2019 IEEE Information Theory Workshop (ITW)

Increasing the Lifetime of Flash Memories Using
Multi-Dimensional Graph-Based Codes

Ahmed Hareedy, Rohith Kuditipudi, and Robert Calderbank
Electrical and Computer Engineering Department, Duke University, Durham, NC 27705 USA
ahmed.hareedy @duke.edu, rohith.kuditipudi@duke.edu, and robert.calderbank @duke.edu

Abstract—In order to meet the demands of data-hungry
applications, data storage devices are required to be increasingly
denser. Various sources of error appear with this increase in
density. Multi-dimensional (MD) graph-based codes are capable
of mitigating error sources like interference and channel non-
uniformity in dense storage devices. Recently, a technique was
proposed to enhance the performance of MD spatially-coupled
codes that are based on circulants. The technique carefully relo-
cates circulants to minimize the number of short cycles. However,
cycles become more detrimental when they combine together to
form more advanced objects, e.g., absorbing sets, including low-
weight codewords. In this paper, we show how MD relocations
can be exploited to minimize the number of detrimental objects in
the graph of an MD code. Moreover, we demonstrate the savings
in the number of relocation arrangements earned by focusing on
objects rather than cycles. Our technique is applicable to a wide
variety of one-dimensional (OD) codes. Simulation results reveal
significant lifetime gains in practical Flash systems achieved by
MD codes designed using our technique compared with OD codes
having similar parameters.

I. INTRODUCTION

The continuous and rapid growth in the density of modern
storage devices brings many challenges. One of these chal-
lenges is an increase in the number of sources of data corrup-
tion in the system, which requires advanced error correcting
codes to be applied. Because of their capacity-approaching
performance and the degrees of freedom they offer in the code
construction, graph-based codes, e.g., low-density parity-check
(LDPC) codes, are applied in many data storage systems. Bi-
nary and non-binary graph-based codes are used in both Flash
[1], [2] and magnetic recording [3] systems to significantly
improve the performance.

Multi-dimensional (MD) graph-based codes are constructed
by coupling different copies of a one-dimensional (OD) code to
enhance the code properties. Because of the additional design
flexibility offered by MD coupling, MD codes are capable of
alleviating different types of interference and channel non-
uniformity in modern storage systems. One example is mit-
igating inter-track interference in two-dimensional magnetic
recording (TDMR) systems [3] through specific non-binary
LDPC code constructions as in [4]. Various MD spatially-
coupled (MD-SC) codes have been presented in the literature
[5]-[8]. While these MD-SC codes demonstrated performance
gains, they had limitations in the underlying OD codes and the
topologies of the resulting MD codes.

Recently, the authors of [9] proposed a technique for a
systematic construction of MD-SC codes that are based on
circulants. Through carefully chosen relocations of circulants
from the copies of the OD code to certain auxiliary matrices,
they managed to significantly reduce the number of short
cycles in the graph of the MD-SC code. While cycles are
not preferred in graph-based codes, they become a lot more
detrimental when they combine together to form absorbing sets
(ASs), including low-weight codewords. ASs, not cycles, are

978-1-5386-6900-6/19/$31.00 ©2019 IEEE

the objects that dominate the error profile of graph-based codes
in the error floor region [2], [10].

In this paper, we demonstrate how to use MD coupling to
eliminate as many detrimental objects as possible from the
graph of an MD code. The underlying OD codes we use can
be structured or random, and can be block or SC codes. By
deriving the fraction of relocation arrangements for different
cases, we manifest the savings in relocation options achieved
by operating on objects rather than cycles. Experimental results
emphasizing the reduction in the multiplicity of detrimental
objects are shown. Simulation results demonstrating ~ 1200
(resp., 1800) program/erase cycles gain in the waterfall (resp.,
error floor) region over practical Flash channels compared with
OD codes having similar length and rate are presented.

The rest of the paper is organized as follows. In Section II,
MD graph-based codes are introduced. How ASs are removed
via relocations is discussed in Section III. Next, the savings
in relocation arrangements are derived in Section IV. In
Section V, the code design algorithm and experimental results
are presented. The paper is concluded in Section VI.

II. MD GRAPH-BASED CODES

The technique we propose in this paper can be used to
construct binary and non-binary codes. However, since the
process of relocations affects only the code topology, we focus
on the unlabeled graphs (all edge weights are set to 1) and
binary matrices [2].

Define Hop as the parity-check matrix of the underlying OD
code, and Hyp as the parity-check matrix of the MD code.
Recall the correspondence between the parity-check matrix and
the graph of a code. Define M — 1 auxiliary matrices, X1, Xo,
..., Xpr—1 having the same dimensions as Hgp. Then,

Hyp Xwy-1 Xwy—o X X4
X1 H/OD Xar—1 X3 Xy
Lo X X Hy X, Xs
MD =) . ,
Xp—2 Xpy—3 Xpy—4 Hyp Xa-a
| Xnv-1 Xy—2 X3 X1 Hpp |

ey

where Hop = Hgp + Zé\izl Xy (see also [9]). The graphs
of the OD codes we use do not have any cycles of length 4.
According to the construction of Hyp, the data to be stored
is separated into M chunks, and each chunk is stored in a
track or a sector of the storage device. The matrix Hyp is
constructed by coupling the M OD copies of Hpp via carefully
relocating some of the non-zero (NZ) entries in these copies
to auxiliary matrices in order to eliminate certain detrimental
objects. Relocations are mathematically represented by an MD
mapping as follows:

R:{&; Vij}—-{0,1,...,.M — 1}, 2)

Authorized licensed use limited to: Duke University. Downloaded on September 10,2020 at 21:22:30 UTC from IEEE Xplore. Restrictions apply.

2019 IEEE Information Theory Workshop (ITW)

where &; ; is an NZ entry corresponding to an edge connecting
check node (CN) i to variable node (VN) j in the graph of
Hop. This mapping is explained as follows: R (&; ;) = ¢ >0
means that the NZ entry &; ; is relocated from Hop to X,
(M times) at the same position (4,5) it had in Hop, with
R (&;,j) = 0 referring to the no-relocation case.

Here, M is a prime integer > 2, and both Hop and Hyp
have a fixed column weight, i.e., fixed VN degree, .

Define a cycle of length 2k in the graph of Hpp by the fol-
lowing set of NZ entries in Hop: {&;, j,,Eisjas - - - Eingojon }»
such that two entries &, j, and & j,.» 1 < w < 2k
and &y, jor., = Eiy,51» are consecutive entries on the cycle.
The authors of [9] proved that this cycle stays active after a
relocation arrangement if and only if!:

2k
Z(_l)wR(&‘w,jw) =0 (mod M).

w=1

3)

For a cycle of length 2k to stay active, its M copies must result
in M cycles of length 2k in the graph of Hyp. If (3) is not
satisfied, the cycle becomes inactive, and its M copies result
in a single cycle of length 2kM. The result in [9] was for
M = 3. However, this result generalizes to any prime M.

Under iterative decoding, the detrimental (error-prone) ob-
jects in the graph of a code are typically ASs. This is the case
for additive white Gaussian noise (AWGN) [10], [12], Flash
[2], [13], and magnetic recording [2] channels. Recall:

Definition 1. Let V be a subset of VNs in the unlabeled graph
of a code. Let O (resp., T and H) be the set of degree-
1 (resp., 2 and > 2) CNs connected to V. This graphical
configuration is an (a, dy) unlabeled elementary absorbing set
(UAS) if |V| = a, |O| = dy, |H| =0, and each VN in V is
connected to strictly more neighbors in T than in O.

Remark 1. Many non-elementary absorbing sets appearing in
the error profile of non-binary graph-based codes over prac-
tical Flash channels have underlying unlabeled elementary
configurations [2].

We study UASs having connected subgraphs. A (4,2) UAS
in a code with v = 3 and a (4,4) UAS in a code with 7 =4
are shown in Fig. 1. Circles (resp., grey and white squares)
represent VNs (resp., degree-1 and degree-2 CNs). We will
investigate how to perform relocations to minimize the number
of UASs in an MD code to enhance its performance.

III. REMOVING ASS THROUGH RELOCATIONS
An (a,d;) UAS has the following number of degree-2 CNs:

1

dy = §(G’Y —dy). 4

We now revisit the concept of basic cycles, which generalizes
the concept of fundamental cycles first introduced in [12] for
non-binary codes, to represent a UAS.

Definition 2. A cycle basis B. of an (a,dy) UAS is a minimum-
cardinality set of cycles using disjunctive unions of which,
each cycle in the UAS can be obtained. We call the cycles
in B, basic cycles.

Denote a Galois field of size ¢ as GF(g). Since our graphs
are unlabeled (no weights), span(/3.) can be represented by a

IThis condition bares similarity to the condition in [11] for protograph
lifting. In fact, some of the results in this paper are applicable to the procedures
of lifting and non-binary labeling.

vlc.

e
-0 B

Fig. 1. Left panel: a (4,2) UAS, v = 3. Right panel: a (4,4) UAS, v = 4.
Basic cycles are shown in dotted lines.

vector space over GF(2), with its vectors being of size n. =
2dy and their elements are also in GF(2). There are ny =
|B.| basic cycles. From graph theory principles, this number
is computed by subtracting the number of degree-2 CNs, each
represented by the pair of edges adjacent to it, comprising the
tree spanning all VNs from the total number of degree-2 CNss.
Consequently,

nf=-Mme—2(a—1))=dos—a+1

=N

=S (aly-2) -~ di +2), 5)
where the last equality is obtained using (4). Without loss of
generality, in this paper, we always select the basic cycles in

B. to be of the smallest lengths for simplicity.

Example 1. Consider the (4,2) UAS, v =3, in Fig. 1. From
(5), the number of basic cycles isny = % (4(3 —2) —2+42) =
2. We select the two cycles in dotted blue and dotted red shown
in the figure to be the elements of B.. A cycle in span(B.) can
be written as [echvl €cy,vs Ccayvs Ceavg Cegvs Cesva Coa,vn
€ciyor €csvs Cosyva s Where e, 5. = 1(&;, ;) is an indicator
function of the existence of the NZ entry &; , ;... Thus, the dot-
ted blue and dotted red basic cycles are 1 10000111 1]
and [00 1111001 1], respectively. Adding the vectors of
the two basic cycles over GF(2) gives [1111111100],
which is the vector of the only remaining cycle in the UAS.

Given the number of basic cycles in an (a,d;) UAS, we
now introduce useful bounds on the total number of cycles.

Lemma 1. The total number of cycles, n., in an (a,d,) UAS
having n¢ basic cycles is bounded as follows:

1 A
—ne(ng+1) <me < 2™ — 1.

: (6)

Proof: See [14], which is the long version of the paper.
|

Example 2. The upper and the lower bounds are the same
for the (4,2) UAS, v = 3, in Fig. 1. Since nf = 2, n, =
%2(2 + 1) = 3 from (6). On the contrary, only the upper
bound is achieved for the (4,4) UAS, v = 4, in Fig. 1. Since
ne =3 from (5), ne = 23 — 1 =7 from (6).

We are now ready to introduce the condition under which a
UAS stays active after a relocation arrangement. For an (a, d;)

Authorized licensed use limited to: Duke University. Downloaded on September 10,2020 at 21:22:30 UTC from IEEE Xplore. Restrictions apply.

2019 IEEE Information Theory Workshop (ITW)

:

it

=

—

it

Fig. 2. Upper panel: Arrangement 1 is keeping three instances of the (4, 2)
UAS in Hyp. Lower panel: Arrangement 2 is removing the three copies of
the (4,2) UAS from Hup. VNs of the (4,2) UAS, which are columns in
the matrix, are ordered from left to right as v1, v2, v3, and v4 (see Fig. 1).

UAS to stay active, its M copies in the graphs of Hop copies
must result in M (a,d;) UASs in the graph of Hyp.

Theorem 1. The necessary and sufficient condition for an
(a,d1) UAS to stay active after a relocation arrangement is
that (3) is satisfied for all the ng basic cycles in a cycle basis
B. of the UAS. Otherwise, the UAS becomes inactive, and the
Ma VNs of its M copies form an (Ma, Mdy) object.

Proof: See [14]. [|
If the UAS becomes inactive after relocations, its M copies
are removed from the graph of Hyp. Depending on certain
factors, including which cycles in the (a,d;) UAS become
inactive after relocations, different, possibly non-isomorphic,
(Ma,Md;) configurations can be generated if the UAS is
inactive. On a smaller scale, the M copies of the (a,d;) UAS
result in multiple (a,d; + 253) objects, 5 > 0, in this case.

Example 3. Consider an instance of the (4,2) UAS, v = 3,
in Fig. 1, which exists in Hop, and let M = 3 for Hyp. The
three copies of the UAS in Hyip are shown in the left panel of
Fig. 2 (degree-1 CNs are not shown). We check the following
two relocation arrangements:

Arrangement 1: R (Ecg vy) = R (Ecsw,) = 1, while all the
remaining NZ entries of the UAS are not relocated. Here, (3)
is satisfied for both the dotted blue and the dotted red basic
cycles. Thus, the (4,2) UAS stays active, which is shown in
the upper panel of Fig. 2.

Arrangement 2: R (Ecyv,) = R(Ecyny) = 1, while all the
remaining NZ entries of the UAS are not relocated. Here, (3)
is not satisfied for either basic cycle. Thus, the (4,2) UAS
becomes inactive, which is shown in the lower panel of Fig. 2.
How the three copies of the (4,2) UAS result in a (12, 6) object
after relocations is demonstrated in [14, Fig. 3].

IV. SAVINGS IN RELOCATION OPTIONS

Targeting UASs instead of the cycles comprising them not
only makes the focus in the code design on the more detrimen-
tal objects, but also achieves significant savings in the degrees
of freedom offered by relocation arrangements. These savings
are reflected in performance gains. Here, we demonstrate these

savings. In the following results, fractions are out of all

possible relocation arrangements. Let ()" = max{z,0}.
Lemma 2 discusses the relocation arrangements in case the

focus is on removing short cycles from the graph of Hyp.

Lemma 2. The fraction of relocation arrangements for an
(a,dy) UAS under which all the basic cycles in a cycle basis
B of the UAS become inactive is given by:

M —1\"
Fnof:< M >

Moreover, the fraction of relocation arrangements for an
(a,dy) UAS under which all its cycles become inactive is
upper-bounded as follows:

ng M _ (5 +
FI’IOC S H (M) .
6=1
Proof: See [14]. [|
Theorem 2 discusses the relocation arrangements in case the
focus is on removing UASs from the graph of Hyp.

Define F; as the set of CNs in basic cycle 4, and Z; ; £
Fi N F;. Moreover,

Ilt-m £ U (Ii,j) s and Dz ES]:,L \I;-Ot.
J

)

®)

9

Let D; be the unordered group comprising the CNs of D,.
Then, we define the following set:

L1 £{D;,Vi| D; # @}. (10)

Let I; ; be the unordered group comprising the CNs of Z; ;.
Then, we define the following set:

Ly £{1;;,Vi,j | Ti ; # 2} (1)

Theorem 2. The fraction of relocation arrangements for an
(a,d1) UAS under which the UAS becomes inactive is given
by:

1
Mne”
Moreover, the fraction of relocation arrangements for an
(a,dy) UAS under which the M copies of the UAS result in
at least M (a,d; + 283) objects, with > 1, is given by:

1 (M —1)
i [|£1] + [L2]] e (13)

Proof: See [14]. [|

On the level of an object, the percentage saving in relocation
arrangements achieved by focusing on the UAS instead of
focusing on all its cycles is given by:

S1 = [Frou — bound(Fpec)] - 100%

1 (M-
a1 <M>] -100%. (14)

Fnou:]-_

12)

Fnotzl_

1-—

Another realization of the saving is given in [14].

Example 4. Consider the (4,2) UAS, v = 3, in Fig 1. Let
M = 5. From Example 1, ny = 2. Thus, from (7) and (8),

4V 16 2 (5-0\" 12

Fit=1=) = =, Froec < —_—] = —.

nof (5) 257 noc_él:[l< 5) 25
The two basic cycles here have F1 = {c1,cq,c5} and Fa =
{¢c2, c3, c5}. Consequently, we get Ty 5 = {cs}, yielding TV =

Iém {65}. From (9), Dl = {01,04} and DQ = {02,03}.

Authorized licensed use limited to: Duke University. Downloaded on September 10,2020 at 21:22:30 UTC from IEEE Xplore. Restrictions apply.

2019 IEEE Information Theory Workshop (ITW)

Thus, from (10) and (11), we get L1 = {(c1,c4), (c2,¢3)} and
Lo ={(c5)}. From (12) and (13),
1 24 1 4 12
Fnou::l*i:i»Fm):lfif -5 — &=
52 250 ™ 7 By =g
Now, we are ready to calculate the saving in relocation
arrangements from (14) as follows:
24 12
=|=—=——|-100% = 48
! [25 25} % = 48%,
which is a significant saving.
Now, we briefly introduce a special case of interest.

Definition 3. Let anin, be the minimum UAS size in the
OD code. An (a,dy) UAS, a < Mauwy, is said to be non-
regenerable if it cannot be produced from (a,dy) UASs,
P~ < 1), under any relocation arrangement. Furthermore, an
(a,dy) UAS is said to be stand-alone if an instance of this
UAS cannot share any cycles with another instance of it.

For example, (a,0) UASs are non-regenerable and stand-
alone. Additionally, UASs with dy = (§) are non-regenerable.

For non-regenerable, stand-alone UASs, the savings in relo-
cation arrangements can be generalized over the entire graph
of the MD code. More intriguingly, under random relocations,
the average number of instances of an (a, d;) non-regenerable,
stand-alone UAS in the graph of the MD code is given by:

Awp = AopFo M, (15)

where Agp is the number of instances in the OD code, and

Fy = 5= which is helpful in code optimization.

V. ALGORITHM AND EXPERIMENTAL RESULTS

Guided by the proposed theoretical results, Algorithm 1
minimizes the number of instances of a specific (a,d;) UAS,
a < Mapp, in the graph of the MD code via relocations.
This specific (a,d;) UAS/AS can either be the most dominant
object in the error profile of the OD code or a common sub-
structure that exists in the most dominant UASs in the OD code
(over the specific channel of interest). Because of their faster
encoding and decoding, we focus on circulant-based codes in
this section. Since operating on circulants is significantly faster
than operating on entries, Algorithm 1 relocates NZ circulants,
not NZ entries (see [9]). The algorithm can be easily changed
to relocate NZ entries for codes that are not structured.

We say that an (a,d;) UAS instance involves a circulant
if the instance has at least one NZ entry corresponding to an
edge adjacent to a degree-2 CN inside the circulant. Moreover,
the set of relocation decisions is X = {0,1,..., M — 1}. The
value £ € X, £ > 0 (resp., & = 0), refers to the decision
“relocate to X, (resp., “no relocation”). Note that Step 16
of Algorithm 1 aims to balance the number of NZ circulants
(similar sparsity levels) across all auxiliary matrices in addition
to its main objective, which is removing (a, d;) UAS instances.

Next, we discuss the experimental results. The Flash channel
used in this section is a practical, asymmetric Flash channel,
which is the normal-Laplace mixture (NLM) Flash channel
[1]. In the NLM channel, the threshold voltage distribution of
sub-20nm multi-level cell (MLC) Flash memories is carefully
modeled. The four levels are modeled as different NLM
distributions, incorporating several sources of error due to
wear-out effects, e.g., programming errors, thereby resulting
in significant asymmetry. Furthermore, the authors provided
accurate fitting results of their model for program/erase (P/E)

Algorithm 1 Designing High Performance MD Codes

1: Inputs: Hop, M, and the (a,d;) UAS configuration.

2: Initially, set Xy = Xo = --- = X371 = 0, Hp = Hop,
and R(giﬂ') =0, VZ,]

3: Locate all instances of the (a,d;) UAS in Hop.

4: Mark all the instances located in Step 3 as active.

5: Determine the number of active (a,d;) UAS instances
involving each NZ circulant in Hop.

6: Select the circulant C with the maximum number from
Step 5 s.t. R(&;, 5,) =0, where &;, j, is an NZ entry in C.

7: Whether they are active or not, specify all (a,d;) UAS
instances in Hop involving C.

8: for each of the instances from Step 7 do

9: Specify a cycle basis B, of the instance.

10: The instance votes for the subset of decisions in X’ that
make at least one of its basic cycles in B; inactive.

11: end for

12: Tally the votes, and find the subset VW of NZ decisions in
X with the highest number of votes.

13: if W = & then (no relocation)

14: Go to Step 22.

15: end if

16: Relocate C to the auxiliary matrix X¢, , £ € W, with the
least number of NZ circulants.

17: Set R(&; ;) = &, for all NZ entries in C.

18: Update the list of active/inactive (a,d;) instances based
on their basic cycles and Theorem 1.

19: if the number of active (a,d;) instances is > 0 then

20: Go to Step 5.

21: end if

22: Construct Hyp according to (1).

23: Output: The parity-check matrix of the MD code, Hyp.

cycles up to 10 times the manufacturer’s endurance specifi-
cation (up to 30000 P/E cycles). We implemented the NLM
channel based on the parameters described in [1]. Here, we use
3 reads, and the sector size is 512 bytes. For decoding, we use
a fast Fourier transform based g-ary sum-product algorithm
(FFT-QSPA) LDPC decoder (see also [2]).

We use three OD codes in this section. The SC (resp., block)
code is designed according to [13] (resp., [2]). OD Code 1 is an
SC code defined over GF(4), which has v = 3, maximum row
weight = 19, circulant size = 19, memory = 1, and coupling
length = 7. Thus, OD Code 1 has block length = 5054 bits
and rate ~ 0.82. OD Code 2 is a block code defined over
GF(2), which has v = 4, row weight = 40, and circulant
size = 53. OD Code 2 has block length = 4240 bits and rate
=~ 0.90. OD Code 3 is an SC code that is designed exactly as
OD Code 1, but with coupling length = 21. Thus, OD Code 3
has block length = 15162 bits and rate ~ 0.83.

From our simulations, the error profile in the error floor
region of OD Code 1 (resp., OD Code 2) when simulated
over the NLM (resp., AWGN) channel is dominated by the
(4,2) non-binary AS (resp., the (4,4) and the (6,2) UASs).
The overwhelming majority of the (6,2) UAS instances found
in the error profile of OD Code 2 have the same configuration,
which has the (4,4) UAS as a substructure. Observe that
OD Code 1 and OD Code 2 are the underlying OD codes
of the MD codes used in this section.

Remark 2. The objects of interest in other codes and over
other channels can be more sophisticated, e.g., the (6,0) and

Authorized licensed use limited to: Duke University. Downloaded on September 10,2020 at 21:22:30 UTC from IEEE Xplore. Restrictions apply.

2019 IEEE Information Theory Workshop (ITW)

TABLE 1
EFFECT OF CAREFULLY CHOSEN MD RELOCATIONS ON THE NUMBER OF
(4,2) UAS (v = 3) AND (4,4) UAS (v = 4) INSTANCES.

MD coupling Number of (4,2) | Number of (4,4)
technique UAS instances UAS instances
No MD coupling 4218 3392
Algorithm 1 0 0

the (8,0) UASs, v = 3, in addition to the (6,6) and the (8,2)
UASs, v = 4. See [2] for more details.

As for the MD codes, MD Code 1 (resp., MD Code 2) is de-
signed for practical Flash (resp., AWGN) channels. According
to the analysis above, MD Code 1 (resp., MD Code 2), with
M = 3, is designed from OD Code 1 (resp., OD Code 2) using
Algorithm 1 by removing as many (4,2) UAS (resp., (4,4)
UAS) instances as possible in the MD code via relocations.
MD Code 1 has block length = 15162 bits and rate ~ 0.82,
which is similar to OD Code 3 (the long OD SC code).
MD Code 2 has block length = 12720 bits and rate ~ 0.90.

Table I demonstrates the reduction in the number of detri-
mental objects achieved by Algorithm 1. The no-MD-coupling
case refers to the case when Hyyp is constructed by putting
three copies of Hop in the block diagonal and zeros elsewhere.
Table I shows that, and with only about 7% (resp., 4.5%)
of the circulants relocated out of the OD copies to construct
MD Code 1 (resp., MD Code 2), Algorithm 1 removes all
the (4,2) UAS (resp., (4,4) UAS) instances. These relatively
small percentages of relocated circulants exemplify the savings
in relocation arrangements (discussed in Section I'V) in the MD
code design, making it possible to relocate more circulants in
order to remove other detrimental objects.

Here, RBER is the raw bit error rate, which is the number
of uncoded data bits in error divided by the total number of
uncoded data bits read [2]. UBER is the uncorrectable bit error
rate, which is the frame error rate (FER) after error correction
is applied divided by the sector size in bits [2].

Fig. 3 demonstrates the performance gains achieved by an
MD code constructed using Algorithm 1, which is MD Code 1,
compared with an OD code of similar length and rate, which
is OD Code 3, over the practical NLM Flash channel. In
particular, at UBER = 10~7 (resp., ~ 10~7) in the waterfall
(resp., error floor) region, the RBER gain of MD Code 1
marked in red translates to a gain of about 1200 (resp., 1800)
P/E cycles. Additionally, even the threshold of MD Code 1
is indeed better than that of OD Code 3. These gains in the
number of P/E cycles are associated with an increase in the
lifetime of the Flash device.

Remark 3. While we focus here on practical Flash channels
in the simulations, performance gains are also achievable via
the proposed technique on other channels.

VI. CONCLUSION

We introduced necessary and sufficient conditions for a UAS
to stay active or become inactive, i.e., be removed, after a
relocation arrangement. We derived the savings in relocation
options achieved by focusing on UASs instead of cycles in
the MD code design procedure. Examples demonstrating the
significance of these savings were introduced for famous UAS
configurations. We presented an algorithm to design high
performance MD codes by removing detrimental UASs via
relocations. Using this algorithm, codes free of specific UASs
were designed and simulated. Gains of up to about 1800 P/E

|| ==OD Code 3 (long)
===MD Code 1

UBER

-10 S S S S . s I
0.004 0.006 0.01 0.02 0.03 0.04
RBER

Fig. 3. UBER versus RBER curves over the NLM Flash channel for OD and
MD codes of similar parameters.

cycles were achieved via our MD codes compared with OD
codes of similar parameters over a practical Flash channel.

ACKNOWLEDGMENT

This research was supported in part by NSF under grant
CCF 1717602.

REFERENCES

[1] T. Parnell, N. Papandreou, T. Mittelholzer, and H. Pozidis, “Modelling of

the threshold voltage distributions of sub-20nm NAND flash memory,”

in Proc. IEEE Global Commun. Conf. (GLOBECOM), Austin, TX, USA,

Dec. 2014, pp. 2351-2356.

A. Hareedy, C. Lanka, N. Guo, and L. Dolecek, “A combinatorial

methodology for optimizing non-binary graph-based codes: theoretical

analysis and applications in data storage,” IEEE Trans. Inf. Theory, vol.

65, no. 4, pp. 2128-2154, Apr. 2019.

[3] S. Srinivasa, Y. Chen, and S. Dahandeh, “A communication-theoretic

framework for 2-DMR channel modeling: performance evaluation of

coding and signal processing methods,” IEEE Trans. Magn., vol. 50,

no. 3, pp. 6-12, Mar. 2014.

P. Chen, C. Kui, L. Kong, Z. Chen, M. Zhang, “Non-binary protograph-

based LDPC codes for 2-D-ISI magnetic recording channels,” IEEE

Trans. Magn., vol. 53, no. 11, Nov. 2017, Art. no. 8108905.

D. Truhachev, D. G. M. Mitchell, M. Lentmaier, and D. J. Costello, “New

codes on graphs constructed by connecting spatially coupled chains,” in

Proc. Inf. Theory and App. Workshop (ITA), Feb. 2012, pp. 392-397.

R. Ohashi, K. Kasai, and K. Takeuchi, “Multi-dimensional spatially-

coupled codes,” in Proc. IEEE Int. Symp. Inf. Theory (ISIT), Jul. 2013,

pp. 2448-2452.

L. Schmalen and K. Mahdaviani, “Laterally connected spatially coupled

code chains for transmission over unstable parallel channels,” in Proc.

Int. Symp. Turbo Codes Iterative Inf. Processing (ISTC), Aug. 2014, pp.

77-81.

Y. Liu, Y. Li, and Y. Chi, “Spatially coupled LDPC codes constructed by

parallelly connecting multiple chains,” IEEE Commun. Letters, vol. 19,

no. 9, pp. 1472-1475, Sep. 2015.

H. Esfahanizadeh, A. Hareedy, and L. Dolecek, “Multi-dimensional

spatially-coupled code design through informed relocation of circulants,”

in Proc. 56th Annual Allerton Conf. Commun., Control, and Computing,

Monticello, IL, USA, Oct. 2018, pp. 695-701.

[10] L. Dolecek, Z. Zhang, V. Anantharam, M. Wainwright, and B. Nikolic,
“Analysis of absorbing sets and fully absorbing sets of array-based LDPC
codes,” IEEE Trans. Inf. Theory, vol. 56, no. 1, pp. 181-201, Jan. 2010.

[11] M. P. C. Fossorier, “Quasi-cyclic low-density parity-check codes from
circulant permutation matrices,” IEEE Trans. Inf. Theory, vol. 50, no. 8,
pp. 1788-1793, Aug. 2004.

[12] B. Amiri, J. Kliewer, and L. Dolecek, “Analysis and enumeration of ab-
sorbing sets for non-binary graph-based codes,” I[EEE Trans. Commun.,
vol. 62, no. 2, pp. 398-409, Feb. 2014.

[13] A. Hareedy, H. Esfahanizadeh, and L. Dolecek, “High performance non-
binary spatially-coupled codes for Flash memories,” in Proc. IEEE Inf.
Theory Workshop (ITW), Kaohsiung, Taiwan, Nov. 2017, pp. 229-233.

[14] A. Hareedy, R. Kuditipudi, and R. Calderbank, “Minimizing the number
of detrimental objects in multi-dimensional graph-based codes,” Apr.
2019. [Online]. Available: https://arxiv.org/abs/1904.03844

[2

—

[4

[inar)

[5

—_

[6

—_

[7

[

[8

[

[9

—

Authorized licensed use limited to: Duke University. Downloaded on September 10,2020 at 21:22:30 UTC from IEEE Xplore. Restrictions apply.

