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a b s t r a c t

The task of restoring an image that has been contaminated by blur and noise arises in

many applications. When the blurring matrix (or equivalently, the point-spread function)

is explicitly known, this task commonly is referred to as deconvolution. In many

applications only an approximation of the blurring matrix is available. The restoration

task then is referred to as blind deconvolution. This paper describes a family of blind

deconvolution methods that allow a user to adjust the blurring matrix used in the

computation to achieve an improved restoration. The methods are inexpensive to use;

the major computational effort required for large-scale problems is the partial reduction

of an available large symmetric approximate blurring matrix by a few steps of the

symmetric Lanczos process. A real-time application to adaptive optics that requires fast

blind deconvolution is described.

© 2020 Elsevier B.V. All rights reserved.

1. Introduction

The need to restore images that have been contaminated by blur and noise arises in many applications, including
medical imaging and astronomy. The blur may be caused by object motion, calibration error of the imaging device, or
random fluctuations of the medium, e.g., the atmosphere. Let the vector bδ ∈ R

n represent an available blur- and noise-
ontaminated (p × q)-pixel image with n = pq. For instance, we may store the pixel values for the available noise- and
blur-contaminated image column-wise in bδ . We would like to determine an accurate approximation of the associated
unknown blur- and noise-free image, which we represent by the vector xtrue ∈ R

n.
Let A ∈ R

n×n denote the matrix that models the blurring in the image bδ , and let the vector eδ ∈ R
n represent the

noise in bδ . We will assume that a bound δ > 0 for ‖eδ‖2 is known, i.e.,

‖eδ‖2 ≤ δ. (1.1)

ere and throughout this paper ‖ · ‖2 denotes the Euclidean vector norm or spectral matrix norm. We also will use the
-norm of a vector, denoted by ‖·‖1, and the Frobenius matrix norm; it is defined by ‖M‖F = (trace(MTM))1/2 for a matrix

M . The available contaminated image bδ and the desired blur- and noise-free image xtrue are assumed to be related by
he linear degradation model

bδ = Axtrue + eδ. (1.2)
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Many kinds of blur that arise in applications, such as Gaussian blur, can be modeled by a symmetric blurring matrix A. Let
the eigenvalues λ1, λ2, . . . , λn of A be ordered so that |λ1| ≥ |λ2| ≥ · · · ≥ |λn|. For many blurring matrices, the magnitude
|λj| decreases quite quickly to zero as j increases. We are concerned with blurring matrices of this kind. Throughout this
aper, we assume that the eigenvalues of a matrix are ordered in decreasing magnitude.
The task of determining an approximation of xtrue when the contaminated image bδ and the associated blurring

atrix A are explicitly known is commonly referred to as deconvolution. Thus, given A and bδ , deconvolution amounts
o determining an approximation of xtrue by computing a suitable approximate solution of the least-squares problem

min
x∈Rn
∥Ax− bδ

∥2. (1.3)

nice introduction to deconvolution is provided by Hansen et al. [1].
In many image restoration applications only an approximation, A0 ∈ Rn×n, of the matrix A in (1.2) is known. Since A is

symmetric, it is natural that A0 would also be symmetric. Simply replacing A by A0 in (1.3) gives, in many situations, a poor
approximation of the desired image xtrue. The determination of a better approximation of xtrue typically requires that A0 be
replaced by a more accurate approximation of A. It may be possible to compute such an approximation simultaneously
with the determination of an approximation of xtrue. The task of determining both a restored image and an improved
approximation of the blurring matrix is commonly referred to as blind deconvolution.

The dominating computational work for the blind deconvolution method of this paper is the partial reduction of a
large symmetric matrix A0 to a small symmetric matrix by carrying out a few steps of the symmetric Lanczos process.
The number of steps required depends on how quickly the eigenvalues of A0 decay to zero in magnitude as their index
number increases and how well A0 approximates the actual blurring matrix A. This reduction only has to be computed
once. Therefore, our blind deconvolution method is quite inexpensive to use. Our solution method has two regularization
parameters. This allows for the selection of a blurring matrix from a family of matrices determined by A0. One of these
parameters is determined by the discrepancy principle; the other one is chosen interactively by the user. Alternatively,
the user may specify multiple input parameter pairings, as the reconstruction for each pair can be computed fairly
inexpensively from the same Krylov subspace.

Many approaches to blind deconvolution have been described in the literature; see, e.g., [2–9] and references therein.
Furthermore, some of the available methods are computationally expensive, because they require the evaluation of a
large number of matrix–vector products with the large matrix A0 or with related blurring matrices that are determined
during the computations. Justen and Ramlau [10] proposed a fast non-iterative blind deconvolution method for n × n
block circulant blurring matrices with circulant blocks. The structure of the blurring matrices makes it possible to reduce
the blind deconvolution problem to a problem with a diagonal matrix. The method in [10] allows a user to choose two
parameters to adjust a minimization problem to be solved. These parameters determine the blurring matrix used for
the restoration. For each value of the parameter pair, the dominant computational effort for computing the associated
restoration is the evaluation of a fast Fourier transformation in O(n log n) arithmetic floating point operations (flops). The
method by Justen and Ramlau [10] imposes periodic boundary conditions. This method is fast, but due to the imposed
periodicity, the computed restorations may be contaminated by artifacts. A related blind deconvolution method that is
based on a wavelet decomposition is described in [11], and an extension of the method in [10] that allows reflective and
anti-reflective boundary conditions, but requires more computational work, is discussed in [12].

It is the purpose of this paper to present a new blind deconvolution method that is well suited for real-time applications
that arise in adaptive optics. Speed of execution is very important for this application, because the point-spread function
(PSF) has to be updated every 2 ms (or even more frequently). The use of fast numerical methods therefore is imperative.

Our scheme first reduces the given large blind deconvolution problem to a small one by applying a few steps of the
symmetric Lanczos process to reduce A0. This is followed by spectral factorization of the reduced matrix. The reduced
matrix, generally, can be applied to the restoration of a sequence of blur- and noise-contaminated images. The dominating
computational effort is the reduction of A0. Each step of the Lanczos process requires one matrix–vector product evaluation
with A0. Typically, A0 has a structure, such as block Toeplitz with Toeplitz blocks, that allows the evaluation of each
matrix–vector product in only O(n log n) flops; see, e.g., Section 5.1. When the spectral factorization of the reduction of
A0 is available, the restoration of an image requires only O(n) flops. The low flop count makes the proposed method fast
and applicable to real-time large-scale blind image restoration problems. We will apply our method to a real-time active
optics image restoration problem. This application is described in Section 5.4.

This paper is organized as follows. Section 2 describes a minimization problem and several simplifications. The solution
of the latter yields restored images. Section 3 discusses the solution of the minimization problem. A discussion on how
to choose the values of the regularization parameters can be found in Section 4, and Section 5 presents a few computed
examples. These include experiments from an astronomical imaging application with a large ground-based telescope.
Section 6 contains concluding remarks.

2. Minimization problems

Let the symmetric matrix A0 ∈ Rn×n denote an available approximation of the unknown symmetric blurring matrix
n×n n n
A ∈ R in (1.2), and let x0 ∈ R denote an available approximation of the desired blur- and noise-free image xtrue ∈ R .
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or instance, we may choose x0 to be bδ or simply the zero vector. Introduce the two-parameter functional

F (α1, α2) := min
x∈Rn
A∈A

{
∥Ax− bδ

∥
2
2 + α1∥x− x0∥22 + α2∥A− A0∥

2
F

}
, (2.1)

here α1 > 0 and α2 > 0 are user-specified regularization parameters, and A is a set of symmetric matrices in Rn×n for
hich (2.1) has unique minimizers {α1, α2} (e.g., a set of matrices which are simultaneously diagonalizable with A0).

xample 2.1. Assume that n is small or that the symmetric matrix A0 ∈ Rn×n has a structure that makes it feasible to
ompute its spectral factorization

A0 = U0Λ0UT
0 . (2.2)

he former situation arises when bδ represents a signal in one space-dimension; the latter case may arise when bδ

epresents a signal (image) in two or more space-dimensions and A0 is the Kronecker product of small matrices. The
atrix Λ0 ∈ Rn×n in (2.2) is diagonal, U0 ∈ Rn×n is orthogonal, and the superscript T denotes transposition.

Define the n-parameter family of matrices

A := {A ∈ Rn×n
: A = U0ΛUT

0 , Λ = diag[λ1, λ2, . . . , λn] ∈ Rn×n
},

n which each element matrix is determined by the parameters λ1, λ2, . . . , λn. Thus, the real eigenvalues of A are the
arameters; the eigenvectors are prescribed to be those of A0. With this choice of the set A, the minimization problem
2.1) can be simplified to

F (α1, α2) = min
y∈Rn

Λ∈Rn×n
diagonal

{
∥Λy − b̃δ

∥
2
2 + α1∥y − y0∥22 + α2∥Λ−Λ0∥

2
F

}
, (2.3)

here

y = UT
0 x, y0 = UT

0 x0, b̃δ
= UT

0 b
δ.

ecause the matrices Λ and Λ0 are diagonal, each non-trivial entry of Λ and each element of the vector y in the solution of
he minimization problem (2.3) can be computed independently by a nonlinear solver for each pair of positive parameters
1 and α2. The solution of (2.3) therefore only requires O(n) flops. Since the computation of each diagonal entry of Λ and
ssociated component of y can be carried out independently, this makes efficient execution in parallel possible. We will
iscuss properties of the solution of (2.3) and its computation in Section 3. □

xample 2.2. If n is large or A0 does not have a structure that makes it possible to compute its spectral factorization rapidly,
hen we can reduce A0 to a small matrix by orthogonal projection using the symmetric Lanczos process. Application
f ℓ ≪ n steps of the symmetric Lanczos process to A0 with initial unit vector v1 ∈ Rn yields the partial Lanczos
ridiagonalization

A0Vℓ = VℓT0,ℓ + βℓ+1vℓ+1eTℓ , (2.4)

here the matrix Vℓ = [v1, v2, . . . , vℓ] ∈ Rn×ℓ has orthonormal columns that span the Krylov subspace

Kℓ(A0, v1) = span{v1, A0v1, . . . , Aℓ−1
0 v1}, (2.5)

he matrix

T0,ℓ =

⎡⎢⎢⎢⎢⎣
α1 β2

β2 α2
. . .

. . .
. . . βℓ

βℓ αℓ

⎤⎥⎥⎥⎥⎦ ∈ Rℓ×ℓ

s symmetric and tridiagonal, eℓ denotes the ℓth Cartesian basis vector, and βℓ+1 ≥ 0; see, e.g., [13,14] for details on the
anczos process. We will use the initial vector

v1 =
bδ

∥bδ∥2
(2.6)

n the computed examples of Section 5.

The Lanczos process is said to break down at step ℓ if βℓ+1 = 0 in (2.4). Then the spectrum of T0,ℓ is a subset of the
pectrum of A0 and the computations with the Lanczos process cannot be continued. One then may either use the matrix
0,ℓ or restart the Lanczos process with an initial unit vector that is orthogonal to the columns of Vℓ. The occurrence of
reakdown is rare and, therefore, will not be discussed further. We remark that instead of the Lanczos process, one may
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apply the symmetric block Lanczos process. This can be advantageous in certain computing environments; see, e.g., [13]
for a discussion on the symmetric block Lanczos process and [15] for an overview of efficient implementation of numerical
methods on a parallel computer.

We remark that in our application, generally, only very few steps, ℓ, of the Lanczos process are required. This reduces
the possibility of breakdown. It also eliminates the need to restart the Lanczos algorithm. Since the matrix A0 only is
an approximation of the actual unknown blurring matrix, it is not necessary to determine the eigenpairs of A0 to high
accuracy. Using the eigenpairs of T0,ℓ generally suffices. In particular, it is not necessary to improve the quality of the
eigenpairs by applying a restarted Lanczos method. We comment on the choice of ℓ below.

Computing the spectral factorization of T0,ℓ, we obtain

T0,ℓ = U0,ℓΛ0,ℓUT
0,ℓ, (2.7)

where the matrix U0,ℓ ∈ Rℓ×ℓ is orthogonal and

Λ0,ℓ = diag[λ0,1, λ0,2, . . . , λ0,ℓ] ∈ Rℓ×ℓ. (2.8)

efine the vectors

yℓ = UT
0,ℓV

T
ℓ x, y0,ℓ = UT

0,ℓV
T
ℓ x0, b̃δ

ℓ = UT
0,ℓV

T
ℓ b

δ, (2.9)

nd the ℓ-parameter family of matrices

Aℓ := {A ∈ Rn×n
: A = VℓU0,ℓΛℓUT

0,ℓV
T
ℓ , Λℓ = diag[λ1, λ2, . . . , λℓ] ∈ Rℓ×ℓ

} (2.10)

etermined by the parameters λ1, λ2, . . . , λℓ, which are to be chosen. All matrices in this set are of rank at most ℓ and have
he same eigenspace. The minimization problem (2.1) with A := Aℓ can be written as the ℓ-dimensional minimization
roblem with diagonal matrices,

F (α1, α2) := min
yℓ∈Rℓ

Λℓ∈Rℓ×ℓ

diagonal

{
∥Λℓyℓ − b̃δ

ℓ∥
2
2 + α1∥yℓ − y0,ℓ∥22 + α2∥Λℓ −Λ0,ℓ∥

2
F

}
. (2.11)

his functional is analogous to (2.3). We will show in Section 3 that the minimization problem (2.11) is easy to solve. In
umerous applications, we found the choice x0 = 0, which yields y0 = 0, to be suitable. We found this choice typically
o yield more accurate approximations of xtrue than x0 = bδ .

Let {y∗ℓ , Λ∗ℓ} minimize (2.11). The restored image then is given by

x∗ = VℓU0,ℓy∗ℓ . (2.12)

In many applications, the matrix A0 has a structure that allows fast evaluation of matrix–vector products. For instance,
hen bδ represents an image in two space-dimensions that has been contaminated by space-invariant Gaussian blur,
0 ∈ Rn×n can be chosen to be a symmetric block Toeplitz matrix with Toeplitz blocks. The evaluation of a matrix–vector
roduct with such a matrix requires only O(n log n) flops. The number of steps ℓ of the Lanczos process should be large
nough so that the largest eigenvalues and eigenvectors of A0 can be approximated fairly accurately by Ritz values and
itz vectors defined by the Lanczos decomposition (2.4). This choice is motivated by the model assumption that the
nvariant subspace of A0 associated with the largest eigenvalues does not greatly depart from the corresponding invariant
ubspace of the true operator A. In our practical adaptive optics example, cf., Figs. 5.8–5.9, one sees that this is a reasonable
ssumption. Taking the eigenvalues to be listed in order of descending magnitude, we observe that the eigenvalues many
lurring matrices A0 decay quite quickly to zero in magnitude. Thus, the number of Lanczos steps ℓ generally can be
hosen independently of n. Therefore, the flop count for the Lanczos process typically is O(n log n). The choice of ℓ is also
nfluenced by how much the eigenvectors of A0 depart from those of the true operator A. This behavior is illustrated in
he first part of Section 5.

. Solution of the minimization problem

This section discusses the solution of the minimization problem (2.11). Let the diagonal matrices Λ0,ℓ and Λℓ have the
ontrivial entries λ0,j and λj, 1 ≤ j ≤ ℓ, respectively; see (2.8) and (2.10). Let

yℓ = [y1, y2, . . . , yℓ]
T
∈ Rℓ,

y0,ℓ = [y0,1, y0,2, . . . , y0,ℓ]T ∈ Rℓ,

b̃δ
ℓ = [b̃

δ
1, b̃

δ
2, . . . , b̃

δ
ℓ]

T
∈ Rℓ.

hen the minimization problem (2.11) is equivalent to the ℓ decoupled minimization problems

min
{
(λjyj − b̃δ

j )
2
+ α1(yj − y0,j)2 + α2(λj − λ0,j)2

}
, j = 1, 2, . . . , ℓ. (3.1)
yj,λj∈R
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Fig. 3.1. Generic function fj(y, λ) for −2 ≤ y ≤ 2 and −2 ≤ λ ≤ 2.

We first note that we do not consider the case α1 = α2 = 0. Clearly, the minimization problems (3.1) do not have a
unique solution in this situation. Also when α1 and α2 are positive, the solution might not be unique. This is illustrated
in Example 3.2. However, this case was not encountered in any of the practical problems we tested.

Example 3.1. Let b̃δ
j = 1, α1 = α2 = 1/10, and y0,j = 1, and λ0,j = 0 in (3.1). Fig. 3.1 displays the function

fj(yj, λj) = (λjyj − 1)2 +
1
10

((yj − 1)2 + λ2
j ), −2 ≤ yj, λj ≤ 2.

he minimum of fj at approximately yj = 1.4 and λj = 0.7 is marked by a red star. □

One convenient choice in applications is to enforce a linear dependence between the parameters, with α1 := α and
2 := αt in (3.1), where t ≥ 0 is a fixed, user-defined constant and α ≥ 0 is a regularization parameter to be determined.
his simplifies the solution of the minimization (3.1) and allows the user to determine t based on knowledge of the
pecific reconstruction problem. Substitution into (3.1) yields

fj(y, λ) := (λy− b̃δ
j )

2
+ α((y− y0,j)2 + t(λ− λ0,j)2), j = 1, 2, . . . , ℓ. (3.2)

he gradient and Hessian of fj are given by

∇fj(y, λ) =

⎡⎢⎣
∂ fj
∂y

(y, λ)

∂ fj
∂λ

(y, λ)

⎤⎥⎦ = [
2(yλ− b̃δ

j )λ+ 2α(y− y0,j)

2(yλ− b̃δ
j )y+ 2αt(λ− λ0,j)

]
(3.3)

nd

∆fj(y, λ) =

[
2(λ2
+ α) 4yλ− 2b̃δ

j

4yλ− 2b̃δ
j 2(y2 + αt)

]
. (3.4)

Proposition 3.1. Let α > 0 and t ≥ 0. Then the Hessian (3.4) has (at least) one positive eigenvalue. If y ̸= 0 or t > 0, then
he other eigenvalue is positive for α > 0 sufficiently large, in which case the function fj is convex in a neighborhood of (y, λ).

Proof. The trace of the Hessian is positive. Therefore, the sum of the eigenvalues is positive. The product of the eigenvalues
is given by the determinant,

det
(
∆fj(y, λ)

)
= 4(λ2

+ α)(y2 + αt)− 4(2yλ− b̃δ
j )

2,

and may be negative, in which case the Hessian is indefinite. For fixed {y, λ, b̃δ
j }, the Hessian can be made positive definite

by choosing α sufficiently large provided that y ̸= 0 or t > 0. □
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To find y- and λ-values that minimize fj(y, λ), we first consider values such that ∇fj(y, λ) = 0. We obtain from
∂ fj
∂λ

(y, λ) = 0 that

λ =
b̃δ
j y+ αtλ0,j

y2 + αt
. (3.5)

Let us assume that the conditions on α, t , and y of Proposition 3.1 hold. Then y2 + αt > 0. Substituting (3.5) into
∂ fj
∂y (y, λ) = 0 yields the equation p(y) = 0 for a polynomial in y of degree five,

p(y) = y5 − y0,jy4 + 2αty3 + (λ0,jb̃δ
j t − 2y0,jαt)y2 (3.6)

+(α2t2 − (b̃δ
j )

2t + λ2
0,jαt

2)y− y0,jα2t2 − b̃δ
j λ0,jαt2.

Having computed its zeros y(k)j , k = 1, 2, . . . , 5, we determine the associated λ-values from (3.5), i.e., from

λ
(k)
j =

b̃δ
j y

(k)
j + αtλ0,j

(y(k)j )2 + αt
, k = 1, 2, . . . , 5.

e are only interested in the real zeros. The points (y(k)j , λ
(k)
j ) associated with the real zeros y(k)j of p are possible minima

f fj(y, λ). We evaluate the function fj at these points to determine all solutions of (2.11) with α1 = α and α2 = αt . If
fj(y, λ) achieves the minimum at more than one point, then we choose a point that yields the largest |λ(k)

j | to obtain a
matrix A with eigenvalues of the largest possible magnitude. We note that if t2(α2y0,j + αb̃δ

j λ0,j) = 0, then p(y) = yq(y)
for a polynomial q of degree four. This gives the zero y = 0 and the associated value λ = λ0,j. We also obtain

y0,j = −
b̃δ
j

α
λ0,j.

This relation can be used to check whether y = 0 is a zero (in the case that t > 0 so that the conditions of Proposition 3.1
re fulfilled).
Under certain conditions, the solution of ∇fj(y, λ) = 0 can be reduced to the determination of the zeros of a polynomial

f degree three in y. We will discuss this situation and use it to illustrate that the minimization problem (3.1) may have
ore than one solution. Assume that yλ ̸= 0 and let t = 1. Multiplying ∂ fj/∂y and ∂ fj/∂λ by y and λ, respectively, gives

the nonlinear system of equations

λ2y2 + αy2 = b̃δ
j λy+ αy0,jy,

λ2y2 + αλ2
= b̃δ

j λy+ αλ0,jλ.

Subtracting the second equation from the first one yields

y2 − λ2
= y0,jy− λ0,jλ, (3.7)

where we have used that α > 0. Assume that we have the special situation that λ0,j = y0,j. Then (3.7) becomes
2
− λ2

= y0,j(y − λ). Thus, either λ = y or λ = y0,j − y. Substitution into (3.5) yields two types of cubic polynomial
equations

λ = y : y3 + (α − b̃δ
j )y− αy0,j = 0,

λ = y0,j − y : y(y2 − y0,jy+ α + b̃δ
j ) = 0.

In the second cubic, y = 0 is an extraneous solution. It is easily verified that the product of the first cubic and the quadratic
factor of the second cubic will give the original fifth degree polynomial when t = 1.

Example 3.2. Let b̃δ
j = 1, α = 1/10, t = 1, and y0,j = λ0,j = 0. Then the above discussion yields two third degree

olynomials in y. The real solutions are {0,±3/
√
10}. The minimum of fj(y, λ) is achieved at {y, λ} for y = λ = ± 3

√
10
.

4. Selection of parameters

The blind deconvolution method described in the previous sections requires the selection of three parameters: two
regularization parameters α1 and α2, as well as the number of Lanczos steps ℓ. In computations, we will determine the
parameter α1 := α with the aid of the discrepancy principle (see below), and let α2 := αt for some user-chosen fixed
parameter t ≥ 0. This parameter balances the influence of the regularization terms in (3.1). For instance, letting α > 0
and t = ∞ gives (standard) Tikhonov regularization restricted to a subset of Ritz vectors associated with A0. This is
an appropriate regularization method when the blur in the available blur- and noise-contaminated image is accurately
modeled by the matrix A := A0. In many of the computed examples of Section 5, we let

t = ∥b̃δ
∥
2/∥Λ ∥2. (4.1)
ℓ 2 0 F
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his choice of t balances the influence of the regularization terms in (3.1). If one knows nothing else about the problem,
his is a sound choice, but for particular reconstructions, one may find that a different value of t works better, cf.,
ection 5.4.
The third parameter required is the dimension ℓ of the subspace (2.10), which is used to determine the blurring matrix

A. This dimension equals the number of steps of the symmetric Lanczos process applied to A0. The value of ℓ should be
chosen large when A0 is an accurate approximation of the true blurring matrix than when it is not; the value also should
be chosen larger when the available image bδ is contaminated by a significant amount of noise than when it is not.
In our experience, ℓ generally can be chosen quite small. It is difficult to determine a suitable value of ℓ without some
experimentation for each kind of problem of interest. In the adaptive optics problems of Section 5.4, the available matrices
A0 can be chosen to be the same for all restoration problems, and the amount of error in the vector bδ also is about the
same for all problems. This allows us to determine a suitable value of ℓ by carrying out some experiments. We then can
use this ℓ-value for all restoration problems. We use the initial vector (2.6) for the Lanczos process.

The discrepancy principle is a popular approach to determine the regularization parameter in (standard) Tikhonov
regularization when a fairly accurate bound (1.1) for the norm of the ‘‘noise’’ vector eδ in bδ is known; see, e.g., [16]. As
first step in our blind deconvolution method, we solve a (standard) Tikhonov regularization problem with the available
lurring matrix A0. Thus, we solve

min
x∈Rn
{∥A0x− bδ

∥
2
2 + α∥x∥22}. (4.2)

his minimization problem has a unique solution for any α > 0. Denote the solution by xα . The discrepancy principle
rescribes that α > 0 be chosen such that

∥A0xα − bδ
∥2 = τδ, (4.3)

here τ > 1 is a user-specified constant independent of δ; see [16] for details. When the matrix A0 is small enough so
hat it is feasible to compute its spectral factorization (2.2), the solution xα of (4.2) that satisfies the constraint (4.3) easily
can be computed. For large-scale problems, determining α via the discrepancy principle using bδ and A0 can be done
efficiently using an Arnoldi–Tikhonov iteration, in particular because we already iteratively generate the Krylov subspace
in our proposed algorithm. We denote the regularization parameter determined in this manner by α0. The parameter ℓ

has to be chosen large enough so that the discrepancy principle can be satisfied.
We present this process as Algorithm 1 , using the parameter choice rule described in Eq. (4.1) and where α > 0 is

chosen in advance or according to a discrepancy principle of the form (4.3).

Algorithm 1: Lanczos-based blind deconvolution

1 Input: A0 ∈ Rn×n, x0, bδ
∈ Rn, image regularization parameter α > 0, noise level δ > 0

2 Set t according to (4.1);
3 Use Lanczos process to build Kℓ

(
A0, bδ

)
producing T0,ℓ and Vℓ;

4 Compute eigendecomposition U0Λ0UT
0 with eigenvalues in descending order by magnitude;

5 Set j ≤ ℓ to be the last index such that |λj,0| > δ;
6 Truncate U0 ← U0(:, 1 : j) and Λ0 ← Λ0(1 : j, 1 : j);
7 for i = 1, 2, . . . , j do
8 Compute zeros of p(y) from (3.6) using λ0,j, y0,j, and b̃0,j;
9 for each y a root of p(y) do

10 Compute associated λ according to (3.5);
11 end
12 Determine which of these computed pairs (y, λ) minimizes (3.2);
13 Set (yi, λi)← (y, λ)
14 end
15 Set y =

[
y1 y2 · · · yj

]T and Λ = diag
{
λ1, λ2, . . . , λj

}
;

16 Set xℓ = x0 + VℓU0y and Aℓ = VℓU0Λ (VℓU0)
T ;

5. Computed examples

This section presents two sets of computed examples. All examples were executed on a MacBook Pro with a 3.1 Ghz
Intel Core i5 processor and 8 GB of 2133 MHz LPDDR3 main memory and a solid state drive. Except for in the adaptive
optics examples in Section 5.4, the regularization parameter α was chosen to satisfy the discrepancy principle, either
directly or using an Arnoldi–Tikhonov [17] iteration, applied to the perturbed operator and noisy right-hand side. The
parameter t was chosen according to (4.1). In the first set of examples, reported in Section 5.1, we carry out experiments
using a sample Gaussian blurring problem with perturbed eigenvalues. The second set of tests, shown in Section 5.4,
discuss an adaptive optics application problem. Comparisons with a method described by Buccini et al. [18] are presented
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in Sections 5.2 and 5.3. However, we omit comparisons in some experiments for brevity. Our experience has been that
he algorithm presented in [18] produces reconstructions of higher quality than the method presented in this paper, but
t is much slower as it is more computationally intensive.

In our computed examples, we show the relative error of our reconstruction, which for a particular reconstruction
recon is calculated as

∥xtrue − xrecon∥2
∥xtrue∥2

,

and we also compute the peak signal-to-noise ratio (PSNR),

PSNR(xrecon, xtrue) = 10 log10

(
2552

∥xrecon − xtrue∥22

)
.

The constant 255 in the numerator stems from that each image is represented by n 8-bit pixels, which take on integer
values in the interval [0, 255]. The range limitation is not imposed during the solution of the minimization problem
described in the previous sections. Moreover, the PSF should not create or damp light. We determine a reconstruction
that approximately satisfies this requirement, as well as the range restriction as follows: We first set negative entries
of the restoration computed as described in the previous sections to zero, then scale the vector so obtained so that its
1-norm agrees with ∥bδ

∥1, and finally set entries larger than 255 of the latter vector to 255. This gives the reconstruction
xrecon, which approximates xtrue.

In the following experiments, the initial approximation is always chosen to be the zero vector, i.e., an empty black
mage. The initial operator approximation is the given operator A0.

5.1. Applications to a Gaussian blur matrix

We first show some experiments that involve simple perturbations of a Gaussian blurring matrix. Let A denote the
(true) Gaussian blurring matrix and A0 a modified blurring matrix that is obtained by perturbing the eigenvalues of A.
Each eigenvalue is perturbed by numbers generated by the Matlab function rand() (so uniformly distributed on the
interval [0, 1]) scaled by 10−2. Thus, A0 has the same eigenvectors as A.

We cannot expect the computed blurring matrix Ã to be an accurate approximation of the true blurring matrix A for
all initial vectors bδ for the symmetric Lanczos process. With the proposed method, one builds Ã using a Krylov subspace
determined by the matrix A0 and the particular initial vector bδ . We therefore can expect Ã to be most accurate in a
neighborhood of the initial vector bδ . As an analogy, one can consider the accuracy of the Fréchet derivative developed
around a point as one moves away from that point. This idea motivates the following experiment.

For a given right-hand side b and initial matrix A0, the proposed method generates a low-rank matrix Ã. The goal now
is to test the accuracy of this operator in various neighborhoods of b. We define accuracy in terms how well the action
of Ã† applied to a noise-polluted vector in that neighborhood approximates the action of A† applied to the nonpolluted
vector. This is judged relative to the accuracy of the optimal Tikhonov regularized solution produced using A0 (denoted
by Rα(A0)). Thus, for r in a neighborhood of b and rδ a noisy perturbation thereof, we compute

err(Ã, r) =
∥A†r − Ã†rδ

∥2

∥A†r − Rα(A0)rδ∥2
. (5.1)

e must, however, be careful when generating vectors r in the neighborhood. The vector is an unperturbed vector in
he range of the blurring matrix A. We would like to consider perturbations r of b that also are in the range of A. We
herefore set r = b + Ar , where r is a vector with normally distributed random entries with zero mean scaled so that
is in the desired neighborhood of b. In other words, we choose r from the desired neighborhood of b such that ∥A†r∥
oes not blow up.1
Figs. 5.1 and 5.2 illustrate the quality of the operator Ã as measured according to the tests we just described. The

figures demonstrate that when measuring the quality of the reconstructed operator, the distance ∥r − b∥2 may play a
role. Fig. 5.1 shows histograms of the relative norms (5.1) for several distances of r from b. Each histogram is for 1000
runs with different random vectors r . Fig. 5.2 displays the mean relative norm for each distance.

5.2. Grain problem

Here we tested with the Grain image from [19,20] and the same exact and perturbed PSFs used in the experiments
from [18, Figs. 8–9]. The method proposed in [18] produces a higher quality solution, but requires a O(10) more time to
run to completion on the same computer. Neither code has been optimized; thus we only report general performance
comparisons to illustrate the strength of what we propose rather than precise timings. We also tested how well the
Arnoldi–Tikhonov method [17] performs when generating a reconstruction using A0. For the present example, this method
was not able to deliver a reconstruction (see Fig. 5.3).

1 In an infinite-dimensional setting, we could simply say that we assure that r is in the range of A.
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Fig. 5.1. For eigenvalue perturbations of the Gaussian blurring matrix, we plot the relative quality of the reconstructed operator (as measured by
(5.1)) at different distances from b. Each histogram shows the results for 1000 experiments.

Fig. 5.2. For eigenvalue perturbations of the Gaussian blurring matrix, we plot the relative quality of the reconstructed matrix at different distances
from the right-hand side b. Each data point displays the average over 1000 experiments.

5.3. Flourmill problem

In the Flourmill example, displayed by Fig. 5.4, we used the same perturbed PSF as was used for [18, Figures 5]. We
observe that only the coarse details of the Flourmill were recovered by this method, and this required little time to execute.
For such images, we would recommend our method as a fast way to construct a better initial approximation for another
slower, more costly method, that may be able to determine a more accurate approximation of xtrue. This is meaningful
because methods that produce accurate restorations, such as [18], are nonlinear. They can be sped up by providing an
initial approximation of the restored image that is of higher quality than the image represented by bδ .

5.4. Adaptive optics problem

The experiments of this section come from an astronomical imaging application with a large ground-based telescope,
such as the planned European Extremely Large Telescope (E-ELT). One would like to view a part of the night sky in order to
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Fig. 5.3. Application of the Lanczos blind deconvolution algorithm applied to the grain problem with A0 induced by a perturbed PSF from [18].

Fig. 5.4. Application of the Lanczos blind deconvolution algorithm applied to the Flourmill problem with A0 induced by perturbed PSF from [18].

Fig. 5.5. The true star cluster image (left) and the star cluster image convolved with a simulated true PSF. The images are shown in log-scale to
exaggerate the star brightness.

detect astronomical phenomena. A major cause of image distortion is that light from these phenomena must pass through
the turbulent atmosphere of the earth to reach the telescope. To overcome this problem, adaptive optics (AO) systems have
been developed. The purpose of these systems is to compensate for atmospheric distortions in real time; see, e.g., [21,22]
for discussions. An AO system uses indirect measurements from wavefront sensors (WFS) to adjust a deformable mirror
(DM) so that it compensates for atmospheric turbulence. However, since the atmosphere above the telescope changes
within 2 ms, the AO system does not perfectly correct for the turbulence as it suffers from time delay. As the acquisition
time for a single image ranges from several seconds to a few minutes (depending on the brightness of the observed object),
the image degradation due to the rapidly changing atmosphere depends on the average of noncompensated residual
aberrations. This makes phenomena that are close difficult to identify and differentiate. This is illustrated by Fig. 5.5 for
the star cluster image from the Restore Tools software package [19,20].

In this application we have a PSF that describes how a single point source of light is smeared out when light passes
through the distorting medium (atmosphere) before arriving at the sensor. Here we have two unknown objects, the true
image and the blurring operator. During an actual star observation with the telescope, the PSF is unknown. However, the
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PSF of the telescope exhibits the well-understood Airy pattern as the aperture of the telescope is of annular shape. This
PSF is commonly referred to as the diffraction limited PSF and is of the form

PSF (x) = |F(P(x))|2, (5.2)

where F is the Fourier transform and P(x) is the telescope pupil function. Thus, P(x) = 1, if x is inside the aperture, and
P(x) = 0 else.

A PSF associated with an observation through turbulent atmosphere with a telescope equipped with an AO system
also has to take into account residual phase aberrations φ. This defines an instantaneous PSF, which is of the form

PSFφ(t) = |F(P(x)eiφ(x,t))|2.

An image I formed through telescope observation can mathematically be described as a convolution of the true object
Itrue and the PSF of the observing system, resulting in

I(t) = Itrue ∗ PSFφ(·, t).

The acquisition of a single image takes longer than the PSF remains constant. We therefore have to consider a time average.
Using the fact that the true observed object does not change during the observation time, we obtain the equation

⟨I⟩ = Itrue ∗ ⟨PSFφ(·, t)⟩,

where ⟨·⟩ denotes the time average. In the following, we seek to estimate PSFobs := ⟨PSFφ(·, t)⟩.
The convolution of an image with the PSF induces a matrix of the same size as the image. From the measurements of the

WFS, one can determine both how the DM should be adjusted, as well as the residual turbulent wavefront resulting from
the time lag. The formulas above can be used to derive an estimate for PSFobs from the residual wavefront turbulence. In
the following, we will refer to the PSF determined from the WFS measurements as the reconstructed PSF. The first known
successful attempt to determine a reconstructed PSF is described in [23] for a simple AO system. In recent years several
methods for reconstructing the PSF have been developed; see [24–30].

In addition to the time lag, reconstructed PSFs also suffer from imperfections due to approximations in the modeling
process and numerical errors. The latter stem both from discretization errors caused by the use of a fairly coarse grid for
the WFS and from propagated round-off errors introduced, e.g., when computing the discrete Fourier transform.

Of course, we do not know the true PSF. However, using the official simulation tool of the European Southern
Observatory, Octopus [31], we can obtain a high-quality approximation of the true PSF. We consider the latter PSF as
the true PSF.

The use of an available approximate PSF makes experiments with our algorithm a bit more difficult to carry out than
when an approximate blurring matrix is available. Since we do not know the blurring matrix associated with the available
PSF, we cannot study its spectral factorization to understand how our algorithm behaves.

To gain some insight into the performance of our blind deconvolution method, we take advantage of the fact that the
PSF can be convolved with images of different sizes. Thus, we can convolve the PSF with all canonical basis vectors from
R1024, which span the space of 32 × 32 images. This can be performed in a reasonable amount of time and induces
a blurring matrix that can be quickly decomposed and studied to help us understand the performance of our blind
deconvolution method. Indeed, we noticed immediately that the PSFs from the AO application do not induce symmetric
blurring matrices. This is due to the presence of small perturbations caused by noise in the measured PSF.

One can apply radial averaging to symmetrize the PSF. This is quite natural, as it is common to only consider the radial
average of a PSF in real applications; see [28]. A justification of averaging is that in the AO system, all wavefront distortions
are small and have expected value zero. This suggests that a PSF associated with a run of the AO system should be fairly
close to the PSF of the telescope, which is symmetric.

The acquisition of an image takes a long time compared to measuring the wavefront distortions. Therefore, speckles
occurring due to distortions in a short time frame and measurement errors tend to average out. The reconstructed PSF
is in the direction of the telescope. Therefore, no hardware dependent asymmetric behavior of the system will show up
at the center of our image. Fig. 5.6 shows symmetrized versions of the PSFs. The distortion created by the action of each
radially symmetrized PSF can be seen in the central image of Fig. 5.10.

Our true and reconstructed radially symmetric PSFs [29,30] allow us to determine associated blurring matrices of size
1024 × 1024 and study their properties. Plots of their entries, displayed in Fig. 5.7, show the blurring matrices to be
highly structured. Indeed, a cursory look at the entries suggests that the blurring matrices are close to block matrices in
which each block is a Toeplitz matrix. It is well-known that block-Toeplitz-Toeplitz-block matrices are discrete convolution
operators; see, e.g., [5,32].

Fig. 5.8 displays the log-plot of the positive eigenvalues in descending order of the matrices displayed in Fig. 5.7,
nd Fig. 5.9 shows four unit eigenvectors associated with the largest eigenvalues of both matrices. One can appreciate
hat the dominant eigenvectors look fairly similar qualitatively and that the eigenvalues decay rapidly. We deduce that
lready a few iterations with the Lanczos process applied to this blurring matrix have the potential of giving accurate
pproximations of the dominant eigenvectors of the matrix induced by the true PSF. The method proposed in this paper

an be used to determine suitable eigenvalues.



12 L. Dykes, R. Ramlau, L. Reichel et al. / Journal of Computational and Applied Mathematics 382 (2021) 113067

q

Fig. 5.6. Log plot of the absolute values of the true (left) and of the reconstructed radially symmetrized PSF (right).

Fig. 5.7. Log plot of the absolute values of the matrices determined by radially symmetrized true and reconstructed PSFs.

Fig. 5.8. Log plot of the positive eigenvalues of the matrices induced by applications of the true and false PSFs.

Fig. 5.9. Comparison of first four unit eigenvectors of matrices induced by the two PSFs. On close inspection, each pair differs in amplitude, but
ualitatively has the same frequency.
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Fig. 5.10. Reconstruction of the symmetrized PSF from the AO application using the rougher approximate PSF.

Fig. 5.11. Here we chose t = 1, as it yielded better performance than the default choice.

Judging the quality of the low-rank operator reconstruction is a bit more difficult. There is no explicitly available true
operator with which to compare, and for an image of this size, the induced matrix representation of the PSF is prohibitively
expensive to compute.

For the same PSF, we carry out the same experiments for a less sparse image, namely the satellite image, also from
Restore Tools [19,20]. In Fig. 5.11, we show an experiment with a different choice of t than is recommended in (4.1), as
this yielded a better result.

6. Discussion and conclusion

We have developed a new blind deconvolution method which generates a Krylov subspace using a given, incorrect
operator A0 and a noise-contaminated vector bδ . Using this subspace, we determine eigenvalue approximations, an
approximation of the desired image, and a low-rank approximation of the true blurring matrix. This is accomplished
through the minimization of a scalar functional that yields, for each approximate eigenvector, an eigenvalue of the
low-rank matrix approximation.

We have shown that the method is able to deliver image and blurring matrix reconstructions. Differently from some
other available blind deconvolution methods, the method presented requires no information about the blurring matrix and
boundary conditions specific for the problem. The main computational burden is the evaluation of a few matrix–vector
products with an available approximation of the actual symmetric blurring matrix. The method therefore is inexpensive
to apply. Its performance depends on the relationship between the spectral information of the false available blurring
matrix and the true unknown one. The difference between their eigenspaces is especially important since we use the
approximate eigenvectors generated by the Lanczos process when applied to the false blurring matrix to construct an
approximation of the true blurring matrix.

As the results for symmetric operator induced by radially symmetric PSFs are promising, the next step is to develop
an extension of this method appropriate for non-symmetric problems. Furthermore, it is often the case that astronomers
have specific information about a small part of the sky, such as where one should definitely see a star or where there
should be no astronomical phenomena. It would be advantageous to use this information in the reconstruction of the
image and the blurring matrix.
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