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Abstract—Flash memory devices are winning the competition
for storage density against magnetic recording devices. This
outcome results from advances in physics that allow storage
of more than one bit per cell, coupled with advances in signal
processing that reduce the effect of physical instabilities. Con-
strained codes are used in storage to avoid problematic patterns.
Recently, we introduced binary symmetric lexicographically-
ordered constrained codes (LOCO codes) for data storage and
transmission. This paper introduces simple constrained codes that
support non-binary physical gates in multi, triple, quad, and
the currently-in-development penta-level cell (M/T/Q/P-L.C) Flash
memories. The new codes can be easily modified if problematic
patterns change with time. These codes are designed to mitigate
inter-cell interference, which is a critical source of error in
Flash devices. The new codes are called g-ary asymmetric LOCO
codes (QA-LOCO codes), and the construction subsumes codes
previously designed for single-level cell (SLC) Flash devices (A-
LOCO codes). QA-LOCO codes work for a Flash device with any
number, g, of levels per cell. For ¢ > 4, we show that QA-LOCO
codes can achieve rates greater than 0.95 log, ¢ information bits
per coded symbol. Capacity-achieving rates, affordable encoding-
decoding complexity, and ease of reconfigurability support the
growing improvement of M/T/Q/P-LC Flash memory devices,
as well as lifecycle management as the characteristics of these
devices change with time.

I. INTRODUCTION

Data storage densities are increasing rapidly as modern ap-
plications, e.g., internet of things applications, access, process,
and store more and more data. In 2015, the storage density
of Flash memory devices surpassed that of magnetic record-
ing (MR) devices. This milestone resulted from advances
in physics, architecture, and signal processing. The major
advance in Flash physics was enabling more than two storage
levels per cell, and thus allowing the storage of more than
one bit per cell. The major advance in Flash architecture was
devising the three-dimensional vertical NAND Flash structure.

Constrained codes are designed to avoid problematic pat-
terns. Run-length-limited (RLL) codes are a class of con-
strained codes introduced in 1970 [1], that were first used to
improve the storage density of early MR devices employing
peak detection [2], [3]. Modern storage devices employ se-
quence estimation rather than peak detection, but constrained
codes are still used to improve performance [3], [4]. RLL
codes also find application in optical recording [5]. When first
introduced in [1], lexicographic indexing was used to encode
and decode RLL codes, but this was replaced by methods
based on finite-state machines (FSMs) in later work [6]. RLL
codes are associated with transition-based signaling.

In level-based signaling, each symbol (or bit) is associated
with a distinct level for storage or transmission. A binary sym-
metric S,-constrained code is a code that forbids the patterns

in the set S, 2 {010,101,0120,1021, ...
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01*0,10%1} fr0m6885implicity, levels are defined by their indices {0, 1, ...

appearing in any codeword, where the notation y” refers to
a sequence of r consecutive y’s. A binary asymmetric A,-
constrained code is a code that forbids the patterns in the set
A, = {101,10%1,...,10"1} from appearing in any code-
word. S,-constrained and A, -constrained codes are associated
with level-based signaling, which is natural for Flash.

In Flash devices, inter-cell interference (ICI) is one of the
main sources of errors. Parasitic capacitances in and across
floating gate transistors result in charge propagation from cells
being programmed to the highest charge level to neighboring
cells being programmed to lower levels or unprogrammed.
Thus, unintentional increases in charge values occur, resulting
in errors during reading. The authors of [7] and [8] introduced
constrained codes to prevent the level pattern (¢ — 1)0(g — 1)
from being written in a Flash device with ¢ > 2 levels per cell.!
Via extensive experiments, the authors of [9] showed that for
multi-level cell (MLC) Flash devices (4 levels), the set of level
patterns to be forbidden (contribute the most to ICI) should be
{303,313, 323}. This set was recently generalized in [10] to
{(g=1)0(g—1), (¢—1)L(g—1),...,(¢—1)(g—2)(¢—1)} for
a Flash device with ¢ levels per cell. We focus on ICI among
cells on the same bit line because of its dominance [9].

In previous work [11], we introduced lexicographically-
ordered S,-constrained codes (LOCO codes), that make signif-
icant MR density gains possible. LOCO codes are simple and
reconfigurable. The A, -constraint forbids ICI-causing patterns
in single-level cell (SLC) Flash devices (2 levels). In [12],
we designed capacity-achieving A,-constrained codes, named
asymmetric LOCO codes (A-LOCO codes), that offer a better
rate-complexity trade-off than previous codes, and that can
be easily reconfigured. We anticipate using a combination of
machine learning and analysis of errors collected before the
error-correction (EC) decoder to identify new patterns that
need to be forbidden as the device ages. We see (A-)LOCO
codes as a method of extending device lifetime.

In this paper, we generalize our asymmetric constrained
codes in [12] to Flash devices with any number, ¢, of levels
per cell. In particular, we introduce fixed-length g-ary asym-
metric LOCO codes (QA-LOCO codes) for all Flash devices.
QA-LOCO codes are capacity-achieving, and we devise the
encoding-decoding rule for them to offer simplicity. While
available literature only focuses on the effect of ICI on adjacent
cells, we handle more general constraints for higher reliability.
QA-LOCO codes are also reconfigurable because of their
encoding-decoding rule. We show that QA-LOCO codes can
contribute to significant lifetime gains for the Flash device

'Note that charge levels directly translate to threshold voltage levels. For

q—1).
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with rates greater than 0.95log, ¢ information bits per coded
symbol, ¢ > 4, at affordable complexities. High performance
EC codes are also key to such gains since they are necessary
to correct errors that do not result from ICI. We suggest that
QA-LOCO codes (with EC codes) can significantly improve
the performance (increase the lifetime) of multi (¢ = 4) and
triple (¢ = 8)-level cell Flash memories, and can remarkably
accelerate the evolution of quad (¢ = 16) and penta (¢ = 32)-
level cell Flash memories, which are the next generation.
The rest of the paper is organized as follows. In Section II,
we define QA-LOCO codes and introduce their cardinality. In
Section III, we derive the QA-LOCO encoding-decoding rule.
In Section IV, we discuss rates and make comparisons. In
Section V, we present the encoding and decoding algorithms
and discuss reconfigurability. Section VI concludes the paper.

II. DEFINITION AND CARDINALITY

Denote a Galois field (GF) of size ¢ by GF(q). Let a be a
primitive element of GF(g).> Consequently,

GF(q) 2 {0,1,a,0%,...,a97?}.

We define § as an element in GF(q)\{a? 2} and also §" =
6r—10,—2...00 as a sequence in [GF(¢)\{a?"?}]". We now
formally define QA-LOCO codes, which are QZ-constrained:

Definition 1. A QA-LOCO code QCm 2 With ¢ > 2, m > 1,
and x > 1 is defined by the following properties:
1) Each codeword c in QCY, .
and is of length m symbols.
2) Codewords in QC?,M are ordered lexicographically.
3) Each codeword c in QCY, . does not contain any of the
patterns in the set Q4, where:

has its symbols in GF(q)

L
A _ _ _ _
Q1 2 {a97250972 a9726%0972, ..,

4) The code QC}, . contains all codewords satisfying the
above three properties.

725"}, (1)

Lexicographic ordering of codewords means codewords are
ordered in an ascending manner following the rule 0 < 1 <
a < --- < a2 for any symbol, and the symbol significance
reduces from left to right.

Let c be an element in GF(q). Define a = £L(c) as the Flash
charge level equivalent to symbol ¢, which is given by:

aéﬁ(c)é{ 0, c:Q,
gflog,(c) +1, otherwise,
where gflog,, (c) returns the power of the GF element ¢ with
gflog, (1) = 0. Thus, the set of charge levels equivalent to
GF(g) is {0,1,2,3,...,¢ — 1}, and the set of charge-level
patterns equivalent to Q% in (1) is:

{(g=Du(g—1), (¢-1)p*(g—-1),. ..,

where [J,T £ £(6T_1)£(6T_2) . ,C((So)

Observe that in the case of x = 1, the set in (1) reduces
to Qf = {a97250972%} {a9720a972, 09721972, ...,
a?72a9730972}. The set of level patterns equivalent to Qf
is {(¢—1)0(g—1),(¢—1)1(g—1),.... (¢—=1)(¢—2)(g— 1)},

20ur analysis works for any GF size q. However, we focus more on ¢ = 2Y,
v > 1, because of the nature of Flash devices. We write one symbol per cell.

2)

(¢=Dp*(q=1)}, 3)

which is the exact same set in [10], and also in [9] for ¢ = 4.
It is clear that for the binary case (¢ = 2), Q2 is simply A,.
The partition of QA-LOCO codewords into groups is essen-
tial to deriving the cardinality and later the encoding-decoding
rule. We partition the codewords in QCm »» M > 2, into three
groups according to what they start with from the left, i.c., at
the left-most symbols (LMSs), as follows:
Group 1: Codewords starting with 0 from the left.
Group 2: Codewords starting with a?~2a49~2 from the left.
Group 3: Codewords starting with a9=2§*"! from the left.
Observe that given the set of forbidden patterns QZ in (1),
there are no other symbol options for a codeword c in QC?, ,
to have at its LMSs. Now, we are ready to enumerate QA-
LOCO codewords recursively.

Theorem 1. The cardinality (size) of a QA-LOCO code
QCY, »» denoted by N,(m,x), is given by:

—1,2) — (¢ —1)Ny(m — 2,z)
DN, (m — 2 —2,2), m>2, (4)

Nq(m, 33) = qu(m
+(a -

where the defined cardinalities are:

Ny(m,z) £ (¢g—1)", m <0, and Ny(1,2) £q.  (5)
Proof: We use the group structure above to prove Theo-
rem 1. See the long version [13]. [ ]

Example 1. Consider the QA-LOCO codes QC 1(g=4
and x = 1) with m € {2,3,...,6}. From (5), the defined

cardinalities needed here are:

Ny(=1,1) 2371 Ny(0,1) £ 1, and Ny(1,1) £ 4.

The cardinalities of the aforementioned QA-LOCO codes are:
N4(2,1) = 4N4(1,1) — 3N4(0,1) + 9Ny (—1,1) = 16,
N4(3,1) = 4N4(2,1) — 3N4(1,1) + 9N, (0,1) = 61,
Na(4,1) = 4N4(3,1) — 3N4(2,1) + 9N4(1,1) = 232,
Na(5,1) =4N4(4,1) —3N4(3,1) +9N4(2,1) = 889, and
Ny(6,1) = 4Ny (5,1) — 3N4(4,1) + 9N4(3,1) = 3409.

Theorem 1 is a key result in the analysis of QA-LOCO
codes. The theorem provides insights regarding how the code-
words of a QA-LOCO code of a specific length relate to the
codewords of QA-LOCO codes of smaller lengths. As we
shall see shortly, Theorem 1 and the insights it provides are
fundamental to the derivation of the encoding-decoding rule,
to the rate discussion, and to the algorithms.

III. QA-LOCO ENCODING-DECODING RULE

Now, we derive a formula that relates the lexicographic
index of a QA-LOCO codeword to the codeword itself. We
call this formula the encoding-decoding rule of QA-LOCO
codes since it is the foundation of the QA-LOCO encoding
and decoding algorithms presented in Section V.

We define a QA-LOCO codeword of length m symbols as
C £ ¢p16m—2...co in QCY, .. The index of a QA-LOCO
codeword c in QCY, , is denoted by g(m, x, ), which is some-
times abbreviated to g(c) for simplicity. Our lexicographic
index g(c) is in {0,1,..., Ny(m,z) — 1}. For each symbol

901, we define its level-equivalent a; £ L(c;) as shown in (2),
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with ¢; £ 0 and a; 2 0 for ¢ > m. The same notation applies
for a QA-LOCO codeword of length m + 1, ¢’ in QCZn 0
and a QA-LOCO codeword of length m —, ¢ in QC} .

For each codeword symbol c¢;, define Condition (*) as the
condition that ¢;yg, ... Cit2Ci11 = a?28% 1 for some k;, €
{1,2,...,x}. For example, for a QA-LOCO code with ¢ = 4,
m > 7, and z = 3, if we have cgcscacs = aala then,
k5:1, k4:2, andk3:3.

The following theorem introduces the encoding-decoding
rule of QA-LOCO codes. Observe that indexing is straight-
forward for the case of m = 1.

Theorem 2. Consider a QA-LOCO code QCY, , with m >
2. Let ¢ be a QA-LOCO codeword in QC], . The relation
between the lexicographic index g(c) of this codeword and

the codeword itself is given by:

m—1
g(c) = > ailg — 1) Ny(i — v, ), ©6)
i=0
where ~y; for symbol c; is computed as follows:
_Jw—ki+1,  k; satisfying (*) exists,
Y= { 0, otherwise. )

Starting from the left (LMS), parameter k; € {1,2,... ,xz}, if
exists, represents the backward distance in symbols from c; to
the nearest 12 symbol. Note that vp,—1 = 0.

Proof: We prove Theorem 2 by induction and using the
group structure. See the long version [13]. ]

Example 2. We use (6) to compute the index of two QA-
LOCO codewords in QCé,Q (g=4, m =6, and x = 2). Using
Theorem 1, the required cardinalities are Ny(—1,2) = 371,
N4(0,2) & 1, Ny(1,2) £ 4, Ny(2,2) = 16, Ny(3,2) = 61,
N4(4,2) = 223, and N4(5,2) = 817.

The first codeword is the 334th codeword 011a*0c. This
codeword has a5 = 0, ay = a3 =1, as = 3, a1 = 0, and
ag =2. From(7),wegetys =y =73 =72=0mn=c=2
and vy = x — 1 = 1. Thus, from (6):

5
g(c) =Y ai(37)Nu(i — 7, 2)
i=0
= Nu(4,2) + Nu(3,2) + 3N4(2,2) + 6N4(—1,2)
=2234+61+3x16+6x 371 =334,

which is the correct index.

The second codeword is the 1850th codeword a0a’a?a0.
This codeword has as = 2, ay =0, ag3 = as = 3, a1 = 2, and
agp = 0. From (7), we getys =y4 =73 =0, 72 = =2z =2,
and vy = x — 1 = 1. Thus, from (6):

5

g(c) = Zai(?)%)]\h(i —%,2)
i=0
— 2N, (5,2) + 3N4(3,2) + 27N4(0,2) + 18N4(—1,2)

=2x817T+3x61+27x1+18x371=1850,
which is the correct index.

Theorem 2 is the key result behind the simple, recon-
figurable QA-LOCO encoding and decoding we offer. The

theorem provides one-to-one mapping from an index to the69

corresponding codeword, which is the encoding, and one-to-
one demapping from a codeword to the corresponding index,
which is the decoding.

IV. ACHIEVABLE RATES AND COMPARISONS

Bridging is required in order to prevent forbidden patterns
from appearing while transitioning from a codeword into the
next one [11]. Consider the QA-LOCO code QC‘;)1 (g = 4,
m = 5, and x = 1). Assume that we are about to write the
following two consecutive codewords on an MLC Flash device
(4 levels): 0laa?a? and 1a2001. The stream containing the
two consecutive codewords to be written on ten consecutive
cells is 0laa?a?102001, and it does contain the forbidden
pattern a®1a?. Bridging fixes such a problem.

Let e £ a%2. We perform bridging in a QA-LOCO code
QC}, . via adding bridging patterns as follows:

1) If the right-most symbol (RMS) of a codeword and the

LMS of the next codeword are both a4~2’s, bridge with
€%, i.e., bridge with = consecutive e £ a9~2 symbols (z
consecutive cells programmed to level ¢ — 1).

2) Otherwise, bridge with 0%, i.e., bridge with = consecu-

tive 0 symbols (x consecutive unprogrammed cells).

Applying this bridging method to the above scenario results
in the following stream 0laa?a?01a2001, and the forbidden
pattern is prevented from appearing across the codewords.

Our bridging is not only simple, but also optimal in the
sense that it provides the maximum protection from ICI for
the symbols at the edges of QA-LOCO codewords.

Self-clocking is required in order to maintain calibration of
the system [3], [12]. Self-clocked constrained codes do not
allow long streams of the same symbol to be written (trans-
mitted). Given our bridging method illustrated above for a
QA-LOCO code QCY ., even if we repeat a same-symbol
codeword consecutive times in a stream, as long as this
symbol is in GF(¢)\{0,a?=2}, bridging will guarantee that
two transitions to then from a different symbol (0) occur right
before each new codeword in the stream. This does not happen
with only two same-symbol codewords, which are 0" and €™,
e £ a2, Consequently, these are the only codewords we
need to remove from QCY, . to achieve self-clocking.

Definition 2. Let QC], , be a QA-LOCO code with q > 2,
m > 1, and x > 1. A self-clocked QA-LOCO code (CQA-
LOCO code) QC%°_ is obtained from QC‘},M as follows:

m,r

Qcir, £ 9Ck, \{0™,e"}, e2at? )
Therefore, the cardinality of the CQA-LOCO code is:
Ng(m, z) = Ny(m,x) — 2. ©)

Now, we are ready to discuss the achievable rates of QA-
LOCO codes. Consider a CQA-LOCO code QC}°, with

cardinality Ng(m,x), which is given in (9). The length, in

bits, of the messages QC?°, encodes is:
,

s¢ = |logy N (m, x)| = |logy (Ng(m,z) —2)].  (10)

The input information message is intentionally selected to be
a binary message in order to minimize the number of omitted
codewords from QC%° . and therefore maximize the rate for

m,z*

Oq > 2. The rate of the CQA-LOCO code QC%°, then is:
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TABLE I
RATES AND NORMALIZED RATES OF VARIOUS CQA-LOCO CODES chr’:l WITH q € {4, 8,16,32} (FOR M/T/Q/P-LC FLASH) AND z = 1.

q=4 q=28 q=16 q=32

m Roa-Loco RCQ.KLOCO m Roa-Loco Rahoco m Roa-Loco Rfjr\fLoco m Roa-Loco RE’X—LOCO
14 1.8000 0.9000 18 2.7895 0.9298 18 3.7368 0.9342 19 4.7000 0.9400
26 1.8519 0.9260 26 2.8519 0.9506 27 3.8214 0.9554 29 4.8000 0.9600
49 1.9000 0.9500 44 2.9111 0.9704 45 3.8913 0.9728 49 4.8800 0.9760
i 1.9103 0.9552 71 2.9306 0.9769 66 3.9254 0.9813 70 4.9155 0.9831
97 1.9184 0.9592 103 2.9519 0.9840 111 3.9554 0.9888 117 4.9492 0.9898

Capacity 1.9374 0.9687 Capacity 2.9817 0.9939 Capacity 3.9950 0.9987 Capacity 4.9987 0.9997

TABLE 11
RATES AND NORMALIZED RATES OF VARIOUS CQA-LOCO CODES QCZ,;‘Q WITH q € {4, 8,16, 32} (FOR M/T/Q/P-LC FLASH) AND z = 2.
g=4 q=38 q=16 q=32
C, T C, 0 T )

m Roaroco | Hoatoco m Roaroco | Boaroco m Roaroco | Bgaroco m Roaroco | Bgaroco
20 1.7273 0.8636 22 2.7083 0.9028 24 3.6538 0.9135 25 4.5926 0.9185
38 1.8000 0.9000 32 2.7941 0.9314 34 3.7500 0.9375 36 4.7105 0.9421
57 1.8305 0.9153 52 2.8519 0.9506 51 3.8302 0.9575 56 4.8103 0.9621
76 1.8462 0.9231 73 2.8800 0.9600 73 3.8800 0.9700 77 4.8608 0.9722
96 1.8571 0.9285 108 2.9091 0.9697 100 3.9118 0.9779 108 4.9000 0.9800

Capacity 1.8947 0.9473 Capacity 2.9675 0.9892 Capacity 3.9906 0.9977 Capacity 4.9975 0.9995

c _
RoaLoco = __ [logy (Vg (m, ) — 2)] , (11) Table I (resp., Table II) demonstrates that for all values of

m 4+ x m 4+ x

where R oco is measured in information bits per coded
symbol. We can normalize this rate as follows:
[logy (Ng(m, x) —2)]

RS = . 12
QA1000 = 1 0 logy g (2

Example 3. Consider the CQA-LOCO code QCyS (q = 4,
m =9, and x = 1). From the recursion in Theorem 1, we can
reach that N4(9,1) = 191518. From (11), we get a rate of:

[log, (191518 — 2)]
9+1
information bits per coded symbol. From (12), the normalized

rate is 1.7/log, 4 = 0.85.

Now, suppose that we want to encode non-binary messages,
with their symbols defined over GF(4) here. The rate in this
case becomes:

=1.7

C _
Roatoco =

|log, (191518 — 2) |

9+1
Clearly, this is a significant rate loss compared with the 0.85
normalized rate achieved by encoding binary information mes-
sages.> The reason is the higher number of omitted codewords
when messages are non-binary.

=0.8.

Y
RQA-LOCO =

Except only the two codewords 0™ and e™, e £ 0972 all
the codewords satisfying the Q% constraint are in the CQA-
LOCO code QC?*,. Additionally, the number of symbols we
add for bridging is constant, which is x. Thus, CQA-LOCO
codes are capacity-achieving codes, i.e., the asymptotic rate
of a CQA-LOCO code matches the capacity.

Tables I and II present the rates and the normalized rates
of CQA-LOCO codes QC?°, with ¢ € {4,8,16, 32}, various
values of m, and = € {1,2}. The capacities are given in the
last row of each table. We compute the capacity, in information
bits per coded symbol, of a QZ-constrained code from a finite-
state transition diagram (FSTD) representing the infinitude of

a sequence satisfying this Q% constraint.

3CQA-LOCO code rates that are a lot closer to the capacity of a Q‘ll-
constrained code are going to be presented in this section.

q, the rates of CQA-LOCO codes with z = 1 (resp., z = 2)
and moderate lengths reach within only 1% (resp., 2%) from
capacity. Most important, the tables show that CQA-LOCO
codes for all values of ¢ and x achieve normalized rates
> 0.95, i.e., rates > 0.95log, g information bits per coded
symbol, except for the case of ¢ = 4 and z = 2. In other
words, significant ICI mitigation in the Flash device can be
achieved with only 5% or less redundancy, even later in the
lifetime of the device when x can be raised to 2.

The two tables also show the effect of increasing ¢ on the
achievable rates. As ¢ increases, the sufficient rate to protect
the Flash device increases. Consider quad-level cell (QLC)
and penta-level cell (PLC) Flash devices (¢ = 16 and q = 32,
respectively). For x = 1, Table I shows that only about 1.9%
(resp., 1.7%) redundancy is enough at length 66 symbols
(resp., 70 symbols) for QLC devices (resp., PLC devices).
For x = 2, Table II shows that only about 3% (resp., 2.8%)
redundancy is enough at length 73 symbols (resp., 77 symbols)
for QLC devices (resp., PLC devices). Essentially, this is
telling that the ICI mitigation via CQA-LOCO codes is coming
almost for free with respect to redundancy.

Next, we present brief comparisons between QA-LOCO
codes and other codes designed for similar goals:

1) It is already not easy to design FSM-based binary con-
strained codes with rates close to capacity [2], [11]. This
task becomes even more complicated in the non-binary
domain. Our QA-LOCO codes offer simple encoding
and decoding because of their rule, even with ¢ > 2.

2) The authors of [1] introduced g-ary lexicographically-
ordered RLL (Q-LO-RLL) codes. However, their con-
straints impose a minimum number of zeros between
each two consecutive non-zero symbols. This results in
a significant unneeded rate loss if applied for Flash.

3) The authors of [10] introduced enumerative g-ary Q({-
constrained codes for Flash. While their codes are
capacity-achieving and efficient, QA-LOCO codes offer
simpler encoding and decoding compared with their
unrank-rank approach. Additionally, the codes in [10]
are only for the case of x = 1, which means QA-LOCO
codes address more general constraints.

691
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4) Non-binary constrained codes are significantly more effi-
cient, rate-wise, compared with binary codes. From [12],
the capacity of a binary .A;-constrained code (z = 1) is
0.8114. From Table II, even for ¢ = 4, a self-clocked
QA-LOCO code of length only 20 symbols achieves
about 6.4% rate advantage with respect to the above
binary capacity, and at x = 2 (more ICI mitigation).

V. ALGORITHMS AND RECONFIGURABILITY

Now, we introduce the encoding and decoding algorithms of
QA-LOCO codes, which are based on their encoding-decoding
rule (6) of Theorem 2. The algorithms perform the mapping-
demapping between an index and the associated codeword,
and thus, they are essential for enumerative techniques to offer
simplicity. See [14] for a conceptually connected work in the
context of multi-dimensional constellations.

The encoding algorithm of our codes is [13, Algorithm 1],
and [13, Example 4] illustrates how it works. The decoding al-
gorithm of our codes is Algorithm 1, and Example 2 illustrates
how it works.

Algorithm 1 Decoding CQA-LOCO Codes

1: Inputs: Incoming stream of g-ary CQA-LOCO code-
words, in addition to ¢, m, x, and s°.

2: Use (4) and (5) to compute N,y (i,z), ¢ € {2,3,...,m—1}.

3: for each incoming codeword c of length m do

Initialize g(c) with 0 and ¢; with 0 for i > m.

5 Initialize ~y; with 0 for ¢ € {0,1,...,m — 1}.

6 foric {m —1,m—2,...,0} do (in order)

7: for k; € {1,2,..

8

9

A

.,x} do
if Citk; = @972 then

: Setv, =z —k; + 1.
10 break. (exit current loop)
11: end if
12: end for
13: Set index =7 — ;.
14 if ¢; # 0 then (same as a; # 0)
15: Set a; = L(c;).
16: g(c) < g(c) + a;(¢g — 1) N, (index, x).
17: end if

18:  end for

19:  Compute b = binary(g(c) — 1), which has length s¢.
20: Ignore the next = bridging symbols.

21: end for

22: Output: Outgoing stream of binary messages.

In order to reduce complexity, all terms containing multi-
plications in [13, Algorithm 1] and Algorithm 1, e.g., a;(q —
1) N, (index, ), are not computed at runtime. This increases
the storage overhead. However, the gain is that the complexity
of both algorithms is still mainly governed by the adder size
that will perform the comparisons/subtractions and additions.
The adder size is itself the message length s¢. For example,
to achieve a rate of 1.8519 information bits per coded symbol
using a CQA-LOCO code with ¢ = 4 and = = 1, adders of
size 1.8519 x (26 + 1) = 50 bits are needed (see Table I).

A detailed storage and complexity analysis is in [13].

A Flash device with ¢ levels per cell has log, ¢ pages. In

general, the Flash industry prefers to process different pages69

independently in order to increase access speed. One idea to
achieve this goal is to apply the QA-LOCO code only on the
parity part of the EC low-density parity-check (LDPC) code
as we did in [11] for MR systems. In particular, the idea is
to reserve few word lines for parity. We encode parity bits
via a QA-LOCO code into symbols over GF(q) before writing
them on the parity word lines. The Q% constraint should be
satisfied over all bit lines across the parity word lines. While
reading, we read the parity word lines first. Next, the parity bits
are decoded via the QA-LOCO decoder. The LDPC decoder
then operates independently on the log, ¢ pages to retrieve the
log, ¢ codewords for each word line. High performance LDPC
codes for Flash can be designed as in [15] and [16].

The fact that the encoding and decoding of QA-LOCO codes
are performed through simple adders enables reconfigurability.
All that is needed to reconfigure a QA-LOCO code, i.e.,
change the code parameters such that more (or even different)
constraints are supported, is to change the cardinalities that
are inputs to the adders at both encoding and decoding sides
such that the encoding-decoding rule in (6) supports the new
constraints. As the Flash device ages, charges propagate during
programming with higher rates and reach further non-adjacent
cells. Thus, while QA-LOCO codes with x = 1 are sufficient
when the device is fresh, reconfiguring to QA-LOCO codes
with > 1, i.e., forbidding more patterns, is needed such that
the device keeps functioning reliably late in its lifetime.

Aided by machine learning, errors before the LDPC decoder
can be collected to identify the set of error-prone patterns that
should be forbidden at different stages of the Flash device
lifetime. Once this set is found to be bigger than the currently
supported set by the QA-LOCO code, we propose to respond
via reconfiguring the QA-LOCO code to support the new set
as illustrated in the previous paragraph. Therefore, machine
learning and reconfigurable constrained codes, along with
high performance EC codes, can help increase the lifetime
of modern Flash devices significantly, and therefore support
the evolution of QLC and PLC Flash memories.

VI. CONCLUSION

We introduced capacity-achieving g-ary asymmetric LOCO
codes (QA-LOCO codes) for Flash devices with any number,
q, of levels per cell. We partitioned the codewords of a QA-
LOCO code into groups, which we used to recursively com-
pute the cardinality. We devised an encoding-decoding rule for
QA-LOCO codes to map from index to codeword and vice
versa, which is the key result behind the simple encoding and
decoding of these codes. We introduced the achievable rates
of QA-LOCO codes, and showed that they need 5% or less
redundancy to protect the device. For QLC and PLC devices,
we demonstrated that ICI mitigation almost comes for free
with respect to redundancy. We presented the encoding and
decoding algorithms, and provided an analysis for the storage
and complexity growth with ¢q. We suggest that machine
learning and reconfigurable QA-LOCO codes (with EC codes)
can significantly increase the lifetime of modern Flash devices.
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