R)\ B(X, R’). Because the function r
can be nonsmooth in our assumption, we do not have R’ > 0. But, our future work
will explore more types of r. It is also worth mentioning that, in some applications,
global minimizers can be recognized, for example, based on they having the desired
structures, achieving the minimal objective values, or attaining certain lower bounds.
If so, the final inspection can be completely avoided.

3.2 K-means clustering

Consider applying k-means clustering to a set of data {x;}!_; C RY. We assume there

are K clusters {zi}iK: | and have the variables z = [z1,...zx] € RI*K The problem
to solve is

1 n

. . 2

min ) = — mn_(|x; —Zj|".

i F© =530 min x5
1=

A classical algorithm is the Expectation Minimization (EM) method, but it is suscep-
tible to local minimizers. We add inspections to EM to improve its results.

We test the problems in [27]. The first problem has synthetic Gaussian data in
RR2. A total of 4000 synthetic data points are generated according to four multivariate
Gaussian distributions with 1000 points on each, so there are four clusters. Their means
and covariance matrices are:
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objective value

Data points EM without inspection
Initial centers 1 L — = — - EM with inspection
EM without inspection
EM with inspection

O

10 0 5 10 15 20 25 30 35 40
iteration

Fig.6 Synthetic Gaussian data with 4 clusters. Left: clustering result; right: objective value in the iteration
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The EM algorithm is an iteration that alternates between labeling each data point (by
associating it to the nearest cluster center) and adjusting the locations of the centers.
When the labels stop updating, we start an inspection. In the above problem, the
dimension of z; is two, and we apply a 2D inspection on z; one after one with radius
R = 10, step size AR = 2, and angle step size A6 = 7/10. The descent threshold is
v=0.1.

The results are presented in Fig. 6. We can see that the EM algorithm stops at a
local minimizer but, with the help of inspection, it escapes from the local minimizer
and reaches the global minimizer. This escape occurs at the first sample point in the
3rd block at radius 10 and angle & = 77 /10. Since the inspection succeeds on the
perimeter of the search ball, it is rapid.

We also consider the Iris dataset,? which contains 150 4-D data samples from 3
clusters. We compare the performance of the EM algorithm with and without inspection
over 500 runs with their initial centers randomly selected from the data samples. We
inspect the 4-D variables one after one. Rather than sampling the 4-D polar coordinates,
which needs three angular axes, we only inspect two dimensional balls. That is, for
center ip and radius r, the inspections sample the following points z;, that has only
two angular variables 01, 65:

i ted . .
;ESPCCS = zj, +r x [cosBO; sin6 cos sin 02]T.

Such inspections are very cheap yet still effective. Similar lower-dimensional inspec-
tions should be used with high dimensional problems. We choose R = 3, AR =1,

2 https://archive.ics.uci.edu/ml/datasets/iris.
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Fig. 8 Left: 3-D distribution of Iris data and clustering result in one trial; right: objective value in the

iteration of this trial

A0 = A6, = 7/10, and a descent threshold v = 1073, The results are shown in

Figs. 7 and 8.

Among the 500 runs, EM gets stuck at a high objective value 0.48 for 109 times.
With the help of inspection, it manages to locate the optimal objective value around
0.263 every time. The average radius-at-escape during the inspections is 2, and the

average number of inspections is merely 1.

3.3 Nonconvex robust linear regression

In linear regression, we are given a linear model

y={(B.x) +e,
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Contour of empirical loss and optimization path Sample points and two recovered linear models
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Fig.9 The left picture displays the contour of the empirical loss /() and the path of iterates. Starting from
the initial point, IRLS converges to a shallow local minimum. With the help of inspection, it escapes and
then converges to the global minimum. The right picture shows linear model obtained by IRLS with (red)
and without (magenta) inspection (color figure online)

and the data points (X1, y1), (X2, ¥2), -- -, (Xn, Yn), ¥i € R, x; € R". When there are
outliers in the data, robustness is necessary for the regression model. Here we consider
Tukey’s bisquare loss, which is bounded, nonconvex and defined as:

2

- A= /ro)®?), if|r] < ro,
pr) =
r2 .
5 otherwise.

The empirical loss function based on p is

1 n
1B =~ pli— (B xi).

i=1

A commonly used algorithm for this problem is the Iteratively Reweighted Least
Squares (IRLS) algorithm [5], which may get stuck at a local minimizer. Our Run-
and-Inspect Method can help IRLS escape from local minimizers and converge to a
global minimizer. Our test uses the model

y=54x+s¢,

where ¢ is noise. We generate x; ~ N(0, 1), & ~ N(0,0.5),i = 1,2,...,20. We
also create 20% outliers by adding extra noise generated from A/ (0, 5). And we use
Algorithm 1 with R = 5,dR = 0.5,v = 1073. For Tukey’s function, ry is set to be
4.685. The results are shown in Fig. 9.
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3.4 Nonconvex compressed sensing

Given a matrix A € R™*" (m < n) and a sparse signal x € R”, we observe a vector
b = Ax.
The problem of compressed sensing aims to recover x approximately. Besides £( and

£1-norm, £,(0 < p < 1) quasi-norm is often used to induce sparse solutions. Below
we use £1 and try to solve the problem
2

. 1 1
min Q(Xx) := —||Ax—b||2+)\||x||%. (24)
xeR” 2

(S}

We compare our methods with the following state-of-art algorithms: half algorithm
[26], GAITA [28], and ADMM for (24) [23]. “half with Inspection” and ‘GAITA
with Inspection” use our block-wise Run-and-Inspect Methods. We cannot apply our
method to ADMM since the objective of ADMM is not monotonic. In our experiments,
we setm = 25, 50 and n = 2m. The elements of A are generated from I/ (0, \/L%) 1.1.d.

The vector x has 10% nonzeros with their values generated from ¢/(0.2, 0.8) i.i.d. Set
b = Ax. When the iterates stagnate at a local minimizer X, we perform a blockwise
inspection with each block consisting of two coordinates. Checking all pairs of two
coordinates is expensive and not necessary since X is sparse. We improve the efficiency
by pairing only 7, j where x; # 0, x; = 0. Similar to previous experiments, we sample
points from the outer of the 2D ball toward the inner. Equations (17) and (19) imply

that R and AR should be chosen according to \/g . We only need to estimate 8 and

L for 2 coordinates. We can estimate L ~ % by the construction of A, and 8 = 0.05

from (11) and A = 0.05. Then \/% ~ (.27. Based on this number, we choose select
R = 0.5, AR = 0.05. The results are presented in Table 1. “half with Inspection”
and “GAITA with Inspection” show significant improvements over their competitors.

We can see that the success ratio (column a) and complete identification instances
(column b) are significantly improved by inspection. They are not 100 percent because
of noise. In fact, on majority of the 100 problems (column c), our methods attain
objective values that are already lower than what the true signal yields.

3.5 Nonconvex sparse logistic regression

Logistic regression is a widely-used model for classification. Usually we are given a
set of training data {(x"), y(’))}lNzl, where x) € R? and y) € {0, 1}. The label y is
assumed to satisfy the following conditional distribution:

— I =—1
POy =11x0) = s

p(y =0[x;0) = m,

(25)

where 6 is the model parameter.
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Table 1 Statistics of 100 compressed sensing problems solved by three £ | algorithms
2

n,p Algorithm a (%) b c ave obj
n=25 half 47.57 3 3 0.0374
half with Inspection 82.60 63 67 0.0218
GAITA 68.80 32 32 0.0267
p =50 GAITA with Inspection 83.45 66 68 0.0219
ADMM 48.37 3 3 0.0372
n =150 half 46.32 0 0 0.0789
half with Inspection 92.00 58 65 0.0378
GAITA 72.94 20 25 0.0475
p =100 GAITA with Inspection 91.83 56 67 0.0374
ADMM 46.94 0 0 0.0788

(1) half, iterative half thresholding; CD, coordinate descent; CDI, CD with inspection; (2) a is the ratio of
correctly identified nonzeros to true nonzeros, averaged over the 100 tests (100% is impossible due to noise
and model error); b is the number of tests with all true nonzeros identified; c is the number of tests in which
the returned points yield lower objective values than that of the true signal. Higher a, b, ¢ are better; (3)
“ave obj” is the average of the objective values; lower is better

To learn 6, we minimize the negative log-likelihood function

N

10) =) —logp(y?x?; 9),
i=1

which is convex and differentiable. When N is relatively small, we need variable selec-
tion to avoid over-fitting. In this test, we use the minimax concave penalty (MCP) [29]:

x2 .
MCP, \ Alx| — 2 if |x| < yA,
pk,y (-x) - 1 2 .
YA, if |x| > yA.

The #-recovery model writes
moinl(0) +1p)'SF(0).

MCP

The penalty Py

is proximable with

S8 ifzl < va,
prox,(z) = _
Z if |z] > yA

where Sy (2) = (|z] — A)+ sign(2).
We apply the prox-linear (PL) algorithm to solve this problem. When it nearly

converges, inspection is then applied. We design our experiments according to [20]:
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Table 2 Sparse logistic regression results of 100 tests
K, e Algorithm Average #.iterations/ Objective value Test error
#.nspections Mean var Mean (%) var

K=5 PL 594 48.0 305 7.26 1.55e—03
€ =0.01 PL withinspection 3430/11.43 26.8 44.9 3.79 5.43e—04
K=5 PL 601 52.7 409 7.81 1.29e—03
€e=0.1 PL with inspection ~ 2280/7.98 33.8 519 4.38 5.43e—04
K =10 PL 1040 43.6 87.0 8.42 8.68e—04
€ =0.01 PL with inspection 2610/4.78 335 359 5.73 5.73e—04
K =10 PL 990 47.5 87.2 9.41 9.88e—04
e=0.1 PL with inspection  2370/3.86 36.3 40.1 5.69 5.50e—04
K=15 PL 1600 36.2 54.3 7.85 8.29e—04
€ =0.01 PL withinspection 3010/3.21 29.2 17.5 5.77 5.20e—04
K=15 PL 1570 37.1 40.2 7.80 8.30e—04
e=0.1 PL with inspection ~ 2820/2.77 30.7 16.0 6.66 4.63e—04
PL prox-linear algorithm, PLI PL algorithm with inspection, var variance

15 ‘ objgctivs functiqn 1 ‘True ?/ ”9”

Prox-linear
160 — — — - Prox-linear + inspection | 0
140 1 E . . . . . . . . .
5 10 15 20 25 30 35 40 45 50

120 1 4 ‘ ‘ Leérned 9/ ||9|! withqut inspectiop

100 1 0

% | ! é 1‘0 1‘5 2‘0 2‘5 Z;O 3‘5 4‘0 4‘5 50

60 | 4 Lgarneq 6/ ||?|| with inspgction ‘

40t \\'”'\\V 1 0

2QO 5(;0 10‘00 15‘00 2(;00 25‘00 30‘00 35‘00 40‘00 4500 ! 5; 1‘0 1‘5 2‘0 2‘5 3‘0 3‘5 4‘0 4‘5 50

iteration

Fig. 10 Sparse logistic regression result in one trial

we considerd = 50and N = 200 and assume the true 6* has K non-zero entries. In the
training procedure, we generate data fromi.i.d. standard Gaussian distribution, and we
randomly choose K non-zero elements with i.i.d standard Gaussian distribution to form
6*. The labels are generated by y = 1(x’ 6 +w > 0), where w is sampled according to
the Gaussian distribution A/(0, €21). We use PL iteration with and without inspection
to recover . After that, we generate 1000 random test data points to compute the test
error of the 6. We set the parameter t = 1.5 — 0.06 x K, A = 1, y = 5 and the step
size 0.5 for PL iteration. For each K and €, we run 100 experiments and calculate
the mean and variance of the results. The inspection parameters are R = 5, AR =1,
and A6 = m/10. The sample points in inspections are similar to those in Sect. 3.4.
The results are presented in Table 2. The objective values and test errors of “PL with
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Inspection” are significantly better than the native PL algorithm. On the other hand,
the cost is also 3—6 times as high.

We plot the convergence history of the objective values in one trial and the recovered
0 in Fig. 10. It is clear that the inspection works in learning a better 6 by reaching a
smaller objective value.

4 Conclusions

In this paper, we have proposed a simple and efficient method for nonconvex optimiza-
tion, based on our analysis of R-local minimizers. The method applies local inspections
to escape from local minimizers or verify the current point is an R-local minimizer.
For a function that can be implicitly decomposed to a smooth, strongly convex func-
tion plus a restricted nonconvex functions, our method returns an (approximate) global
minimizer. Although some of the tested problems may not possess the assumed decom-
position, numerical experiments support the effectiveness of the proposed method.
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