This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSP.2020.3018317, IEEE

Transactions on Signal Processing

Decentralized Accelerated Gradient Methods With
Increasing Penalty Parameters

Huan Li, Member, IEEE, Cong Fang, Wotao Yin, Zhouchen Lin, Fellow, IEEFE,

Abstract—In this paper, we study the communication and
(sub)gradient computation costs in distributed optimization. We
present two algorithms based on the framework of the accelerated
penalty method with increasing penalty parameters. Our first al-
gorithm is for smooth distributed optimization and it obtains the

near optimal O,/ ﬁé(w)) log 1) communication complexity

and the optimal O(\/g ) gradient computation complexity for L-

smooth convex problems, where o2 (1/) denotes the second largest
singular value of the weight matrix W associated to the network
and ¢ is the target accuracy. When the problem is j-strongly
convex and [L-smooth, our algorithm has the near optimal

/ L 21 . C .
ol T=os (W) log” <) complexity for communications and the
optimal O(\/% log %) complexity for gradient computations. Our

communication complexities are only worse by a factor of (log %)
than the lower bounds. Our second algorithm is designed for
nonsmooth distributed optimization and it achieves both the

. 1 . . . 1
optimal 0(76 m) communication complexity and O(z)

subgradient computation complexity, which match the lower
bounds for nonsmooth distributed optimization.

Index Terms—Distributed accelerated gradient algorithms, ac-
celerated penalty method, optimal (sub)gradient computation
complexity, near optimal communication complexity.

I. INTRODUCTION

In this paper, we consider the following distributed convex
optimization problem:

1

min — ZFl(x) = fi(x) + hi(x), (D
=1

zER™ M 4

where m agents form a connected and undirected network
G=W_E),V =1{1,2,...,m} is the set of agents and £ C
Y x V is the set of edges, F; is the local objective function
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only available to agent 7 and x is the decision variable. f;
is a convex and smooth function while h; is a convex but
possibly nonsmooth one. We consider distributed algorithms
using only local computations and communications, i.e., each
agent ¢ makes its decision only based on the local computations
on F; (i.e., the gradient of f; and the subgradient of h;) and the
local information received from its neighbors in the network. A
pair of agents can exchange information if and only if they are
directly connected in the network. Distributed computation has
been widely used in signal processing [1], automatic control
[2], [3] and machine learning [4]-[6].

A. Literature Review

Among the classical distributed first-order algorithms, two
different types of methods have been proposed, namely, the
primal-only methods and the dual-based methods.

The distributed subgradient method is a representative primal-
only distributed optimization algorithm over general networks
[14], while its stochastic version was studied in [15], and
asynchronous variant in [16]. In the distributed subgradient
method, each agent performs a consensus step and then follows
a subgradient descent with a diminishing step-size. To avoid
the diminishing step-size, three different types of methods have
been proposed. The first type of methods [7], [17]-[19] rely
on tracking differences of gradients, which keep a variable
to estimate the average gradient and use this estimation in
the gradient descent step. The second type of methods, called
EXTRA [20], [21], introduce two different weight matrices as
opposed to a single one with the standard distributed gradient
method [14]. EXTRA also uses the gradient tracking. The third
type of methods employ a multi-consensus inner loop [8], [22]
and thus improve the consensus of the variables at each outer
iteration.

The dual-based methods introduce the Lagrangian function
and work in the dual space. Many classical methods can be used
to solve the dual problem, e.g., the dual subgradient ascent [23],
dual gradient ascent [24], accelerated dual gradient ascent [9],
[12], the primal-dual method [13], [25], and ADMM [26]-[31].
In general, most dual-based methods require the evaluation of
the Fenchel conjugate of the local objective function f;(x) and
thus have a larger gradient computation cost per iteration than
the primal-only algorithms for smooth distributed optimization.
For nonsmooth problems, the authors of [11], [13], [25] studied
the communication-efficient primal-dual method. Specifically,
they use the classical primal-dual method [32] in the outer
loop and the subgradient method in the inner loop. The authors
of [13] used Chebyshev acceleration [33] to further reduce the
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Convex and Nonsmooth case
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TABLE I
COMPLEXITY COMPARISONS BETWEEN ACCELERATED DUAL ASCENT, DN-C, DNGD, THE PRIMAL-DUAL METHOD AND OUR METHODS (APM-C,APM)
FOR DISTRIBUTED CONVEX PROBLEMS.

computation complexity while the authors of [11] did it via
carefully setting the parameters.

Among the methods described above, the distributed Nes-
terov gradient with consensus iterations (D-NC) proposed in
[8] and the distributed Nesterov gradient descent (DNGD)
proposed in [7] employ Nesterov’s acceleration technique in
the primal space, and the accelerated dual ascent proposed
in [12] use the standard accelerated gradient descent in the
dual space. Moreover, D-NC attains the optimal gradient
computation complexity for nonstrongly convex and smooth
problems, and the accelerated dual ascent achieves the optimal
communication complexity for strongly convex and smooth
problems, which match the complexity lower bounds [10], [12].
For nonsmooth problems, the primal-dual method proposed
in [11], [13] and the smoothed accelerated gradient sliding
method in [9] achieve both the optimal communication and
subgradient computation complexities, which also match the
lower bounds [13]. We denote the communication and com-
putation complexities as the numbers of communications and
(sub)gradient computations to find an e-optimal solution = such
that = > F;(z) — min, = 37", F;(2) < €, respectively.

B. Contributions

In this paper, we study the decentralized accelerated gradient
methods with near optimal complexities from the perspective
of the accelerated penalty method. Specifically, we propose
an Accelerated Penalty Method with increasing penalties
for smooth distributed optimization by employing a multi-
Consensus inner loop (APM-C). The theoretical significance of
our method is that we show the near optimal communication
complexities and the optimal gradient computation complexities

for both strongly convex and nonstrongly convex problems.
Our communication complexities are only worse by a logarithm
factor than the lower bounds.

Table I summarizes the complexity comparisons to the state-
of-the-art distributed optimization algorithms (the notations
in Table I will be specified precisely soon), namely, DNGD,
D-NC, and the accelerated dual ascent reviewed above, as well
as the complexity lower bounds. Our complexities match the
lower bounds except that the communication ones have an
extra factor of log % The communication complexity of the
accelerated dual ascent matches ours for nonstrongly convex
problems and is optimal for strongly convex problems (thus
better than ours by log %). On the other hand, our gradient
computation complexities match the lower bounds and they
are better than the compared methods. It should be noted that
due to term log? %, our communication complexity for strongly
convex problems is not a linear convergence rate.

Our framework of accelerated penalty method with increas-
ing penalties also applies to nonsmooth distributed optimization.
It drops the multi-consensus inner loop but employs an inner
loop with several runs of subgradient method. Both the optimal
communication and subgradient computation complexities
are achieved, which match the lower bounds for nonsmooth
distributed optimization. Although the theoretical complexities
are the same with the methods [9], [11], our method gives the
users a new choice in practice.

I'The authors of [7] did not give the dependence on 1 — o2 (W). It does
not mean that their complexity has no dependence on 1 — o2 (W).
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C. Notations and Assumptions

Throughout the paper, the variable z € R” is the decision
variable of the original problem (1). We denote x(;) € R" to
be the local estimate of the variable x for agent . To simplify
the algorithm description in a compact form, we introduce the
aggregate variable x, aggregate objective function f(x) and
aggregate gradient V f(x) as

x(Tl) m vfl ('T(l))T
X = (x) =>_ filzw), VI(x) = : ,
x{m) =1 me (x(m))T

where x € R"™*™, whose value at iteration k is denoted by xk.
For the double loop algorithms, we denote x*** as its value at
the kth outer iteration and tth inner iteration. Assume that the
set of minimizers is non-empty. Denote 2* as one minimizer
of problem (1), and let x* = 1(z*)T € R™*", where 1 =
(1,1,---,1)T € R™ is the vector with all ones. Denote dh; ()
as the subdifferential of h;(x) at x, and specifically, Vh;(x) €
Oh;(z) as its one subgradient. For h;, we introduce its aggregate
objective function h(x) and aggregate subgradient VA (x) as

m @hl (1‘(1))T
h(x)=> hi(zq) and Vh(x) = :
i=1 Vh (I(m))
We use ||-|| and | - ||1 as the I3 Euclidean norm and {; norm

for a vector, respectively. For matrices x and y, we denote
||x|| 7 as the Frobenius norm,
(x,y) = trace(x”'y) as their inner product. Denote I € R™*™
as the identity matrix and N; as the neighborhood of agent i
in the network. Define

a(x) = =30z )

as the average across the rows of x. Define two operators
and U=+vI-W 3)

to measure the consensus violation, where W is the weight
matrix associated to the network, which describes the informa-
tion exchange through the network. Especially, |IIx|| 7 directly
measures the distance between ;) and a(x). We follow [12]
to define vVA = VAV, given the eigenvalue decomposition
A =VAVT of the symmetric positive semidefinite matrix A.

We make the following assumptions for each function f;(x).

Assumption 1:

1) fi(z) is p-strongly convex: fi(y) > fi(z) +
(Vfi(z),y — ) + 4|ly — z||*. Especially, we allow p
to be zero through this paper, and in this case we say
fi(x) is convex.

2) fi(z) is L-smooth: f;(y) < fi(z) +
L 2
sy —=[*.

In Assumption 1, ¢ and L are the strong-convexity constant
and smoothness constant, respectively. Assumption 1 yields
that the aggregate function f(x) is also u-strongly convex and
L-smooth. For the nonsmooth function h;(z), we follow [25]
to make the following assumptions.

Assumption 2:

M=7- 21117

3

) hi(x ) is convex.
h( is M Lipschitz continuous: h;(y) < h;(z) +
(Vhi(z),y — )+ Mlly - 2l

We can 51mply verify that h(x) is (y/mM)-Lipschitz
continuous. For the weight matrix W, we make the following
assumptions.

Assumption 3:

1) W e R™*™ is a symmetric matrix with W; ; # 0 if and
only if agents 7 and j are neighbors or ¢ = j. Otherwise,
Wiyj =0.

2) I=W >=0,and W1 =1.

Examples satisfying Assumption 3 can be found in [20].
We denote by 1 = og1(W) > oo(W) > -+ > 0, (W) the
spectrum of W. Note that for a connected and undirected
network, we always have oo(W) < 1, and #(W) is a good
indication of the network connectivity. For many commonly
used networks, we can give order-accurate estimate on #(W)
[34, Proposition 5]. For example, ﬁ = O(mlogm) for
the geometric graph, and — =5y = = O(1) for the expander
graph and Erdés—Rényi random graph. Moreover, for any
connected and undirected graph = O(m?) in the
worst case [34].

In this paper, we focus on the communication and
(sub)gradient computation complexity development for the
proposed algorithms. We define one communication to be the
operation that all the agents exchange information with their
neighbors once, i.e., Zje./\/i Wiz foralli =1,2,...,m. One
(sub)gradient computation is defined to be the (sub)gradient
evaluations of all the agents once, i.e., V f;(z(;)) (Vh; (7))
for all i.

1
> 1—0o(W)

II. DEVELOPMENT OF THE ACCELERATED PENALTY
METHOD

A. Accelerated Penalty Method for Smooth Distributed Opti-
mization

In this section, we consider the smooth distributed optimiza-
tion, i.e., h;(x) = 0 in problem (1). From the definition of IT in
(3), we know that z(1y = - - = x (s, is equivalent to IIx = 0.
Thus, we can reformulate the smooth distributed problem as

ITIx = 0. 4)

Problem (4) is a standard linearly constrained convex problem,
and many algorithms can be used to solve it, e.g., the primal-
dual method [13], [25], [35], [36] and dual ascent [9], [12], [23].
In order to propose an accelerated distributed gradient method
based on the gradient of f(x), rather than the evaluation of
its Fenchel conjugate or proximal mapping, we follow [37]
to use the penalty method to solve problem (4) in this paper.
Specifically, the penalty method solves the following problem
instead:

min
XERM Xn

f(x) st

min () + 2 Ix

xeRm Xn

)

where (3 is a large constant. However, one big issue of the
penalty method is that problems (4) and (5) are not equivalent
for finite 5. When solving problem (5), we can only obtain
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an approximate solution of (4) with small ||IIx| F, rather
than ||IIx|[r — 0, and the algorithm only converges to a
neighborhood of the solution set of problem (1) [37]. Moreover,
to find an e- optimal solution of (4), we need to pre-define a
large /3 of the order % ¢ [37]. Thus, the parameter setting depends
on the precision e. When B is fixed as a constant of the order
6, we can only get the e-accurate solution after some fixed
iterations described by €, and more iterations will not give
a more accurate solution. Please see Section II-C1 for more
details. To solve the above two problems, we use the gradually
increasing penalty parameters, i.e., at the kth iteration, we use
8= BO with fixed 5y and diminishing ¥y, — 0. The increasing
penalty strategy has two advantages: 1) The solution of (5)
approximates that of (4) infinitely when the iteration number k
is sufficiently large. 2) The parameter setting does not depend
on the accuracy e. The algorithm can be run without defining
the accuracy e in advance. It can reach arbitrary accuracy if
run for arbitrarily long time.

We use the classical accelerated proximal gradient method
(APG) [38] to minimize the penalized objective in (5), i.e., at
the kth iteration, we first compute the gradient of f(x) at some
extrapolated point, and then compute the proximal mapping of
2[37"k||1'[x||fp at some z, defined as

Bo L
argmm—HHxHFJr—Hx z||§; (6)

xERM XN 19]@

Due to the special form of II defined in (3), a simple
T

calculation yields LwztBolalz) o the solution of (6), where

. ) LIk +Po . L. ;
a(x) is defined in (2). However, in the distributed setting, we

can only compute «(z) approximately in finite communications.

Thus, we use the inexact APG to minimize (5), i.e., we compute
the proximal mapping inexactly. Specifically, the algorithm
framework consists of the following steps:

k k Loy —pp1— 01

k k-1
=X X —X ) 7a)
y L O, ( ) (
1
F=yh - 2V, (7b)
x* !~ ar ﬂ— IIx Zlx = 2*| 7
A argmin 20, I ||F ||X z HF, (7¢)

xERMXn

where the sequences {6y} and {05} and the precision in step
(7¢) will be specified in Theorems 1 and 2 latter. Now, we
consider the subproblem in procedure (7c). As discussed above,
we only need to approximate «(z*), which can be obtained
by the classical average consensus [39] or the accelerated
average consensus [40]. We only consider the accelerated
average consensus, which consists of the following iterations:

zk},t-‘rl — (1 4 ,,,])Wzk,t _ nzk,t—l, (8)

where we initialize at z¥° = 2"~ = z*. The advantage of
using the special II in (4) is that we only need to call the
classic average consensus to solve the subproblem in (7c),
which has been well studied in the literatures, including the
extensions over directed network and time-varying network
[41]. In fact, in Lemma 6, we only require |z*7* — 1a(z")|%
to be within some precision for the method used in the inner
loop. Any average consensus method over undirected graph,

4

Algorithm 1 Accelerated Penalty Method with Consensus
(APM-C)

tialize 70 — o1 - — 1V/1-asW)
Initialize x;) = x ;) for all i, and n = Tr/T=o2 (1)
for k=0,1,2,--- do
k k LO;—p 1—0)_ k k—1 .
ygj) xlgz) + IS (x(i) 0 ) Vi,
2 =Y — TVSilG) Y
o A=Ay

k —1do
: k,t
Z(z (1 +’f]) Zje/\a WijZ(])

k X
nz(z)t ! Vi,

Lﬁkai)-&-ﬁozz’)Tk
LIk +Po

k+1 _

Vi.
end f>0r

directed graph or time-varying graph can be used in the inner
loop, as long as it has a linear convergence.

Combing (7a)-(7c) and (8), we can give our method, which is
presented in a distributed way in Algorithm 1. We use notations
x~! and z¥~1 in Algorithm 1 only for the writing consistency
when beginning the recursions from £ =0 and ¢ = 0.

1) Complexities: In this section, we discuss the complexities
of Algorithm 1. We first consider the strongly convex case and
give the complexities in the following theorem.

Theorem 1: Assume that Assumptions 1 and 3 hold with g >
0. Setting 0y, = 6 = /Z for all Vk, ¥), = (1—-6)*"!, and T}, =

ka/p/L . L 1
0] (m> Then, Algorithm 1 needs O (\/;log ;)

. . L 21
gradient computations and O (, /mlog g) total

communications to achieve an e-optimal solution x such that
1 m
2 el =23
1= 1=
9

=3 ey — )
=1

When we drop the strong-convexity assumption, we have
the following theorem.
Theorem 2: Assume that Assumptions 1 and 3 hold with

i = 0. Let sequences {0y} and {J;} satisfy 6y = 1,
% = é, and ¥j, = 63. Setting T}, = O (\/%

and 3y > L|Vf(x*)||%. Then, Algorithm 1 needs O (\/g)

. . L
gradient computations and O (1 | ST=os ) log

munications to achieve an e-optimal solution x such that (9)
holds.

total com-

B. Accelerated Penalty Method for Nonsmooth Distributed
Optimization

In this section, we consider the nonsmooth problem (1). From
Assumption 3 and the definition in (3), we know I = U >~ 0,
and (1) = -+ = Ty is equivalent to Ux = 0 [12]. Thus,
similar to (4), we can reformulate problem (1) as

min F(x) = f(x) + h(x) s.t.

xERm Xn

Ux=0. (10)
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Similar to Section II-A, we also further rewrite the problem
as a penalized problem and use APG with increasing penalties
to minimize the penalized objective F(x) + QﬂTOk | Ux||%.
However, due to the nonsmooth term h(x), we cannot compute
the proximal mapping of h(x) + %”U x| efficiently. Thus,
we use a slightly different strategy here. Specifically, we first
compute the gradient of f (x)—i—%ﬁ’k |Ux||% at some extrapolated
point y, i.e., Vf(y) + %Uzy, and then compute the inexact
proximal mapping of h(x). We describe the iterations as

follows:
1— 6
gt =k B0 ke ey (11a)
Or—1
=V + ﬂOUQ g (11b)

x*+1 ~ argmin h(x)+<sk,x>+(L bo >|| x—y"||2. (11c)
XER™*™

The reason why we use U in (10), rather than 11, is that U zyk

can be efficiently computed, which corresponds to the gossip-

style communications. Otherwise, we need to compute the

average across yé“l), . yé“m), which cannot be achieved with

closed form solution in the distributed environment.

When the proximal mapping of h(x), i.e., Prox,(z) =
argming cpm«n h(x) + 3 ||x — z|? for some z, has closed form
solution or can be easily computed, step (11c) has a low
computation cost, which reduces to

1 50 2k
).

We can see that when we set a large penalty parameter (3,
i.e., exchange g—z with a large 8 such that 8 > L in (12),
(12) approximately reduces to x**! ~ Prox, (y" — U%y*)
and V f(y") is flooded by the large penalty parameters. This
is another reason to use the increasing penalty parameters.
When the proximal mapping of h(x) does not have a
closed form solution, we borrow the idea of gradient and
communication sliding proposed in [25], [42]-[44], which skips
the computations of V f and the inter-node communications
from time to time so that only O(1/¢) gradient evaluations
and communications are needed in the O(1/€?) iterations
required to solve problem (10). Specifically, we incorporate a
subgradient descent procedure to solve the subproblem in (11c)
with a sliding period 7}, which is also adopted by [13]. The
subgradient descent is described as follows for 7}, iterations:

= argmin <@h(zk’t), z> + <sk,z>

zERM XN

L Bo
+ (54 am) la-y It 5 la-a .

x* 1 =Proxy, (yk —

gt

We describe the method in a distributed way in Algorithm 2.
1) Complexities: Introduce constants 2y and R, such that

IV fi(

and assume R; > 1 for simplicity. Then, we describe the

convergence rate for Algorithm 2 in the following theorem.
Theorem 3: Assume that Assumptions 1, 2 and 3 hold

with o = 0. Let sequences {0y} and {0} satisfy 6y = 1,

Hx?i) —z*|? < R? and z*)||* <R3 for all i, (13)

5
Algorithm 2 Accelerated Penalty Method (APM)
Initialize z((’i) = :z:(_l)l, and z(_i)l’T‘1 = x(l) for all .
for k=0,1,2,--- ,K do
0 (1—05_1 _ ‘
uly = oy + G ey — o) Vi
sty = VAl + 52 (v — S Wagly)) Vi,
k0 _ _k—1,Tr .
20 = A Ve
for t = 0,1, , I — 1 do
zé’)tﬂ = argmin_ g <Vh ( ) + s(l), >
k, .
() ooty oo
end for Teot kit
Z;)Fl — Zt:roTkZ(iy)l V4.
end for '
5% = o and 9 = 6. Set Ty = K(1 — 0a(W)),

— O max{M,L}
e = KA ie )’ and By = Jimoa W)’ where K is the

number of outer iterations. Then, for Algorithm 2, we have
)= 53Rl

1

E:

B 8 Ry’
K(‘Q“K 1—0—2<W>><Rl+ L)

1 m X« « R2
- - R
— ; Hx(l) a(x™) ( 1+ 7 )

Consider the simple problem of computing the average
of z(1), +* ,@(m). The accelerated averaged consensus [40]

IN

and

2 16532
H = K2M?

1—oo(W)
solution. Thus, it is reasonable to assume K >

needs O \/j log = ) iterations to find an e-accurate
1

V1—ca(W)’

Moreover, from the L-smoothness of f;(x), we know Ry is
often of the order O(LR;). Thus, Theorem 3 establishes

max{M,L}
the O Y
S T = K3 (1= aa(W)) = O (et
computation complexity such that (9) holds for nonsmooth
distributed optimization.

In Theorem 3, we set T}, and 7 dependent on the number of
outer iterations. As explained in Section II-A, it is a unpractical
parameter setting and moreover, the large 7} and ik make the
algorithm slow in practice. In the following corollary, we give
a more reasonable setting of the parameters at an expense of
higher complexities by the order of log %, i.e., log K.

Corollary 1: Under the settlngs in Theorem 3 but with
Tk — 1— GQ(W)

communication complexity and the

) subgradient

03
and n, = k we have

My/1-02(W)’
1 & 1 &
E;Fi(a( %22:

2
M 31+L <R1+R2) ,
K I—UQ(W) L

<
- K
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and

1642 log K Ro\2
KZM? (R1+T) :

2
250 |25 - aec)|
When f(x) is strongly convex, we can prove a faster O (k%)
convergence rate for Algorithm 2 with 6, = ki+2
However, the quickly diminishing step-size in step (11c) makes
the algorithm slow in practice. So we omit the discussion for
the strongly convex case.

IN

C. Relations of APM-C and APM to the Existing Algorithm
Frameworks

1) Difference from the classical penalty method: To the best
of our knowledge, most traditional work analyze the penalty
method with a fixed penalty parameter [45], [46]. Let’s discuss
the disadvantage of the large and fixed penalty parameter. Take
problem (4) as an example. Let {x*, \*} be a pari of KKT
point of problem (4) and Xx* be the minimizer of problem (5),
from the proof in [45, Proposition 10], we have

* * 6 * Ak B ok
Fx) = F6) + ST 3 2 f(&) + SR 3
So for any e-accurate solution x of problem (5), we have
B .
f(x)+ §IIHXII% - f(x)
B 2 ok B ax|12
<fx) + SIMx]E = f(x7) = S < e.

On the other hand, since x* = argmin, f(x) 4+ (A\*,IIx) and
IIx* = 0, we have

fOXT) = F(xT) + (W TIXT) < f(x) + (A 1Ix)
= — [MFTx|[r < f(x) = f(x).

So Z||mx||% — || A*]| #|/TIx|| r < &, which leads to

thszﬁﬂF+¢§:o&+¢@

and

[f(x) = f(x")| < max{e, e + V/ec}

by 8 = % We can see that the accuracy is dominated by
max{e, €}, and more iterations with smaller ¢ will not produce
a more accurate solution.

On the other hand, even if ¢ = 0 and x = X* with infinite
iterations, we have V f(x) 4+ SIIx = 0, which only leads to
x| = e V£ ()7 = O(e) and | £(x) — f(x*)| < e, rather
than ||IIx||z = 0 and |f(x) — f(x*)| = 0.

2) Difference from the classical accelerated first-order
algorithms: We extend the classical accelerated gradient
method [38], [47]-[50] from the unconstrained problems to
the linearly constrained problems via the perspective of the
penalty method. However, since we use the increasing penalty
parameters at each iteration, i.e., the penalized objective varies
at different iterations, the conclusion in [38], [49], [50] for the
unconstrained problems cannot be directly used for procedures
(7a)-(7c) and (11a)-(11c). The increasing penalty parameters
make the convergence analysis more challenging.

and 9, = 0%.

6

3) Difference from the accelerated gradient sliding method:
[9] combined Nesterov’s smoothing technique [51] with the
accelerated gradient sliding methods [42]-[44] to solve the
nonsmooth problem (10) with f(x) = 0. In fact, when fixing
the penalty parameter as a large one of the order O(1/e),
Algorithm 2 is similar to the one in [9, Section 6.3]. However,
our method adopts increasing penalty parameters such that it
avoids having to set a large inner iteration number 7} and
a small step-size 7 at the beginning of the outer loop, as
shown in Corollary 1. On the other hand, when f(x) # 0, as
explained in Section II-B, V f(y*) is flooded if we set a large
and fixed penalty parameter.
4) Difference from the D-NC and D-NG in [8]: Algorithm
1 can be seen as an improvement over the D-NC proposed in
[8]. Both Algorithm 1 and D-NC use Nesterov’s acceleration
technique and multi-consensus, and both attain the optimal
computation complexity for the nonstrongly convex problems.
However, Algorithm 1 is motivated by a constraint-penalty
approach while D-NC is developed from the inexact accelerated
gradient method [49] directly. Moreover, Algorithm 1 can solve
both the strongly convex and nonstrongly convex problems
while [8] only studied the nonstrongly convex case.
As for Algorithm 2, consider the simple case with h(x) =0
and g—z = k—JCrl then steps (11b) and (11c) become

gt Wy (B )WY e Vi)
- L+(k+1)/c L+ (k+1)/c

Thus, when (k + 1)/c > L, we have x**! ~ Wy* —
kfrIVf(yk) and it approximates the D-NG in [8]. Algo-
rithm 2 gives a different explanation of the D-NG, and it
improves the D-NG in the sense that it handles a possible

nondifferentiable function h;(x). The complexity of D-NG

is O (W log% , where £ is a small constant. Our

1
ey/1—o2 (W)

the extra log 2 factor and is more sensitive to 1 — o2 (W).

complexity, i.e., O ), is better because theirs has

III. PROOF OF THEOREMS
A. Supporting Lemmas

Before providing a comprehensive convergence analysis for
Algorithms 1 and 2, we first present some useful technical
lemmas. We first give the following easy-to-identify identifies.

Lemma 1: For any x,y,z,w € R™*" we have the
following two identities:

2(x—z,y—2)=|x—z|F+ |y —zlF—x -y,
2(x—2,y —w)=|ly —z|F—|w—zlF+]x—wE—[x -yl

In the following Lemma, we bound the Lagrange multiplier,
which is useful for the complexity analysis in the distributed
optimization community.

Lemma 2: Assume that Assumptions 1, 2 and 3 hold with
> 0. Then, we have the following properties:

1) There exists a pair of KKT points (x*, A*) of saddle point
problem miny maxy f(x) + (A, IIx), such that |\*||p <
IVf(x)]p-
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2) There exists a pair of KKT points (x*, A*) of saddle point

erg?%eg)luminx maxy f(x) + (A, Ux), such that | \*||p <
x") ||
V1—aa(W)’

3) There exists a pair of KKT points (x*, A*) of saddle point
problem min, maxy F(x) + (A, Ux), such that | \*||p <
VM|V |r

Vi—ea(W)

The proof can be found in [25, Theorem 2]. The following

lemma is a corollary of the saddle point property.

Lemma 3: [52] If f(x) is convex and (x*,\*) is a pair

of KKT points of saddle point problem miny, maxy f(x) +

(X, Ax), then we have f(x)— f(x*)+ (\*, Ax) > 0 for all x.
The following lemma bounds the consensus violation of
|ITIx|| 7 from | Ux]| .
Lemma 4: Assume that Assumption 3 holds. Then, we have

1
HHXHFS\/TWHUXHF.

Proof 1: From Assumption 3, we know Ul =0, U =UT,
and rank(U) = m — 1. For any x € R™*™, denote X = IIx =
x—L117x. Smce 17% = 0, we know X is orthogonal to the
null space of U, and thus it belongs to the row (i.e., column)
space of U. Let VXVT = U be its economical SVD with
V € R™*(m=1) Then we have

n

1Ux||F = lUZ]F = ZXTszl = Z( %) R(VT%))
(1 —oa(W Z”VTXl”F = (1= W)V
=(1— (W ))IIXIIF = (1= o2 (W))[|TIx| %,

where we denote x; to be the ith column of x, and 2 follows
from the fact that X belongs to the column space of U, i.e.,
there exists o € R(m~1*7 guch tht X = Vau O

At last, we present the following lemma, which can be used
to analyze the algorithms with inexact subproblem computation.

Lemma 5: [50] Assume that (sx) is a sequence with in-
creasing scalars and (vy), («;) are sequences with nonnegative
scalars, v < so. If v < s + Zle a,;v;, then we have

2
e < IS it \/(5 S ai) + Sk

B. Complexity Analysis for Algorithm 1

1) Inner Loop: Before proving the convergence of procedure
(7a)-(7c), we first establish the required precision to approxi-
mate «(z") for an e;-accurate solution of the subproblem in
(7c).

Lemma 6: Let z*T¢ be obtained by (8) and xF+! =

Lo.z" k, Ty, ) Ve
%. If ||z7 T —1a(2F)7)|2 < %, then we have
L [30
L wa — 2+ ||H e,
(14)
< min ||X— k” + o ||TIx 3 + ek
T xeRmxn 2 F 19k;

. kyox _ iy L k)12 4 Bo 2
Proof 2: Define x** = argmin, 5 |x —2z"||% + 33 [|11x||%,
xF* = L117x%* and z¥ = 11172*. From the optimality
condition of x**, we have

0= L(x"* —2z*) + BOHQ’“* (15)

7

From II = TI2 and its definition, we have 0 = L(x’“* —
zF) + S—Z(X’f x**), which leads to x** = 7L’9*’Lz;:fgj‘k’*
Multiplying both sides of (15) by %llT, and using 1711 = 0,
we have x** = z*, which further gives x** = %ﬂggzk

On the other hand, we have

§HXI€+1 _ Zk”i ﬂo ”ka+1”2

L I
2

, L
2 <Xk”* _ Zk Xk—i—l _ Xk,*> + §HX]€+1 _ Xk-,,*”%

Ml - Ennxk’*n%

)

BO 2 k% k41 k,* /30 k+1 k%12
+%<H S R >+EIIH(X =x"")% (16)
bL * ﬂo ¢k
=[x — X ||%‘+7HH(X,€+1 —x")|[%
- (sz T L (T >|2F)
(L% +PBo)
d 53 kT, k|2 50 kT, k|2
S<e——————|jz"F—2Z < —||z"F =27 || 5.
Rl I3 < 2 I3

where we use Lemma 1 in =, (15) in g, the definition of x**t1

and xF* = %ﬁg‘;zk in =, and ||TIz||r < ||z||F in %. |

Now we consider the iteration number of the accelerated
average consensus in (8) to solve the subproblem in (7c) such
that (14) is satisfied. From [40, Proposition 3], we have

HZk,T;C _ 1Oé(Zk)T||F < < OQ(W)

14+ +/1—a3(W)

Tk
= ) 112 = (/T2 () 1T

S<1+\/1—02(VV)

Thus, from Lemma 6, we only need

1 11z"||2
Tk _ log ﬂOH z ||F
~2log (1 - Ug(W)) 20xex

such that (14) is satisfied.

At last, we study the property when the proximal mapping
in (7c) is inexactly computed. When it is computed exactly,
ie., ep = 0 in (14), we have L(xF*! —z*) 4+ S—Zﬂzxk“ =0.
However, when it is computed inexactly, we should modify
the conclusion accordingly. Specifically, we give the following
lemma.

Lemma 7: Assume that (14) holds. Then, there exists 6%

with [|6¥[| < (/2 and 22 |[T16¥||3, < 2 such that

Tk
) [TIz" || 7 (17)

(18)

L(x* — 2" +6%) + %IP(X’“H +65) =0 (19)
k

Proof 3: Define §* = x** — x**1. From (14) and equation

2 in (16), we have [|0%]p < \/Z5 and 2o||TI6%|3. < 2¢4.

From (15) and the definition of 5%, we have (19). O

2) Outer Loop: Now we are ready to analyze procedure
(7a)-(7¢). Define
k+1

whtl = x

O O

1-40
¥ for any k>0 and w" = x".
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From the definition of y* in (7a), we can give the following
easy-to-identify identities.
Lemma 8: For procedure (7a)-(7c), we have

L_N k _ o * k
Lek—yy =x* —w",

Xk+1 _ 9k (X*

(L—=0k)L ;)
Lo — p *
Opx* + (1 — 0))x"

x* +

whH1) |

Let (x*, A*) be a pair of KKT points of saddle point problem
min, maxy f(x) + (A, IIx) satisfying Lemma 2. Define

prr1 = FFTY) — F(x) + (O, I 0 (20)

8

< <§°(ka+1 +TI6%) — \*, (1 — 0,)Ix" — ka+1>
k

+L <xk+1 — vy (1 = 0p)x" + Opx* — yk>
+ L% (1 — 0p)x" + Ox* — x"T1)

. L
e
a Bo ekt k Bo ko ﬁO " 1>
2 Uk F20 k1 4 pisky — 3¢, 20 ik +
Bo < ( )~ Vp—1 19k
+L< k+1 —yk,(l—Gk)Xk—&-Qk;X* _yk>

+ L <(5k (1 — Qk)Xk +0x* — x
e

k+1>
L
— MR = Sl - R,

where we use

1;9’€ = -1 in £, Applying the identities in

From Lemma 3, we know pg41 > 0. =
We first give the following lemma, which describes a Lemma 1 to the two inner products, we have
progress in one iteration of procedure (7a)-(7c). Pr+1 — (1 —0)pp
Lemma 9: Assume that Assumption 1 holds with w > 0. Let . Bo Bo Bo 2
sequences {0} and {0;} satisfy 5 6’< = 7 and 0, > %. Sﬁ ‘19 IIxF—\* ‘ 5 ikt (H FLLTIS")
Then, under the assumption of (14), we have 0 kol k F
2 2
B 9 ng _H/BOHX]C-‘,-I 2 = 1960 ka_%(nxk—b—l +H6k) ]
e e i’ e "
F * *
fo 2 +§[||(1*9k)xk+9kx =yl (1=08)x O —x" ]
(1 — ek)pk + — b\ + €k (2D 0
250 Do . +L(8%, (1= B + By — x4 — 1K Ix* o
L0y, — )0 .
+ (L6 = 1)6 [wh —x HF+L0k Hwkﬂ —x"||F b U Bo k oy ? IBO Ly 50 k
2 < Ix"—\ - ||H6 %
250 V1 F 19k
Proof 4: From the smoothness and convexity of f(x), we LQQ i 10, , ) 2 o .
have + 5 0. g — W' = x"%
k k F
k+1 o MO
Fe) ; — L0 (3, W ) = B
<SP+ (V)X =)+ I =yl b
I 522\yhere < follows from the second identity in Lemma 8. By
k
=fy")+{(VIy"), X—yk>+<Vf(yk),Xk+1—x>+§HXk+l—yk||F reorganizing the terms in ¥- — %xk —x* carefully, we have
W L 2
<F )= By B (VI 5H) K xSy Ly 1=0
2 0y 0 o
Plugging z¥ = y* — 2V f(y*) and (19) into the above L92 ( E ) AN (1—6y)L st ?
inequality, we have "2 |[Loy Y Lo, LGk—,uy LOy—p F
2
<tk gz LO—Ok|| L—p o A-O0L ;.
E+1y <7k R
fﬁ(x ) — F(x) <5 Iy =+ oY Lek . i
<t0 <ka+1 +H6k,Hx—ka+1> +L<Xk+1 —yk,x—yk> d 1Ok o (LOk — )0k &
g —THY - x"p + - 9 HW -

+L<5k,x—xk+1>f §||Xk+1

Slix = y* 1% - -y IF
When we apply (23) first with x = x* and then with x = x*,
we obtain two inequalities. Multiplying the first inequality by
(1 — 6;), multiplying the second by 6y, adding them together
with (A%, TIx*1 — (1 — 6;)IIx*) to both sides, and using
IIx* = 0, we have

Y — (1
+ <)\*,ka+1

— O) f(x"
—(1-

) = O f(x)
Qk)HXk>

I I . 2 -
where we let 7f— < 1, and use Jensen’s inequality for || - [|7 in

é, and the first identify in Lemma 8 in 4 Plugging it into the
above inequality and using the bounds for ||6%||r and ||T16%| &
in Lemma 7, we get (21).

Due to the term ||w**! — x*|| on the right hand side of
(21), recursion (21) cannot be directly telescoped unless we
assume the boundness of ||w**! —x*|| . Lemma 5 can be used
to avoid such boundness assumption. Now, we use Lemmas 9
and 5 to analyze procedure (7a)-(7c). The following theorem
shows the convergence for strongly convex problems.
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Theorem 4: Assume that Assumptions 1, 3 and (14) hold with
p>0,and g, < (1—(1+7)0)**! holds for all k¥ < K, where
1> 7 > 0 can be any small constant. Let sequences {6} and

{0k} satisfy 6, = 0 = /% for all k, and 9), = (1 — 6)* 1.
Then, we have

FEEHY) = f(x) < Ca(1 = 0)H,

x| e < C3(1 - 0)%F,

%" — x|} < Ca(1 - ),

K+1 x K+, LC3 2K +2
flax") = f(x") < C5(1-0) +—-(1-9) ;
where Cy = Cg + ||[\*||rC3, C3 = %Ma Cy =
2% C5 = (||[Vf(x*)||r + LvV/CTi)Cs + Co and Cg = =155 +

2. Cs
2(f(x°) = f(x") +
x*||3-

Proof 5: The setting of § = /% satisfies

(LO — )8 = LO>(1 — ).

(A%, T1x%)) 4 55 [ BT = X 3+ " —

(23)

Sequences {0} and {¥} satisfy the requirement in Lemma
9. Define the Lyapunov function ¢, as follows:

2
Bo T k+1 _ \* LO? ||« k41
Pr+1 + 2/30 grllx A . + = |lw

- x|

ek—&-l (1 _ 9)k+1

where py is defined in (20). Dividing both sides of (21) by
(1 — 0)**1, and using (23) and ¥, = (1 — 0)I%_1, we have

Ek L@ 2€k

Y —x"||F.
k+1 k= (1 — 0)k+1 + (1 — 9)k+1 || X ||F
Summing over k=0,1,--- , K, we have

K € 2¢e

k k k+1 *

SZ 1 — o)+t +Z (1 —g)F+1 W = x|

k=0

K K+1
= e, > 6 2y I — x|
- (1—6)F+1 g)k/2 (1 _ g)k- F

K K+1
a €k 2\/Ex_1
< e R
= Z (1—g)F+1 + Z (1— Q)k/2£k’

=
I
=)

a
where we use the definition of ¢ and p; > 0 in <. Letting
2

k Na=n
Sk+1 = Y40 (T=gj7T + 03 and oy, = G gye7=- then we have

Gy < Spp1+ Zlfll a;l; and (3 = sg. From Lemma 5, we

(2 Zf+11 O‘z) + sk41. Letting

er < (1—(1+7)0)%*, and after some simple computing, we
obtain

K41 2 K
2 Ek—1 25k
2 v 2
£K+1§<Z(1_ m) +Z Ty 20
k=1 k:O
18

=202

k+1
have {11 < %Zl +1 a; +

+ 202 = Cs.

From the definition of fx; and pr > 0, we get the
second conclusion. From the definition of pry;, we have
FFY) — £(x*) < pryr + | M| #||TIxFHE || 7, which further

9
leads to the first conclusion. Since f(x) + (\*,1Ix) is p-
strongly convex over x and x* = argmin, f(x)+(\*, IIx), we

have >t —x*|[F < f(xFHY) + (N TIx ) — f(x*) —

(A TIx*) = prey1 < Ce(1— )KL, ie., the third conclusion.
For the fourth conclusion, we have

F (alx 1) = fx)
=f (=) = fOMHY) 4 FRTY) - F(x)
b L 2 *
(VL) IR [T o f (M) = £ () (24

¢ * * L

IV A e+ L= ) [T | [T
+ () = f(x),

where we use the smoothness of f(x) and the definition of II

in % and % O
In the following theorem, we consider the case that f(x) is
nonstrongly convex.
Theorem 5: Assume that Assumptions 1, 3 and (14) hold
with 4 = 0 and gk < for all k < K. Let sequences

(k+1)
= 7=—, and ¥}, = 07.
k—1
Then, we have
C
K+1\ *) < 7
FOCH) — ) < g
C
K+1 8
x5 — X"‘Iliw < Gy,
C LC?
K+1 _ *) < 10 8
f b)) = 16) < (K +2)2 " 2(K +2)*
where C7 = 4011 + ||Vf(X*)||FCS, Os =
PERCUEANIEENE 0y = 21, Cio = ([VF6)]r +

* 2
L/ Cg)Cg +Cr,and C11 =5+ W + L”XO — X*H%
Proof 6: Define the following Lyapunov function £

2
PRl 1 50 Ry L. i1 a2
2 — || == - A + —||w - X .
k:+1 9% 250 2 || HF
Dividing both sides of (21) by 07, using ¥, = 67 and 152 =
92 — , we have
2ey, *
Eerl 52 = 92 e || — x| F.
Similar to the proof of Theorem 4, we obtain
K+
2
-8 < z V=
Or—1
k=1

From Lemma 5 and a similar induction to Theorem 4, we have

Ui ia
K+1 K
2,/6k 1 2e 2
< — +
<(S efm) Zzez* °
o (521 ’ ST
<<Z2km> +Z2€ k+1)2 % T LW 7
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where we use kT—l < 6 < % and é = 0 in <, which
can be derived from Gf’“ = 92 and 6y = 1. Letting
k 1
g{+1)4+2*’ then we have Zk:o 2er(k +1)% < H%
and Z H 2k, /L1 <
4 4 ||>\*||F 0 w2 —
éKJFl* 2+1_|_27.+ BO +LHX _X”F:Clla

where we let 7 = 1 for simplicity and use Lemma 2. From
the definition of w**! = ;H L0k xk, we have ||x**1 —
x*||p = ||9kW’Hl +(1-00)xF —x [ < 0w+ — x| o+
(1 — 6i)||x* — x*|| 7. By induction, we can prove |x¥+! —
x*||%. < 2511 for any k. Similar to the proof of Theorem 4
and using Lemma 2, we have the remaining conclusions. [
3) Total Numbers of Communications and Computations:

Based on Theorems 4 and 5, and the inner loop iteration number
given in (18), we can establish the gradient computation and
communication complexities for Algorithm 1. We first consider
the strongly convex case and prove Theorem 1.

Proof 7: |Uz*||r appears in (18). We first prove
that HHZk lF is bounded for any k given T, =

N 2
2108 17\/T log (i (HIV/6x) e+ 6VC)°).
We prove

where efined in Theorem 4.

HszHF "< LIVAac)e + 6vCT by induction.
The case for k¥ = (0 can be easily verified since
2% = [Ix° — IIx*||r < [x° — x*||F. Assume
that the conclusion holds for all k¥ < K. Then from (18) we
know that (14) holds for k < K. From Theorem 4, we have
|xE — x*||p < /Ty and ||xK+! — x*||p < +/Cj. Thus,

12"

<My ™+ + - IIVf( )l

b
<[y = <) F + Z (IVF e + Llly™ ™ = x*||r)

<TITFE) 4+ 2y =
cl
IV FO e+ A =+ 2 — x|

HF+6\/ 4,

where we use (7b) in %, the smoothness of f(x) and ITx* = 0

_ ok VI-VE
=x"+ s (x
equivalent to (7a) with the special setting of 6. So we get the

conclusion.
From Theorem 4, to find a solution satisfying (9), we know
that the number of gradient computations, i.e., the number of

<TIV )

. b k k: 1 . c . .
in <, and y x"~1) in <, which is

outer iterations, is O \/% log %) From (18), we have

L log
—log (1 —+/1- O'Q(W)) (1-

kiog(i—\/uTL) . (

1
T, =0 0)2(k+1)

kv/p/L
170’2(W) ’

=0 log(l— 1—02(W)) ¢

10

where we use log ((1— 1—02(W))) ~—y/1—09(W) and

log (1 — 4 /p/L) ~—y/p/Lin < from Taylor expansion when
V/1—02(W) and \/p/L are small. Thus, the total number of
communications, i.e., the total number of inner iterations, is

VE/nlos m L 51
Q= :O< W= (7)) )

The proof is complete. ]

Similar to the proof of Theorem 1, we can also prove
Theorem 2 for the nonstrongly case.

Proof 8: Similar to the above proof of Theorem 1 and given
the similar T} replacing Cy by Cy, we know that ||TIz*||»
is also bounded for all k. Let 3y > L + L||V f(x*)||%, and
assume L > 1 and |V f(x*)||r > 1 for simplicity. Using the
constants in (13), we know C; = O(mLR3?), Cs = (\/>R1)
Co = O(mR3?), and C1p = O(mLR?). Let From

LR?
€= Ky
Theorem 5, we know that Algorithm 1 needs O (\F ) gradient

computations such that L (f (a(xX*1)) — f(x*)) < € and
LIIxK+1|2 < €2, ie., (9) holds. From (18), we have

T,=0

log(k + 1)8 _0 ( log k >
—log(l— 1—02(W)> 1—o0y(W))’

Thus, the total number of communications is

Mx

(L desk N _of [ &0
1—0o(W) €(1 — o2(W)) €|

The proof is complete.

k=0 k=0

C. Complexity Analysis for Algorithm 2

Now we prove Theorem 3. Similar to Section III-B, we
define

Pkl = F<Xk+1) _ F(X*) + <A*,UXk+1>,

where (x*, \*) is a pair of KKT points of saddle point problem
min, maxy F(x) + (A, Ux) satisfying Lemma 2. Define
k+1

k+1 X

1-6 .
V=T T T,

E for any k& > 0 and w’ = x°.

From the definitions of w**! and y*
following easy-to-identify identities.
Lemma 10: For procedure (11a)-(11c), we have

in (11a), we have the

Opx* + (1 — Qk)xk —yF =0, (x* — wk) ,

(25)

0px* + (1 — 0)x" — x*1 =0, (X* Wk+1) .
We use the same notations of pg; and w* with Section III-B
for easy analogy. Different from Section III-B, we define a
new variable

k,t
z" l—ek
k.t Xk

A— o — o (26)
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The proof of Theorem 3 is based on the following Lyapunov Now, we give the proof of Lemma 11.
function Proof 10: From the fact that h(x) is (y/mM)-Lipchitz
P 1|8 2 continuous derived by Assumption 2, similar to the induction
lpy1 = AL —0 xFHL_\* in (22), we have
Or 200 F kt+1
Lokt Bo\. k+1 2 M f1.0 ) h(z"1)
= 1 o* [, 0% N
“r( B + 2>|W X ||F"|'2 170'2(W) ”V X HF Sh(zk,t)+<Vh(zk,t)7Zk,t+1_Zk,t>_’_mM”zk,t+l_zk,tHF
Analogy to Lemma 9, we give the following lemma, which :h(zk’t)+<@h(zk’t)7ik’*—z’“’t> (30)
describes a progress in one iteration of Algorithm 2. .
Lemma 11: Assume that Assumptions 1, 2 and 3 hold with +<Vh(zk’t),zk’t+lf)~<k’*>+ VmM|zMH = 2| g
= 0. Let sequences {0y} and {0} satisfy 6y = 1, 1;9’“ = iy
A1k k41 kit
ﬁ, and U = 6. Assume the following equation holds <h(x"*)+ <Vh( )2 X >+\/EM”Z —2""|F,
0 M where X** is defined in Lemma 12 and Vh(z*t) € Oh(z").
Tk T Ao T2 (W) (27) " On the other hand, from the update role of z***1 in Algorithm
2, we have
Then, for Algorithm 2, we have . 50
. 0 =Vh(z) + V(") + LUy
U1 < b + BET (28) (3D

1 .
+ (L + ﬂo) (zk’tJrl — yk) + f(Zk’H'1 — zk’t).

The proof of Lemma 11 is based on the following lemma. Uy, Mk

Lemma 12: Assume that Assumptions 1 and 3 hold. Define Thus, we have
xF* = (1 — 03)x" + Opx*. Then, for Algorithm 2, we have kil ke L st .
(VI(y"), 2" =57 + Sl = y* [

+ h(zk,t+1) o h(ik,*) + <)\*,Uzk’t+1 o U§k7*>
% <vf(yk')+ﬁh(zk,t)7 Zk‘,t+1_}'zk,>k>_i_<>\*7 Uzk’t+1—U§k’*>

pr+1— (1= 0)pr
ey L
<(VF(y"), <" —xP) + gllchH - y*I%
+ h(xFTY) — B(xF) + (A7, UM - Uxh).

kt+l _ kit ko4l _ k2
Proof 9: From (22) with 1 = 0, we have +VmM||z -z p + §||Z Al
L b Bo Bo :
SO < 60+ (VAR XM =) 4 g -y = < Uty (L + 19) N
Firstly let x = x* and then x = x*, we obtain two inequalities. _,'_i(zk,t-&-l _ zk’t), ght+1l ik’*>
Multiplying the first inequality by (1 — ), multiplying the Mk
second by 6y, and adding them together, we have + (A UZHT - UR) + mM |28 - 2
k k * L
f(x +1) — (1= 0p) f(x") — O f(x¥) . + §HZk,t+1 . ka%
ky K k * k i
S<vf(y )ax Jr17(17016))( 79kx>+§||x +17y ||F :—<§OU k )\* Uzkt+1 U~k:*>
Adding  h(xFT1) — (1 — Gh(xF) — Oph(x*) + g 5
(A, UxFt1 — (1 —6;,)Ux*) to both sides, and using - (L + 0) (ZPIT — gk ok xR
. A
the definition of pg, we have )
I RS R R R R

prt1 — (1= 0)p - (= z7,z x)

=F(x"t) — (1 — 0x) F(x*) — 0, F (x* L
( ) k( ) k) ( ) kk ( ) + \/%M“zk,ﬂrl —Zk’t”F _ < + BO) ” kt+1 kH%
+ (X, Ux* — (1 - 60,,)UX") 2 Wy

L 29 . .
L N € P

"0y Vp—1
h(x*T1) — (1 — 04)h(x") — Oph(x*
+ h(x )k 1( k)h(x") . kh(x") (L+ ﬂo) <zk,t+1 *yk,yk —(1- Qk)xk . Hkx*>
+<>\*,UX+ —(1-0,)Ux > Uy
1 *
From the definition of X**, Ux* = 0, and the convexity of - 77 <Zk’t+1 —zht g (1- ek)xk — Oex >
h(x), we have g L B
kit+1l _ _k,t o 0 kt+1 k2
kL gk k1 (1- 9k)xk — O, +vVmM||z z"'||p <2 + m) |z Va2
k+1 _ prgks _ proktl o k a
U)ik Ux ka (1—6,)Ux", where we use (30) in <, (31) in g, w{l = 1;5",
h(x™") < (1 = Ok)h(x%) + Ouh(x7). and the definition of X** in =. Applying the iden-
Plugging them into (29), we have the conclusion. O tities in Lemma 1 to the two inner products, using
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2
D || Bogryk &UZ’WIH < fiflyt — 23 and of VR in (26). and 5510 = 2475, Dividing both sides by 0
280 19k D Fo= 219k 1—0; [
e and letting ¥y, = 6y, from Lemma 12, Gk - = Okh’ 2%ka =
. . .
ﬁ:\){[;pmg the negative term —ﬁ U '19k - UxF HF, we Z\/#W, Or+1 < O, and the definition of ¢, we have the
conclusion. O
<Vf(yl~c)7 ZRttl ik,*> + £|‘Zk,t+1 . yk”2F Based on Lemma 11, we can prove Theorem 3.
() &) ( 2 bt . > Proof 11: The settings of T, = K(1 — oo(W)) and n;, =
+ h(z"™ — h(X"*) + (A", Uz™ T — UX™" Ok ot ; :
19 , . , RAT/1—o W) satisfy (27). Plugging them into (28), we have
k 0 k * k,t+1 *
<— Ux” — A - ' —Uz>"" =\
2080 U Y1 F D F] Uy < U + $
BO k x ) 2K 1-— O'Q(W)
# (54 ) Iy - =00t - o'l |
Summing over k =0,--- , K — 1, we have
_sz,t-i-l — (]_ — ek)Xk — 9kx*||%] mM
1 % U <l + ———=
+ 2 [llz"* — (1 = 61)x" — x| % K= o /T o)
, * 1 L
- (1= )% — 7] = X EE P e
1 .
+ \/EZMHZIWH_1 - Zk’tHF - ﬁ”zk’t—i_l - Zk’t||2F + M H 0 *”2 + mM
k —||x" —x —_——
. > 2\/T = o2(W) P /T= (W)
Vg H B H/BOUZk,tJrl )\ —C
2ﬁ0 Vg 1 Vg P -
Bo k k 5 where we use 0y = 1 = 120 — 0, w0 = x0, and
+ +— — (1 — 6)x" — G x* = 1 90 ’
( 204, [ly* =« 2 eIl v%0 = x9. Similar to the proofs of Theorems 4 and 5, from
—[|ZF = (1= 0)xF — Ox* | %] the definition of ¢; and 6),_; = +, we have
1 kit k 2
-— v —(1-46 — 0 x* *
* g 127 = (= 0x = O 0% e < 2 (VG + I3 1r)
M=ny
k,t+1 k * 12 C
N2 = (1= )" = Gex ] + = F<xK>—F< >< N N e

K

where we use — 2t + bt < b for any ¢ > 0 in < Summing  and [|x% — x*||% < 2% Similar to (24), we also have
over t =0, o Tk —1and d1v1d1ng both sides by T, letting ’

Kkl = M and from the convexity of h(x) and F (a(x")) = F(x")

k
Il - 1|%, we have . 2C .
12
Ey ohk+1 _ =k L. i1 k2 < <||Vf( N+L % >|HXK|F+2||HXK||%
<Vf(y ), x" —x”">—|—§||x+ —y*%

2¢/mM || Ix* F(x") - F(x*
+h(xk+1)_h(§k,*) <A*,ka+1_U§k,*> +2vmM|Ix™ || + F(x™) (x*),

2 Bo 17 g4t 2 where we use the fact that h(x) is (y/mM)-Lipchitz continuous
_ 122 ok “ = n
250 Hﬂk 1 H Ux A h in <, ie, [[VA(x)[[r < v/mM,VVh(x) € Oh(x). From
Lemma 4, we can further bound ||IIx¥||r by u="llr
+ ( + 50) [ly" — (1 — 6r)x" — 6,x*(|3 /1=02(W)
20 r From Lemma 2, we know ||A\*||F < % = i
k+1 k * 12 —02
— " = (1 = 0p)x" — Ox* || %] From the setting of 3y, we have 5y > ﬁ > L and
1 o2
+ m [sz,o - (1= ek)xk — Ok x"| Bo > \/ﬁ Combing with (13) and R; > 1, we have
M? < Ry + £2) and
T (1 - Xt — g3+ T X vmbBo (Ry+ )
2 2 1 38,mR? m R 2
QB [Hﬂ _ HBOkaH Y ] Cr2 < gpg t 502 Ly 502 < 2.56om <R1 + L2) ’
0 k-1 »
1 R\, 1\ _4ym
e W) 2)- 50 )
R 3 LA e M B e N A AR Al
460\/% R2 50\/% R2
03 M? xX || p < xX =2
i LA Pl A s T I lr <=\l g ) H = )
k

7ﬁom R2
K *
where = follows from the identities in Lemma 25, the definition F(x™) - F(x") < K <R1 + I
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Thus, we further have
F (a(xK)) — F(x")

< <\/%R2 +L (R1 + R2> \/%) ABovim (R1 + R2)

L KL L

8fom Ry\’ 4/30\%( R2>
+K2 o (R1+ L) +2v/m I R+ 7

7 Ry\*
+ B°m<R1+2>

K L

. (3160m . 88om

Ry\*
Ri+— .
K2\/1—o9(W) L
The proof is complete. ]
Similar to the proof of Theorem 3, in the following, we give

the proof of Corollary 1.
Proof 12: The settings of T}, = lf%(w) and 1, =

K

07 . . . .
MVmoah) satisfy (27). Plugging them into (28) and using
0, = k%_l, we have

mM
L1 < g + .
=T ok + 1)1 — o (W)
Summing over £k =0,--- , K — 1, we have
M(log K + 1
O < g MM (log K +1)
1— JQ(W)

Similar to the proof of Theorem 3, we have the conclusion. [J

IV. NUMERICAL EXPERIMENTS
A. Smooth Problem

We test the performance of the proposed algorithms on the
following least square regression problem

lAT e —bul)” + 52l 32)

N | —

min ; fix)  with  fi(z) =
We generate A; € R"*N/™ from the uniform distribution with
each entry in [0, 1] and normalize each column of A; to be
1, where N is the sample size. We set N = 1000, n = 500,
m = 100, and b; = AZTLL‘ with some = generated from the
Gaussian distribution. We consider both the strongly convex
objective (p+ > 0) and nonstrongly convex objective (= 0).

We consider the Erdés—Rényi random graph where each
pair of agents has a connection with the probability of p.
Almost all Erd6s—Rényi random graph with p = 210% is
connected and #(W) = O(1) [34, Proposition 5]. We test
the performance with p = 0.5, p = 0.1, and p = 0.05, and
observe that 1 — oo(W) = 0.33, 1 — 0o(W) = 0.13, and
1 —o3(W) = 0.04, respectively. We set W = EM  \where M
is the Metropolis weight matrix [53].

For the strongly convex objective, we compare APM-C with
the accelerated dual ascent (ADA) [12], distributed Nesterov’s
gradient descent (DNGD) [7], EXTRA [20], and NEAR-DGD+
[22]. NEAR-DGD+ can be seen as a counterpart of APM-C
without Nesterov’s acceleration scheme and accelerated average
consensus. We set ¢ = 0.0001 and leave the test on different
condition numbers in our supplementary material. We set the

2

13

ky/p/L _
5710 | o = 100 and the

stepsize as + for APM-C, where [-] means the top integral
function. For ADA, we follow the theory in [9] to set the inner

inner iteration number T}, as |

iteration number as [ l%log l%] (we leave the test on the

impact of smaller inner iteration numbers in our supplementary
material) and the stepsize as u. We tune the best stepsize as
+ and %2 for EXTRA and DNGD, respectively. We follow
[22] to set T), = k for NEAR-DGD+. We initialize x° at 0 for
all the compared methods.

Figure 1 plots the comparisons. We can see that APM-C
has the lowest computation cost and ADA has the lowest
communication cost, which match the theory. Thus, APM-C
is more suited to the environment where computation is the
bottleneck of the overall performance. Due to the large T}
for ADA, it only performs several outer iterations after 3000
gradient computations and thus has almost no decreasing in
the first, third and fifth plots of Figure 1. APM-C has a higher
communication cost than DNGD but a lower computation
cost for p = 0.1 and p = 0.5. APM-C performs better
than NEAR-DGD+ and it verifies that Nesterov’s acceleration
scheme is critical to improve the performance. From Figure 1,
we observe that APM-C is more suited to the network with

small %, otherwise, the communication costs will be
V1—0o2(W)

high, e.g., see the right two plots in Figure 1. In fact, when

1 V#/L
1—0‘2(W) —02 )
in our experiment with p = 0.1. Thus the required T} is small,

e.g., T5000 = 11 in our experiment. As a comparison, NEAR-
DGD+ suggests T, = k and thus it increases quickly, which
leads to almost no decreasing in the second, fourth and sixth
plots of Figure 1. In practice, we can use the expander graph
[54] which satisfies #(W) = O(1) [34]. The Erdés—Rényi
random graph is a special case of the expander graph and can
be easily implemented.

For the nonstrongly convex objective, we test the perfor-
mance of APM, APM-C, D-NG [8], D-NC [8], DNGD [7],
EXTRA [20] and ADA [9]. We set T}, as [ —<2**D_7 ang

5y/1—02 (W)
[%} for APM-C and D-NC, respectively. We set

the stepsize as % for the two algorithms and 3y = 100 for
APM-C. We set g—i = k—fl with ¢ = 50 for APM and tune
the best ¢ = 1 for D-NG. Larger ¢ makes D-NG diverge. We
tune the best stepsize as % for EXTRA, O'T(())S for DNGD with
p = 0.05, %L for DNGD with p = 0.1, and %2 for DNGD with
p = 0.5, respectively. For ADA, we follow [9] to add a small
regularizer of £||x||? to each f;(x) and solve a regularized
problem with ¢ = 10~7. We set the inner iteration number as
Ty, = [\/g log %]

From figure 2, we can see that APM-C also has the lowest
computation cost. APM performs better than D-NG because
APM allows to use a larger stepsize in practice, which can
reduce the negative impacts from the diminishing stepsize.
APM is more suited to the environment where high precision
is not required, otherwise, the diminishing stepsize makes
the algorithm slow. ADA has the lowest communication cost.
However, ADA needs to predefine ¢ to set the algorithm
parameter and thus it only achieves an approximate optimal

is small, will also be small, e.g., 0.01
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Fig. 1. Comparisons on the strongly convex problem (32) and Erd6s—Rényi random network with p = 0.5 (left two), p = 0.1 (middle two), and p = 0.05

(right two).
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Fig. 2. Comparisons on the nonstrongly convex problem (32) and Erd6s—Rényi random network with p = 0.5 (left two), p = 0.1 (middle two), and p = 0.05

(right two).
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Fig. 3. Comparisons on the nonsmooth problem (33) and Erd6s—Rényi random network with p = 0.5 (left two), p = 0.1 (middle two), and p = 0.05 (right

two).

solution in the precision of ¢ due to the weakness of the
regularization trick. From Figure 2, we can see that the value

of \/ﬁ has less impact on the performance of APM-C

than that in the strongly convex setting.

B. Non-smooth Problem

In this section, we follow [25] to test Algorithm 2 on the
following decentralized linear Support Vector Machine (SVM)
model

i . i . = — b AT
grelﬁ{rll;fz(:r) with  f;(x) = max{0,1 - b;A4; z}. (33)

The problem setting is similar to Section IV-A and the
only difference is that we set b; = Sign(AT'z) for some x
generated from the Gaussian distribution. We also consider
the Erd6s—Rényi random graph with p = 0.05, p = 0.1, and
p = 0.5, respectively. We compare APM with the primal-dual
method [11]. We test two different parameter settings for APM.
For the first one, we follow Corollary 1 to set By = %,
T = k(1 = aa(W))], and i = 1200

W, and name it
APM with adaptive parameters (APM-adp). For the second

one, we follow Theorem 3 to set (g 0.01 Tk

V1= (W)’
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_ _ 5000 - —
[K(1 — o92(W))], and n, = P e~ with K = 300

and name it APM with fix parameters (APM-fix). For the
primal-dual method, we set the number of inner iterations as
[K(1—02(WV))] and tune the best parameters of o = 1 and
n = 0.51in [11, Alg 3]. Figure 3 plots the result. We can see that
APM performs better than the primal-dual method, and APM-
adp needs less communications and subgradient computations
than APM-adp.

V. CONCLUSION

In this paper, we study the distributed accelerated gradient
methods from the perspective of the accelerated penalty
method with increasing penalty parameters. Two algorithms
are proposed. The first algorithm achieves the optimal gradient
computation complexities and near optimal communication
complexities for both strongly convex and nonstrongly convex
smooth distributed optimization. Our communication complex-
ities are only worse by a factor of log % than the lower bounds.
Our second algorithm obtains both the optimal subgradient
computation and communication complexities for nonsmooth
distributed optimization. Our APM-C is not suited to the
network with large \/ﬁ for strongly convex problems,

in which case the communication cost is high.
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