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erators is of broad interest. In this paper, we show that the averagedness coefficients
of the composition of averaged operators by Ogura and Yamada (2002) [21] and the

fffgggisgperator three-operator splitting by Davis and Yin (2017) [9] are tight. The analysis relies on
Composition of operators the scaled relative graph, a geometric tool recently proposed by Ryu et al. (2019)
Nonexpansive operator [25].
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1. Introduction

Since their introduction in [1], averaged operators have been widely used in the analysis of nonlinear
fixed-point iterations. In particular, a wide range of optimization methods can be analyzed as fixed-point
iterations with a composition of averaged operators, which are themselves averaged [6]. The smallest (best)
averagedness coefficient for this setup was presented by Ogura and Yamada [21] and was introduced to the
broader optimization community by Combettes and Yamada [7] and Bauschke and Combettes [3]. More
recently, Davis and Yin presented a three-operator splitting method and established its convergence by
showing the associated operator is averaged [9]. Whether these averagedness coefficients are tight, loosely
defined as being unable to be improved without additional assumptions, was not known.

The Scaled Relative Graph (SRG) is a geometric tool for analyzing fixed-point iterations recently proposed
by Ryu, Hannah, and Yin [25]. The SRG maps the action of a nonlinear operator to a subset the 2D plane,
analogous to how the spectrum maps the action of a linear operator to the complex plane. A strength of
the SRG is that it is well-suited for tight analysis.
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2D geometric illustrations have been used by Eckstein and Bertsekas [10,11], Giselsson [16,15], Banjac
and Goulart [2], and Giselsson and Moursi [17] to qualitatively understand convergence of optimization
algorithms. The SRG is a rigorous formulation of such illustrations.

In this paper, we use the SRG to show tightness of the averagedness coefficients of the composition of
averaged operators by Ogura and Yamada and the three-operator splitting by Davis and Yin. Section 2
discusses general preliminaries and sets up the notation. Section 3 presents results on the composition of
averaged operators. Section 4 presents results on the Davis—Yin splitting.

1.1. Contribution and prior work

The contribution of this paper is in the results Corollaries 1 and 2, which establish tightness of the
averagedness coefficients, and the geometric proof technique based on the SRG.

The geometric arguments of Section 4 are entirely new. The geometric arguments of Section 3 overlap with
the classical work on “circular arithmetic” initiated by Gargantini and Henrici [14]. In [18,19], Hauenchild
introduced the notion of “optimal circular multiplication”, which considers the smallest circle enclosing
the Minkowski product (defined in Section 2) of two disks on the complex plane. This is not the same
as what we consider in Section 3, since we find the smallest circle under the additional requirement that
it goes through the point (1,0). These two notions coincide sometimes, but not always. In [22], Polyak,
Scherbakov, and Schmulyian perform calculations similar to that of Theorem 1 in the context of control
theoretic stability analysis. In fact, Theorem 1 of [22] is, after a change of variables, the same as Theorem 1
of this work. However, the proof in [22] is not rigorous as it omits what we call Step 2 and Step 3 in our
proof of Theorem 1. In [12,13], Farouki et al. also perform similar envelope calculations that are, after a
change of variables, the same as that of Theorem 1 of this work. However, Farouki et al. also do not prove
Steps 2 and 3; they merely state, without providing or outlining a proof, in Section 6.7 of [12] that “one can
easily see” this fact. To summarize, in the proof of Theorem 1, Step 1 coincides with existing work, while
Steps 2 and 3 are new. Furthermore, the proof of Corollary 1, which connects the geometric analysis to the
composition of averaged operators using the SRG, is new.

2. Preliminaries

We follow the standard notation of [3,24]. Write H for a real Hilbert space equipped with the inner
product (-,-) and norm || - ||. Write A : H = H to denote A is a multi-valued operator on H. Write
I : H — H for the identity operator. Define the resolvent of A as J4 = (I + A)~'. We say A: H = H is
monotone if

(u—wv,z—y) >0, Vr,y € H, u € Ax, v € Ay.

Write M for the class of monotone operators. For § € (0,00), we say a single-valued operator A: H — H
is B-cocoercive if

<A£L’ - Ay,x - y> > ﬂ”AfE - Ay||2a

for all z,y € H and write Cg for the class of 8-cocoercive operators. For 6 € (0,1), we say an operator A is
f-averaged if A = (1 —6)I+ 60N for some nonexpansive operator N and write Ny for the class of §-averaged
operators.

We write complex numbers with the Cartesian and polar coordinate representations z = x + yi and
2z = re'¥ = rcos(p) +irsin(p). For notational convenience, we often identify C with R2. We use Minkowski-
type set notation with sets of complex numbers. In particular, given o € C and Z,W C C, write
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aZ ={az|lze Z}, ZW={zw|z€ Z, we W}

The set ZW is called the Minkowski product of Z and W. Given a set U, write QU to denote its boundary
and write U° = U\JU to denotes its interior.

2.1. Scaled relative graph

We follow the notation of [25]. The scaled relative graph (SRG) of an operator A is defined as

G(A) = { :|Z : ZH exp [£i(u — v,z — y)] ‘u cAz,ve Ay, x # y} <U {oo} if A is multi—valued),

where

<a’b> 3
La,b) = arccos( ”a””b”) ifa#0,b#0
’ 0 otherwise,

denotes the angle between a,b € H. The SRG G(A) maps the action of the operator A to points onto the
llu—v]]

> la—yll

in outputs u, v relative to the size of the change in inputs x,y. The angle, Z(u — v,z — y), represents how

extended complex plane. The magnitude of each element of G(A)

represents the size of the change

much the change in outputs is aligned with the change in inputs. The SRG of the class of operators A is
defined as

G(A) = | 9(4).

AcA

For 6 € (0,1), define
Disk(d) = {z € C ’ |z—(1-0) <0}, Circ(f)={z€C | |z —(1-6)] =0}.
The sets have (1 — ) as their center and include 1 as the right-most point.

Fact 1 (Proposition 3.3 of [25]). Let 8 € (0,1). Then

G(Ny) = Disk(9) =

Fact 2 (Theorem 3.5 of [25]). For the operator class Ny, where 6 € (0,1), inclusion within the operator class
is equivalent to the inclusion of the SRG in the 2D plane.

2.2. Osculating circle, curvature, and envelope

In differential geometry of curves, the osculating circle of a sufficiently smooth plane curve C' at a point
P on the curve is the circle passing through P that approximates C' most tightly within infinitesimal
neighborhoods of P. The center of the circle lies on the inner normal line, and the reciprocal of its radius
is the curvature of C at P [8]. For curves defined through polar coordinates as r(¢), the curvature x(p) at
() is given by [23]:
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C={re*|r= %(1 + cos(p)) } and its osculating circle at 1

An envelope of a family of curves in the plane is a curve that is tangent to each member of the family at
some point. Formally, let each {C;};cgr be a parameterized family of curves in R? defined by F(t,x) = 0,
where t € R is the parameter, x € R?, and F is smooth. That is, C; = {x| F(t,x) = 0}. The envelope of
{C}}ier is defined as the set points satisfying

F(t,x) =0, %f(t, x) =0 2)

for some t. The envelope includes the boundary of the region filled by the curves [5, Section 5.17]. See [4,5]
for further discussion.

3. Tight characterization of the composition of averaged operators

The composition of two averaged operators is itself an averaged operator, and Ogura and Yamada [21]
showed the best known averagedness coefficient for this setup. In this section, we provide an alternate
geometric proof of this result and establish its tightness.

Again, Ny, and Ny, are the classes of 6;- and fy-averaged operators. Define Ny, Ny, = {N1No|N; €
Ny,, No € Ny, } to be the class of compositions of §;- and #s-averaged operators.

Theorem 1. Let 61,05 € (0,1). Then G(Np,Np,) is the region enclosed by the outer curve defined by

() — 2r(@)(cos(¢) (1 — 01)(1 — 0) + 0102) + (1 —260;)(1 — 265) = 0. (3)

Fig. 1 illustrates Theorem 1. To clarify, the equation of Theorem 1 defines at most two non-intersecting
closed curves, one enclosing the other, and the SRG is given by the outer curve.

Corollary 1. Let 01,05 € (0,1). Then Ny, Ny, C Ny with

g — 01 + 69 — 26010,
1 —616,

The averagedness coefficient 0 is tight in the sense that it cannot be reduced without further assumptions.
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2 91:92:%

Fig. 1. The shaded regions illustrate G(Ng, No,) given by Theorem 1. The circles drawn in dashed lines illustrate G(Ny) given by
Corollary 1.

3.1. Proof of Theorem 1

Define S to be the outer curve defined by (3) and Sepc to be the region enclosed by S. By Theorem 4.5
of [25] and the arc property of the averaged operators class, we have

Q(N91N92) = DlSk(el)DISk(eg)

Therefore, it remains to show Disk(6; )Disk(f2) = Sene on the complex plane. The proof is completed in 3
steps. In Step 1, we show that S is the boundary enclosing Circ(f;)Circ(f2) with geometric arguments. In
Step 2, we show that S furthermore encloses Disk(6;)Disk(62), i.e. we show Disk(#;)Disk(f2) C Sepc. In
Step 3, we show Disk(6;)Disk(fz) = Senc with a topological argument.

Step 1. The curve Circ(6;) is defined by f1(z) = 0 with

fi(z) = (@ = (1= 01))° +y* - 6},
where z = x + yi. Let
z2(t) = 1 — 09 + O cos(t) + O sin(t)i

be a parameterization of Circ(fz).
Scaling and rotating Circ(6;) by z2(t) € Circ(62) yields the curve defined by

0=fi1(2/2())

_ (®(1 =6+ Ozcos(t)) + ybasin(t) . 2
- ( |22(8)]? (1 91))

y(1 — b + 05 cos(t)) — xby sin(t) 2 2
“( )P ) -

Multiply both sides of the equation by |z2(#)|* and simplify to get
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(z — (1 — 0 + 0z cos(t))(1 — 01))* 4 (y + O sin(t) (1 — 6))?
— (202 — 2605 + 1 + 205(1 — 62) cos(t))8? = 0.
Apply the envelope formula (2) to eliminate ¢ and obtain the envelope

fo(2) = (@ + 4% — 22(1 — 01)(1 — 0) + (1 — 2601)(1 — 262))? — 402603 (22 + %)
—0. (4)

Using polar coordinates with = /22 4+ y2 > 0 and « = r cos(y), we can factor (4) as

0 :(r2 —2rcos(p)(1 —01)(1 —02) + (1 —261)(1 — 26,) — 291627")
(r* = 2rcos(p)(1 = 61)(1 — 02) + (1 — 261)(1 — 202) + 26, 057),

where r > 0 and ¢ € R. By considering the substitution r — —r and ¢ — ¢ + 7, we can combine the two
factors into one to get (3):

72— 2rcos(¢)(1 — 01)(1 — ) + (1 — 2601)(1 — 2605) — 20,097 = 0,

where 7 € R and ¢ € R. To clarify, the combined equation allows negative r. The envelope contains the
boundary of Circ(6;)Circ(6s).

The curve defined by (3) is an instance of the Cartesian oval, which contains at most two closed curves
one enclosing the other [20]. The following figure illustrates the envelope in solid lines and Circ(6;)Circ(62)
as the shaded region. The outer curve S encloses Circ(6;)Circ(6s), i.e., Circ(61)Circ(f2) C Senc.

25 Circ(61)

inner curve

outer curve S

Step 2. We now show that S encloses not only Circ(6;)Circ(f2) but also Disk(6;)Disk(62). Note
Disk(6,)Disk(f3) is compact as it is the image of a compact set under a continuous map. On the other
hand, Disk(#;)°Disk(62) and Disk(6#;)Disk(62)° are open as they are unions of open sets. Since

Disk(91)°Disk(92) U DiSk(el)DiSk(eg)o
is open, we have

0 (DlSk(el)DISk(ez)) g DlSk(el)DISk(eg)\ (DiSk(el)oDiSk(eg) @] DiSk(el)DiSk(92)0>
C Circ(6,)Circ(62).

Since S encloses Circ(;)Circ(fy) which contains the boundary of the compact set Disk(6;)Disk(6s), S
encloses Disk(6;)Disk(6s).
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Step 3. We have shown Disk(6;)Disk(62) C Senc, and it remains to show Disk(6;)Disk(62) = Senc. The
question is whether Disk(6;)Disk(6s) is simply connected, i.e., whether it contains any “holes”. As the
previous figure illustrates, Circ(6;)Circ(fz) contain holes. We show Disk(6; )Disk(62) does not.

Define the map

IT: Disk(#;) x Disk(f2) — Disk(6;)Disk(62)

(Zl, ZQ) — Z1%2.

To clarify, Disk(6;) x Disk(62) denotes the product set while Disk(6;)Disk(fy) denotes the Minkowski prod-
uct. We have shown that there is a parameterized closed curve

{(21(t), 22()) }repo.1) © Disk(8y) x Disk(6),

such that {II(21(t), 22(t)) }+ejo,1) = S- Assume for contradiction that z € Sene but z ¢ Disk(6;)Disk(62). (In
other words, we assume for contradiction that z is strictly within the hole of the domain.) Since Disk(6;) x
Disk() is simply connected, we can continuously contract {(z1(t),22(t))}+e[0,1) to a point in Disk(6;) x
Disk(f5), and the curve under the map II continuously contracts to a point in Disk(6; )Disk(62). However, this
is not possible as {II(21(t), 22(t)) }+e[0,1) has a nonzero winding number around z and z ¢ Disk(6;)Disk(6s).
We have a contradiction and we conclude z € Disk(0;)Disk(62). O

3.2. Proof of Corollary 1

We can visually observe from Fig. 1 that Circ(f), the dashed circle, enclose G(Np, Np,). We can also
observe that the geometric objects have matching curvature at point 1, and therefore we cannot further
reduce the size of the dashed circle while enclosing G(Ny, Ny,). We now make this argument formal with
Fact 2 and the following geometric arguments.

Remember, fa(x,y) = 0 defines the boundary 9(Disk(¢;)Disk(62)). Define

9(p) = f2(fcos(p) + (1 —0),0sin(p))
166203(1 — 01)%(1 — 02)2(61 + 02 — 20,6)2 sin* (p/2)
- (1— 0,05)% ’

i.e., g(p) is fo evaluated on the curve Circ(6). We can see that g(¢) > 0 for all ¢ # 0 and ¢(0) = 0. This
implies Circ(f) and 0(Disk(#;)Disk(62)) intersect at only one point and therefore do not cross. The point
(1 —¢,0) is in Disk(#;)Disk(f2) and enclosed by Circ(d) for small enough ¢ > 0. Since

fg(l — 6,0) = —8610- (91 + 05 — 29192) €+ 0(62)
N

>0

for ¢ — 0, it is Circ(f) that encloses 9(Disk(#;)Disk(62)). Finally, we conclude Disk(f) contains
Consider r(p) defined by (3). Through implicit differentiation, we get
dr d27’ (1 — 91)(1 — 92)

%LO:O:O, d—<p2|v>:0 01+ 02 — 20102

Using (1), the curvature of r(y) at point 1 (given by ¢ = 0) is

T(SO)2 + 2(5_;)2 - T(‘io)c(liTZ | 1-— 9192 1
=0 " 01+ 02 — 260164 A

(r(p)? + (40)2)3 - -
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This implies any circle through 1 symmetric about the real axis containing r(¢) must have radius at least
0. O

4. Tight characterization of Davis—Yin splitting
Consider the monotone inclusion problem
find 0€ (A+ B+ CQ)x,
T€EH
where A and B are maximal monotone and C' is S-cocoercive. Davis and Yin [9] proposed
T,(A,B,C)=1—-Jyg+ Jya(2Jyp — I —vCJyB),
which we call the Davis—Yin splitting (DYS), and showed that it is a fixed-point encoding for the monotone
inclusion problem in the sense that Zer(A+B+C) = J,p(Fix(T, (A, B,C))), where Zer and Fix respectively
denote the set of zeros and fixed points. Define the class of DYS operators as
Tsy = {Ty(A,B,C)|A,Be M, CeCs}.
Davis and Yin showed that the DYS operators of T3 - are %—averaged.

Fact 3 (Proposition 2.1 of [9]). Let v € (0,28). Then

We show that this characterization is tight in the following sense.

Theorem 2. Let v € (0,253). Then

)

g(m):g(/v 20

Corollary 2. The averagedness parameter of Fact 3 is tight in the sense that it cannot be improved without
further assumptions.

4.1. Proof of Theorem 2

Since G(73,4) C Disk (%) by Fact 3, we show Disk (45267) C G(T3,~)- Define the set

Sy = {1 — 29+ 21(229 — 1 — y2322) | 21, 22 € Disk(1/2), z3 € %Disk(1/2)} )
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The proof is completed in three steps. In Step 1, we show Sz, C G(73,4) by appealing to results about the
SRG. In Step 2, we show Circ (%) C Sp,, with geometric arguments. In Step 3, we strengthen the result
of Step 2 to Disk (%) C 53,y using a topological argument.

Step 1. By Lemma 3.2, Proposition 3.3, and Theorems 4.2 and 4.3 of [25], we can identify z1,29 €
Disk(1/2) with resolvents of maximal monotone operators on R? and z3 € %Disk(l /2) with a fS-cocoercive

operator on R?. Therefore, Sg ., represents the SRGs of operators in 7Tp -, and we conclude Sg ., C G(T5.).
Step 2. Define

Rg -, = {1 — 29+ 21(229 — 1 — y2329) ‘ z1 = 29 € Disk(1/2), 23 € %Disk(1/2)} .

Clearly Rg C Sg,. We show

. 24 >
Circ C Rg~.
(45_’)’ = 18,y

Let Ay = 21 = 23 = cos(#)e?? € Circ(1/2).
Ay
Y
O '

Ag = 22129 — 21 — 22 + 1 = cos(26)e??" € Circ(1/2)

With direct calculations, we have

and

A3 = 12122 = 1 COSQ(Q)ezei.

B B
Define O; = %. Fig. 2 illustrates the following construction. Define point P = Zg:x as the center of the
circle Circ (%) Let Oy = Ay — % = Ay — O1 be the center of the disk As — A3Disk(1/2). Let B be the

point farthest from P in the disk Ay — A3Disk(1/2). (B € Rg,, since Ay — A3Disk(1/2) C Rg ,.) Then P,
Os, and B are collinear. We have

_ 02
0B = 53 cos*(0).

Using the cosine rule, we have
POy> = 0,0 + 0P — 20,0 - OP cos(26)
2 2
28 — 28 —
= <Cos(26’) - % 6082(9)> + ( b 7) -2 <cos(29) e 6052(9)) < b W) cos(26)

48 — 283 48—
2
= <lcosg(9) 25 ) .

Since P, Oy, and B are collinear, we have
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AsDisk(1/2)

AsDisk(1/2)

Nlustration for |Az| > |As| Ilustration for |Asz| < |A2|

Az — AsDisk(1/2) Afg‘ A3Disk(1/2)

Nlustration for |Az| > |As| Tllustration for |Az| < |Az|

Fig. 2. The first geometric construction of Step 2. The shaded region is a subset of Rg , by construction.

PB = POy + 03B = )
2 2 4ﬂ—"}/

Therefore, B € Circ (%)

Fig. 3 illustrates the following construction. The trajectory of Oy = (cos(26) — 55 cos?(0))e?? as a function

of 6 is a closed curve within Circ (%) Since 0 < 1 — 455 5 < 1- %, the curve strictly encloses P. As

0 traverses [—m/2,m/2), O2 traverses the inner curve and B traverses all of Circ ( 4§f 7). Therefore, we

conclude Circ (%) C Spy-
Step 3. Define the map

IT: Disk(1/2) x Disk(1/2) x Disk(1/2) — Sp -
(21,29,23) = 1 — 20+ 21 (220 — 1 — y2329).

Consider any z strictly enclosed within Circ (%), and assume for contradiction that z ¢ Sgz . We have

shown that there is a closed curve

{n(t)}refo. € Disk(1/2) x Disk(1/2) x 1Disk(1/2)
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Fig. 3. The second geometric construction of Step 2.

such that {II(n(t))}+efo,1) is Circ (éf,y). The closed curve {II(7(t))}+cjo,1] strictly encloses z. Since

Disk(1/2) x Disk(1/2) x %Disk(l/Z) is simply connected, we can continuously contract {n(t)};c[0,1] to a
point in Disk(1/2) x Disk(1/2) x %Disk(1/2), and {II(n(t)) }+e[0,1] continuously contracts to a point in Sg .
However, this is not possible as {II(7)(t))}:c[0,1] has a nonzero winding number around z and z ¢ Sg . We

have a contradiction and we conclude z € Sg , and Disk (%) C Sz, O
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