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Many iterative methods in optimization are fixed-point iterations with averaged op-
erators. As such methods converge at an O(1/k) rate with the constant determined 
by the averagedness coefficient, establishing small averagedness coefficients for op-
erators is of broad interest. In this paper, we show that the averagedness coefficients 
of the composition of averaged operators by Ogura and Yamada (2002) [21] and the 
three-operator splitting by Davis and Yin (2017) [9] are tight. The analysis relies on 
the scaled relative graph, a geometric tool recently proposed by Ryu et al. (2019) 
[25].

© 2020 Elsevier Inc. All rights reserved.

1. Introduction

Since their introduction in [1], averaged operators have been widely used in the analysis of nonlinear 
fixed-point iterations. In particular, a wide range of optimization methods can be analyzed as fixed-point 
iterations with a composition of averaged operators, which are themselves averaged [6]. The smallest (best) 
averagedness coefficient for this setup was presented by Ogura and Yamada [21] and was introduced to the 
broader optimization community by Combettes and Yamada [7] and Bauschke and Combettes [3]. More 
recently, Davis and Yin presented a three-operator splitting method and established its convergence by 
showing the associated operator is averaged [9]. Whether these averagedness coefficients are tight, loosely 
defined as being unable to be improved without additional assumptions, was not known.

The Scaled Relative Graph (SRG) is a geometric tool for analyzing fixed-point iterations recently proposed 
by Ryu, Hannah, and Yin [25]. The SRG maps the action of a nonlinear operator to a subset the 2D plane, 
analogous to how the spectrum maps the action of a linear operator to the complex plane. A strength of 
the SRG is that it is well-suited for tight analysis.
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2D geometric illustrations have been used by Eckstein and Bertsekas [10,11], Giselsson [16,15], Banjac 
and Goulart [2], and Giselsson and Moursi [17] to qualitatively understand convergence of optimization 
algorithms. The SRG is a rigorous formulation of such illustrations.

In this paper, we use the SRG to show tightness of the averagedness coefficients of the composition of 
averaged operators by Ogura and Yamada and the three-operator splitting by Davis and Yin. Section 2
discusses general preliminaries and sets up the notation. Section 3 presents results on the composition of 
averaged operators. Section 4 presents results on the Davis–Yin splitting.

1.1. Contribution and prior work

The contribution of this paper is in the results Corollaries 1 and 2, which establish tightness of the 
averagedness coefficients, and the geometric proof technique based on the SRG.

The geometric arguments of Section 4 are entirely new. The geometric arguments of Section 3 overlap with 
the classical work on “circular arithmetic” initiated by Gargantini and Henrici [14]. In [18,19], Hauenchild 
introduced the notion of “optimal circular multiplication”, which considers the smallest circle enclosing 
the Minkowski product (defined in Section 2) of two disks on the complex plane. This is not the same 
as what we consider in Section 3, since we find the smallest circle under the additional requirement that 
it goes through the point (1, 0). These two notions coincide sometimes, but not always. In [22], Polyak, 
Scherbakov, and Schmulyian perform calculations similar to that of Theorem 1 in the context of control 
theoretic stability analysis. In fact, Theorem 1 of [22] is, after a change of variables, the same as Theorem 1
of this work. However, the proof in [22] is not rigorous as it omits what we call Step 2 and Step 3 in our 
proof of Theorem 1. In [12,13], Farouki et al. also perform similar envelope calculations that are, after a 
change of variables, the same as that of Theorem 1 of this work. However, Farouki et al. also do not prove 
Steps 2 and 3; they merely state, without providing or outlining a proof, in Section 6.7 of [12] that “one can 
easily see” this fact. To summarize, in the proof of Theorem 1, Step 1 coincides with existing work, while 
Steps 2 and 3 are new. Furthermore, the proof of Corollary 1, which connects the geometric analysis to the 
composition of averaged operators using the SRG, is new.

2. Preliminaries

We follow the standard notation of [3,24]. Write H for a real Hilbert space equipped with the inner 
product 〈·, ·〉 and norm ‖ · ‖. Write A : H ⇒ H to denote A is a multi-valued operator on H. Write 
I : H → H for the identity operator. Define the resolvent of A as JA = (I + A)−1. We say A : H ⇒ H is 
monotone if

〈u− v, x− y〉 ≥ 0, ∀x, y ∈ H, u ∈ Ax, v ∈ Ay.

Write M for the class of monotone operators. For β ∈ (0, ∞), we say a single-valued operator A : H → H
is β-cocoercive if

〈Ax−Ay, x− y〉 ≥ β‖Ax−Ay‖2,

for all x, y ∈ H and write Cβ for the class of β-cocoercive operators. For θ ∈ (0, 1), we say an operator A is 
θ-averaged if A = (1 − θ)I + θN for some nonexpansive operator N and write Nθ for the class of θ-averaged 
operators.

We write complex numbers with the Cartesian and polar coordinate representations z = x + yi and 
z = reiϕ = r cos(ϕ) + ir sin(ϕ). For notational convenience, we often identify C with R2. We use Minkowski-
type set notation with sets of complex numbers. In particular, given α ∈ C and Z, W ⊆ C, write
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αZ = {αz | z ∈ Z}, ZW = {zw | z ∈ Z, w ∈ W}.

The set ZW is called the Minkowski product of Z and W . Given a set U , write ∂U to denote its boundary 
and write U◦ = U\∂U to denotes its interior.

2.1. Scaled relative graph

We follow the notation of [25]. The scaled relative graph (SRG) of an operator A is defined as

G(A) =
{
‖u− v‖
‖x− y‖ exp [±i∠(u− v, x− y)]

∣∣∣u ∈ Ax, v ∈ Ay, x �= y

}(
∪ {∞} if A is multi-valued

)
,

where

∠(a, b) =
{

arccos( 〈a,b〉
‖a‖‖b‖ ) if a �= 0, b �= 0

0 otherwise,

denotes the angle between a, b ∈ H. The SRG G(A) maps the action of the operator A to points onto the 
extended complex plane. The magnitude of each element of G(A), ‖u−v‖

‖x−y‖ , represents the size of the change 
in outputs u, v relative to the size of the change in inputs x, y. The angle, ∠(u − v, x − y), represents how 
much the change in outputs is aligned with the change in inputs. The SRG of the class of operators A is 
defined as

G(A) =
⋃
A∈A

G(A).

For θ ∈ (0, 1), define

Disk(θ) = {z ∈ C
∣∣ |z − (1 − θ)| ≤ θ}, Circ(θ) = {z ∈ C

∣∣ |z − (1 − θ)| = θ}.

The sets have (1 − θ) as their center and include 1 as the right-most point.

Fact 1 (Proposition 3.3 of [25]). Let θ ∈ (0, 1). Then

G(Nθ) = Disk(θ) =
1

1 − 2θ

θ

Fact 2 (Theorem 3.5 of [25]). For the operator class Nθ, where θ ∈ (0, 1), inclusion within the operator class 
is equivalent to the inclusion of the SRG in the 2D plane.

2.2. Osculating circle, curvature, and envelope

In differential geometry of curves, the osculating circle of a sufficiently smooth plane curve C at a point 
P on the curve is the circle passing through P that approximates C most tightly within infinitesimal 
neighborhoods of P . The center of the circle lies on the inner normal line, and the reciprocal of its radius 
is the curvature of C at P [8]. For curves defined through polar coordinates as r(ϕ), the curvature κ(ϕ) at 
r(ϕ) is given by [23]:
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κ(ϕ) =
r(ϕ)2 + 2( dr

dϕ )2 − r(ϕ) d2r
dϕ2

(r(ϕ)2 + ( dr
dϕ )2) 3

2
(1)

The osculating circle of C at P provides insight on the smallest circle through P enclosing C.

− 1
3 1

C =
{
reiϕ | r = 1

2 (1 + cos(ϕ))
}

and its osculating circle at 1

An envelope of a family of curves in the plane is a curve that is tangent to each member of the family at 
some point. Formally, let each {Ct}t∈R be a parameterized family of curves in R2 defined by F (t, x) = 0, 
where t ∈ R is the parameter, x ∈ R2, and F is smooth. That is, Ct = {x | F (t, x) = 0}. The envelope of 
{Ct}t∈R is defined as the set points satisfying

F (t,x) = 0, ∂F

∂t
(t,x) = 0 (2)

for some t. The envelope includes the boundary of the region filled by the curves [5, Section 5.17]. See [4,5]
for further discussion.

3. Tight characterization of the composition of averaged operators

The composition of two averaged operators is itself an averaged operator, and Ogura and Yamada [21]
showed the best known averagedness coefficient for this setup. In this section, we provide an alternate 
geometric proof of this result and establish its tightness.

Again, Nθ1 and Nθ2 are the classes of θ1- and θ2-averaged operators. Define Nθ1Nθ2 = {N1N2 | N1 ∈
Nθ1 , N2 ∈ Nθ2} to be the class of compositions of θ1- and θ2-averaged operators.

Theorem 1. Let θ1, θ2 ∈ (0, 1). Then G(Nθ1Nθ2) is the region enclosed by the outer curve defined by

r(ϕ)2 − 2r(ϕ)(cos(ϕ)(1 − θ1)(1 − θ2) + θ1θ2) + (1 − 2θ1)(1 − 2θ2) = 0. (3)

Fig. 1 illustrates Theorem 1. To clarify, the equation of Theorem 1 defines at most two non-intersecting 
closed curves, one enclosing the other, and the SRG is given by the outer curve.

Corollary 1. Let θ1, θ2 ∈ (0, 1). Then Nθ1Nθ2 ⊆ Nθ with

θ = θ1 + θ2 − 2θ1θ2

1 − θ1θ2
.

The averagedness coefficient θ is tight in the sense that it cannot be reduced without further assumptions.
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1

θ1 = 2
3 , θ2 = 1

4

1

θ1 = 1
4 , θ2 = 3

4

1

θ1 = 2
3 , θ2 = 3

4

1

θ1 = θ2 = 1
4

1

θ1 = θ2 = 1
2

1

θ1 = θ2 = 3
4

Fig. 1. The shaded regions illustrate G(Nθ1Nθ2 ) given by Theorem 1. The circles drawn in dashed lines illustrate G(Nθ) given by 
Corollary 1.

3.1. Proof of Theorem 1

Define S to be the outer curve defined by (3) and Senc to be the region enclosed by S. By Theorem 4.5 
of [25] and the arc property of the averaged operators class, we have

G(Nθ1Nθ2) = Disk(θ1)Disk(θ2).

Therefore, it remains to show Disk(θ1)Disk(θ2) = Senc on the complex plane. The proof is completed in 3 
steps. In Step 1, we show that S is the boundary enclosing Circ(θ1)Circ(θ2) with geometric arguments. In 
Step 2, we show that S furthermore encloses Disk(θ1)Disk(θ2), i.e. we show Disk(θ1)Disk(θ2) ⊆ Senc. In 
Step 3, we show Disk(θ1)Disk(θ2) = Senc with a topological argument.

Step 1. The curve Circ(θ1) is defined by f1(z) = 0 with

f1(z) = (x− (1 − θ1))2 + y2 − θ2
1,

where z = x + yi. Let

z2(t) = 1 − θ2 + θ2 cos(t) + θ2 sin(t)i

be a parameterization of Circ(θ2).
Scaling and rotating Circ(θ1) by z2(t) ∈ Circ(θ2) yields the curve defined by

0 =f1(z/z2(t))

=
(
x(1 − θ2 + θ2 cos(t)) + yθ2 sin(t)

|z2(t)|2
− (1 − θ1)

)2

+
(
y(1 − θ2 + θ2 cos(t)) − xθ2 sin(t)

|z2(t)|2
)2

− θ2
1.

Multiply both sides of the equation by |z2(t)|4 and simplify to get
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(x− (1 − θ2 + θ2 cos(t))(1 − θ1))2 + (y + θ2 sin(t)(1 − θ1))2

− (2θ2
2 − 2θ2 + 1 + 2θ2(1 − θ2) cos(t))θ2

1 = 0.

Apply the envelope formula (2) to eliminate t and obtain the envelope

f2(z) = (x2 + y2 − 2x(1 − θ1)(1 − θ2) + (1 − 2θ1)(1 − 2θ2))2 − 4θ2
1θ

2
2(x2 + y2)

= 0. (4)

Using polar coordinates with r =
√

x2 + y2 ≥ 0 and x = r cos(ϕ), we can factor (4) as

0 =
(
r2 − 2r cos(ϕ)(1 − θ1)(1 − θ2) + (1 − 2θ1)(1 − 2θ2) − 2θ1θ2r

)
·
(
r2 − 2r cos(ϕ)(1 − θ1)(1 − θ2) + (1 − 2θ1)(1 − 2θ2) + 2θ1θ2r

)
,

where r ≥ 0 and ϕ ∈ R. By considering the substitution r �→ −r and ϕ �→ ϕ + π, we can combine the two 
factors into one to get (3):

r2 − 2r cos(ϕ)(1 − θ1)(1 − θ2) + (1 − 2θ1)(1 − 2θ2) − 2θ1θ2r = 0,

where r ∈ R and ϕ ∈ R. To clarify, the combined equation allows negative r. The envelope contains the 
boundary of Circ(θ1)Circ(θ2).

The curve defined by (3) is an instance of the Cartesian oval, which contains at most two closed curves 
one enclosing the other [20]. The following figure illustrates the envelope in solid lines and Circ(θ1)Circ(θ2)
as the shaded region. The outer curve S encloses Circ(θ1)Circ(θ2), i.e., Circ(θ1)Circ(θ2) ⊆ Senc.

outer curve S

inner curve

z2Circ(θ1)

1

Step 2. We now show that S encloses not only Circ(θ1)Circ(θ2) but also Disk(θ1)Disk(θ2). Note 
Disk(θ1)Disk(θ2) is compact as it is the image of a compact set under a continuous map. On the other 
hand, Disk(θ1)◦Disk(θ2) and Disk(θ1)Disk(θ2)◦ are open as they are unions of open sets. Since

Disk(θ1)◦Disk(θ2) ∪ Disk(θ1)Disk(θ2)◦

is open, we have

∂ (Disk(θ1)Disk(θ2)) ⊆ Disk(θ1)Disk(θ2)\ (Disk(θ1)◦Disk(θ2) ∪ Disk(θ1)Disk(θ2)◦)

⊆ Circ(θ1)Circ(θ2).

Since S encloses Circ(θ1)Circ(θ2) which contains the boundary of the compact set Disk(θ1)Disk(θ2), S
encloses Disk(θ1)Disk(θ2).
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Step 3. We have shown Disk(θ1)Disk(θ2) ⊆ Senc, and it remains to show Disk(θ1)Disk(θ2) = Senc. The 
question is whether Disk(θ1)Disk(θ2) is simply connected, i.e., whether it contains any “holes”. As the 
previous figure illustrates, Circ(θ1)Circ(θ2) contain holes. We show Disk(θ1)Disk(θ2) does not.

Define the map

Π: Disk(θ1) × Disk(θ2) → Disk(θ1)Disk(θ2)

(z1, z2) �→ z1z2.

To clarify, Disk(θ1) ×Disk(θ2) denotes the product set while Disk(θ1)Disk(θ2) denotes the Minkowski prod-
uct. We have shown that there is a parameterized closed curve

{(z1(t), z2(t))}t∈[0,1] ⊆ Disk(θ1) × Disk(θ2),

such that {Π(z1(t), z2(t))}t∈[0,1] = S. Assume for contradiction that z ∈ Senc but z /∈ Disk(θ1)Disk(θ2). (In 
other words, we assume for contradiction that z is strictly within the hole of the domain.) Since Disk(θ1) ×
Disk(θ2) is simply connected, we can continuously contract {(z1(t), z2(t))}t∈[0,1] to a point in Disk(θ1) ×
Disk(θ2), and the curve under the map Π continuously contracts to a point in Disk(θ1)Disk(θ2). However, this 
is not possible as {Π(z1(t), z2(t))}t∈[0,1] has a nonzero winding number around z and z /∈ Disk(θ1)Disk(θ2). 
We have a contradiction and we conclude z ∈ Disk(θ1)Disk(θ2). �
3.2. Proof of Corollary 1

We can visually observe from Fig. 1 that Circ(θ), the dashed circle, enclose G(Nθ1Nθ2). We can also 
observe that the geometric objects have matching curvature at point 1, and therefore we cannot further 
reduce the size of the dashed circle while enclosing G(Nθ1Nθ2). We now make this argument formal with 
Fact 2 and the following geometric arguments.

Remember, f2(x, y) = 0 defines the boundary ∂(Disk(θ1)Disk(θ2)). Define

g(ϕ) = f2(θ cos(ϕ) + (1 − θ), θ sin(ϕ))

= 16θ2
1θ

2
2(1 − θ1)2(1 − θ2)2(θ1 + θ2 − 2θ1θ2)2 sin4(ϕ/2)

(1 − θ1θ2)4
,

i.e., g(ϕ) is f2 evaluated on the curve Circ(θ). We can see that g(ϕ) > 0 for all ϕ �= 0 and g(0) = 0. This 
implies Circ(θ) and ∂(Disk(θ1)Disk(θ2)) intersect at only one point and therefore do not cross. The point 
(1 − ε, 0) is in Disk(θ1)Disk(θ2) and enclosed by Circ(θ) for small enough ε > 0. Since

f2(1 − ε, 0) = −8θ1θ2 (θ1 + θ2 − 2θ1θ2)︸ ︷︷ ︸
>0

ε + O(ε2)

for ε → 0, it is Circ(θ) that encloses ∂(Disk(θ1)Disk(θ2)). Finally, we conclude Disk(θ) contains 
Disk(θ1)Disk(θ2).

Consider r(ϕ) defined by (3). Through implicit differentiation, we get

dr

dϕ

∣∣
ϕ=0 = 0, d2r

dϕ2

∣∣
ϕ=0 = (1 − θ1)(1 − θ2)

θ1 + θ2 − 2θ1θ2
.

Using (1), the curvature of r(ϕ) at point 1 (given by ϕ = 0) is

κ(ϕ)
∣∣
ϕ=0 =

r(ϕ)2 + 2( dr
dϕ )2 − r(ϕ) d2r

dϕ2

(r(ϕ)2 + ( dr )2) 3
2

∣∣
ϕ=0 = 1 − θ1θ2

θ1 + θ2 − 2θ1θ2
= 1

θ
.

dϕ
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This implies any circle through 1 symmetric about the real axis containing r(ϕ) must have radius at least 
θ. �
4. Tight characterization of Davis–Yin splitting

Consider the monotone inclusion problem

find
x∈H

0 ∈ (A + B + C)x,

where A and B are maximal monotone and C is β-cocoercive. Davis and Yin [9] proposed

Tγ(A,B,C) = I − JγB + JγA(2JγB − I − γCJγB),

which we call the Davis–Yin splitting (DYS), and showed that it is a fixed-point encoding for the monotone 
inclusion problem in the sense that Zer(A +B+C) = JγB(Fix(Tγ(A, B, C))), where Zer and Fix respectively
denote the set of zeros and fixed points. Define the class of DYS operators as

Tβ,γ =
{
Tγ(A,B,C)

∣∣A,B ∈ M, C ∈ Cβ
}
.

Davis and Yin showed that the DYS operators of Tβ,γ are 2β
4β−γ -averaged.

Fact 3 (Proposition 2.1 of [9]). Let γ ∈ (0, 2β). Then

G(Tβ,γ) ⊆ G
(
N 2β

4β−γ

)
= 1

2β−γ
4β−γ

We show that this characterization is tight in the following sense.

Theorem 2. Let γ ∈ (0, 2β). Then

G(Tβ,γ) = G
(
N 2β

4β−γ

)
= 1

2β−γ
4β−γ

Corollary 2. The averagedness parameter of Fact 3 is tight in the sense that it cannot be improved without 
further assumptions.

4.1. Proof of Theorem 2

Since G(Tβ,γ) ⊆ Disk
(

2β
4β−γ

)
by Fact 3, we show Disk

(
2β

4β−γ

)
⊆ G(Tβ,γ). Define the set

Sβ,γ =
{

1 − z2 + z1(2z2 − 1 − γz3z2) | z1, z2 ∈ Disk(1/2), z3 ∈ 1 Disk(1/2)
}
.
β
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The proof is completed in three steps. In Step 1, we show Sβ,γ ⊆ G(Tβ,γ) by appealing to results about the 

SRG. In Step 2, we show Circ
(

2β
4β−γ

)
⊆ Sβ,γ with geometric arguments. In Step 3, we strengthen the result 

of Step 2 to Disk
(

2β
4β−γ

)
⊆ Sβ,γ using a topological argument.

Step 1. By Lemma 3.2, Proposition 3.3, and Theorems 4.2 and 4.3 of [25], we can identify z1, z2 ∈
Disk(1/2) with resolvents of maximal monotone operators on R2 and z3 ∈ 1

βDisk(1/2) with a β-cocoercive 
operator on R2. Therefore, Sβ,γ represents the SRGs of operators in Tβ,γ , and we conclude Sβ,γ ⊆ G(Tβ,γ).

Step 2. Define

Rβ,γ =
{

1 − z2 + z1(2z2 − 1 − γz3z2)
∣∣∣ z1 = z2 ∈ Disk(1/2), z3 ∈ 1

βDisk(1/2)
}
.

Clearly Rβ,γ ⊆ Sβ,γ . We show

Circ
(

2β
4β − γ

)
⊆ Rβ,γ .

Let A1 = z1 = z2 = cos(θ)eiθ ∈ Circ(1/2).

1

A1

θ

O

With direct calculations, we have

A2 = 2z1z2 − z1 − z2 + 1 = cos(2θ)e2θi ∈ Circ(1/2)

and

A3 = γ

β
z1z2 = γ

β
cos2(θ)e2θi.

Define O1 = A3
2 . Fig. 2 illustrates the following construction. Define point P = 2β−γ

4β−γ as the center of the 

circle Circ
(

2β
4β−γ

)
. Let O2 = A2 − A3

2 = A2 −O1 be the center of the disk A2 −A3Disk(1/2). Let B be the 

point farthest from P in the disk A2 − A3Disk(1/2). (B ∈ Rβ,γ since A2 − A3Disk(1/2) ⊆ Rβ,γ .) Then P , 
O2, and B are collinear. We have

O2B = γ

2β cos2(θ).

Using the cosine rule, we have

PO2
2 = O2O

2 + OP
2 − 2O2O ·OP cos(2θ)

=
(

cos(2θ) − γ

2β cos2(θ)
)2

+
(

2β − γ

4β − γ

)2

− 2
(

cos(2θ) − γ

2β cos2(θ)
)(

2β − γ

4β − γ

)
cos(2θ)

=
(

γ

2β cos2(θ) − 2β
4β − γ

)2

.

Since P , O2, and B are collinear, we have
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1

A1

A3

A2

O

O1 = A3
2

A3Disk(1/2)

θ

2θ

Illustration for |A3| > |A2|

1

A1A3

A2

O

O1

A3Disk(1/2)

θ

2θ

Illustration for |A3| < |A2|

1

A2

O

O2 = A2 −O1

P

B

A2 −A3Disk(1/2)

Illustration for |A3| > |A2|

1

A2

O

O2 = A2 −O1

P

B
A2 −A3Disk(1/2)

Illustration for |A3| < |A2|

Fig. 2. The first geometric construction of Step 2. The shaded region is a subset of Rβ,γ by construction.

PB = PO2 + O2B = 2β
4β − γ

.

Therefore, B ∈ Circ
(

2β
4β−γ

)
.

Fig. 3 illustrates the following construction. The trajectory of O2 = (cos(2θ) − γ
2β cos2(θ))e2θi as a function 

of θ is a closed curve within Circ
(

2β
4β−γ

)
. Since 0 < 1 − 2β

4β−γ < 1 − γ
2β , the curve strictly encloses P . As 

θ traverses [−π/2, π/2), O2 traverses the inner curve and B traverses all of Circ
(

2β
4β−γ

)
. Therefore, we 

conclude Circ
(

2β
4β−γ

)
⊆ Sβ,γ .

Step 3. Define the map

Π: Disk(1/2) × Disk(1/2) × 1
βDisk(1/2) → Sβ,γ

(z1, z2, z3) �→ 1 − z2 + z1(2z2 − 1 − γz3z2).

Consider any z strictly enclosed within Circ
(

2β
4β−γ

)
, and assume for contradiction that z /∈ Sβ,γ . We have 

shown that there is a closed curve

{η(t)}t∈[0,1] ⊆ Disk(1/2) × Disk(1/2) × 1 Disk(1/2)
β
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O

O2

P

1 − γ
2β

B

Circ
(

2β
4β−γ

)

Fig. 3. The second geometric construction of Step 2.

such that {Π(η(t))}t∈[0,1] is Circ
(

2β
4β−γ

)
. The closed curve {Π(η(t))}t∈[0,1] strictly encloses z. Since 

Disk(1/2) × Disk(1/2) × 1
βDisk(1/2) is simply connected, we can continuously contract {η(t)}t∈[0,1] to a 

point in Disk(1/2) ×Disk(1/2) × 1
βDisk(1/2), and {Π(η(t))}t∈[0,1] continuously contracts to a point in Sβ,γ. 

However, this is not possible as {Π(η(t))}t∈[0,1] has a nonzero winding number around z and z /∈ Sβ,γ . We 

have a contradiction and we conclude z ∈ Sβ,γ and Disk
(

2β
4β−γ

)
⊆ Sβ,γ . �
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