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Abstract—In this paper, we study the communication and
(sub)gradient computation costs in distributed optimization. We
present two algorithms based on the framework of the accelerated
penalty method with increasing penalty parameters. Our first al-
gorithm is for smooth distributed optimization and it obtains the
near optimal O(

√
L

ε(1−σ2(W ))
log 1

ε
) communication complexity

and the optimal O(
√

L
ε
) gradient computation complexity for L-

smooth convex problems, where σ2(W ) denotes the second largest
singular value of the weight matrix W associated to the network
and ε is the target accuracy. When the problem is µ-strongly
convex and L-smooth, our algorithm has the near optimal
O(

√
L

µ(1−σ2(W ))
log2 1

ε
) complexity for communications and the

optimal O(
√

L
µ
log 1

ε
) complexity for gradient computations. Our

communication complexities are only worse by a factor of (log 1
ε
)

than the lower bounds. Our second algorithm is designed for
nonsmooth distributed optimization and it achieves both the
optimal O( 1

ε
√

1−σ2(W )
) communication complexity and O( 1

ε2
)

subgradient computation complexity, which match the lower
bounds for nonsmooth distributed optimization.

Index Terms—Distributed accelerated gradient algorithms, ac-
celerated penalty method, optimal (sub)gradient computation
complexity, near optimal communication complexity.

I. INTRODUCTION

In this paper, we consider the following distributed convex
optimization problem:

min
x∈Rn

1

m

m∑
i=1

Fi(x) ≡ fi(x) + hi(x), (1)

where m agents form a connected and undirected network
G = (V, E), V = {1, 2, ...,m} is the set of agents and E ⊂
V × V is the set of edges, Fi is the local objective function
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only available to agent i and x is the decision variable. fi
is a convex and smooth function while hi is a convex but
possibly nonsmooth one. We consider distributed algorithms
using only local computations and communications, i.e., each
agent i makes its decision only based on the local computations
on Fi (i.e., the gradient of fi and the subgradient of hi) and the
local information received from its neighbors in the network. A
pair of agents can exchange information if and only if they are
directly connected in the network. Distributed computation has
been widely used in signal processing [1], automatic control
[2], [3] and machine learning [4]–[6].

A. Literature Review

Among the classical distributed first-order algorithms, two
different types of methods have been proposed, namely, the
primal-only methods and the dual-based methods.

The distributed subgradient method is a representative primal-
only distributed optimization algorithm over general networks
[14], while its stochastic version was studied in [15], and
asynchronous variant in [16]. In the distributed subgradient
method, each agent performs a consensus step and then follows
a subgradient descent with a diminishing step-size. To avoid
the diminishing step-size, three different types of methods have
been proposed. The first type of methods [7], [17]–[19] rely
on tracking differences of gradients, which keep a variable
to estimate the average gradient and use this estimation in
the gradient descent step. The second type of methods, called
EXTRA [20], [21], introduce two different weight matrices as
opposed to a single one with the standard distributed gradient
method [14]. EXTRA also uses the gradient tracking. The third
type of methods employ a multi-consensus inner loop [8], [22]
and thus improve the consensus of the variables at each outer
iteration.

The dual-based methods introduce the Lagrangian function
and work in the dual space. Many classical methods can be used
to solve the dual problem, e.g., the dual subgradient ascent [23],
dual gradient ascent [24], accelerated dual gradient ascent [9],
[12], the primal-dual method [13], [25], and ADMM [26]–[31].
In general, most dual-based methods require the evaluation of
the Fenchel conjugate of the local objective function fi(x) and
thus have a larger gradient computation cost per iteration than
the primal-only algorithms for smooth distributed optimization.
For nonsmooth problems, the authors of [11], [13], [25] studied
the communication-efficient primal-dual method. Specifically,
they use the classical primal-dual method [32] in the outer
loop and the subgradient method in the inner loop. The authors
of [13] used Chebyshev acceleration [33] to further reduce the
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Non-strongly convex and smooth case
Methods Complexity of gradient computations Complexity of communications

DNGD1 O
(

1

ε5/7

)
[7] O

(
1

ε5/7

)
[7]

DN-C O

(√
L
ε

)
[8] O

(√
L
ε

1
1−σ2(W )

log 1
ε

)
[8]

Accelerated Dual Ascent O

(
L

ε
√

1−σ2(W )
log2 1

ε

)
[9] O

(√
L

ε(1−σ2(W ))
log 1

ε

)
[9]

Our APM-C O

(√
L
ε

)
O
(√

L
ε(1−σ2(W ))

log 1
ε

)
Lower Bound O

(√
L
ε

)
[10] O

(√
L

ε(1−σ2(W ))

)
[11]

Strongly convex and smooth case
Methods Complexity of gradient computations Complexity of communications

DNGD O
((

L
µ

)5/7 1
(1−σ2(W ))1.5

log 1
ε

)
[7] O

((
L
µ

)5/7 1
(1−σ2(W ))1.5

log 1
ε

)
[7]

Accelerated Dual Ascent O

(
L

µ
√

1−σ2(W )
log2 1

ε

)
3 [9] O

(√
L

µ(1−σ2(W ))
log 1

ε

)
[9], [12]

Our APM-C O
(√

L
µ log 1

ε

)
O
(√

L
µ(1−σ2(W ))

log2 1
ε

)
Lower Bound O

(√
L
µ log 1

ε

)
[10] O

(√
L

µ(1−σ2(W ))
log 1

ε

)
[12]

Convex and Nonsmooth case
Methods Complexity of subgradient computations Complexity of communications

Primal-dual method O
(

1
ε2

)
[11] O

(
1

ε
√

1−σ2(W )

)
[11]

Smoothed accelerated gradient sliding method O
(

1
ε2

)
[9] O

(
1

ε
√

1−σ2(W )

)
[9]

Our APM O
(

1
ε2

)
O

(
1

ε
√

1−σ2(W )

)
Lower Bound O

(
1
ε2

)
[13] O

(
1

ε
√

1−σ2(W )

)
[13]

TABLE I
COMPLEXITY COMPARISONS BETWEEN ACCELERATED DUAL ASCENT, DN-C, DNGD, THE PRIMAL-DUAL METHOD AND OUR METHODS (APM-C,APM)

FOR DISTRIBUTED CONVEX PROBLEMS.

computation complexity while the authors of [11] did it via
carefully setting the parameters.

Among the methods described above, the distributed Nes-
terov gradient with consensus iterations (D-NC) proposed in
[8] and the distributed Nesterov gradient descent (DNGD)
proposed in [7] employ Nesterov’s acceleration technique in
the primal space, and the accelerated dual ascent proposed
in [12] use the standard accelerated gradient descent in the
dual space. Moreover, D-NC attains the optimal gradient
computation complexity for nonstrongly convex and smooth
problems, and the accelerated dual ascent achieves the optimal
communication complexity for strongly convex and smooth
problems, which match the complexity lower bounds [10], [12].
For nonsmooth problems, the primal-dual method proposed
in [11], [13] and the smoothed accelerated gradient sliding
method in [9] achieve both the optimal communication and
subgradient computation complexities, which also match the
lower bounds [13]. We denote the communication and com-
putation complexities as the numbers of communications and
(sub)gradient computations to find an ε-optimal solution x such
that 1

m

∑m
i=1 Fi(x)−minx

1
m

∑m
i=1 Fi(x) ≤ ε, respectively.

B. Contributions

In this paper, we study the decentralized accelerated gradient
methods with near optimal complexities from the perspective
of the accelerated penalty method. Specifically, we propose
an Accelerated Penalty Method with increasing penalties
for smooth distributed optimization by employing a multi-
Consensus inner loop (APM-C). The theoretical significance of
our method is that we show the near optimal communication
complexities and the optimal gradient computation complexities

for both strongly convex and nonstrongly convex problems.
Our communication complexities are only worse by a logarithm
factor than the lower bounds.

Table I summarizes the complexity comparisons to the state-
of-the-art distributed optimization algorithms (the notations
in Table I will be specified precisely soon), namely, DNGD,
D-NC, and the accelerated dual ascent reviewed above, as well
as the complexity lower bounds. Our complexities match the
lower bounds except that the communication ones have an
extra factor of log 1

ε . The communication complexity of the
accelerated dual ascent matches ours for nonstrongly convex
problems and is optimal for strongly convex problems (thus
better than ours by log 1

ε ). On the other hand, our gradient
computation complexities match the lower bounds and they
are better than the compared methods. It should be noted that
due to term log2 1

ε , our communication complexity for strongly
convex problems is not a linear convergence rate.

Our framework of accelerated penalty method with increas-
ing penalties also applies to nonsmooth distributed optimization.
It drops the multi-consensus inner loop but employs an inner
loop with several runs of subgradient method. Both the optimal
communication and subgradient computation complexities
are achieved, which match the lower bounds for nonsmooth
distributed optimization. Although the theoretical complexities
are the same with the methods [9], [11], our method gives the
users a new choice in practice.

1The authors of [7] did not give the dependence on 1− σ2(W ). It does
not mean that their complexity has no dependence on 1− σ2(W ).
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C. Notations and Assumptions

Throughout the paper, the variable x ∈ Rn is the decision
variable of the original problem (1). We denote x(i) ∈ Rn to
be the local estimate of the variable x for agent i. To simplify
the algorithm description in a compact form, we introduce the
aggregate variable x, aggregate objective function f(x) and
aggregate gradient ∇f(x) as

x =

 xT(1)
...

xT(m)

 , f(x) =
m∑
i=1

fi(x(i)),∇f(x) =

∇f1(x(1))
T

...
∇fm(x(m))

T

 ,

where x ∈ Rm×n, whose value at iteration k is denoted by xk.
For the double loop algorithms, we denote xk,t as its value at
the kth outer iteration and tth inner iteration. Assume that the
set of minimizers is non-empty. Denote x∗ as one minimizer
of problem (1), and let x∗ = 1(x∗)T ∈ Rm×n, where 1 =
(1, 1, · · · , 1)T ∈ Rm is the vector with all ones. Denote ∂hi(x)
as the subdifferential of hi(x) at x, and specifically, ∇̂hi(x) ∈
∂hi(x) as its one subgradient. For hi, we introduce its aggregate
objective function h(x) and aggregate subgradient ∇̂h(x) as

h(x) =

m∑
i=1

hi(x(i)) and ∇̂h(x) =

 ∇̂h1(x(1))
T

...
∇̂hm(x(m))

T

 .

We use ‖ · ‖ and ‖ · ‖1 as the l2 Euclidean norm and l1 norm
for a vector, respectively. For matrices x and y, we denote
‖x‖F as the Frobenius norm, ‖x‖2 as the spectral norm and
〈x,y〉 = trace(xTy) as their inner product. Denote I ∈ Rm×m
as the identity matrix and Ni as the neighborhood of agent i
in the network. Define

α(x) = 1
m

∑m
i=1 x(i) (2)

as the average across the rows of x. Define two operators

Π = I − 1
m11T and U =

√
I −W (3)

to measure the consensus violation, where W is the weight
matrix associated to the network, which describes the informa-
tion exchange through the network. Especially, ‖Πx‖F directly
measures the distance between x(i) and α(x). We follow [12]
to define

√
A = V

√
ΛV T , given the eigenvalue decomposition

A = V ΛV T of the symmetric positive semidefinite matrix A.
We make the following assumptions for each function fi(x).
Assumption 1:

1) fi(x) is µ-strongly convex: fi(y) ≥ fi(x) +
〈∇fi(x), y − x〉 + µ

2 ‖y − x‖2. Especially, we allow µ
to be zero through this paper, and in this case we say
fi(x) is convex.

2) fi(x) is L-smooth: fi(y) ≤ fi(x) + 〈∇fi(x), y − x〉 +
L
2 ‖y − x‖

2.
In Assumption 1, µ and L are the strong-convexity constant

and smoothness constant, respectively. Assumption 1 yields
that the aggregate function f(x) is also µ-strongly convex and
L-smooth. For the nonsmooth function hi(x), we follow [25]
to make the following assumptions.

Assumption 2:

1) hi(x) is convex.
2) hi(x) is M -Lipschitz continuous: hi(y) ≤ hi(x) +〈
∇̂hi(x), y − x

〉
+M‖y − x‖.

We can simply verify that h(x) is (
√
mM)-Lipschitz

continuous. For the weight matrix W , we make the following
assumptions.

Assumption 3:
1) W ∈ Rm×m is a symmetric matrix with Wi,j 6= 0 if and

only if agents i and j are neighbors or i = j. Otherwise,
Wi,j = 0.

2) I �W � 0, and W1 = 1.
Examples satisfying Assumption 3 can be found in [20].

We denote by 1 = σ1(W ) ≥ σ2(W ) ≥ · · · ≥ σm(W ) the
spectrum of W . Note that for a connected and undirected
network, we always have σ2(W ) < 1, and 1

1−σ2(W ) is a good
indication of the network connectivity. For many commonly
used networks, we can give order-accurate estimate on 1

1−σ2(W )

[34, Proposition 5]. For example, 1
1−σ2(W ) = O(m logm) for

the geometric graph, and 1
1−σ2(W ) = O(1) for the expander

graph and Erdős−Rényi random graph. Moreover, for any
connected and undirected graph, 1

1−σ2(W ) = O(m2) in the
worst case [34].

In this paper, we focus on the communication and
(sub)gradient computation complexity development for the
proposed algorithms. We define one communication to be the
operation that all the agents exchange information with their
neighbors once, i.e.,

∑
j∈NiWijx(j) for all i = 1, 2, ...,m. One

(sub)gradient computation is defined to be the (sub)gradient
evaluations of all the agents once, i.e., ∇fi(x(i)) (∇̂hi(x(i)))
for all i.

II. DEVELOPMENT OF THE ACCELERATED PENALTY
METHOD

A. Accelerated Penalty Method for Smooth Distributed Opti-
mization

In this section, we consider the smooth distributed optimiza-
tion, i.e., hi(x) = 0 in problem (1). From the definition of Π in
(3), we know that x(1) = · · · = x(m) is equivalent to Πx = 0.
Thus, we can reformulate the smooth distributed problem as

min
x∈Rm×n

f(x) s.t. Πx = 0. (4)

Problem (4) is a standard linearly constrained convex problem,
and many algorithms can be used to solve it, e.g., the primal-
dual method [13], [25], [35], [36] and dual ascent [9], [12], [23].
In order to propose an accelerated distributed gradient method
based on the gradient of f(x), rather than the evaluation of
its Fenchel conjugate or proximal mapping, we follow [37]
to use the penalty method to solve problem (4) in this paper.
Specifically, the penalty method solves the following problem
instead:

min
x∈Rm×n

f(x) +
β

2
‖Πx‖2F , (5)

where β is a large constant. However, one big issue of the
penalty method is that problems (4) and (5) are not equivalent
for finite β. When solving problem (5), we can only obtain
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an approximate solution of (4) with small ‖Πx‖F , rather
than ‖Πx‖F → 0, and the algorithm only converges to a
neighborhood of the solution set of problem (1) [37]. Moreover,
to find an ε-optimal solution of (4), we need to pre-define a
large β of the order 1

ε [37]. Thus, the parameter setting depends
on the precision ε. When β is fixed as a constant of the order
1
ε , we can only get the ε-accurate solution after some fixed
iterations described by ε, and more iterations will not give
a more accurate solution. Please see Section II-C1 for more
details. To solve the above two problems, we use the gradually
increasing penalty parameters, i.e., at the kth iteration, we use
β = β0

ϑk
with fixed β0 and diminishing ϑk → 0. The increasing

penalty strategy has two advantages: 1) The solution of (5)
approximates that of (4) infinitely when the iteration number k
is sufficiently large. 2) The parameter setting does not depend
on the accuracy ε. The algorithm can be run without defining
the accuracy ε in advance. It can reach arbitrary accuracy if
run for arbitrarily long time.

We use the classical accelerated proximal gradient method
(APG) [38] to minimize the penalized objective in (5), i.e., at
the kth iteration, we first compute the gradient of f(x) at some
extrapolated point, and then compute the proximal mapping of
β0

2ϑk
‖Πx‖2F at some z, defined as

argmin
x∈Rm×n

β0
2ϑk
‖Πx‖2F +

L

2
‖x− z‖2F . (6)

Due to the special form of Π defined in (3), a simple
calculation yields Lϑkz+β01α(z)

T

Lϑk+β0
as the solution of (6), where

α(x) is defined in (2). However, in the distributed setting, we
can only compute α(z) approximately in finite communications.
Thus, we use the inexact APG to minimize (5), i.e., we compute
the proximal mapping inexactly. Specifically, the algorithm
framework consists of the following steps:

yk = xk +
Lθk − µ
L− µ

1− θk−1
θk−1

(xk − xk−1), (7a)

zk = yk − 1

L
∇f(yk), (7b)

xk+1 ≈ argmin
x∈Rm×n

β0
2ϑk
‖Πx‖2F +

L

2

∥∥x− zk
∥∥2
F
, (7c)

where the sequences {θk} and {ϑk} and the precision in step
(7c) will be specified in Theorems 1 and 2 latter. Now, we
consider the subproblem in procedure (7c). As discussed above,
we only need to approximate α(zk), which can be obtained
by the classical average consensus [39] or the accelerated
average consensus [40]. We only consider the accelerated
average consensus, which consists of the following iterations:

zk,t+1 = (1 + η)Wzk,t − ηzk,t−1, (8)

where we initialize at zk,0 = zk,−1 = zk. The advantage of
using the special Π in (4) is that we only need to call the
classic average consensus to solve the subproblem in (7c),
which has been well studied in the literatures, including the
extensions over directed network and time-varying network
[41]. In fact, in Lemma 6, we only require ‖zk,Tk −1α(zk)‖2F
to be within some precision for the method used in the inner
loop. Any average consensus method over undirected graph,

Algorithm 1 Accelerated Penalty Method with Consensus
(APM-C)

Initialize x0(i) = x−1(i) for all i, and η =
1−
√

1−σ2
2(W )

1+
√

1−σ2
2(W )

.

for k = 0, 1, 2, · · · do
yk(i) = xk(i) + Lθk−µ

L−µ
1−θk−1

θk−1

(
xk(i) − x

k−1
(i)

)
∀i,

zk(i) = yk(i) −
1
L∇fi(y

k
(i)) ∀i,

zk,0(i) = zk,−1(i) = zk(i) ∀i,
for t = 0, 1, · · · , Tk − 1 do
zk,t+1
(i) = (1 + η)

∑
j∈NiWijz

k,t
(j) − ηz

k,t−1
(i) ∀i,

end for
xk+1
(i) =

Lϑkz
k
(i)+β0z

k,Tk
(i)

Lϑk+β0
∀i.

end for

directed graph or time-varying graph can be used in the inner
loop, as long as it has a linear convergence.

Combing (7a)-(7c) and (8), we can give our method, which is
presented in a distributed way in Algorithm 1. We use notations
x−1 and zk,−1 in Algorithm 1 only for the writing consistency
when beginning the recursions from k = 0 and t = 0.

1) Complexities: In this section, we discuss the complexities
of Algorithm 1. We first consider the strongly convex case and
give the complexities in the following theorem.

Theorem 1: Assume that Assumptions 1 and 3 hold with µ >
0. Setting θk = θ =

√
µ
L for all ∀k, ϑk = (1−θ)k+1, and Tk =

O

(
k
√
µ/L√

1−σ2(W )

)
. Then, Algorithm 1 needs O

(√
L
µ log 1

ε

)
gradient computations and O

(√
L

µ(1−σ2(W )) log2 1
ε

)
total

communications to achieve an ε-optimal solution x such that

1

m

m∑
i=1

fi(α(x))− 1

m

m∑
i=1

fi(x
∗) ≤ ε

1

m

m∑
i=1

∥∥x(i) − α(x)
∥∥2 ≤ ε2. (9)

When we drop the strong-convexity assumption, we have
the following theorem.

Theorem 2: Assume that Assumptions 1 and 3 hold with
µ = 0. Let sequences {θk} and {ϑk} satisfy θ0 = 1,
1−θk
θ2k

= 1
θ2k−1

, and ϑk = θ2k. Setting Tk = O

(
log k√

1−σ2(W )

)
and β0 ≥ L‖∇f(x∗)‖2F . Then, Algorithm 1 needs O

(√
L
ε

)
gradient computations and O

(√
L

ε(1−σ2(W )) log 1
ε

)
total com-

munications to achieve an ε-optimal solution x such that (9)
holds.

B. Accelerated Penalty Method for Nonsmooth Distributed
Optimization

In this section, we consider the nonsmooth problem (1). From
Assumption 3 and the definition in (3), we know I � U � 0,
and x(1) = · · · = x(m) is equivalent to Ux = 0 [12]. Thus,
similar to (4), we can reformulate problem (1) as

min
x∈Rm×n

F (x) ≡ f(x) + h(x) s.t. Ux = 0. (10)
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Similar to Section II-A, we also further rewrite the problem
as a penalized problem and use APG with increasing penalties
to minimize the penalized objective F (x) + β0

2ϑk
‖Ux‖2F .

However, due to the nonsmooth term h(x), we cannot compute
the proximal mapping of h(x) + β0

2ϑk
‖Ux‖2F efficiently. Thus,

we use a slightly different strategy here. Specifically, we first
compute the gradient of f(x)+ β0

2ϑk
‖Ux‖2F at some extrapolated

point y, i.e., ∇f(y) + β0

ϑk
U2y, and then compute the inexact

proximal mapping of h(x). We describe the iterations as
follows:

yk = xk +
θk(1− θk−1)

θk−1
(xk − xk−1), (11a)

sk = ∇f(yk) +
β0
ϑk
U2yk, (11b)

xk+1≈ argmin
x∈Rm×n

h(x)+
〈
sk,x

〉
+

(
L

2
+
β0

2ϑk

)
‖x−yk‖2F. (11c)

The reason why we use U in (10), rather than Π, is that U2yk

can be efficiently computed, which corresponds to the gossip-
style communications. Otherwise, we need to compute the
average across yk(1), ..., y

k
(m), which cannot be achieved with

closed form solution in the distributed environment.
When the proximal mapping of h(x), i.e., Proxh(z) =

argminx∈Rm×n h(x)+ 1
2‖x−z‖2 for some z, has closed form

solution or can be easily computed, step (11c) has a low
computation cost, which reduces to

xk+1 = Proxh

(
yk− 1

L+β0/ϑk

(
∇f(yk)+

β0
ϑk
U2yk

))
. (12)

We can see that when we set a large penalty parameter β,
i.e., exchange β0

ϑk
with a large β such that β � L in (12),

(12) approximately reduces to xk+1 ≈ Proxh
(
yk − U2yk

)
and ∇f(yk) is flooded by the large penalty parameters. This
is another reason to use the increasing penalty parameters.

When the proximal mapping of h(x) does not have a
closed form solution, we borrow the idea of gradient and
communication sliding proposed in [25], [42]–[44], which skips
the computations of ∇f and the inter-node communications
from time to time so that only O(1/ε) gradient evaluations
and communications are needed in the O(1/ε2) iterations
required to solve problem (10). Specifically, we incorporate a
subgradient descent procedure to solve the subproblem in (11c)
with a sliding period Tk, which is also adopted by [13]. The
subgradient descent is described as follows for Tk iterations:

zk,t+1 = argmin
z∈Rm×n

〈
∇̂h(zk,t), z

〉
+
〈
sk, z

〉
+

(
L

2
+
β0

2ϑk

)
‖z−yk‖2F +

1

2ηk
‖z−zk,t‖2F .

We describe the method in a distributed way in Algorithm 2.
1) Complexities: Introduce constants R1 and R2 such that

‖x0(i) − x
∗‖2 ≤ R2

1 and ‖∇fi(x∗)‖2 ≤ R2
2 for all i, (13)

and assume R1 ≥ 1 for simplicity. Then, we describe the
convergence rate for Algorithm 2 in the following theorem.

Theorem 3: Assume that Assumptions 1, 2 and 3 hold
with µ = 0. Let sequences {θk} and {ϑk} satisfy θ0 = 1,

Algorithm 2 Accelerated Penalty Method (APM)

Initialize x0(i) = x−1(i) , and z−1,T−1

(i) = x0(i) for all i.
for k = 0, 1, 2, · · · ,K do
yk(i) = xk(i) + θk(1−θk−1)

θk−1
(xk(i) − x

k−1
(i) ) ∀i,

sk(i) = ∇fi(yk(i)) + β0

ϑk

(
yk(i) −

∑m
j=1Wi,jy

k
(j)

)
∀i,

zk,0(i) = z
k−1,Tk−1

(i) ∀i,
for t = 0, 1, · · · , Tk − 1 do
zk,t+1
(i) = argminz∈Rn

〈
∇̂hi(zk,t(i) ) + sk(i), z

〉
+
(
L
2 + β0

2ϑk

)
‖z−yk(i)‖

2+ 1
2ηk
‖z−zk,t(i) ‖

2 ∀i.
end for
xk+1
(i) =

∑Tk−1

t=0 zk,t+1
(i)

Tk
∀i.

end for

1−θk
θk

= 1
θk−1

, and ϑk = θk. Set Tk = K(1 − σ2(W )),

ηk = θk

KM
√

1−σ2(W )
, and β0 = max{M,L}√

1−σ2(W )
, where K is the

number of outer iterations. Then, for Algorithm 2, we have

1

m

m∑
i=1

Fi
(
α(xK)

)
− 1

m

m∑
i=1

Fi(x
∗)

≤ β0
K

(
31 +

8

K
√

1− σ2(W )

)(
R1 +

R2

L

)2

,

and

1

m

m∑
i=1

∥∥∥xK(i) − α(xK)
∥∥∥2 ≤ 16β2

0

K2M2

(
R1 +

R2

L

)2

.

Consider the simple problem of computing the average
of x(1), · · · , x(m). The accelerated averaged consensus [40]

needs O
(

1√
1−σ2(W )

log 1
ε

)
iterations to find an ε-accurate

solution. Thus, it is reasonable to assume K ≥ 1√
1−σ2(W )

.

Moreover, from the L-smoothness of fi(x), we know R2 is
often of the order O(LR1). Thus, Theorem 3 establishes

the O

(
max{M,L}
ε
√

1−σ2(W )

)
communication complexity and the∑K

k=1 Tk = K2(1 − σ2(W )) = O
(

max{M,L}2
ε2

)
subgradient

computation complexity such that (9) holds for nonsmooth
distributed optimization.

In Theorem 3, we set Tk and ηk dependent on the number of
outer iterations. As explained in Section II-A, it is a unpractical
parameter setting and moreover, the large Tk and 1

ηk
make the

algorithm slow in practice. In the following corollary, we give
a more reasonable setting of the parameters at an expense of
higher complexities by the order of log 1

ε , i.e., logK.
Corollary 1: Under the settings in Theorem 3 but with

Tk = 1−σ2(W )
θk

and ηk =
θ2k

M
√

1−σ2(W )
, we have

1

m

m∑
i=1

Fi
(
α(xK)

)
− 1

m

m∑
i=1

Fi(x
∗)

≤ β0 logK

K

(
31 +

8

K
√

1− σ2(W )

)(
R1 +

R2

L

)2

,
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and

1
m

∑m
i=1

∥∥∥xK(i) − α(xK)
∥∥∥2 ≤ 16β2

0 logK
K2M2

(
R1 + R2

L

)2
.

When f(x) is strongly convex, we can prove a faster O
(

1
k2

)
convergence rate for Algorithm 2 with θk = 2

k+2 and ϑk = θ2k.
However, the quickly diminishing step-size in step (11c) makes
the algorithm slow in practice. So we omit the discussion for
the strongly convex case.

C. Relations of APM-C and APM to the Existing Algorithm
Frameworks

1) Difference from the classical penalty method: To the best
of our knowledge, most traditional work analyze the penalty
method with a fixed penalty parameter [45], [46]. Let’s discuss
the disadvantage of the large and fixed penalty parameter. Take
problem (4) as an example. Let {x∗, λ∗} be a pari of KKT
point of problem (4) and x̂∗ be the minimizer of problem (5),
from the proof in [45, Proposition 10], we have

f(x∗) = f(x∗) +
β

2
‖Πx∗‖2F ≥ f(x̂∗) +

β

2
‖Πx̂∗‖2F .

So for any ε-accurate solution x of problem (5), we have

f(x) +
β

2
‖Πx‖2F − f(x∗)

≤f(x) +
β

2
‖Πx‖2F − f(x̂∗)− β

2
‖Πx̂∗‖2F ≤ ε.

On the other hand, since x∗ = argminx f(x) + 〈λ∗,Πx〉 and
Πx∗ = 0, we have

f(x∗) = f(x∗) + 〈λ∗,Πx∗〉 ≤ f(x) + 〈λ∗,Πx〉
⇒ − ‖λ∗‖F ‖Πx‖F ≤ f(x)− f(x∗).

So β
2 ‖Πx‖2F − ‖λ∗‖F ‖Πx‖F ≤ ε, which leads to

‖Πx‖F ≤
2‖λ∗‖F
β

+

√
2ε

β
= O(ε+

√
εε)

and

|f(x)− f(x∗)| ≤ max{ε, ε+
√
εε}

by β = 1
ε . We can see that the accuracy is dominated by

max{ε, ε}, and more iterations with smaller ε will not produce
a more accurate solution.

On the other hand, even if ε = 0 and x = x̂∗ with infinite
iterations, we have ∇f(x) + βΠx = 0, which only leads to
‖Πx‖F = ε‖∇f(x)‖F = O(ε) and |f(x)− f(x∗)| ≤ ε, rather
than ‖Πx‖F = 0 and |f(x)− f(x∗)| = 0.

2) Difference from the classical accelerated first-order
algorithms: We extend the classical accelerated gradient
method [38], [47]–[50] from the unconstrained problems to
the linearly constrained problems via the perspective of the
penalty method. However, since we use the increasing penalty
parameters at each iteration, i.e., the penalized objective varies
at different iterations, the conclusion in [38], [49], [50] for the
unconstrained problems cannot be directly used for procedures
(7a)-(7c) and (11a)-(11c). The increasing penalty parameters
make the convergence analysis more challenging.

3) Difference from the accelerated gradient sliding method:
[9] combined Nesterov’s smoothing technique [51] with the

accelerated gradient sliding methods [42]–[44] to solve the
nonsmooth problem (10) with f(x) = 0. In fact, when fixing
the penalty parameter as a large one of the order O(1/ε),
Algorithm 2 is similar to the one in [9, Section 6.3]. However,
our method adopts increasing penalty parameters such that it
avoids having to set a large inner iteration number Tk and
a small step-size ηk at the beginning of the outer loop, as
shown in Corollary 1. On the other hand, when f(x) 6= 0, as
explained in Section II-B, ∇f(yk) is flooded if we set a large
and fixed penalty parameter.

4) Difference from the D-NC and D-NG in [8]: Algorithm
1 can be seen as an improvement over the D-NC proposed in
[8]. Both Algorithm 1 and D-NC use Nesterov’s acceleration
technique and multi-consensus, and both attain the optimal
computation complexity for the nonstrongly convex problems.
However, Algorithm 1 is motivated by a constraint-penalty
approach while D-NC is developed from the inexact accelerated
gradient method [49] directly. Moreover, Algorithm 1 can solve
both the strongly convex and nonstrongly convex problems
while [8] only studied the nonstrongly convex case.

As for Algorithm 2, consider the simple case with h(x) = 0
and β0

ϑk
= k+1

c , then steps (11b) and (11c) become

xk+1 =
Lyk + (k + 1)Wyk/c

L+ (k + 1)/c
− ∇f(yk)

L+ (k + 1)/c
.

Thus, when (k + 1)/c � L, we have xk+1 ≈ Wyk −
c

k+1∇f(yk) and it approximates the D-NG in [8]. Algo-
rithm 2 gives a different explanation of the D-NG, and it
improves the D-NG in the sense that it handles a possible
nondifferentiable function hi(x). The complexity of D-NG
is O

(
1

ε(1−σ2(W ))1+ξ
log 1

ε

)
, where ξ is a small constant. Our

complexity, i.e., O
(

1

ε
√

1−σ2(W )

)
, is better because theirs has

the extra log 1
ε factor and is more sensitive to 1− σ2(W ).

III. PROOF OF THEOREMS

A. Supporting Lemmas

Before providing a comprehensive convergence analysis for
Algorithms 1 and 2, we first present some useful technical
lemmas. We first give the following easy-to-identify identifies.

Lemma 1: For any x,y, z,w ∈ Rm×n, we have the
following two identities:

2〈x−z,y−z〉=‖x−z‖2F+‖y−z‖2F−‖x−y‖2F ,
2〈x−z,y−w〉=‖y−z‖2F−‖w−z‖2F+‖x−w‖2F−‖x−y‖2F .

In the following Lemma, we bound the Lagrange multiplier,
which is useful for the complexity analysis in the distributed
optimization community.

Lemma 2: Assume that Assumptions 1, 2 and 3 hold with
µ ≥ 0. Then, we have the following properties:

1) There exists a pair of KKT points (x∗, λ∗) of saddle point
problem minx maxλ f(x) + 〈λ,Πx〉, such that ‖λ∗‖F ≤
‖∇f(x∗)‖F .
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2) There exists a pair of KKT points (x∗, λ∗) of saddle point
problem minx maxλ f(x) + 〈λ,Ux〉, such that ‖λ∗‖F ≤
‖∇f(x∗)‖F√

1−σ2(W )
.

3) There exists a pair of KKT points (x∗, λ∗) of saddle point
problem minx maxλ F (x) + 〈λ,Ux〉, such that ‖λ∗‖F ≤√
mM+‖∇f(x∗)‖F√

1−σ2(W )
.

The proof can be found in [25, Theorem 2]. The following
lemma is a corollary of the saddle point property.

Lemma 3: [52] If f(x) is convex and (x∗, λ∗) is a pair
of KKT points of saddle point problem minx maxλ f(x) +
〈λ,Ax〉, then we have f(x)− f(x∗) + 〈λ∗, Ax〉 ≥ 0 for all x.

The following lemma bounds the consensus violation of
‖Πx‖F from ‖Ux‖F .

Lemma 4: Assume that Assumption 3 holds. Then, we have
‖Πx‖F≤ 1√

1−σ2(W )
‖Ux‖F .

Proof 1: From Assumption 3, we know U1 = 0, U = UT ,
and rank(U) = m− 1. For any x ∈ Rm×n, denote x = Πx =
x− 1

m11Tx. Since 1Tx = 0, we know x is orthogonal to the
null space of U , and thus it belongs to the row (i.e., column)
space of U . Let V ΣV T = U be its economical SVD with
V ∈ Rm×(m−1). Then we have

‖Ux‖2F = ‖Ux‖2F =

n∑
i=1

xTi U
2xi =

n∑
i=1

(V Txi)
TΣ2(V Txi)

≥ (1− σ2(W ))

n∑
i=1

‖V Txi‖2F = (1− σ2(W ))‖V Tx‖2F

a
= (1− σ2(W ))‖x‖2F = (1− σ2(W ))‖Πx‖2F ,

where we denote xi to be the ith column of x, and a
= follows

from the fact that x belongs to the column space of U , i.e.,
there exists α ∈ R(m−1)×n such tht x = V α. �

At last, we present the following lemma, which can be used
to analyze the algorithms with inexact subproblem computation.

Lemma 5: [50] Assume that (sk) is a sequence with in-
creasing scalars and (vk), (αi) are sequences with nonnegative
scalars, v20 ≤ s0. If v2k ≤ sk +

∑k
i=1 αivi, then we have

vk ≤ 1
2

∑k
i=1 αi +

√(
1
2

∑k
i=1 αi

)2
+ sk.

B. Complexity Analysis for Algorithm 1

1) Inner Loop: Before proving the convergence of procedure
(7a)-(7c), we first establish the required precision to approxi-
mate α(zk) for an εk-accurate solution of the subproblem in
(7c).

Lemma 6: Let zk,Tk be obtained by (8) and xk+1 =
Lϑkz

k+β0z
k,Tk

Lϑk+β0
. If ‖zk,Tk−1α(zk)T ‖2F ≤

2ϑkεk
β0

, then we have

L

2

∥∥xk+1 − zk
∥∥2
F

+
β0

2ϑk
‖Πxk+1‖2F

≤ min
x∈Rm×n

L

2

∥∥x− zk
∥∥2
F

+
β0

2ϑk
‖Πx‖2F + εk.

(14)

Proof 2: Define xk,∗ = argminx
L
2 ‖x−zk‖2F + β0

2ϑk
‖Πx‖2F ,

x̃k,∗ = 1
m11Txk,∗, and z̃k = 1

m11T zk. From the optimality
condition of xk,∗, we have

0 = L(xk,∗ − zk) +
β0
ϑk

Π2xk,∗. (15)

From Π = Π2 and its definition, we have 0 = L(xk,∗ −
zk) + β0

ϑk
(xk,∗ − x̃k,∗), which leads to xk,∗ = Lϑkz

k+β0x̃
k,∗

Lϑk+β0
.

Multiplying both sides of (15) by 1
m11T , and using 1TΠ = 0,

we have x̃k,∗ = z̃k, which further gives xk,∗ = Lϑkz
k+β0z̃

k

Lϑk+β0
.

On the other hand, we have

L

2

∥∥xk+1 − zk
∥∥2
F

+
β0

2ϑk
‖Πxk+1‖2F

− L

2

∥∥xk,∗ − zk
∥∥2
F
− β0

2ϑk
‖Πxk,∗‖2F

a
=L

〈
xk,∗ − zk,xk+1 − xk,∗

〉
+
L

2
‖xk+1 − xk,∗‖2F

+
β0
ϑk

〈
Π2xk,∗,xk+1−xk,∗

〉
+
β0

2ϑk
‖Π(xk+1−xk,∗)‖2F

b
=
L

2
‖xk+1 − xk,∗‖2F +

β0
2ϑk
‖Π(xk+1 − xk,∗)‖2F

c
=

β2
0

(Lϑk+β0)2

(
L

2
‖zk,Tk− z̃k‖2F +

β0
2ϑk
‖Π(zk,Tk− z̃k)‖2F

)
d
≤ β2

0

2ϑk(Lϑk + β0)
‖zk,Tk− z̃k‖2F ≤

β0
2ϑk
‖zk,Tk− z̃k‖2F .

(16)

where we use Lemma 1 in a
=, (15) in b

=, the definition of xk+1

and xk,∗ = Lϑkz
k+β0z̃

k

Lϑk+β0
in c

=, and ‖Πz‖F ≤ ‖z‖F in
d
≤. �

Now we consider the iteration number of the accelerated
average consensus in (8) to solve the subproblem in (7c) such
that (14) is satisfied. From [40, Proposition 3], we have

‖zk,Tk − 1α(zk)T ‖F ≤

(
σ2(W )

1 +
√

1− σ2
2(W )

)Tk
‖Πzk‖F (17)

≤

(
σ2(W )

1+
√

1−σ2(W )

)Tk
‖Πzk‖F =

(
1−
√

1−σ2(W )
)Tk
‖Πzk‖F.

Thus, from Lemma 6, we only need

Tk =
1

−2 log
(

1−
√

1− σ2(W )
) log

β0‖Πzk‖2F
2ϑkεk

(18)

such that (14) is satisfied.
At last, we study the property when the proximal mapping

in (7c) is inexactly computed. When it is computed exactly,
i.e., εk = 0 in (14), we have L(xk+1 − zk) + β0

ϑk
Π2xk+1 = 0.

However, when it is computed inexactly, we should modify
the conclusion accordingly. Specifically, we give the following
lemma.

Lemma 7: Assume that (14) holds. Then, there exists δk

with ‖δk‖F ≤
√

2εk
L and β0

ϑk
‖Πδk‖2F ≤ 2εk such that

L(xk+1 − zk + δk) +
β0
ϑk

Π2(xk+1 + δk) = 0. (19)

Proof 3: Define δk = xk,∗ − xk+1. From (14) and equation
b
= in (16), we have ‖δk‖F ≤

√
2εk
L and β0

ϑk
‖Πδk‖2F ≤ 2εk.

From (15) and the definition of δk, we have (19). �
2) Outer Loop: Now we are ready to analyze procedure

(7a)-(7c). Define

wk+1 ≡ xk+1

θk
− 1− θk

θk
xk for any k ≥ 0 and w0 = x0.
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From the definition of yk in (7a), we can give the following
easy-to-identify identities.

Lemma 8: For procedure (7a)-(7c), we have

x∗ +
(1− θk)L

Lθk − µ
xk − L− µ

Lθk − µ
yk = x∗ −wk,

θkx
∗ + (1− θk)xk − xk+1 = θk

(
x∗ −wk+1

)
.

Let (x∗, λ∗) be a pair of KKT points of saddle point problem
minx maxλ f(x) + 〈λ,Πx〉 satisfying Lemma 2. Define

ρk+1 = f(xk+1)− f(x∗) +
〈
λ∗,Πxk+1

〉
. (20)

From Lemma 3, we know ρk+1 ≥ 0.
We first give the following lemma, which describes a

progress in one iteration of procedure (7a)-(7c).
Lemma 9: Assume that Assumption 1 holds with µ ≥ 0. Let

sequences {θk} and {ϑk} satisfy 1−θk
ϑk

= 1
ϑk−1

and θk ≥ µ
L .

Then, under the assumption of (14), we have

ρk+1 +
ϑk
2β0

∥∥∥∥β0ϑkΠxk+1 − λ∗
∥∥∥∥2
F

+
Lθ2k

2
‖wk+1 − x∗‖2F

≤(1− θk)ρk +
ϑk
2β0

∥∥∥∥ β0
ϑk−1

Πxk − λ∗
∥∥∥∥2
F

+ εk

+
(Lθk − µ)θk

2

∥∥wk − x∗
∥∥2
F

+ Lθk

√
2εk
L
‖wk+1 − x∗‖F .

(21)

Proof 4: From the smoothness and convexity of f(x), we
have

f(xk+1)

≤f(yk) +
〈
∇f(yk),xk+1 − yk

〉
+
L

2
‖xk+1 − yk‖2F

=f(yk)+
〈
∇f(yk),x−yk

〉
+
〈
∇f(yk),xk+1−x

〉
+
L

2
‖xk+1−yk‖2F

≤f(x)− µ
2
‖x−yk‖2F +

〈
∇f(yk),xk+1−x

〉
+
L

2
‖xk+1−yk‖2F .

(22)

Plugging zk = yk − 1
L∇f(yk) and (19) into the above

inequality, we have

f(xk+1)− f(x)

≤β0
ϑk

〈
Πxk+1 + Πδk,Πx−Πxk+1

〉
+ L

〈
xk+1 − yk,x− yk

〉
+ L

〈
δk,x− xk+1

〉
− µ

2
‖x− yk‖2F −

L

2
‖xk+1 − yk‖2F

When we apply (23) first with x = xk and then with x = x∗,
we obtain two inequalities. Multiplying the first inequality by
(1− θk), multiplying the second by θk, adding them together
with

〈
λ∗,Πxk+1 − (1− θk)Πxk

〉
to both sides, and using

Πx∗ = 0, we have

f(xk+1)− (1− θk)f(xk)− θkf(x∗)

+
〈
λ∗,Πxk+1 − (1− θk)Πxk

〉

≤
〈
β0
ϑk

(Πxk+1 + Πδk)− λ∗, (1− θk)Πxk −Πxk+1

〉
+ L

〈
xk+1 − yk, (1− θk)xk + θkx

∗ − yk
〉

+ L
〈
δk, (1− θk)xk + θkx

∗ − xk+1
〉

− µθk
2
‖x∗ − yk‖2F −

L

2
‖xk+1 − yk‖2F

a
=
ϑk
β0

〈
β0
ϑk

(Πxk+1 + Πδk)− λ∗, β0
ϑk−1

Πxk − β0
ϑk

Πxk+1

〉
+ L

〈
xk+1 − yk, (1− θk)xk + θkx

∗ − yk
〉

+ L
〈
δk, (1− θk)xk + θkx

∗ − xk+1
〉

− µθk
2
‖x∗ − yk‖2F −

L

2
‖xk+1 − yk‖2F ,

where we use 1−θk
ϑk

= 1
ϑk−1

in a
=. Applying the identities in

Lemma 1 to the two inner products, we have

ρk+1 − (1− θk)ρk

≤ ϑk
2β0

[∥∥∥∥ β0
ϑk−1

Πxk−λ∗
∥∥∥∥2
F

+

∥∥∥∥β0ϑkΠxk+1−β0
ϑk

(Πxk+1+Πδk)

∥∥∥∥2
F

−
∥∥∥∥β0ϑkΠxk+1−λ∗

∥∥∥∥2
F

−
∥∥∥∥ β0
ϑk−1

Πxk− β0
ϑk

(Πxk+1+Πδk)

∥∥∥∥2
F

]
+
L

2

[
‖(1−θk)xk+θkx∗−yk‖2F−‖(1−θk)xk+θkx∗−xk+1‖2F

]
+ L

〈
δk, (1− θk)xk + θkx

∗ − xk+1
〉
− µθk

2
‖x∗ − yk‖2F

b
≤ ϑk

2β0

[∥∥∥∥ β0
ϑk−1

Πxk−λ∗
∥∥∥∥2
F

−
∥∥∥∥β0ϑkΠxk+1−λ∗

∥∥∥∥2
F

+
β2
0

ϑ2k
‖Πδk‖2F

]

+
Lθ2k

2

[∥∥∥∥ykθk − 1− θk
θk

xk − x∗
∥∥∥∥2
F

− ‖wk+1 − x∗‖2F

]
− Lθk

〈
δk,wk+1 − x∗

〉
− µθk

2
‖x∗ − yk‖2F .

where
b
≤ follows from the second identity in Lemma 8. By

reorganizing the terms in yk

θk
− 1−θk

θk
xk−x∗ carefully, we have

Lθ2k
2

∥∥∥∥ykθk − 1− θk
θk

xk − x∗
∥∥∥∥2
F

=
Lθ2k

2

∥∥∥∥ µLθk(yk−x∗)+
(
1− µ

Lθk

)(
L− µ
Lθk−µ

yk−(1−θk)L
Lθk−µ

xk−x∗
)∥∥∥∥2
F

c
≤µθk

2
‖yk−x∗‖2F+

(Lθk−µ)θk
2

∥∥∥∥ L− µLθk−µ
yk−(1−θk)L

Lθk−µ
xk−x∗

∥∥∥∥2
F

d
=
µθk
2
‖yk − x∗‖2F +

(Lθk − µ)θk
2

∥∥wk − x∗
∥∥2
F
,

where we let µ
Lθk
≤ 1, and use Jensen’s inequality for ‖ ·‖2F in

c
≤, and the first identify in Lemma 8 in d

=. Plugging it into the
above inequality and using the bounds for ‖δk‖F and ‖Πδk‖F
in Lemma 7, we get (21). �

Due to the term ‖wk+1 − x∗‖F on the right hand side of
(21), recursion (21) cannot be directly telescoped unless we
assume the boundness of ‖wk+1−x∗‖F . Lemma 5 can be used
to avoid such boundness assumption. Now, we use Lemmas 9
and 5 to analyze procedure (7a)-(7c). The following theorem
shows the convergence for strongly convex problems.
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Theorem 4: Assume that Assumptions 1, 3 and (14) hold with
µ > 0, and εk ≤ (1−(1+τ)θ)k+1 holds for all k ≤ K, where
1 > τ > 0 can be any small constant. Let sequences {θk} and
{ϑk} satisfy θk = θ =

√
µ
L for all k, and ϑk = (1 − θ)k+1.

Then, we have

f(xK+1)− f(x∗) ≤ C2(1− θ)K+1,

‖ΠxK+1‖F ≤ C3(1− θ)K+1,

‖xK+1 − x∗‖2F ≤ C4(1− θ)K+1,

f
(
α(xK+1)

)
− f(x∗) ≤ C5(1− θ)K+1 +

LC2
3

2
(1− θ)2K+2,

where C2 = C6 + ‖λ∗‖FC3, C3 =
√
2β0C6+‖λ∗‖F

β0
, C4 =

2C6

µ , C5 = (‖∇f(x∗)‖F + L
√
C4)C3 + C2 and C6 = 18

τ2θ2 +

2
(
f(x0)− f(x∗) +

〈
λ∗,Πx0

〉)
+ 1
β0
‖β0Πx0−λ∗‖2F+µ‖x0−

x∗‖2F .
Proof 5: The setting of θ =

√
µ
L satisfies

(Lθ − µ)θ = Lθ2(1− θ). (23)

Sequences {θk} and {ϑk} satisfy the requirement in Lemma
9. Define the Lyapunov function `k+1 as follows:

`2k+1 =
ρk+1 + ϑk

2β0

∥∥∥ β0

ϑk
Πxk+1 − λ∗

∥∥∥2
F

+ Lθ2

2 ‖w
k+1 − x∗‖2F

(1− θ)k+1
,

where ρk is defined in (20). Dividing both sides of (21) by
(1− θ)k+1, and using (23) and ϑk = (1− θ)ϑk−1, we have

`2k+1 − `2k ≤
εk

(1− θ)k+1
+

Lθ

(1− θ)k+1

√
2εk
L
‖wk+1 − x∗‖F .

Summing over k = 0, 1, · · · ,K, we have

`2K+1 − `20

≤
K∑
k=0

εk
(1− θ)k+1

+

K∑
k=0

Lθ

(1− θ)k+1

√
2εk
L
‖wk+1 − x∗‖F

=

K∑
k=0

εk
(1− θ)k+1

+

K+1∑
k=1

2
√
εk−1

(1− θ)k/2

√
Lθ2

2(1− θ)k
‖wk − x∗‖F

a
≤

K∑
k=0

εk
(1− θ)k+1

+
K+1∑
k=1

2
√
εk−1

(1− θ)k/2
`k,

where we use the definition of `k and ρk ≥ 0 in
a
≤. Letting

sk+1 =
∑k
t=0

εt
(1−θ)t+1 + `20 and αk =

2
√
εk−1

(1−θ)k/2 , then we have

`2k+1 ≤ sk+1 +
∑k+1
i=1 αi`i and `20 = s0. From Lemma 5, we

have `k+1 ≤ 1
2

∑k+1
i=1 αi +

√(
1
2

∑k+1
i=1 αi

)2
+ sk+1. Letting

εk ≤ (1− (1 + τ)θ)k+1, and after some simple computing, we
obtain

`2K+1 ≤

(
K+1∑
k=1

2
√
εk−1

(1− θ)k/2

)2

+
K∑
k=0

2εk
(1− θ)k+1

+ 2`20

≤ 18

τ2θ2
+ 2`20 ≡ C6.

From the definition of `K+1 and ρk ≥ 0, we get the
second conclusion. From the definition of ρk+1, we have
f(xk+1)− f(x∗) ≤ ρk+1 + ‖λ∗‖F ‖Πxk+1‖F , which further

leads to the first conclusion. Since f(x) + 〈λ∗,Πx〉 is µ-
strongly convex over x and x∗ = argminx f(x)+〈λ∗,Πx〉, we
have µ

2 ‖x
K+1−x∗‖2F ≤ f(xK+1) +

〈
λ∗,ΠxK+1

〉
−f(x∗)−

〈λ∗,Πx∗〉 = ρK+1 ≤ C6(1− θ)K+1, i.e., the third conclusion.
For the fourth conclusion, we have

f
(
α(xK+1

)
− f(x∗)

=f
(
α(xK+1

)
− f(xK+1) + f(xK+1)− f(x∗)

b
≤
〈
∇f(xK+1),−ΠxK+1

〉
+
L

2

∥∥ΠxK+1
∥∥2
F

+f(xK+1)−f(x∗)

c
≤
(
‖∇f(x∗)‖F+L‖xK+1−x∗‖F

)
‖ΠxK+1‖F+

L

2
‖ΠxK+1‖2F

+ f(xK+1)− f(x∗),

(24)

where we use the smoothness of f(x) and the definition of Π

in
b
≤ and

c
≤. �

In the following theorem, we consider the case that f(x) is
nonstrongly convex.

Theorem 5: Assume that Assumptions 1, 3 and (14) hold
with µ = 0 and εk ≤ 1

(k+1)6 for all k ≤ K. Let sequences
{θk} and {ϑk} satisfy θ0 = 1, 1−θk

θ2k
= 1

θ2k−1
, and ϑk = θ2k.

Then, we have

f(xK+1)− f(x∗) ≤ C7

(K + 2)2
,

‖ΠxK+1‖F ≤
C8

(K + 2)2
,

‖xK+1 − x∗‖2F ≤ C9,

f
(
α(xK+1)

)
− f(x∗) ≤ C10

(K + 2)2
+

LC2
8

2(K + 2)4
,

where C7 = 4C11 + ‖∇f(x∗)‖FC8, C8 =
4
√
2β0C11+4‖∇f(x∗)‖F

β0
, C9 = 2C11

L , C10 = (‖∇f(x∗)‖F +

L
√
C9)C8 + C7, and C11 = 5 +

‖∇f(x∗)‖2F
β0

+ L‖x0 − x∗‖2F .
Proof 6: Define the following Lyapunov function `k+1

`2k+1 =
ρk+1

θ2k
+

1

2β0

∥∥∥∥β0ϑkΠxk+1 − λ∗
∥∥∥∥2
F

+
L

2
‖wk+1 − x∗‖2F .

Dividing both sides of (21) by θ2k, using ϑk = θ2k and 1−θk
θ2k

=
1

θ2k−1
, we have

`2k+1 − `2k ≤
εk
θ2k

+
L

θk

√
2εk
L
‖wk+1 − x∗‖F .

Similar to the proof of Theorem 4, we obtain

`2K+1 − `20 ≤
K∑
k=0

εk
θ2k

+

K+1∑
k=1

2
√
εk−1

θk−1
`k.

From Lemma 5 and a similar induction to Theorem 4, we have

`2K+1

≤

(
K+1∑
k=1

2
√
εk−1

θk−1

)2

+
K∑
k=0

2εk
θ2k

+ 2`20

a
≤

(
K+1∑
k=1

2k
√
εk−1

)2

+
K∑
k=0

2εk(k + 1)2+
‖λ∗‖2F
β0

+L‖w0−x∗‖2F ,
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where we use 1
k+1 ≤ θk ≤ 2

k+2 and 1
θ2−1

= 0 in
a
≤, which

can be derived from 1−θk
θ2k

= 1
θ2k−1

and θ0 = 1. Letting

εk ≤ 1
(k+1)4+2τ , then we have

∑K
k=0 2εk(k + 1)2 ≤ 2

1+2τ

and
∑K+1
k=1 2k

√
εk−1 ≤ 2

τ . So

`2K+1 ≤
4

τ2
+

4

1 + 2τ
+
‖λ∗‖2F
β0

+ L‖x0 − x∗‖2F ≡ C11,

where we let τ = 1 for simplicity and use Lemma 2. From
the definition of wk+1 = xk+1

θk
− 1−θk

θk
xk, we have ‖xk+1 −

x∗‖F = ‖θkwk+1 +(1−θk)xk−x∗‖F ≤ θk‖wk+1−x∗‖F +
(1 − θk)‖xk − x∗‖F . By induction, we can prove ‖xK+1 −
x∗‖2F ≤

2C11

L for any k. Similar to the proof of Theorem 4
and using Lemma 2, we have the remaining conclusions. �

3) Total Numbers of Communications and Computations:
Based on Theorems 4 and 5, and the inner loop iteration number
given in (18), we can establish the gradient computation and
communication complexities for Algorithm 1. We first consider
the strongly convex case and prove Theorem 1.

Proof 7: ‖Πzk‖F appears in (18). We first prove
that ‖Πzk‖F is bounded for any k given Tk =

1

−2 log
(
1−
√

1−σ2(W )
) log

(
β0

2ϑkεk

(
1
L‖∇f(x∗)‖F + 6

√
C4

)2)
,

where C4 is defined in Theorem 4. We prove
‖Πzk‖F ≤ 1

L‖∇f(x∗)‖F + 6
√
C4 by induction.

The case for k = 0 can be easily verified since
‖Πz0‖F = ‖Πx0 − Πx∗‖F ≤ ‖x0 − x∗‖F . Assume
that the conclusion holds for all k ≤ K. Then from (18) we
know that (14) holds for k ≤ K. From Theorem 4, we have
‖xK − x∗‖F ≤

√
C4 and ‖xK+1 − x∗‖F ≤

√
C4. Thus,

‖ΠzK+1‖F
a
≤‖ΠyK+1‖F +

1

L
‖∇f(yK+1)‖F

b
≤‖Π(yK+1 − x∗)‖F +

1

L

(
‖∇f(x∗)‖F + L‖yK+1 − x∗‖F

)
≤ 1

L
‖∇f(x∗)‖F + 2‖yK+1 − x∗‖F

c
≤ 1

L
‖∇f(x∗)‖F + 4‖xK+1 − x∗‖F + 2‖xK − x∗‖F

≤ 1

L
‖∇f(x∗)‖F + 6

√
C4,

where we use (7b) in
a
≤, the smoothness of f(x) and Πx∗ = 0

in
b
≤, and yk = xk +

√
L−√µ√
L+
√
µ

(xk − xk−1) in
c
≤, which is

equivalent to (7a) with the special setting of θk. So we get the
conclusion.

From Theorem 4, to find a solution satisfying (9), we know
that the number of gradient computations, i.e., the number of
outer iterations, is O

(√
L
µ log 1

ε

)
. From (18), we have

Tk =O

 1

− log
(

1−
√

1− σ2(W )
) log

1

(1− θ)2(k+1)


=O

 k log
(

1−
√
µ/L

)
log
(

1−
√

1− σ2(W )
)
 c

= O

(
k
√
µ/L√

1− σ2(W )

)
,

where we use log
(

(1−
√

1−σ2(W ))
)
≈−

√
1−σ2(W ) and

log
(

1−
√
µ/L

)
≈−

√
µ/L in c

= from Taylor expansion when√
1− σ2(W ) and

√
µ/L are small. Thus, the total number of

communications, i.e., the total number of inner iterations, is
√
L/µ log 1

ε∑
k=0

O

(
k

√
µ

L(1−σ2(W ))

)
=O

(√
L

µ(1−σ2(W ))
log2 1

ε

)
.

The proof is complete. �
Similar to the proof of Theorem 1, we can also prove

Theorem 2 for the nonstrongly case.
Proof 8: Similar to the above proof of Theorem 1 and given

the similar Tk replacing C4 by C9, we know that ‖Πzk‖F
is also bounded for all k. Let β0 ≥ L + L‖∇f(x∗)‖2F , and
assume L ≥ 1 and ‖∇f(x∗)‖F ≥ 1 for simplicity. Using the
constants in (13), we know C7 = O(mLR2

1), C8 = O(
√
mR1),

C9 = O(mR2
1), and C10 = O(mLR2

1). Let ε =
LR2

1

(K+2)2 . From

Theorem 5, we know that Algorithm 1 needs O
(√

L
ε

)
gradient

computations such that 1
m

(
f
(
α(xK+1)

)
− f(x∗)

)
≤ ε and

1
m‖ΠxK+1‖2F ≤ ε2, i.e., (9) holds. From (18), we have

Tk =O

 log(k + 1)8

−log
(
1−
√

1−σ2(W )
)
=O

(
log k√

1−σ2(W )

)
,

Thus, the total number of communications is

K∑
k=0

Tk=

√
L/ε∑
k=0

O

(
log k√

1−σ2(W )

)
=O

(√
L

ε(1− σ2(W ))
log

1

ε

)
.

The proof is complete. �

C. Complexity Analysis for Algorithm 2

Now we prove Theorem 3. Similar to Section III-B, we
define

ρk+1 = F (xk+1)− F (x∗) +
〈
λ∗, Uxk+1

〉
,

where (x∗, λ∗) is a pair of KKT points of saddle point problem
minx maxλ F (x) + 〈λ,Ux〉 satisfying Lemma 2. Define

wk+1 ≡ xk+1

θk
− 1− θk

θk
xk for any k ≥ 0 and w0 = x0.

From the definitions of wk+1 and yk in (11a), we have the
following easy-to-identify identities.

Lemma 10: For procedure (11a)-(11c), we have

θkx
∗ + (1− θk)xk − yk = θk

(
x∗ −wk

)
,

θkx
∗ + (1− θk)xk − xk+1 = θk

(
x∗ −wk+1

)
.

(25)

We use the same notations of ρk+1 and wk with Section III-B
for easy analogy. Different from Section III-B, we define a
new variable

vk,t ≡ zk,t

θk
− 1− θk

θk
xk. (26)
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The proof of Theorem 3 is based on the following Lyapunov
function

`k+1 =
ρk+1

θk
+

1

2β0

∥∥∥∥β0ϑkUxk+1 − λ∗
∥∥∥∥2
F

+

(
Lθk+1

2
+
β0
2

)
‖wk+1−x∗‖2F+

M

2
√

1−σ2(W )
‖vk+1,0−x∗‖2F .

Analogy to Lemma 9, we give the following lemma, which
describes a progress in one iteration of Algorithm 2.

Lemma 11: Assume that Assumptions 1, 2 and 3 hold with
µ = 0. Let sequences {θk} and {ϑk} satisfy θ0 = 1, 1−θk

θk
=

1
θk−1

, and ϑk = θk. Assume the following equation holds

θk
ηkTk

=
M√

1− σ2(W )
. (27)

Then, for Algorithm 2, we have

`k+1 ≤ `k +
mM2ηk

2θk
. (28)

The proof of Lemma 11 is based on the following lemma.
Lemma 12: Assume that Assumptions 1 and 3 hold. Define

x̃k,∗ = (1− θk)xk + θkx
∗. Then, for Algorithm 2, we have

ρk+1 − (1− θk)ρk

≤
〈
∇f(yk),xk+1 − x̃k,∗

〉
+
L

2
‖xk+1 − yk‖2F

+ h(xk+1)− h(x̃k,∗) +
〈
λ∗, Uxk+1 − U x̃k,∗

〉
.

Proof 9: From (22) with µ = 0, we have

f(xk+1) ≤ f(x) +
〈
∇f(yk),xk+1 − x

〉
+
L

2
‖xk+1 − yk‖2F .

Firstly let x = xk and then x = x∗, we obtain two inequalities.
Multiplying the first inequality by (1 − θk), multiplying the
second by θk, and adding them together, we have

f(xk+1)− (1− θk)f(xk)− θkf(x∗)

≤
〈
∇f(yk),xk+1 − (1− θk)xk − θkx∗

〉
+
L

2
‖xk+1 − yk‖2F .

Adding h(xk+1) − (1 − θk)h(xk) − θkh(x∗) +〈
λ∗, Uxk+1 − (1− θk)Uxk

〉
to both sides, and using

the definition of ρk, we have

ρk+1 − (1− θk)ρk

=F (xk+1)− (1− θk)F (xk)− θkF (x∗)

+
〈
λ∗, Uxk+1 − (1− θk)Uxk

〉
≤
〈
∇f(yk),xk+1−(1−θk)xk−θkx∗

〉
+
L

2
‖xk+1−yk‖2F

+ h(xk+1)− (1− θk)h(xk)− θkh(x∗)

+
〈
λ∗, Uxk+1 − (1− θk)Uxk

〉
.

(29)

From the definition of x̃k,∗, Ux∗ = 0, and the convexity of
h(x), we have

xk+1 − x̃k,∗ = xk+1 − (1− θk)xk − θkx∗,
Uxk+1 − U x̃k,∗ = Uxk+1 − (1− θk)Uxk,

h(x̃k,∗) ≤ (1− θk)h(xk) + θkh(x∗).

Plugging them into (29), we have the conclusion. �

Now, we give the proof of Lemma 11.
Proof 10: From the fact that h(x) is (

√
mM)-Lipchitz

continuous derived by Assumption 2, similar to the induction
in (22), we have

h(zk,t+1)

≤h(zk,t)+
〈
∇̂h(zk,t), zk,t+1−zk,t

〉
+
√
mM‖zk,t+1−zk,t‖F

=h(zk,t)+
〈
∇̂h(zk,t), x̃k,∗−zk,t

〉
+
〈
∇̂h(zk,t), zk,t+1−x̃k,∗

〉
+
√
mM‖zk,t+1 − zk,t‖F

≤h(x̃k,∗)+
〈
∇̂h(zk,t), zk,t+1−x̃k,∗

〉
+
√
mM‖zk,t+1−zk,t‖F ,

(30)

where x̃k,∗ is defined in Lemma 12 and ∇̂h(zk,t) ∈ ∂h(zk,t).
On the other hand, from the update role of zk,t+1 in Algorithm
2, we have

0 =∇̂h(zk,t) +∇f(yk) +
β0
ϑk
U2yk

+

(
L+

β0
ϑk

)
(zk,t+1 − yk) +

1

ηk
(zk,t+1 − zk,t).

(31)

Thus, we have〈
∇f(yk), zk,t+1 − x̃k,∗

〉
+
L

2
‖zk,t+1 − yk‖2F

+ h(zk,t+1)− h(x̃k,∗) +
〈
λ∗, Uzk,t+1 − U x̃k,∗

〉
a
≤
〈
∇f(yk)+∇̂h(zk,t), zk,t+1−x̃k,∗

〉
+
〈
λ∗, Uzk,t+1−U x̃k,∗

〉
+
√
mM‖zk,t+1 − zk,t‖F +

L

2
‖zk,t+1 − yk‖2F

b
=−

〈
β0
ϑk
U2yk +

(
L+

β0
ϑk

)
(zk,t+1 − yk)

+
1

ηk
(zk,t+1 − zk,t), zk,t+1 − x̃k,∗

〉
+
〈
λ∗, Uzk,t+1 − U x̃k,∗

〉
+
√
mM‖zk,t+1 − zk,t‖F

+
L

2
‖zk,t+1 − yk‖2F

=−
〈
β0
ϑk
Uyk − λ∗, Uzk,t+1 − U x̃k,∗

〉
−
(
L+

β0
ϑk

)〈
zk,t+1 − yk,yk − x̃k,∗

〉
− 1

ηk

〈
zk,t+1 − zk,t, zk,t+1 − x̃k,∗

〉
+
√
mM‖zk,t+1 − zk,t‖F −

(
L

2
+
β0
ϑk

)
‖zk,t+1 − yk‖2F

c
=− ϑk

β0

〈
β0
ϑk
Uyk − λ∗, β0

ϑk
Uzk,t+1 − β0

ϑk−1
Uxk

〉
−
(
L+

β0
ϑk

)〈
zk,t+1 − yk,yk − (1− θk)xk − θkx∗

〉
− 1

ηk

〈
zk,t+1 − zk,t, zk,t+1 − (1− θk)xk − θkx∗

〉
+
√
mM‖zk,t+1 − zk,t‖F −

(
L

2
+
β0
ϑk

)
‖zk,t+1 − yk‖2F ,

where we use (30) in
a
≤, (31) in b

=, 1
ϑk−1

= 1−θk
ϑk

,
and the definition of x̃k,∗ in c

=. Applying the iden-
tities in Lemma 1 to the two inner products, using

Authorized licensed use limited to: Cornell University Library. Downloaded on August 24,2020 at 13:02:02 UTC from IEEE Xplore.  Restrictions apply. 



1053-587X (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSP.2020.3018317, IEEE
Transactions on Signal Processing

12

ϑk
2β0

∥∥∥ β0

ϑk
Uyk − β0

ϑk
Uzk,t+1

∥∥∥2
F
≤ β0

2ϑk
‖yk − zk,t+1‖2F and

dropping the negative term − ϑk
2β0

∥∥∥ β0

ϑk
Uyk − β0

ϑk−1
Uxk

∥∥∥2
F

, we
have〈
∇f(yk), zk,t+1 − x̃k,∗

〉
+
L

2
‖zk,t+1 − yk‖2F

+ h(zk,t+1)− h(x̃k,∗) +
〈
λ∗, Uzk,t+1 − U x̃k,∗

〉
≤ ϑk

2β0

[∥∥∥∥ β0
ϑk−1

Uxk − λ∗
∥∥∥∥2
F

−
∥∥∥∥β0ϑkUzk,t+1 − λ∗

∥∥∥∥2
F

]

+

(
L

2
+

β0
2ϑk

)[
‖yk − (1− θk)xk − θkx∗‖2F

−‖zk,t+1 − (1− θk)xk − θkx∗‖2F
]

+
1

2ηk

[
‖zk,t − (1− θk)xk − θkx∗‖2F

−‖zk,t+1 − (1− θk)xk − θkx∗‖2F
]

+
√
mM‖zk,t+1 − zk,t‖F −

1

2ηk
‖zk,t+1 − zk,t‖2F

d
≤ ϑk

2β0

[∥∥∥∥ β0
ϑk−1

Uxk − λ∗
∥∥∥∥2
F

−
∥∥∥∥β0ϑkUzk,t+1 − λ∗

∥∥∥∥2
F

]

+

(
L

2
+

β0
2ϑk

)[
‖yk − (1− θk)xk − θkx∗‖2F

−‖zk,t+1 − (1− θk)xk − θkx∗‖2F
]

+
1

2ηk

[
‖zk,t − (1− θk)xk − θkx∗‖2F

−‖zk,t+1 − (1− θk)xk − θkx∗‖2F
]

+
mM2ηk

2
,

where we use −a2 t
2 + bt ≤ b2

2a for any a > 0 in
d
≤. Summing

over t = 0, · · · , Tk − 1 and dividing both sides by Tk, letting
xk+1 =

∑Tk−1

t=0 zk,t+1

Tk
, and from the convexity of h(x) and

‖ · ‖2F , we have〈
∇f(yk),xk+1 − x̃k,∗

〉
+
L

2
‖xk+1 − yk‖2F

+ h(xk+1)− h(x̃k,∗) +
〈
λ∗, Uxk+1 − U x̃k,∗

〉
≤ ϑk

2β0

[∥∥∥∥ β0
ϑk−1

Uxk − λ∗
∥∥∥∥2
F

−
∥∥∥∥β0ϑkUxk+1 − λ∗

∥∥∥∥2
F

]

+

(
L

2
+

β0
2ϑk

)[
‖yk − (1− θk)xk − θkx∗‖2F

−‖xk+1 − (1− θk)xk − θkx∗‖2F
]

+
1

2ηkTk

[
‖zk,0 − (1− θk)xk − θkx∗‖2F

−‖zk,Tk − (1− θk)xk − θkx∗‖2F
]

+
mM2ηk

2

e
=
ϑk
2β0

[∥∥∥∥ β0
ϑk−1

Uxk − λ∗
∥∥∥∥2
F

−
∥∥∥∥β0ϑkUxk+1 − λ∗

∥∥∥∥2
F

]

+

(
L

2
+

β0
2ϑk

)
θ2k
[
‖wk − x∗‖2F − ‖wk+1 − x∗‖2F

]
+

θ2k
2ηkTk

[
‖vk,0 − x∗‖2F − ‖vk+1,0 − x∗‖2F

]
+
mM2ηk

2
,

where e
= follows from the identities in Lemma 25, the definition

of vk,t in (26), and zk+1,0 = zk,Tk . Dividing both sides by θk
and letting ϑk = θk, from Lemma 12, 1

θk−1
= 1−θk

θk
, θk

2ηkTk
=

M

2
√

1−σ2(W )
, θk+1 ≤ θk, and the definition of `k, we have the

conclusion. �
Based on Lemma 11, we can prove Theorem 3.
Proof 11: The settings of Tk = K(1 − σ2(W )) and ηk =

θk

KM
√

1−σ2(W )
satisfy (27). Plugging them into (28), we have

`k+1 ≤ `k +
mM

2K
√

1− σ2(W )
.

Summing over k = 0, · · · ,K − 1, we have

`K ≤`0 +
mM

2
√

1− σ2(W )

=
1

2β0
‖λ∗‖2F +

L+ β0
2
‖x0 − x∗‖2F

+
M

2
√

1− σ2(W )
‖x0 − x∗‖2F +

mM

2
√

1− σ2(W )

≡C12,

where we use θ0 = 1, 1
θ−1

= 1−θ0
θ0

= 0, w0 = x0, and
v0,0 = x0. Similar to the proofs of Theorems 4 and 5, from
the definition of `k and θk−1 = 1

k , we have

‖UxK‖F ≤
1

β0K

(√
2β0C12 + ‖λ∗‖F

)
,

F (xK)− F (x∗) ≤ C12

K
+ ‖λ∗‖F ‖UxK‖F

and ‖xK − x∗‖2F ≤
2C12

β0
. Similar to (24), we also have

F
(
α(xK)

)
− F (x∗)

a
≤

(
‖∇f(x∗)‖+ L

√
2C12

β0

)
‖ΠxK‖F +

L

2
‖ΠxK‖2F

+ 2
√
mM‖ΠxK‖F + F (xK)− F (x∗),

where we use the fact that h(x) is (
√
mM)-Lipchitz continuous

in
a
≤, i.e, ‖∇̃h(x)‖F ≤

√
mM,∀∇̃h(x) ∈ ∂h(x). From

Lemma 4, we can further bound ‖ΠxK‖F by ‖UxK‖F√
1−σ2(W )

.

From Lemma 2, we know ‖λ∗‖F ≤
√
mM+‖∇f(x∗)‖F√

1−σ2(W )
≡ 1

χ .

From the setting of β0, we have β0 ≥ L√
1−σ2(W )

≥ L and

β0 ≥ M√
1−σ2(W )

. Combing with (13) and R1 ≥ 1, we have
1
χ ≤
√
mβ0

(
R1 + R2

L

)
and

C12 ≤
1

2β0χ2
+

3β0mR
2
1

2
+
β0m

2
≤ 2.5β0m

(
R1 +

R2

L

)2

,

‖UxK‖F ≤
1

K

(√
5m

(
R1+

R2

L

)
+

1

χβ0

)
≤ 4
√
m

K

(
R1+

R2

L

)
,

‖ΠxK‖F≤
4β0
√
m

KL

(
R1+

R2

L

)
, ‖ΠxK‖F≤

4β0
√
m

KM

(
R1+

R2

L

)
,

F (xK)− F (x∗) ≤ 7β0m

K

(
R1 +

R2

L

)2

.

Authorized licensed use limited to: Cornell University Library. Downloaded on August 24,2020 at 13:02:02 UTC from IEEE Xplore.  Restrictions apply. 



1053-587X (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSP.2020.3018317, IEEE
Transactions on Signal Processing

13

Thus, we further have

F
(
α(xK)

)
− F (x∗)

≤
(√

mR2 + L

(
R1 +

R2

L

)√
5m

)
4β0
√
m

KL

(
R1 +

R2

L

)
+

8β0m

K2
√

1−σ2(W )

(
R1+

R2

L

)2

+2
√
m

4β0
√
m

K

(
R1+

R2

L

)
+

7β0m

K

(
R1 +

R2

L

)2

≤

(
31β0m

K
+

8β0m

K2
√

1− σ2(W )

)(
R1 +

R2

L

)2

.

The proof is complete. �
Similar to the proof of Theorem 3, in the following, we give

the proof of Corollary 1.
Proof 12: The settings of Tk = 1−σ2(W )

θk
and ηk =

θ2k

M
√

1−σ2(W )
satisfy (27). Plugging them into (28) and using

θk = 1
k+1 , we have

`k+1 ≤ `k +
mM

2(k + 1)
√

1− σ2(W )
.

Summing over k = 0, · · · ,K − 1, we have

`K ≤ `0 +
mM(logK + 1)√

1− σ2(W )
.

Similar to the proof of Theorem 3, we have the conclusion. �

IV. NUMERICAL EXPERIMENTS

A. Smooth Problem

We test the performance of the proposed algorithms on the
following least square regression problem

min
x∈Rn

m∑
i=1

fi(x) with fi(x) ≡ 1

2
‖ATi x− bi‖2 +

µ

2
‖x‖2. (32)

We generate Ai ∈ Rn×N/m from the uniform distribution with
each entry in [0, 1] and normalize each column of Ai to be
1, where N is the sample size. We set N = 1000, n = 500,
m = 100, and bi = ATi x with some x generated from the
Gaussian distribution. We consider both the strongly convex
objective (µ > 0) and nonstrongly convex objective (µ = 0).

We consider the Erdős−Rényi random graph where each
pair of agents has a connection with the probability of p.
Almost all Erdős−Rényi random graph with p = 2 logm

m is
connected and 1

1−σ2(W ) = O(1) [34, Proposition 5]. We test
the performance with p = 0.5, p = 0.1, and p = 0.05, and
observe that 1 − σ2(W ) = 0.33, 1 − σ2(W ) = 0.13, and
1−σ2(W ) = 0.04, respectively. We set W = I+M

2 , where M
is the Metropolis weight matrix [53].

For the strongly convex objective, we compare APM-C with
the accelerated dual ascent (ADA) [12], distributed Nesterov’s
gradient descent (DNGD) [7], EXTRA [20], and NEAR-DGD+
[22]. NEAR-DGD+ can be seen as a counterpart of APM-C
without Nesterov’s acceleration scheme and accelerated average
consensus. We set µ = 0.0001 and leave the test on different
condition numbers in our supplementary material. We set the

inner iteration number Tk as d k
√
µ/L

3
√

1−σ2(W )
e, β0 = 100 and the

stepsize as 1
L for APM-C, where d·e means the top integral

function. For ADA, we follow the theory in [9] to set the inner
iteration number as d

√
L
µ log L

µ e (we leave the test on the
impact of smaller inner iteration numbers in our supplementary
material) and the stepsize as µ. We tune the best stepsize as
1
L and 0.5

L for EXTRA and DNGD, respectively. We follow
[22] to set Tk = k for NEAR-DGD+. We initialize x0 at 0 for
all the compared methods.

Figure 1 plots the comparisons. We can see that APM-C
has the lowest computation cost and ADA has the lowest
communication cost, which match the theory. Thus, APM-C
is more suited to the environment where computation is the
bottleneck of the overall performance. Due to the large Tk
for ADA, it only performs several outer iterations after 3000
gradient computations and thus has almost no decreasing in
the first, third and fifth plots of Figure 1. APM-C has a higher
communication cost than DNGD but a lower computation
cost for p = 0.1 and p = 0.5. APM-C performs better
than NEAR-DGD+ and it verifies that Nesterov’s acceleration
scheme is critical to improve the performance. From Figure 1,
we observe that APM-C is more suited to the network with
small 1√

1−σ2(W )
, otherwise, the communication costs will be

high, e.g., see the right two plots in Figure 1. In fact, when
1√

1−σ2(W )
is small,

√
µ/L√

1−σ2(W )
will also be small, e.g., 0.01

in our experiment with p = 0.1. Thus the required Tk is small,
e.g., T3000 = 11 in our experiment. As a comparison, NEAR-
DGD+ suggests Tk = k and thus it increases quickly, which
leads to almost no decreasing in the second, fourth and sixth
plots of Figure 1. In practice, we can use the expander graph
[54] which satisfies 1

1−σ2(W ) = O(1) [34]. The Erdős−Rényi
random graph is a special case of the expander graph and can
be easily implemented.

For the nonstrongly convex objective, we test the perfor-
mance of APM, APM-C, D-NG [8], D-NC [8], DNGD [7],
EXTRA [20] and ADA [9]. We set Tk as d log(k+1)

5
√

1−σ2(W )
e and

d log(k+1)
−5 log σ2(W )e for APM-C and D-NC, respectively. We set

the stepsize as 1
L for the two algorithms and β0 = 100 for

APM-C. We set β0

ϑk
= k+1

c with c = 50 for APM and tune
the best c = 1 for D-NG. Larger c makes D-NG diverge. We
tune the best stepsize as 1

L for EXTRA, 0.05
L for DNGD with

p = 0.05, 0.1
L for DNGD with p = 0.1, and 0.2

L for DNGD with
p = 0.5, respectively. For ADA, we follow [9] to add a small
regularizer of ε

2‖x‖
2 to each fi(x) and solve a regularized

problem with ε = 10−7. We set the inner iteration number as
Tk = d

√
L
ε log L

ε e.
From figure 2, we can see that APM-C also has the lowest

computation cost. APM performs better than D-NG because
APM allows to use a larger stepsize in practice, which can
reduce the negative impacts from the diminishing stepsize.
APM is more suited to the environment where high precision
is not required, otherwise, the diminishing stepsize makes
the algorithm slow. ADA has the lowest communication cost.
However, ADA needs to predefine ε to set the algorithm
parameter and thus it only achieves an approximate optimal
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Fig. 1. Comparisons on the strongly convex problem (32) and Erdős−Rényi random network with p = 0.5 (left two), p = 0.1 (middle two), and p = 0.05
(right two).
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Fig. 2. Comparisons on the nonstrongly convex problem (32) and Erdős−Rényi random network with p = 0.5 (left two), p = 0.1 (middle two), and p = 0.05
(right two).
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Fig. 3. Comparisons on the nonsmooth problem (33) and Erdős−Rényi random network with p = 0.5 (left two), p = 0.1 (middle two), and p = 0.05 (right
two).

solution in the precision of ε due to the weakness of the
regularization trick. From Figure 2, we can see that the value
of 1√

1−σ2(W )
has less impact on the performance of APM-C

than that in the strongly convex setting.

B. Non-smooth Problem
In this section, we follow [25] to test Algorithm 2 on the

following decentralized linear Support Vector Machine (SVM)
model

min
x∈Rn

m∑
i=1

fi(x) with fi(x) ≡ max{0, 1− biATi x}. (33)

The problem setting is similar to Section IV-A and the
only difference is that we set bi = Sign(ATi x) for some x
generated from the Gaussian distribution. We also consider
the Erdős−Rényi random graph with p = 0.05, p = 0.1, and
p = 0.5, respectively. We compare APM with the primal-dual
method [11]. We test two different parameter settings for APM.
For the first one, we follow Corollary 1 to set β0 = 0.01√

1−σ2(W )
,

Tk = dk(1 − σ2(W ))e, and ηk = 5000

k2
√

1−σ2(W )
, and name it

APM with adaptive parameters (APM-adp). For the second
one, we follow Theorem 3 to set β0 = 0.01√

1−σ2(W )
, Tk =
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dK(1 − σ2(W ))e, and ηk = 5000

kK
√

1−σ2(W )
with K = 300

and name it APM with fix parameters (APM-fix). For the
primal-dual method, we set the number of inner iterations as
dK(1− σ2(W ))e and tune the best parameters of σ = 1 and
η = 0.5 in [11, Alg 3]. Figure 3 plots the result. We can see that
APM performs better than the primal-dual method, and APM-
adp needs less communications and subgradient computations
than APM-adp.

V. CONCLUSION

In this paper, we study the distributed accelerated gradient
methods from the perspective of the accelerated penalty
method with increasing penalty parameters. Two algorithms
are proposed. The first algorithm achieves the optimal gradient
computation complexities and near optimal communication
complexities for both strongly convex and nonstrongly convex
smooth distributed optimization. Our communication complex-
ities are only worse by a factor of log 1

ε than the lower bounds.
Our second algorithm obtains both the optimal subgradient
computation and communication complexities for nonsmooth
distributed optimization. Our APM-C is not suited to the
network with large 1√

1−σ2(W )
for strongly convex problems,

in which case the communication cost is high.
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