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Abstract—There has been a recent emergence of new workflow
applications focused on data analytics and machine learning.
This emergence has precipitated a change in the workflow
management landscape, causing the development of new data-
oriented workflow management systems (WMSs) in addition to
the earlier standard of task-oriented WMSs. In this paper, we
summarize three general workflow use-cases and explore the
unique requirements of each use-case in order to understand
how WMSs from both workflow management models meet
the requirements of each workflow use-case from the user’s
perspective. We analyze the applicability of the two models by
carefully describing each model and by providing an examination
of the different variations of WMSs that fall under the task-
driven model. To illustrate the strengths and weaknesses of each
workflow management model, we summarize the key features of
four production-ready WMSs: Pegasus, Makeflow, Apache Air-
flow, and Pachyderm. To deepen our analysis of the four WMSs
examined in this paper, we implement three real-world use-cases
to highlight the specifications and features of each WMS. We
present our final assessment of each WMS after considering the
following factors: usability, performance, ease of deployment, and
relevance. The purpose of this work is to offer insights from
the user’s perspective into the research challenges that WMSs
currently face due to the evolving workflow landscape.

Index Terms—Scientific workflow, Workflow Management Sys-
tem, Task-driven, Data-driven.

I. INTRODUCTION

In the last two decades, scientific workflows have become
mainstream thanks to their ability to empower scientific dis-
coveries in virtually all fields of science [1]. During this time,
key engineering challenges have been solved and a rich set
of abstractions and interoperable software implementations
have been developed [2]. These advancements have allowed
scientists across various fields to begin reaping the benefits
of workflow systems [3]. Traditionally, scientific workflows
are described as directed-acyclic graphs (DAGs), in which
nodes represent computational tasks and edges represent the
dependencies of those tasks [4]. The traditional approach
for orchestrating DAG-based workflows is to use task-based
scheduling algorithms that spawn tasks for execution once
their dependencies are satisfied. To keep up with increased
computing requirements, workflow systems have developed
mechanisms to manage the distribution and execution of
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tasks on varied and across computing infrastructures such as
local servers, campus computing clusters, high performance
computing resources (such as XSEDE [5]), and even popular
cloud computing platforms. These developments in workflow
management are of primary concern to the field of scientific
computing, where scientists often run complex pipelines that
scale over hundreds and thousands of tasks [2].

There are four general workflow system use-cases that have
been identified [3]:

o Traditional scientific compute workflows, as discussed
above;

o Data analytics workflows (including big data and machine
learning);

o Sensor and Internet-of-Things (IoT) workflows; and

o Commercial, developer, and business-related workflows.

One of the major trends among scientific applications re-
cently concerns big data analytics and machine learning [4].
These data-oriented workflows pose different challenges when
compared to traditional workflow structures, and they often
require special features such as data provenance, data repro-
ducibility, and special data ingestion features.

A second type of data-oriented workflow that is gaining
prominence in the scientific field is sensor-based workflows.
Such workflows process data in a continuous fashion, with
data being ingested in near real-time from distributed sources
(e.g. sensors that stream data to a central endpoint). Here, the
ability to trigger computations based on the arrival of new data
is paramount, in addition to the ability to replay processing on
previous datasets.

Similar to sensor-based workflows, the rapid expansion of
the Internet-of-Things (IoT) field also raises the need for
new workflow orchestration models [6]. In contrast to large-
scale data analytics (which process large amounts of data
in parallel), sensor-based and IoT-based workflows generally
process smaller amounts of data at one time with a higher
data arrival rate, placing a greater importance on new data as
compared to old or late data.

Furthermore, in the developer and commercial communities,
workflows are becoming increasingly important as developers
have started to automate more complex tasks in the software
development lifecycle. On the commercial side, businesses are
turning to in-house workflow management systems to analyze
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their data., and have started to create a new generation of work-
flow management systems that are DAG oriented and are able
to perform batch processing to their own specification (e.g.,
LinkedIn’s Azkaban [7] or AirBnb’s Apache Airflow [8]).
In addition to being used by companies for management or
development purposes, these custom-developed solutions are
also being used by scientists as building blocks [9], enabling
them to create their own light-weight workflow management
solutions.

While all of these general use-cases play an important part
in defining the next generation of workflows and their require-
ments, this paper intends to focus on use-cases that apply
to the scientific community, specifically traditional compute-
based scientific workflows, big data workflows, and sensor-
based workflows.

Based on the distinct characteristics and requirements of
the different use-cases described, we can generally classify
workflow management systems (WMSs) into two distinct
categories: traditional, task-driven WMSs and modern, data-
driven WMSs. In the traditional task-driven approach, work-
flow tasks are triggered for execution once all of their parent
tasks have completed. A more recent development is the
data-driven approach, in which tasks in the workflow are
triggered by data input and output, rather than task completion
dependencies. In this paper, we conduct a study on the key
requirements and features that have driven the development of
this new paradigm. We explore how workflow systems have
addressed recent challenges presented by these new workflow
use-cases, and identify open questions that have not yet been
addressed by today’s workflow management solutions. We
first describe the paradigms in a WMS-agnostic and platform-
agnostic manner, and we then present real world use-cases
that have benefited from these state-of-the-art workflow system
implementations. Note that we do not aim at performing a
feature-by-feature comparison of workflow systems. Instead,
our goal is to provide our own hands-on experience in dealing
with such challenges from the WMS’s and user’s perspectives.
It is also important to note that, during the last two decades,
many of the authors of this paper have been involved in the
scientific workflow community and have contributed to the
development of workflow management systems (most notable
of which is the Pegasus Workflow Management System [10]).
Though Pegasus falls into the traditional, task-driven workflow
management model, the authors of this paper are excited
and intrigued by the new approaches and use-cases that have
recently emerged.

For each general use-case, we have tried to focus on
representative workflow systems. We are aware that a plethora
of workflow systems have been developed in the recent years,
but it is not possible to account for every one of them. The
purpose of this paper is to broadly classify use-cases from a
scientific computing perspective and help the reader identify
the workflow system that is suited for their research needs.

More specifically, this work makes the following contribu-
tions:

1) We depict the differences between the traditional task-
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driven approach and the next-generation data-driven ap-
proach for workflow systems. We present several existing
WMS, along with their respective features, that exemplify
each model. We also provide a detailed discussion about
new trends and innovations with the task-driven model.

2) We describe three real-world use-cases, match them with
a representative WMS, and evaluate selected features
of each WMS that benefit the given use-case. We also
present the potential challenges that users may face when
deploying these use-cases on different cyberinfrastruc-
tures.

3) We summarize our discussions and present our findings
in a manner that aims to assist an end-user in classifying
their own workflows and choosing a WMS.

This paper is organized as follows. In Section II, we provide
an overview of the background and related work. Section III
provides an overview of the requirements for both workflow
management models by describing systems which implement
each paradigm. In Section IV, we describe real-world use-
cases, and describe how a particular WMS (Pegasus, Make-
flow, Apache Airflow, and Pachyderm) is beneficial to imple-
mentation. Section V is dedicated to illustrating the experience
from the perspective of both the user and the WMS. This is
done by comparing the usability, performance, and relevancy
of each use case. Finally, Section VI summarizes our findings
about future scientific workflow management developments.

II. BACKGROUND AND RELATED WORK
A. Traditional Scientific Workflows

One of the first models to represent a sequence of different
computations is the directed acyclic graph (DAG) model [11].
An example of the task-driven approach, computational tasks,
as represented by nodes in the DAG, are the primary units.
Many popular WMS in the scientific community, such as
Kepler [12], Makeflow [13], Taverna [14], and Pegasus [10]
rely on a task-driven approach using a DAG representation. A
DAG is a very simple and natural representation that allows
WMS to apply efficient scheduling [3] and data management
optimizations.

In the past, scientific workflows were traditionally compute-
intensive but thanks to GPUs and new memory technologies,
many data-intensive scientific workflows have been devel-
oped [4]. In addition, from biology to astronomy, the number
of scientific domains embracing WMS is constantly grow-
ing [2]. The requirements and uses from one community to
another, however, are not consistent [3].

Following these trends, new requirements have emerged
in the scientific workflow user community, some of which
include easy deployment on several cloud and HPC platforms
and efficient data management with a strong data reproducibil-
ity aspect. In this vein, workflow systems have evolved and
adopted new technologies to ensure better reproducibility and
easier deployment, including support for containers and cloud-
based execution. Several new workflow systems have also
adopted an API approach in which users programmatically

Authorized licensed use limited to: University of Southern California. Downloaded on September 10,2020 at 22:37:21 UTC from IEEE Xplore. Restrictions apply.



define the workflow instead of giving it an abstract definition.
An example of such a system is Parsl [15], a Python scripting
workflow system that enables users to quickly define their
workflows by directly annotating their Python codes.

B. Data-Oriented Workflows

With the scientific workflow community growing in size,
more WMS are being developed in response to the com-
munity’s need for specific features and evolving workflow
paradigms. Driven by the popularity of data analytics and
machine learning systems, these new WMS are more data-
oriented than their traditional counterparts, and have many
interesting and modern features not shared by the more tradi-
tional systems.

Many studies on data-oriented workflow management have
focused on the MapReduce [16] approach and its most known
implementation: Apache Hadoop YARN [17]. YARN aims
at decoupling resource management from the programming
model. From this, several tools have been developed in recent
years: Apache Apex [18] is a data-oriented solution built
on top of Hadoop and YARN that allows users to express
both streaming and batch data pipelines with a DAG-based
representation. Besides MapReduce-based solutions, several
generalist data-oriented workflow management solutions have
been developed, including Nextflow [19] and Pachyderm [20].

Nextflow [19] uses a domain-specific language that allows
users to quickly prototype workflows running in containers. An
interesting feature of Nextflow is the complete integration with
several versioning platforms such as GitHub, which enables
the workflow to check for updates and pull data from a given
repository. We explain the features offered by Pachyderm in
greater details, later in this work.

In this paper, we attempt to distill these recent develop-
ments in the field of scientific workflows by presenting a
basic comparison between the traditional paradigm of WMS
(including Pegasus and Makeflow), a more modern approach
of this classic paradigm with Apache Airflow and the advent
of newer systems intended for more specific purposes (such
as Pachyderm). We also aim to aid users in the increasingly
complex process of narrowing down which paradigm and
representative WMS best suit their use-case by examining a
distinct set of representative workflow systems in a holistic
manner.

III. WORKFLOW MANAGEMENT MODELS

In this section, we further define the two models mentioned
in the introduction, and provide an overview of their respective
requirements and key features. We also introduce several rep-
resentative workflow management systems using those models.

A. Task-driven Model

Model: The task-driven approach has traditionally been based
on the principles of a directed acyclic graph, or DAG. The
idea behind the task-driven model is to break a large and
complex workflow into a sequence of individual computational
tasks. A WMS using the task-driven model usually defines
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(a) Representation of a DAG-based (b) Workflow with a conditional
task-driven workflow with two types execution in blue/green and a
of dependencies. failed node in red.

Figure 1. Two examples of DAG-based task-driven workflows. On 1(b), if in
v a given condition is true then v3 is executed, otherwise v4 is spawned. In
addition, the execution vg fails, but as vs successfully finished, vg is spawned.

the workflow as a graph, with the computational tasks as
the primary entity of work, and edges representing data
and control dependencies (see Figure 1). A task can start
its execution if, and only if, all of its predecessors have
successfully completed. The task-driven model is simple to
understand and well adapted to heavy computational tasks,
and is widely-used by HPC frameworks [21], as well as by
numerous theoretical scheduling studies [22]. It is also very
efficient, thanks to years of research focused on workflow
optimization, scheduling strategies and data management, both
from a practical and theoretical points of view. In addition, due
to the decades of research and software development many
task-driven WMS are mature and production-ready, such as
Pegasus [10] and Makeflow [13]. This model allows users to
target many different platforms, from large-scale HPC systems
to distributed cloud platforms, grid infrastructures, or local
clusters.

Recently, several new workflow management systems have
been developed to bring more flexibility to the classic task-
driven model and to address new requirements raised by
modern workflows, with unique features including complex
workflow-level and task-level scheduling abilities, conditional
task execution, and improved error management and mitiga-
tion. To evaluate the task-driven model, we consider three pro-
duction WMS, Pegasus [10], Makeflow [13], and Airflow [8].

Workflow management systems: Pegasus [10] and Make-
flow [13] are two well-established workflow management
systems designed to manage and optimize the execution of
large-scale scientific workflows on distributed resources, they
provide container support on various commercial clouds such
as AWS or Microsoft Azure, as well as HPC systems via sup-
port of various cluster job managers, including Slurm and PBS.
An important difference between them is that Pegasus allows
control and data flow to express workflows while Makeflow
allows only data flow. Control flow is the ability to define
individual tasks and their dependencies in a workflow, often
by specifying the executable or type of data transformation,
whereas data flow defines the data being passed by the task
instead of the task or transformation itself.

Apache Airflow [8] is an Apache Software Foundation
project, originally developed by Airbnb and released in 2016,
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that aims to provide a lightweight workflow management
solution to easily model, maintain, and monitor workflows. In
contrast to the traditional task-driven model in which a DAG
describes data and/or control exchanges, in Airflow a task is
not supposed to exchange data with other tasks—they can only
exchange metadata (i.e., only control flow) [8]. Airflow is very
modular and provides many pre-built interfaces (Hooks) to
common clouds and database systems such as Amazon S3,
Google Cloud, or HDFS among others, and has a modular
execution engine for computational tasks (Operators). Users
are able to utilize multiple clouds on a single deployment. Air-
flow also supports containerized execution and orchestration
by way of a Kubernetes [23] operator.

Airflow is an excellent example of a next-generation WMS
that has unique features as discussed above. For example, in
Airflow [8], each DAG is associated with parameters such as a
workflow’s start date, an end date, a number of retries in case
of failure, the delay between each retry, among others. cron
expressions allow the user to describe a schedule interval.
The scheduler runs in the background as a daemon and
will pick up or kick off any DAG according to their start
dates, end dates, and schedule intervals. Another interesting
task triggering concept extending the possibilities of the task-
driven model is the ability to trigger tasks without satisfying
dependencies (e.g., users can execute a task if one or all of its
predecessors have failed, see the red task in Figure 1(b)). This
ability can be seen as an exception handling mechanism for
workflow execution. Finally, another major refinement when
compared to the traditional task-driven approach is the support
of conditional execution, where a branch of the workflow is
executed only if a given condition is satisfied (see Figure 1(b)).

B. Data-driven Model

Compared to the previous approach, data-driven WMS in
general provide better data provenance and versioning, better
support for cloud-based storage, easier data ingestion, and a
good scaling capability via the adoption of highly scalable
orchestration solutions such as Kubernetes [23].

Model: In this model, data are the primary units, as opposed
to tasks. A data-driven workflow can be represented as a DAG
but instead of tasks being individual nodes, a node represents
a data repository and the edges are the computational tasks.
A data repository can be seen as a directory where data are
structured as objects or files. A task describes the processing
steps to be performed on the data in the incoming reposi-
tory. A pipeline corresponds to the edge in the classic DAG
representation (see Figure 2). Let v; and v; be two distinct
data repositories, let e; ; be the edge from v; to v;. Then, v;
stores the input data used by the pipeline e; ; and v; stores the
output data produced by this pipeline. A successful pipeline
will create a new repository for output files, and can be used
as input directory for another pipeline. Connecting pipelines
to each-other by way of data repositories defines a completed
workflow.

Often, in data-oriented workflows, users start processing
newer data as soon as they become available, without to have
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to trigger the workflow themselves. In certain cases, WMS
using the data-driven model can be considered “active,” as they
proactively monitor each repository for new data, and trigger
individual computational pipelines as needed. Notice that
this model differentiates from stream-based workflows since
computational tasks are not constantly running on computing
nodes waiting for the next chunk of data to process.

I:‘ data

Figure 2. An example of a data-driven workflow. A piece of data is passing
through different tasks, here called pipelines, that compute on the data.

Workflow management system: Pachyderm [20], [24] aims to
enable reproducible, collaborative, and scalable data science
through a more innovative approach to workflow management.
A Pachyderm workflow, called a pipeline, is organized around
data repositories (nodes in the DAG) containing data. Whereas
Hadoop-based solutions are usually optimized for MapReduce
processing, Pachyderm is data- and language-agnostic, mean-
ing that it is not limited to a given data format or programming
language to process the data.

Using the active approach previously described, Pachyderm
runs a pipeline on the its data and waits asynchronously
for new commits (i.e., new data to be processed by the
pipeline). Pachyderm is built on top of numerous software
layers and runs on top of widely-used commercial cloud
providers (Amazon S3, Microsoft Azure, Google Cloud, etc.)
C. Reproducibility

As scientific workflows use increasing amounts of data,
reproducibility of results and data provenance become crucial.
Task-driven workflows often take the approach that the input
data and the description of the workflow are sufficient to
reproduce the results [1]. In the data-driven model, each data
repository is versioned ensuring a complete data reproducibil-
ity and allowing users to execute workflows on each data
version available. Note that, this feature has a non-negligible
cost in terms of storage. For example, Pachyderm uses a Git-
inspired [25] data-versioning system, so users add data to
repositories via a commit and these data are then processed
by the tasks (see Figure 2). Pachyderm versions the pipeline
specifications and all the data processed, allowing users to
rollback and execute any pipelines on any data that have been
versioned. Coupled with a native containerized execution, this
enable fully reproducible data pipelines.

D. Cloud-based orchestration

Many task-driven workflows pre-date the cloud, thus these
virtual resources were often treated as an additional execution
environment. On the other hand data-driven workflows were
born cloud-ready and utilize cloud-based container orchestra-
tion solutions such as Kubernetes [23], which allow efficient
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handling of large amounts of data in order to to have a repro-
ducible and an easy deployment procedure on different cloud
providers. In Pachyderm’s case, each pipeline is contained in a
Docker image and all pipelines managed through Kubernetes
worker pods.

IV. REAL-WORLD USE CASES

To examine each workflow management paradigm and its
associated workflow management systems, we chose three
real-world workflow use-cases based on the four general
workflow categories described in the introduction, choosing
to omit the commercial and developer use-case as it is less
pertinent to scientific workflows and interests. These real-
world use-cases are as follows: (i) a traditional scientific
compute workflow used to evaluate Pegasus and Makeflow;
(if) a data streaming workflow to evaluate Airflow; and (iii) a
sensor-based workflow to evaluate Pachyderm.

A. 1000 Genomes: Traditional Compute Workflow

The 1000 Genomes workflow is a traditional DAG-based
bioinformatics workflow, fetching and parsing data from the
1000 Genomes Project [26]. The workflow aims to analyze
mutational overlaps in humans, ultimately allowing statistical
evaluation of potential disease-related mutations. The Project’s
Phase 3 and superpopulations data is downloaded and parsed
(Individuals and Populations tasks), sorting amino acid sub-
stitutions and determining their potential phenotypic effects
(Sifting tasks). Analysis is then performed in the Frequency
overlap and Pair overlap tasks (see Figure 3).

Individuals [
Input Data 1000 Genome

Populations shy|  Sifting

P
Data Preparation } @ @ @ } i OF
< - o

| Frequency

(i) @ \ Overlap

| Mutations
~

Analysis Overlap |
Mutations |

Output Data
Figure 3. 1000 Genomes Workflow.

The workflow itself can be considered an example of a
“classic” scientific DAG-based workflow because of its con-
sistent dependencies and static nature. The workflow satisfies
all DAG properties—each computational task in the workflow
depends on the completion of previous parent tasks, and no
changes to the workflow structure occurs. Additionally, the
workflow is not dynamically triggered, i.e. it starts based on
a user’s command, and all workflow input data are known a
priori. This workflow use-case has no particular requirements,
only requiring data-flow dependencies and an available net-
work connection to retrieve the dataset.
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B. CASA: Streaming Data Workflow

Streaming data workflows have become increasingly popu-
lar in recent years. The University of Massachusetts’ Collab-
orative Adaptive Sensing of the Atmosphere (CASA) project
utilizes a sensor-based streaming data workflow for their Dal-
las/Fort Worth (DFW) weather radar testbed, which aggregates
data from eight short-range weather radar sensors, providing
higher data precision, accuracy and timeliness versus other,
longer-range radar systems [27].
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v
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Figure 4. CASA Wind Velocity Workflow.

radar_2.netcdf

This paper focuses on a subsection of the CASA workflow
pipeline [27], the calculation of maximum wind velocity and
the sending of a customizable email alert to warn certain
entities such as hospitals or airports of impending high wind
velocity. The CASA workflow takes input data from each
weather radar sensor (radar_N.netcdf.gz files), unzips
the data (unzip tasks), computes the maximum wind velocity
around the DFW area (max_velocity task) and creates a
graphical image of this data (merged_netcdf2png task). It then
outputs velocity data in geojson files (mvr task). Finally,
these files are used to create high wind velocity alerts in the
pointalert task (see Figure 4).

The CASA use-case has two basic requirements. Most
importantly, the streaming property of the workflow requires
workflow triggering every 75 seconds using new just-in-
time data ingested since the last workflow run. Furthermore,
computational executables are stored in a Docker container.
While the use of the container is not required, its usage allows
for easy portability and reproducibility.

C. NEON: Sensor-based Data-driven Workflow

The National Ecological Observatory Network (NEON) is
an NSF open-science facility collecting ecological data from
sensors across the US with the objective to study ecological
processes and changes. NEON’s instrument data pipeline takes
raw sensor data from terrestrial and aquatic sensors and
processes it for publication. Raw sensor data ranges from
resistance values and voltage at a low frequency of collection,
to high frequency sonic anemometer data. The workflow
converts this data into the appropriate unit of measurement
using calibration coefficients, and performs QA/QC steps on
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the data to ensure the quality (see Figure 5). The workflow
is a linear workflow that, as long as data is coming through
the pipeline, gathers data from multiple sources ( metadata,
calibration data and raw sensor data) and process them to
create significant output results.

An essential requirement of the NEON instrument data
pipeline is the ability to reprocess data. This is necessary for
several reasons, including improved algorithms, more recent
calibration data, or late data. Being able to process data that
arrives at a later date is of utmost importance to this workflow,
and NEON notates missing data with a “null flag” in their data
repositories as a placeholder.

Data Sources

Calibration

—

letadata

proc-schema

)i

Figure 5. NEON processing workflow. The rectangles represent the pipelines
and the cylinders the data repositories.

V. HOLISTIC EVALUATION

In this section, we present the results of a holistic evaluation
of WMS for the models discussed above. We do not attempt to
make a singular recommendation, nor is this an analysis of the
different features and limitations of each WMS. As expressed
above, different use-cases have different feature requirements,
and it’s impossible to dictate a singular WMS that meets all
requirements possible. Rather, this work aims to help users
decide which workflow management model, task-driven or
data-driven fits their needs best, and provide an example WMS
for each model to further demonstrate how a particular model
can compliment a given workflow. In order to perform a
thorough evaluation of each workflow management system,
we used the following criteria.

Setup and deployment: We tested the installation process
on a local cluster and using a cloud platform (AWS), us-
ing publicly-available documentation and user-facing support
channels.

Workflow implementation: We examined the level of knowl-
edge and effort required to model the relevant use-case and
workflow.

Workflow execution: We researched features relating to work-
flow triggering, scalability, workflow resiliency, and how each
WMS handles failures.

Data management: We studied how data is managed through-
out the workflow execution, including whether data is trans-
ferred between computational tasks or workflows.

To test each WMS, two types of deployments were used
in order to account for the majority of use-cases. First, initial
WMS installation, testing, and workflow modeling was done
on a local system. This deployment was used for initial
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testing as many WMS intended for scientific workflows are
still deployed and used on local computers or clusters, and
this use-case has its own unique challenges. Second, Airflow
and Pachyderm, both considered cloud-ready WMS, are dis-
cussed with special attention paid to cloud deployment, which
presents separate challenges, and is increasingly important as
some scientific users have begun transitioning their workflows
from local to cloud deployments.

A. Traditional Task-driven WMS: Pegasus and Makeflow

In the case of the 1000 Genome use-case, the workflow uses
a Python workflow generation script to enumerate files in the
1000 Genome dataset, and assign them as inputs of various
tasks inside the workflow pipeline without knowing the exact
file names, facilitating an easy workflow modeling process.

Pegasus and Makeflow are excellent WMS for the 1000
Genome use-case, due to its traditional workflow structure.
Pegasus Python API allows the user the flexibility and ease-
of-use of the Python language in creating a workflow pipeline.
Whereas Pegasus targets flexible composition of DAG work-
flows via APIs with emphasis on functionality, Makeflow has
a more rigid, yet simple, workflow modeling structure based
on GNU make. In this case, dependencies between workflow
tasks are automatically inferred from the data flow specified
in the workflow description file, which alleviates the user’s
burden on defining task dependencies.

Setup and deployment: Pegasus installation is relatively sim-
ple due to its availability on different official repositories.
Since Pegasus relies on HTCondor [28] as a task scheduler and
interface to other cluster managers, additional effort is required
to properly configure and describe the resources. Pegasus also
supports cloud deployments on commercial cloud providers,
and NSF-cloud infrastructures [27]. Similarly, due to its simple
workflow structure model, Makeflow installation is relatively
easy—though it is assumed a workload manager is already
available (e.g., WorkQueue). Both Pegasus and Makeflow were
not natively designed for cloud support, rather cloud resources
generally are manually deployed in the cloud (e.g, AWS or
Azure).

Workflow implementation: Pegasus provides a rich set of
APIs (Python, Java, R, and Perl) for modeling workflows.
These APIs provide a versatile mechanism for modeling large-
scale workflows (O(10°) tasks), which is not often practical
via graphical interfaces—though the entry barrier for non-
expert users is higher. In Makeflow workflows are defined
like ‘Makefiles’. This structure is fairly simple for defining
workflows where the data flow drives the tasks dependencies.
The drawback of this approach is the limited flexibility for
defining complex workflow patterns or control flows compared
to more complex APIs.

Workflow execution: Both WMS supports different workflow
execution environments such as containers, and batch sched-
uler support, which are key for enabling large-scale executions.
Pegasus is built for reliability and integrity, featuring several
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different types of workflow recovery methods, provenance
data, and checkpointing abilities. Makeflow is more simple, it
automatically retries failed tasks, but does not provide support
for checkpointing or sophisticated error recovery methods.
Pegasus workflows also feature several “catalogs” listing the
locations of key data resources, executable ‘transformation’
resources, and compute resources, allowing for easy workflow
portability with which only the resource configuration needs
to be changed.

Data management: Pegasus provides advanced mechanisms to
efficiently manage data movement during workflow execution.
During the workflow planning phase, Pegasus identifies data
locations and augments the workflows with data transfer jobs
for staging input and output data from/to storage resources.
A wide range of protocols are supported, including access to
cloud object storage, via Globus services, etc. Data throttling
allows for increased throughput performance. In Makeflow,
data is assumed to be directly accessible from the comput-
ing node (e.g., shared filesystem) or fetched from a remote
source—support is limited to common Internet protocols.
However, depending on the execution resources used (e.g.
Docker container), Makeflow does support data staging in/out
of individual computational tasks.

B. Recent Task-driven WMS

One example of a more recent (i.e., more flexible, support-
ing containerized execution and cloud-oriented) task-driven
WMS is Airflow. Airflow’s operators allow users to develop
their own notions of what a workflow “task” means. While
many traditional WMS limit computational tasks to executa-
bles, in Airflow the notion of task ranges from simple tasks
such as sending an email, to more complex tasks, such as
running executables inside a container or managing a cloud
deployment. In addition to many built-in operators ready to
use, the triggering system used by Airflow is also extremely
beneficial to complex workflows. More robust than a cron-
based implementation on top of a traditional WMS, Airflow’s
scheduler allows many tasks to be run at custom times or
intervals, and monitors them as such. This concept is extremely
beneficial for the CASA workflow, which is started every 75
seconds in order to process new streaming data.

Setup and deployment: Airflow is written on Python, which
is the only required software prerequisite. Installing Airflow
on a local cluster is relatively easy via the pip package-
management. However, additional software such as the high-
performance execution queue Celery might be needed to adapt
Airflow to the user’s requirements. From a cloud perspective,
Airflow primarily supports Google Cloud (GC), with extended
support for Azure and AWS. Deployment on cloud platforms
is simple, thanks to provided scripts (with a slight edge toward
GC) but complex features such as cloud autoscaling still
require configuration or external tools.

Workflow implementation: Through the extensive library of
built-in operators, workflow implementation in Airflow is
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extremely flexible, and the Python API structure used to write
workflows is easy to learn and understand.

Workflow execution: Airflow’s scheduling features allow users
a robust way to trigger their workflows. Airflow also has a
built-in task retries parameter, like many other WMS and ex-
ternal software such as Apache Mesos enables checkpointing
features.

Data management: Airflow features a basic way to pass data
from task-to-task inside a workflow, but this isn’t as robust
as other WMS’s data management features. As such, tracking
provenance is also more difficult.

C. Data-driven WMS: Pachyderm

As described in the previous sections, Pachyderm is a
prime example of a recently-developed WMS using the data-
driven management paradigm. Written to allow portable data
pipelines, with reproducibility and data provenance, Pachy-
derm is not explicitly designed for scientific workflows, but
can be co-opted for scientific tasks. As detailed in Section III,
Pachyderm’s workflow modeling process is interesting in that
each task is defined individually as a data pipeline, and
several pipelines can be combined together to form a complete
workflow.

One important feature of Pachyderm with regards to the
NEON workflow pipeline is Pachyderm’s robust data prove-
nance tracking. The NEON project aims at publishing ver-
sioned data sets on an online portal to support open-science
research. Although NEON can produce versions of these
data sets without a solution like Pachyderm, Pachyderm’s
provenance tracking features allow NEON to inform the public
what has changed between versions of the data sets, and
why. NEON also needs to re-run their pipelines with field
calibration data. For sensors that are calibrated regularly in
the field this is inconvenient, as NEON has to reprocess
when those calibrations are stored. For instruments that self-
calibrate, and have no defined calibration period, this is border-
line impossible without an on-demand reprocessing capability.
Pachyderm allows NEON to do this, by triggering only the
pieces of the pipeline necessary to run when a calibration
change comes in via the commit system.

Setup and deployment: Similarly to other WMS, Pachyderm
requires several dependencies, including Kubernetes, which
itself requires expert knowledge (just as with HTCondor).
Pachyderm is intended for cloud deployments, and several
utilities exist to automate installation on cloud platforms
like AWS. However, Pachyderm has limited local cluster
deployment, requiring a Kubernetes cluster and S3-compatible
storage. Compared to Airflow, which allows more fine-grain
resource management, Pachyderm is more restrictive—once its
Kubernetes cluster is deployed on a given cloud, all pipelines
execute on this cloud.

Workflow implementation:
Because Pachyderm triggers pipelines whenever data is
committed to a given input repository, file and folder structures
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inside of these repositories might need to be organized for
optimal data flow and pipeline triggering. Another resulting re-
quirement of this commit-based triggering system is that each
pipeline must output files or objects to an output repository.
These triggering features can be very beneficial to scientific
workflows, as highlighted with the NEON use-case.

Workflow execution: Pachyderm has the ability to scale over
a Kubernetes cluster, which is extremely simple. Pachyderm
automatically retries each data pipeline based upon task exit
code. However, for certain workflows, error management
might not be as easy as other WMS, since actual workflows
are buried in containers inside Kubernetes pods.

Data management: Data passing is a strong point of Pachy-
derm, with data flow and provenance being one of the headline
features of the WMS. Provenance also can be tracked back
through a workflow, with PFS repositories tracking files and
their respective commits.

VI. CONCLUSION

This work’s main objective is to describe interesting trends
and concepts in next-generation scientific and commercial
workflow management systems, from a user’s perspective.
To this end, we analyzed how two different workflow man-
agement paradigms, namely the task-driven and data-driven
paradigms, can be applied to real-world use-cases.

From the four generic use-cases detailed in the introduction,
we carefully described three real-world use-cases. With a
traditional scientific workflow with the 1000 Genome Project
workflow, and two different sensor-based workflows with the
CASA and NEON soil workflows, we presented a cross-
section of traditional and next-generation workflows to evalu-
ate trends and developments in the workflow space.

For the task-driven and data-driven paradigms, we selected
representative workflow management systems. Pegasus, Make-
flow and Apache Airflow represent the task-driven model,
while Pachyderm represents the data-driven model. Each
model is thoroughly and holistically evaluated, along with their
associated workflow management systems. While performing
this evaluation, we examined the rise of new technologies
and innovations, including containers and the cloud, and new
workflow management use-cases, such as big data analytics,
large-scale science and machine learning. Using several real-
world use-cases, we highlighted how each WMS’s unique
features can be an asset to certain next-generation workflows,
and emphasized how these features set each WMS apart from
one another.

Future work consists of exploring more real-world use-cases
such as IoT workflows or large-scale data analytics, as well as
more WMS solutions and approaches, e.g. Apache Kafka for
real-time data streaming. We would also like to evaluate how
techniques developed by these next-generation WMS could
benefit to traditional scientific workflows.
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