
Asymmetric LOCO Codes: Constrained Codes
for Flash Memories

Ahmed Hareedy and Robert Calderbank
Electrical and Computer Engineering Department, Duke University, Durham, NC 27705 USA

ahmed.hareedy@duke.edu and robert.calderbank@duke.edu

Abstract—In data storage and data transmission, certain
patterns are more likely to be subject to error when written
(transmitted) onto the media. In magnetic recording systems
with binary data and bipolar non-return-to-zero signaling,
patterns that have insufficient separation between consecutive
transitions exacerbate inter-symbol interference. Constrained
codes are used to eliminate such error-prone patterns. A recent
example is a new family of capacity-achieving constrained codes,
named lexicographically-ordered constrained codes (LOCO
codes). LOCO codes are symmetric, that is, the set of forbidden
patterns is closed under taking pattern complements. LOCO
codes are suboptimal in terms of rate when used in Flash
devices where block erasure is employed since the complement
of an error-prone pattern is not detrimental in these devices.
This paper introduces asymmetric LOCO codes (A-LOCO
codes), which are lexicographically-ordered constrained codes
that forbid only those patterns that are detrimental for Flash
performance. A-LOCO codes are also capacity-achieving, and at
finite-lengths, they offer higher rates than the available state-
of-the-art constrained codes designed for the same goal. The
mapping-demapping between the index and the codeword in
A-LOCO codes allows low-complexity encoding and decoding
algorithms that are simpler than their LOCO counterparts.

I. INTRODUCTION

Constrained codes are widely applied in various data
storage systems to improve their performance. These codes
were first employed in magnetic recording (MR) systems.
Run-length-limited (RLL) codes [1] were used to extend the
lifetime of peak detection in early IBM disk drives [2]. Binary
RLL codes are typically used with bipolar non-return-to-zero
inverted (NRZI) signaling, where a 0 is represented by no
transition, while a 1 is represented by a transition. RLL codes
are used to control the separation between consecutive transi-
tions. Small separation exacerbates inter-symbol interference
(ISI) while large separation results in losing synchronization
at the receiver. Constrained codes also find application in
modern MR systems [3] to improve sequence detection [4].

We define the set Sx , {010, 101, 0110, 1001, . . . , 01x0,
10x1}, where we denote a run of r consecutive 0’s (resp., 1’s)
as 0r (resp. 1r). Note that the set Sx is closed under taking
pattern complements and has size 2x. We define a binary
symmetric Sx-constrained code to be a code that forbids any
pattern in the set Sx from appearing in any of its codewords.
Sx-constrained codes are used with bipolar non-return-to-
zero (NRZ) signaling to control the separation between
consecutive transitions. In NRZ signaling, a 0 is represented
by level −A or the erasure level E in Flash, while a 1 is
represented by level +A. Many applications, e.g., optical
recording, require constrained codes to be balanced [5].

In Flash systems employing block erasure, the error-prone
patterns, i.e., the patterns that contribute the most to inter-cell
interference (ICI), for NRZ signaling are somewhat different.
It was demonstrated in [6] that for Flash memories, the
pattern (q− 1)0(q− 1) should be eliminated, where q is the
number of levels in the cell and also the Galois field (GF)
size1. Balanced and constant-weight codes were designed to
eliminate this pattern in [6] and [7], respectively. The authors
of [8] showed that the set of patterns to eliminate in multi-
level cell (MLC) Flash memories is {303, 313, 323}, which
can be generalized to {(q−1)0(q−1), (q−1)1(q−1), . . . , (q−
1)(q − 2)(q − 1)} for q-level cell Flash memories as shown
in [9]. The problem originates from the phenomenon that
increasing the charge at the outer two cells causes the middle
cell to have its charge also increased unintentionally because
of the parasitic capacitances. Prior work only considered
adjacent cells [6]–[9]. However, parasitic capacitances may
also result in charge propagation between non-adjacent cells,
which means patterns like (q− 1)0x(q− 1), x > 1, can also
be problematic (investigated here in the binary case).

We define the set Ax , {101, 1001, . . . , 10x1} and note
that Ax has size x. We define a binary asymmetric Ax-
constrained code to be a code that forbids any pattern in
the set Ax from appearing in any of its codewords. The code
is said to be asymmetric because Ax is not closed under
taking pattern complements. Here, NRZ signaling is adopted.
For magnetic recording channels having the extended partial-
response 4 (EPR4) target, the authors of [10] showed that
asymmetricA1-constrained codes (forbidding {101}) achieve
the same performance as symmetric S1-constrained codes
(forbidding {010, 101}) with 20% rate increase.

The idea of constructing constrained codes based on lexi-
cographic indexing (also called enumerative coding) was first
presented in [1] for RLL codes. The framework introduced in
[11] inspired more recent developments such as [12] and [13].
These developments have the drawback that the code length
needs to be large for rates approaching capacity, resulting
in limited rate-complexity trade-off advantages. The asym-
metric constrained codes in [9], designed for Flash systems,
are enumerative constant-composition codes with high rates
and average encoding-decoding complexity. However, these
codes are limited in the sense that only the effect of the two
adjacent cells is taken into account, i.e., for a single-level
cell (SLC) Flash memory device (inaccurate nomenclature;
it is a single-bit cell), they are only A1-constrained codes.

1We map GF elements to integers representing threshold voltage levels.

2019 57th Annual Allerton Conference on Communication, Control, and Computing
(Allerton)
Allerton Park and Retreat Center
Monticello, IL, USA, September 24-27, 2019

978-1-7281-3151-1/19/$31.00 ©2019 IEEE 124

Authorized licensed use limited to: Duke University. Downloaded on September 10,2020 at 22:06:08 UTC from IEEE Xplore. Restrictions apply.

Recently, we introduced a new family of symmetric con-
strained codes, which we named lexicographically-ordered
Sx-constrained codes (LOCO codes) [14]. LOCO codes are
capacity-achieving, and they offer up to 10% rate gain, with
low complexity encoding-decoding, compared with practical
RLL codes designed for the same goal. A combination
of LOCO codes and spatially-coupled graph-based codes
[15] resulted in significant density gains with limited rate
reduction. Balancing LOCO codes was also proved to result
in the minimum penalty in code rate. See [14] for details.

In this paper, we propose and analyze a new family of
asymmetric constrained codes, which we name asymmetric
lexicographically-ordered Ax-constrained codes (A-LOCO
codes), that improve performance by eliminating the error-
prone patterns in Flash memories. Our A-LOCO codes can
be constructed, encoded, and decoded for any set Ax, making
them capable of taking into account the effect of non-adjacent
cells when needed. A-LOCO codes are capacity-achieving
codes, and we establish a mapping-demapping formula be-
tween the lexicographic index and the codeword in order to
enable simple, practical encoding and decoding algorithms.
Compared with other practical asymmetric and symmetric
constrained codes designed for the same purpose, A-LOCO
codes offer higher rates at low complexity. In this paper, we
only consider binary asymmetric constrained codes for SLC
Flash memories. However, we expect to be able to develop
non-binary asymmetric constrained codes for Flash memories
with q = 2y , y ≥ 2, levels. High rate non-binary asymmetric
constrained codes will encourage the development of quad-
level cell (QLC) Flash memories.

The rest of the paper is organized as follows. In Section II,
we enumerate the codewords in an A-LOCO code. In Sec-
tion III, we establish the encoding-decoding rule of A-LOCO
codes. In Section IV, we discuss bridging, self-clocking, and
rates of A-LOCO codes. In Section V, we introduce the
algorithms, complexity analysis, and comparisons with other
constrained codes. We conclude the paper in Section VI.

II. CARDINALITY OF A-LOCO CODES

In this section, we formally define A-LOCO codes, and
then derive a recursive relation that gives the cardinality, i.e.,
the number of codewords, of these codes.

Definition 1. An A-LOCO code ACm,x, with parameters
m ≥ 1 and x ≥ 1, is defined via the following properties:

1) Codewords in ACm,x are binary and of length m.
2) Codewords in ACm,x are ordered lexicographically.
3) Any pattern in the asymmetric set Ax does not appear

in any codeword c in ACm,x, where:

Ax , {101, 1001, . . . , 10x1}. (1)

4) The code ACm,x contains all the codewords satisfying
the previous three properties.

Lexicographic ordering of codewords means that they are
ordered in an ascending manner following the rule 0 < 1 for
any bit, and the bit significance reduces from left to right.

Our main application in this work is Flash memories. In
SLC devices, a 1 results in a programmed cell, while a 0
results in an unprogrammed cell, i.e., NRZ signaling. Thus,
patterns of the form 10x1 are error-prone since they give rise
to ICI on the inner cell(s) (the unprogrammed cell(s)).

Table I shows the codewords of the A-LOCO codes
ACm,1, m ∈ {1, 2, . . . , 5}. The table demonstrates that an
A-LOCO code with m /∈ {1, 2} is not closed under taking
codeword complements. Moreover, the table also exhibits the
increase in the A-LOCO code cardinality compared with the
corresponding LOCO code. For example, the cardinality of
the A-LOCO code with m = 5 and x = 1 is 21, while it is
only 16 for the corresponding LOCO code [14].

Next, we introduce a group structure for A-LOCO codes
that helps us not only derive the cardinality recursively, but
also devise the encoding-decoding rule of A-LOCO codes,
which is based on lexicographic indexing.

For m ≥ 2, the codewords in an A-LOCO code ACm,1

are classified into the following three groups:
Group 1: Codewords that start with 0 from the left, i.e.,

at the left-most bit (LMB).
Group 2: Codewords that start with 11 from the left.
Group 3: Codewords that start with 10x+1 from the left.
This group structure is shown explicitly in Table I for
AC5,1. Additionally, the horizontal lines in each column
of codewords separate different groups. Note that bridging
bits/symbols are required in order to guarantee that the
forbidden patterns do not appear in streams of consecutive
A-LOCO codewords. Bridging will be discussed later.

Theorem 1 derives the cardinality of A-LOCO codes.

Theorem 1. Denote the cardinality of an A-LOCO code
ACm,x by N(m,x) with:

N(m,x) , 1, m ≤ 0, and N(1, x) , 2. (2)

The following recursive equation gives N(m,x):

N(m,x) = 2N(m− 1, x)−N(m− 2, x)

+N(m− x− 2, x), m ≥ 2. (3)

Proof: We use the group structure illustrated above in
order to prove Theorem 1.

Group 1: Each codeword from Group 1 in ACm,x cor-
responds to a codeword in ACm−1,x that shares the m − 1
right-most bits (RMBs) with the codeword in ACm,x. This
applies to all the codewords in ACm−1,x. Recall that patterns
of the form 01y0, 1 ≤ y ≤ x, are not forbidden in A-LOCO
codes. Thus, the cardinality of Group 1 in ACm,x is:

N1(m,x) = N(m− 1, x). (4)

Group 2: Each codeword from Group 2 in ACm,x corre-
sponds to a codeword in ACm−1,x that starts with 1 from the
left and shares the m−2 RMBs with the codeword in ACm,x.
This applies to all the codewords starting with 1 from the left
in ACm−1,x. Thus, the cardinality of Group 2 in ACm,x is:

N2(m,x) = N(m− 1, x)−N1(m− 1, x). (5)

Using (4) to compute N1(m− 1, x) gives:

125

Authorized licensed use limited to: Duke University. Downloaded on September 10,2020 at 22:06:08 UTC from IEEE Xplore. Restrictions apply.

TABLE I
THE CODEWORDS OF FIVE A-LOCO CODES, ACm,1 , m ∈ {1, 2, . . . , 5} AND x = 1. THE THREE DIFFERENT GROUPS OF CODEWORDS ARE SHOWN

FOR THE CODE AC5,1 .

Codeword index g(c)
Codewords of the code ACm,1

m = 1 m = 2 m = 3 m = 4 m = 5
0 0 00 000 0000 00000

Group 1

1 1 01 001 0001 00001
2 10 010 0010 00010
3 11 011 0011 00011
4 100 0100 00100
5 110 0110 00110
6 111 0111 00111
7 1000 01000
8 1001 01001
9 1100 01100
10 1110 01110
11 1111 01111
12 10000

Group 313 10001
14 10010
15 10011
16 11000

Group 2
17 11001
18 11100
19 11110
20 11111

Code cardinality N(1, 1) , 2 N(2, 1) = 4 N(3, 1) = 7 N(4, 1) = 12 N(5, 1) = 21

N2(m,x) = N(m− 1, x)−N(m− 2, x). (6)

Group 3: Each codeword from Group 3 in ACm,x corre-
sponds to a codeword in ACm−x−1,x that starts with 0 from
the left and shares the m− x− 2 RMBs with the codeword
in ACm,x. This applies to all the codewords starting with 0
from the left in ACm−x−1,x. Thus, the cardinality of Group 3
in ACm,x is:

N3(m,x) = N1(m− x− 1, x). (7)

Using (4) to compute N1(m− x− 1, x) gives:

N3(m,x) = N(m− x− 2, x). (8)

Adding (4), (6), and (8) gives:

N(m,x) =
3∑

`=1

N`(m,x)

= 2N(m− 1, x)−N(m− 2, x) +N(m− x− 2, x),

which completes the proof.

Example 1. The cardinalities of ACm,1, m ∈ {2, 3, 4, 5},
are computed using Theorem 1 as follows:

N(−1, 1) , 1, N(0, 1) , 1, N(1, 1) , 2,

N(2, 1) = 2N(1, 1)−N(0, 1) +N(−1, 1) = 4,

N(3, 1) = 2N(2, 1)−N(1, 1) +N(0, 1) = 7,

N(4, 1) = 2N(3, 1)−N(2, 1) +N(1, 1) = 12,

N(5, 1) = 2N(4, 1)−N(3, 1) +N(2, 1) = 21,

which are also given in the last row of Table I.

Theorem 1 is important because, for a given length m,
the number of codewords determines the rate of the code.
This is true for all coding techniques based on lexicographic
ordering (true for enumerative coding techniques in general).
Theorem 1 is also essential for devising the encoding-
decoding rule of A-LOCO codes as we shall see next section,
and consequently, the encoding-decoding algorithms.

III. ENCODING-DECODING RULE OF A-LOCO CODES

In this section, we devise the encoding-decoding rule of
A-LOCO codes, which is based on lexicographic indexing.
This rule is what enables simple, low complexity encoding
and decoding algorithms for A-LOCO codes.

We first introduce some notation. Define an A-LOCO
codeword of length m as c , [cm−1 cm−2 . . . c0] ∈ ACm,x.
The index of an A-LOCO codeword c in ACm,x is denoted
by g(m,x, c), which is sometimes abbreviated to g(c), as in
Table I, for simplicity. We also define an integer variable ai
for each binary ci as follows:

ai ,

{
1, ci = 1,
0, ci = 0,

(9)

with am , 0. The same notation applies for an A-LOCO
codeword of length m+1, c′ in ACm+1,x, and an A-LOCO
codeword of length m− x, c′′ in ACm−x,x.

Theorem 2 gives the encoding-decoding rule of A-LOCO
codes. The indexing is trivial for the case of m = 1

Theorem 2. The lexicographic index g(m,x, c) of an A-
LOCO codeword c in ACm,x, m ≥ 2 and x ≥ 1, is computed
from the codeword itself according to the following rule:

g(c) =
m−1∑
i=0

aiN(i− ai+1x, x). (10)

Proof: We prove Theorem 2 by induction.
Base: Our base case is the case of m = 2. For AC2,x, we

always have four codewords, say c0, c1, c2, and c3 in order,
for any value of x. These four codewords are listed in Table I.
We want to prove that g(cj) = j, for all j ∈ {0, 1, 2, 3},
using (10). The bits of a codeword cj are cj,i, i ∈ {0, 1},
and aj,i is defined for each cj,i as in (9).

g(c0) =
1∑

i=0

0 ·N(i− ai+1x, x) = 0,

126

Authorized licensed use limited to: Duke University. Downloaded on September 10,2020 at 22:06:08 UTC from IEEE Xplore. Restrictions apply.

g(c1) =
1∑

i=0

aiN(i− ai+1x, x) = N(0− 0, x) = 1,

g(c2) =
1∑

i=0

aiN(i− ai+1x, x) = N(1− 0, x) = 2,

g(c3) =
1∑

i=0

aiN(i− ai+1x, x)

= N(1− 0, x) +N(0− 1, x) = 2 + 1 = 3. (11)

Recall that N(1, x) , 2, for all x ∈ {1, 2, . . . }.
Assumption: We assume that the following is correct:

g(m,x, c) =
m−1∑
i=0

aiN(i− ai+1x, x), (12)

where c ∈ ACm,x and m ∈ {1, 2, . . . ,m} with the same no-
tation defined before Theorem 2 apply to c. The assumption
here basically means (10) is correct for all A-LOCO codes
ACm,x, m ∈ {1, 2, . . . ,m}.

To be proved: We prove that:

g(m+ 1, x, c′) =

m∑
i=0

a′iN(i− a′i+1x, x), (13)

which means we prove that given the base and the assump-
tion, (10) is also correct for the A-LOCO code ACm+1,x.

One more time, we use the group structure introduced in
Section II to prove (13). Note that the group structure can
be defined for ACm+1,x as defined for ACm,x. We use the
same codeword correspondence in the proof of Theorem 1
for the three groups (with m+ 1 replacing m).

Group 1: The codewords in Group 1 in ACm+1,x start at
index 0, and the corresponding codewords inACm,x also start
at index 0. Thus, for this group, the shift in codeword indices
between a codeword c′ in ACm+1,x and the corresponding
codeword c in ACm,x is:

g(m+ 1, x, c′)− g(m,x, c) = 0. (14)

Consequently, and using (12):

g(m+1, x, c′) = g(m,x, c) =
m−1∑
i=0

aiN(i−ai+1x, x). (15)

Since c′ starts with 0 from the left, a′m = 0. Additionally, c′

and c share the m RMBs. Thus, (15) can be written as:

g(m+ 1, x, c′) =
m∑
i=0

a′iN(i− a′i+1x, x). (16)

Group 2: The codewords in Group 2 in ACm+1,x start
right after Groups 1 and 3, and the corresponding codewords
in ACm,x start right after all the codewords that start with
0 from the left. Thus, for this group, the shift in codeword
indices between a codeword c′ in ACm+1,x and the corre-
sponding codeword c in ACm,x is:

g(m+ 1, x, c′)− g(m,x, c)
= N1(m+ 1, x) +N3(m+ 1, x)−N1(m,x)

= N(m,x) +N(m− x− 1, x)−N(m− 1, x), (17)

where the second equality follows from using (4) and (8).
Consequently, and using (12):

g(m+ 1, x, c′)

= N(m,x) +N(m− x− 1, x)−N(m− 1, x)

+
m−1∑
i=0

aiN(i− ai+1x, x). (18)

Observe that cm−1 = 1; thus, am−1 = 1, while am , 0.
Using these observations in (18) results in:

g(m+ 1, x, c′)

= N(m,x) +N(m− x− 1, x)−N(m− 1, x)

+N(m− 1, x) +
m−2∑
i=0

aiN(i− ai+1x, x). (19)

Since c′ starts with 11 from the left, a′m = a′m−1 = 1, same
as am−1, while a′m+1 , 0. Consequently,

N(m,x) +N(m− x− 1, x)

= a′mN(m− a′m+1x, x) + a′m−1N(m− 1− a′mx, x)

=
m∑

i=m−1
a′iN(i− a′i+1x, x). (20)

Additionally, c′ and c share the m − 1 RMBs. Thus, aided
by (20), (19) can be written as:

g(m+ 1, x, c′)

=

m∑
i=m−1

a′iN(i− a′i+1x, x) +

m−2∑
i=0

a′iN(i− a′i+1x, x)

=

m∑
i=0

a′iN(i− a′i+1x, x). (21)

Group 3: The codewords in Group 3 in ACm+1,x start
right after Group 1, and the corresponding codewords in
ACm−x,x start at index 0. Thus, for this group, the shift
in codeword indices between a codeword c′ in ACm+1,x and
the corresponding codeword c′′ in ACm−x,x is:

g(m+ 1, x, c′)− g(m− x, x, c′′)
= N1(m+ 1, x) = N(m,x). (22)

Consequently, and using (12):

g(m+ 1, x, c′) = N(m,x) +
m−x−1∑

i=0

a′′iN(i− a′′i+1x, x)

= N(m,x) +
m−x−2∑

i=0

a′′iN(i− a′′i+1x, x), (23)

where the second equality follows from that c′′ starts with
0 from the left; thus, a′′m−x−1 = 0. Since c′ starts with
10x+1 from the left, a′m = 1 and a′m−1 = a′m−2 = · · · =
a′m−x−1 = 0, while am+1 , 0. Additionally, c′ and c′′ share
the m− x− 1 RMBs. Thus, (23) can be written as:

g(m+ 1, x, c′) =
m∑
i=0

a′iN(i− a′i+1x, x). (24)

127

Authorized licensed use limited to: Duke University. Downloaded on September 10,2020 at 22:06:08 UTC from IEEE Xplore. Restrictions apply.

From (16), (21), and (24), (13) is proved, which completes
the proof by induction for any A-LOCO code ACm,x, m ≥ 2
and x ≥ 1.

Example 2. We illustrate Theorem 2 by applying (10) on two
different codewords in AC5,1, given in Table I, to compute
their indices. The first codeword is 01111; thus, a4 = 0 and
a3 = a2 = a1 = a0 = 1. Consequently,

g(c) =
4∑

i=0

aiN(i− ai+1, 1)

= N(3− 0, 1) +N(2− 1, 1) +N(1− 1, 1) +N(0− 1, 1)

= N(3, 1) +N(1, 1) +N(0, 1) +N(−1, 1)
= 7 + 2 + 1 + 1 = 11,

which is indeed the index of this codeword in Table I. The
second codeword is 11001; thus, a4 = a3 = a0 = 1 and
a2 = a1 = 0, while a5 , 0. Consequently,

g(c) =

4∑
i=0

aiN(i− ai+1, 1)

= N(4− 0, 1) +N(3− 1, 1) +N(0− 0, 1)

= N(4, 1) +N(2, 1) +N(0, 1)

= 12 + 4 + 1 = 17,

which is indeed the index of this codeword in Table I.

Theorem 2 gives the encoding-decoding rule of A-LOCO
codes. In particular, this theorem provides a simple mapping-
demapping (both are one-to-one) from the index to the
codeword and vice-versa. This simple mapping-demapping
represented by (10) is what enables low-complexity encoding
and decoding algorithms for A-LOCO codes as we shall
see later. The main advantage offered by A-LOCO codes
is that they are capacity-achieving asymmetric constrained
codes with simple encoding-decoding.

IV. BRIDGING, CLOCKING, AND ACHIEVABLE RATES

In this section, we discuss the bridging patterns and the
self-clocking of A-LOCO codes. Then, we introduce the rates
of A-LOCO codes in the finite-length regime and show that
they are capacity-achieving codes.

In fixed-length constrained codes [12], given any two
consecutive codewords, bridging patterns are needed to pre-
vent forbidden patterns from appearing on the transition
from the first codeword to the following codeword [14].
For example, consider the A-LOCO code AC5,1 given in
Table I, if the codewords having indices 13 and 8 are to be
written consecutively without bridging, we get the following
substream of bits 1000101001 in which, the forbidden pattern
101 does appear (the pattern is shown in italic).

For symmetric LOCO codes, it was shown in [14] that
upon deciding the bridging method, there is a compromise
between the maximum protection of the bits at the codeword
transitions and the minimum number of bits/symbols to
be used for bridging. The optimal bridging method for a
symmetric LOCO code with parameter x in terms of bits
protection was shown to require 2x bridging bits, which

results in significant rate loss [14]. Thus, we adopted a
suboptimal bridging method for symmetric LOCO codes that
is bridging by x no writing, or no transmission, symbols.

For an A-LOCO code with parameter x, only patterns of
the form {101, 1001, . . . , 10x1} are forbidden. Thus, bridg-
ing with x 0’s, i.e., with the pattern 0x, ensures that forbidden
patterns do not appear on the codeword transitions except
for the case when the RMB of a codeword and the LMB of
the next codeword to be written are both 1’s. In this case,
bridging with x 1’s, i.e., with the pattern 1x, is used instead.
In summary, our bridging method for A-LOCO codes is:

1) If the RMB of a codeword and the LMB of the next
codeword to be written are both 1’s, bridge with 1x.

2) Otherwise, bridge with 0x.
It is important here to highlight that the proposed bridging

methods is one of the advantages of A-LOCO codes over
other constrained codes. In particular, the bridging method is
not only optimal in terms of bits protection, but also requires
the minimum number of added bits for bridging, which is
only x bits for an A-LOCO code ACm,x. Observe that this
bridging method is also easy to implement.

Next, we discuss the self-clocking of A-LOCO codes. This
feature is required in order to have clock recovery and system
calibration [2], [14]. A constrained code is said to be self-
clocked if any stream of codewords to be written contains a
sufficient number of appropriately-separated transitions after
bridging and signaling are applied. Since NRZ signaling is
adopted for A-LOCO codes, these transitions are the 0 − 1
and 1−0 transitions in A-LOCO codewords. To achieve self-
clocking, we just need to remove the two codewords 0m and
1m from an A-LOCO code ACm,x as this guarantees at least
one transition in each A-LOCO codeword.

Definition 2. A self-clocked A-LOCO code (CA-LOCO code)
ACc

m,x, m ≥ 2, is the A-LOCO code ACm,x after removing
the all 0’s and the all 1’s codewords. Mathematically,

ACc
m,x , ACm,x \ {0m,1m}. (25)

Thus, the cardinality of ACc
m,x is:

N c(m,x) = N(m,x)− 2. (26)

We define kc
eff as the maximum number of consecutive

cells between two consecutive transitions (all programmed or
all unprogrammed) after a stream of CA-LOCO codewords
separated by bridging patterns is written; one bit per cell.
Thus, kc

eff is the length of the longest run of consecutive
1’s or 0’s in a stream of CA-LOCO codewords separated by
bridging patterns. The scenarios under which kc

eff is achieved
are:

10m−1 − 0x − 0m−11 and 01m−1 − 1x − 1m−10.

Consequently, kc
eff is given by:

kc
eff = 2(m− 1) + x, (27)

which is the same equation satisfied by LOCO codes [14].
Given the cardinality of a CA-LOCO code ACc

m,x, the size
of the messages ACc

m,x encodes is:

sc = blog2N c(m,x)c = blog2(N(m,x)− 2)c . (28)

128

Authorized licensed use limited to: Duke University. Downloaded on September 10,2020 at 22:06:08 UTC from IEEE Xplore. Restrictions apply.

TABLE II
THE CODEWORDS OF THE CA-LOCO CODE ACc

5,1 AND THE
CORRESPONDING MESSAGES.

Message b Index g(c) Codeword c
1 0000 00001
2 0001 00010
3 0010 00011
4 0011 00100
5 0100 00110
6 0101 00111
7 0110 01000
8 0111 01001
9 1000 01100
10 1001 01110
11 1010 01111
12 1011 10000
13 1100 10001
14 1101 10010
15 1110 10011
16 1111 11000

Consequently, the rate of a CA-LOCO code ACc
m,x, where

x bits are used for bridging as illustrated above, is given by:

Rc
A-LOCO =

sc

m+ x
=
blog2(N(m,x)− 2)c

m+ x
. (29)

Observe the following:
1) A CA-LOCO code ACc

m,x contains all the codewords
satisfying the Ax constraint except the two codewords
in {0m,1m}. This follows from Definitions 1 and 2.

2) The number of bits added for bridging is x, which does
not grow with the code length m. Thus, as m → ∞,
the x in the denominator of (29) can be ignored.

From the above two observations, we conclude that CA-
LOCO codes are capacity-achieving constrained codes.
Shortly, we will show that rates approaching the capacity
can be achieved with low complexity encoding-decoding.

Example 3. Consider again the A-LOCO code AC5,1 in
Table I. The CA-LOCO code ACc

5,1 is obtained by removing
the codewords 0m (with index 0) and 1m (with index 20)
from AC5,1. For this CA-LOCO code, we have:

kc
eff = 2(5− 1) + 1 = 9.

The size of the messages ACc
5,1 encodes is:

sc = blog2(N(5, 1)− 2)c = blog2 19c = 4,

where N(5, 1) = 21 from Example 1 and Table I. All the 16
codewords of ACc

5,1 that have corresponding messages are
shown in Table II. From (29), the rate is:

Rc
A-LOCO =

4

5 + 1
= 0.6667.

Note that this is a relatively low rate because of the small
value of the code length m.

Table III lists the rates of multiple CA-LOCO codes
ACc

m,x for different values of m and x ∈ {1, 2}. For the
case of x = 1, at length m = 44 (resp., 76), the rate is
0.8000 (resp., 0.8052). The capacity of A1-constrained codes
is 0.8114 [9], [10]. Thus, at length 76 (resp., 113) bits, the
CA-LOCO code is within just 0.8% (resp., 0.6%) from the
capacity. For the case of x = 2, at length m = 28 (resp.,

TABLE III
RATES OF CA-LOCO CODES ACc

m,x FOR DIFFERENT VALUES OF m AND
x ∈ {1, 2}.

Code parameters Rate Adder size
m = 17 and x = 1 0.7778 14 bits
m = 44 and x = 1 0.8000 36 bits
m = 76 and x = 1 0.8052 62 bits
m = 113 and x = 1 0.8070 92 bits
m = 357 and x = 1 0.8101
m = 18 and x = 2 0.6500 13 bits
m = 28 and x = 2 0.6667 20 bits
m = 64 and x = 2 0.6818 45 bits
m = 123 and x = 2 0.6880 86 bits
m = 244 and x = 2 0.6911

64), the rate is 0.6667 (resp., 0.6818). The capacity of A2-
constrained codes is 0.6942 from the finite-state transition
diagram (FSTD). Thus, at length 64 (resp., 123) bits, the
CA-LOCO code is within just 1.8% (resp., 0.9%) from the
capacity. Higher rates are achievable with higher lengths.

Remark 1. A-LOCO codes do not satisfy the complement
rule of symmetric LOCO codes in [14, Lemma 3]. Thus,
balancing A-LOCO codes incurs a higher rate penalty. To
reduce this penalty, almost-balanced A-LOCO codes, with no
strict guarantee on the maximum magnitude of the running
disparity, can be designed using the ideas in [14].

V. ALGORITHMS, COMPLEXITY, AND COMPARISONS

In this section, we introduce practical encoding and de-
coding algorithms of A-LOCO codes. We then discuss the
complexity of these algorithms, and make comparisons with
other asymmetric and symmetric constrained codes that mit-
igate ICI in Flash systems.

In coding techniques based on indexing points (here rep-
resenting codewords), devising simple algorithms to perform
the mapping-demapping between the index and the associ-
ated point is critical to avoid look-up tables; and thus, to
make the technique practical for large sizes. For example,
motivated by this observation, the authors of [16] developed
simple algorithms to index the points of multi-dimensional
constellations. The simple, practical algorithms we introduce
in this section are also motivated by the same observation.

Algorithm 1 is the encoding algorithm. While generating
a specific codeword c in the algorithm, we define the RMB
of the previous codeword as ζ0.

Example 4. We apply Algorithm 1 to encode the message
1010 using the CA-LOCO code ACc

5,1 (m = 5 and x =

1). Recall that N(1, 1) , 2, N(2, 1) = 4, N(3, 1) = 7,
N(4, 1) = 12, and N(5, 1) = 21 (see Example 1). From
Step 6, g(c) = decimal(1010) + 1 = 11, which is the initial
value of residual. The bits of the codeword c are generated
as follows:

1) For i = 4, and since c5 is set to 0, subt_index = i = 4
from Step 10. Now, residual = 11 < N(4, 1) = 12.
Thus, c4 is encoded to 0 from Step 15. Then, the if
condition in Step 20 is satisfied, and because c4 6= 1,
we bridge with 0x before c4 assuming that this is not
the first codeword.

2) For i = 3, and since c4 = 0, subt_index = i = 3 from
Step 10. Now, residual = 11 > N(3, 1) = 7. Thus, c3

129

Authorized licensed use limited to: Duke University. Downloaded on September 10,2020 at 22:06:08 UTC from IEEE Xplore. Restrictions apply.

is encoded to 1 from Step 17, and residual becomes
11− 7 = 4 from Step 18.

3) For i = 2, and since c3 = 1, subt_index = i − x = 1
from Step 12. Now, residual = 4 > N(1, 1) , 2. Thus,
c2 is encoded to 1 from Step 17, and residual becomes
4− 2 = 2 from Step 18.

4) For i = 1, and since c2 = 1, subt_index = i − x = 0
from Step 12. Now, residual = 2 > N(0, 1) , 1. Thus,
c1 is encoded to 1 from Step 17, and residual becomes
2− 1 = 1 from Step 18.

5) For i = 0, and since c1 = 1, subt_index = i−x = −1
from Step 12. Now, residual = 1 = N(−1, 1) , 1.
Thus, c0 is encoded to 1 from Step 17, and residual
becomes 1− 1 = 0 from Step 18.

As a result of this procedure, the message 1010 is encoded
using the CA-LOCO code ACc

5,1 to the codeword 01111,
which is consistent with Table II.

Algorithm 1 Encoding CA-LOCO Codes
1: Input: Incoming stream of binary messages.
2: Decide the value of x based on system requirements.
3: Use (2) and (3) to compute N(i, x), i ∈ {1, 2, . . . }.
4: Specify m, the smallest i in Step 3 to achieve the desired

rate. Then, sc = blog2 (N(m,x)− 2)c.
5: for each incoming message b of length sc do
6: Compute g(c) = decimal(b)+1. (binary sequence to

decimal integer)
7: Initialize residual with g(c) and cm with 0.
8: for i ∈ {m− 1,m− 2, . . . , 0} do (in order)
9: if ci+1 = 0 then

10: Set subt_index = i.
11: else
12: Set subt_index = i− x.
13: end if
14: if residual < N(subt_index, x) then
15: Encode ci = 0.
16: else
17: Encode ci = 1.
18: residual← residual−N(subt_index, x).
19: end if
20: if i = m− 1 then
21: if ζ0 = 1 and cm−1 = 1 then
22: Bridge with x 1’s, i.e., 1x, before cm−1.
23: else
24: Bridge with x 0’s, i.e., 0x, before cm−1.
25: end if
26: end if
27: end for
28: end for
29: Output: Outgoing stream of binary CA-LOCO code-

words. (to be written on the SLC Flash device)

Observe that Algorithm 1 has less steps and less computa-
tions compared with [14, Algorithm 1] for symmetric LOCO
codes. The reason is that all the steps required to avoid the
patterns in {010, 0110, . . . , 01x0} are not needed here since

these patterns are not forbidden for A-LOCO codes. Thus,
the encoding complexity of an A-LOCO code is less than
that of the LOCO code with the same m and x.

Algorithm 2 is the decoding algorithm. We refer the reader
to Example 2 for more understanding of Algorithm 2.

Algorithm 2 Decoding CA-LOCO Codes
1: Inputs: Incoming stream of binary CA-LOCO code-

words, in addition to m, x, and sc.
2: Use (2) and (3) to compute N(i, x), i ∈ {1, 2, . . . ,m}.
3: for each incoming codeword c of length m do
4: Initialize g(c) with 0 and cm with 0.
5: for i ∈ {m− 1,m− 2, . . . , 0} do (in order)
6: if ci+1 = 0 then
7: Set add_index = i.
8: else
9: Set add_index = i− x.

10: end if
11: if ci = 1 then
12: g(c)← g(c) +N(add_index, x).
13: end if
14: end for
15: Compute b = binary(g(c)− 1), which has length sc.

(decimal integer to binary sequence)
16: Ignore the next x bridging bits.
17: end for
18: Output: Outgoing stream of binary messages.

On the level of a single message-codeword pair, there ex-
ists a single for loop on m distinct values for the variable i in
both Algorithm 1 (the encoding algorithm) and Algorithm 2
(the decoding algorithm). For each value of i, at most one
major arithmetic operation is performed. Thus, the complex-
ity of both algorithms has O(m) on that level. Moreover, the
main operations in Algorithm 1 are comparisons/subtractions,
while the main operations in Algorithm 2 are additions. The
largest result of these operations is the maximum value the
index g(c) can take, which is 2s

c −1. Consequently, the size
of the used adders, which is sc, dictates the complexity of
the encoding and decoding algorithms of CA-LOCO codes.

Table III links various finite-length rates of CA-LOCO
codes ACc

m,x for different values of m and x ∈ {1, 2} to
the associated size of adders required to achieve these rates,
which is a crucial complexity measure. For example, for the
case of x = 1, to achieve a rate ≥ 0.8000 (resp., ≥ 0.8050),
adders of size 36 bits (resp., 62 bits) suffice. Moreover, for the
case of x = 2, to achieve a rate ≥ 0.6667 (resp., ≥ 0.6800),
adders of size 20 bits (resp., 45 bits) suffice. Note that the
two cases of ACc

357,1 and ACc
244,2 are given in the table only

to show how close to capacity CA-LOCO codes can get; that
is why the adder size is skipped for both.

Next, we compare A-LOCO codes with other constrained
codes used for the same purpose. First, we compare with
constrained codes based on finite-state machines (FSMs) and
sliding window decoders. FSM-based constrained codes are
designed by developing an FSTD that represents infinite
sequences satisfying the required constraint. Then, multi-

130

Authorized licensed use limited to: Duke University. Downloaded on September 10,2020 at 22:06:08 UTC from IEEE Xplore. Restrictions apply.

ple steps are performed to generate the encoding-decoding
FSM from the FSTD [2], [10]. To construct FSM-based
constrained codes with capacity-approaching rates, typically
the FSM gets quite complicated, and so are the encoding and
decoding procedures.

As a result, we compare with FSM-based Ax-constrained
codes that are known to be practical in terms of complexity.
A practical FSM-based A1 = {101}-constrained code has a
rate of 0.8000 [10], while practical CA-LOCO codes that
are A1-constrained achieve rates ≥ 0.8050 at moderate
lengths. Additionally, a practical FSM-based A2 = {101,
1001}-constrained code has a rate of 0.6667, while practi-
cal CA-LOCO codes that are A2-constrained achieve rates
≥ 0.6800 at moderate lengths. The gain in rate achieved
by low-complexity CA-LOCO codes (with adder sizes ≤ 64
bits) compared with practical FSM-based constrained codes
reaches 3%, which is a significant rate increase for high
rates. Techniques raising the rate with similar or less amounts
are highly appreciated in the literature, e.g., raising the rate
of FSM-based constrained codes forbidding the patterns in
{0101, 11101} from 5

6 to 6
7 , which gives a 2.85% gain [10].

A-LOCO codes also have other advantages over FSM-
based constrained codes designed for the same purpose.
A-LOCO codes are fixed-length codes. Thus, they do not
allow errors to propagate from a codeword into another.
Additionally, they also enable parallel encoding and decoding
in applications where runtime operations speed is critical.

Second, we compare with the binary asymmetric con-
strained codes in [9]. In [9], the encoding and decoding are
based on the unrank and rank procedures described in [9,
Algorithm 1] and [9, Algorithm 2]. While these codes are also
enumerative, and thus, can achieve high rates, their encoding
and decoding algorithms are more complex than those of A-
LOCO codes, which are based on a simple rule described
in Theorem 2. Additionally, the codes in [9] only consider
the effect of adjacent Flash cells, i.e., can only eliminate the
pattern 101 for SLC Flash devices.

Third, we compare with symmetric LOCO codes used for
the same goal. In particular, we compare an Ax-constrained
code (A-LOCO code) of length m with the Sx-constrained
code (LOCO code) of length m. For Flash devices where
the goal is only to eliminate the patterns in {101, 1001,
. . . , 10x1}, the gain in rate achieved by A-LOCO codes
over LOCO codes at the same low complexity and achieving
nearly the same performance reaches 16% (resp., 25%) for
x = 1 (resp., x = 2). This gain is expected knowing that
the capacity of S1-constrained (resp., S2-constrained) codes
is 0.6942 (resp., 0.5515) [14]. More details are available
in Table III and [14, Table IV]. We note that a similar
observation was stated in [10] in the context of MR systems.

Like LOCO codes [14], A-LOCO codes are reconfigurable.

VI. CONCLUSION

We introduced a new family of asymmetric constrained
codes, A-LOCO codes, to improve the performance in Flash
memories. Only the detrimental patterns in Flash systems are
eliminated in A-LOCO codewords. We derived a recursive

formula to compute the cardinality of A-LOCO codes. We
presented a simple rule for the mapping-demapping between
the lexicographic index and the codeword. This rule allowed
practical, low-complexity encoding and decoding algorithms
of A-LOCO codes. We illustrated how to optimally bridge
and to self-clock A-LOCO codes. We showed that A-LOCO
codes are capacity-achieving. The complexity of encoding-
decoding A-LOCO codes was studied and comparisons with
other constrained codes were presented. These comparisons
demonstrated that A-LOCO codes offer a rate-complexity
trade-off that is better than other constrained codes used for
the same purpose. Non-binary constrained codes for Flash
devices with more than two levels and multi-dimensional
constrained codes for multi-dimensional storage devices are
among the near future research directions. QLC Flash mem-
ory evolution is expected to benefit from efficient high rate
non-binary asymmetric constrained codes.

ACKNOWLEDGMENT

This research was supported in part by NSF under grant
CCF 1717602.

REFERENCES

[1] D. T. Tang and R. L. Bahl, “Block codes for a class of constrained
noiseless channels,” Inf. and Control, vol. 17, no. 5, pp. 436–461, 1970.

[2] P. Siegel, “Recording codes for digital magnetic storage,” IEEE Trans.
Magn., vol. 21, no. 5, pp. 1344–1349, Sep. 1985.

[3] B. Vasic and E. Kurtas, Coding and Signal Processing for Magnetic
Recording Systems. CRC Press, 2005.

[4] K. A. S. Immink, P. H. Siegel, and J. K. Wolf, “Codes for digital
recorders,” IEEE Trans. Inf. Theory, vol. 44, no. 6, pp. 2260–2299,
Oct. 1998.

[5] K. A. S. Immink, “ Modulation systems for digital audio discs with
optical readout,” in Proc. IEEE Int. Conf. Acoust., Speech, Signal
Process. (ICASSP), Atlanta, Georgia, USA, Mar.–Apr. 1981, pp. 587–
589.

[6] M. Qin, E. Yaakobi, and P. H. Siegel, “Constrained codes that mitigate
inter-cell interference in read/write cycles for flash memories,” IEEE
J. Sel. Areas Commun., vol. 32, no. 5, pp. 836–846, Apr. 2014.

[7] S. Kayser and P. H. Siegel, “Constructions for constant-weight ICI-
free codes,” in Proc. IEEE Int. Symp. Inf. Theory (ISIT), Honolulu,
HI, USA, Jun.–Jul. 2014, pp. 1431–1435.

[8] V. Taranalli, H. Uchikawa, and P. H. Siegel, “Error analysis and inter-
cell interference mitigation in multi-level cell flash memories,” in Proc.
IEEE Int. Conf. Commun. (ICC), London, UK, Jun. 2015, pp. 271–276.

[9] Y. M. Chee, J. Chrisnata, H. M. Kiah, S. Ling, T. T. Nguyen, and V.
K. Vu, “Capacity-achieving codes that mitigate intercell interference
and charge leakage in Flash memories,” IEEE Trans. Inf. Theory, vol.
65, no. 6, pp. 3702–3712, Jun. 2019.

[10] R. Karabed and P. H. Siegel, “Coding for higher-order partial-response
channels,” in Proc. SPIE 2605, Coding and Signal Process. for Inf.
Storage, Philadelphia, PA, USA, Dec. 1995, pp. 115–127.

[11] T. Cover, “Enumerative source encoding,” IEEE Trans. Inf. Theory,
vol. 19, no. 1, pp. 73–77, Jan. 1973.

[12] K. A. S. Immink, “A practical method for approaching the channel
capacity of constrained channels,” IEEE Trans. Inf. Theory, vol. 43,
no. 5, pp. 1389–1399, Sep. 1997.

[13] V. Braun and K. A. S. Immink, “An enumerative coding technique for
DC-free runlength-limited sequences,” IEEE Trans. Commun., vol. 48,
no. 12, pp. 2024–2031, Dec. 2000.

[14] A. Hareedy and R. Calderbank, “LOCO codes: lexicographically-
ordered constrained codes,” IEEE Trans. Inf. Theory, to be published,
doi: 10.1109/TIT.2019.2943244.

[15] A. Hareedy, R. Wu, and L. Dolecek, “A channel-aware combina-
torial approach to design high performance spatially-coupled codes
for magnetic recording systems,” Sep. 2018. [Online]. Available:
https://arxiv.org/abs/1804.05504

[16] R. Laroia, N. Farvardin, and S.A. Tretter, “On optimal shaping of
multidimensional constellations,” IEEE Trans. Inf. Theory, vol. 40, no.
4, pp. 1044–1056, Jul. 1994.

131

Authorized licensed use limited to: Duke University. Downloaded on September 10,2020 at 22:06:08 UTC from IEEE Xplore. Restrictions apply.

