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OPTIMALLY CONDITIONED VANDERMONDE-LIKE MATRICES*
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Abstract. Vandermonde matrices arise frequently in computational mathematics in
problems that require polynomial approximation, differentiation, or integration. These matrices
are defined by a set of n distinct nodes x1,x2,...,Zn, and a monomial basis. A difficulty with
Vandermonde matrices is that they typically are quite ill-conditioned when the nodes are real
and n is not very small. The ill-conditioning often can be reduced significantly by using a ba-
sis of orthonormal polynomials po,pi1,...,pn—1, with deg(p;) = j. This was first observed by
Gautschi. The matrices so obtained are commonly referred to as Vandermonde-like and are of
the form Vi n = [pi—1(x;)]} ;= € R"*". Gautschi analyzed optimally conditioned and optimally
scaled square Vandermonde and Vandermonde-like matrices with real nodes. We extend Gautschi’s
analysis to rectangular Vandermonde-like matrices with real nodes, as well as to Vandermonde-like
matrices with nodes on the unit circle in the complex plane. Additionally, we investigate existence
and uniqueness of optimally conditioned Vandermonde-like matrices. Finally, we discuss properties
of rectangular Vandermonde and Vandermonde-like matrices Vi ,, of order N x n, N # n, with
Chebyshev nodes or with equidistant nodes on the unit circle in the complex plane, and show that
the condition number of these matrices can be bounded independently of the number of nodes.
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1. Introduction. Let x1,xs,...,xn be distinct nodes in the complex plane C,
and let po, p1,p2, ... be a polynomial family with deg(p;) = j. Matrices of the form

Po(iUl) Pl(ﬁCl) Pn71($1)
(1.1) S B Sl R
po(on) prlon) - paa(ow)

are known as Vandermonde-like matrices. When the polynomials p; are monomials,
ie, pj(x) =27, j=0,1,...,n — 1, the Vandermonde-like matrix (1.1), which is rec-
tangular when N # n, simplifies to a (standard) Vandermonde matrix. Vandermonde-
like matrices arise in polynomial interpolation and least-squares approximation, when
approximating the derivative of a function known at the nodes xy,x2,...,xn by
differentiating the interpolating polynomial or a polynomial least-squares approxi-
mant, and when computing the weights of an interpolating quadrature rule with
nodes x1, g, ...,xN; see, e.g., Gautschi [13, 16] for discussions on applications.

The condition number of a square matrix furnishes a bound for the relative error
in the solution of a linear system of equations with the matrix caused by an error in
the data vector (right-hand side). A small condition number indicates a small relative
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error in the data vector only causes a small relative error in the solution. Conversely,
a large condition number signals that the computed solution may be very sensitive to
an error in the data vector. The condition number also yields bounds for the relative
error in the solution of least-squares problems caused by an error in the data vector;
see, e.g., [13, 23, 37] for discussions.

We are interested in investigating the conditioning of rectangular Vandermonde
and Vandermonde-like matrices. The conditioning is measured by condition numbers
defined as

(1.2) ka(Vivn) = VN2V 2 5r(Vin) =1V

PVl

where V;,ﬁn denotes the Moore—Penrose pseudo-inverse of Vi ,, || - |2 stands for the
spectral norm, and || - || for the Frobenius norm, i.e.,

(1.3) VN nllF = ,/trace(V]i})nVN’n).

The superscript * denotes transposition and complex conjugation when applicable.
Bounds for the condition number of (standard) rectangular Vandermonde matrices
Vn,n with Chebyshev nodes z; and 1 < n < N have been derived by Li [28], who
exploits the structure of the QR factorization of Vi, to bound kg (Vi p).

We will use the singular value decomposition (SVD)

(1.4) Vg =USW*

in our analysis, where the U € CVN*N and W € C"*" are unitary matrices. The
matrix
¥ =diag [01,02,. .., Omin{N,n}] € RN xn

is diagonal and rectangular when N # n. Its nontrivial entries are known as singular
values. They are nonnegative and ordered according to o1 > g9 > -+ > T min{N,n}
> 0; see, e.g., [37] for details on the SVD. It easily can be shown that when the nodes
x; are distinct, all singular values are positive; see below. We assume this to be the
case. Then

Wanllz =01, VALl = 0mivay
and (1.2) yields
(1.5) Ko (Virm) = ———— > 1
Omin{N,n}

with equality if and only if all singular values are equal. Similarly, substituting (1.4)
into (1.3) yields

min{N,n}
WVaalle =] > o3 IViLlr=
j=1
It follows that
min{N,n} min{N,n}

(1.6) kr(VNn) = Z GJQ» : Z 0;2 > min{N, n},

j=1 j=1
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where the lower bound is a consequence of the Cauchy—Schwarz inequality. The bound
is attained if and only if all singular values are equal. We say that a matrix is optimally
conditioned if the lower bounds (1.5) and (1.6) for the condition numbers are achieved.
Note that these bounds are achieved simultaneously.

Bazan [3] observed that rectangular Vandermonde matrices with n > N can be
fairly well-conditioned when the nodes x; are close to the unit circle in the complex
plane and pairwise not too close. However, the situation when the nodes are real is
quite different. Gautschi [11] has shown that the inverse of a square Vandermonde
matrix is of large norm when the nodes are real. This results in a large condition
number. Further investigations by Gautschi [10] and Gautschi and Inglese [15] provide
bounds for condition numbers; the latter work shows that the condition number of
square Vandermonde matrices with real nodes grows exponentially with the number
of nodes. The conditioning of square Vandermonde matrices also is investigated by
Beckermann [4], Eisinberg et al. [9], Gautschi [14], Li [27], and Tyrtyshnikov [38].

To circumvent the ill-conditioning of square Vandermonde matrices with real
nodes, Gautschi [12] introduced square Vandermonde-like matrices in which the power
basis is replaced by a basis of polynomials that are orthonormal with respect to an
inner product defined by a non-negative measure with support on the real axis.

It is the purpose of the present paper to generalize results by Gautschi for square
Vandermonde and Vandermonde-like matrices with real nodes to rectangular Vander-
monde and Vandermonde-like matrices. Moreover, we will discuss square and rectan-
gular Vandermonde and Vandermonde-like matrices with nodes on the unit circle in
the complex plane.

This paper is organized as follows. Section 2 reviews results by Gautschi on
the conditioning of square Vandermonde and Vandermonde-like matrices, and sec-
tion 3 extends Gautschi’s analysis to rectangular Vandermonde and Vandermonde-
like matrices. Using a result by Posse [31], Gautschi [12, 14] showed that square
Chebyshev—Vandermonde matrices V,, , = [Ti—1(x;)]}' 1, where the T;_; are Cheby-
shev polynomials of the first kind for the interval [—1,1] and the nodes z1,zs, ..., 2,
are the zeros of T},, are the only Vandermonde-like matrices that are optimally condi-
tioned for all n > 1 with respect to the Frobenius and spectral norms. We show this
to be the case also for rectangular Vandermonde-like matrices Vi ,,, where N # n.
Section 4 considers square and rectangular Vandermonde and Vandermonde-like ma-
trices defined by polynomials that are orthogonal with respect to an inner product
defined by a non-negative measure on the unit circle in the complex plane C and by
nodes that are the abscissas of a Gauss—Szegé quadrature rule associated with this
inner product. Section 5 discusses the conditioning of Vandermonde-like matrices
determined by a general polynomial basis and Chebyshev nodes and extends results
shown by Eisinberg et al. [9]. Specifically, we show that the Frobenius and spectral
condition numbers of Vandermonde and Vandermonde-like matrices with Chebyshev
nodes can be bounded independently of the number of nodes. An analogous result for
Vandermonde matrices with equidistant nodes on the unit circle in C also is shown.
Finally, section 6 contains concluding remarks.

2. Square Vandermonde-like matrices. This section reviews results shown
by Gautschi [12] for square Vandermonde-like matrices. Let pg,p1,po, ... be a family
of polynomials, with deg(p;) = j, that are orthogonal with respect to an inner product
determined by a real nonnegative measure d\ with support on the real axis at infinitely
many points,

(2.1) (f.9)x = / f(@)g(x)dA(x).
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Further, assume that the polynomials are normalized to be of unit length with
respect to the norm associated with this inner product. Thus,

(2.2) (Pjs Pr)r = {(1) j i Zf

)

Introduce the N-node Gauss quadrature rule associated with the measure dA,

N
(2.3) Onf= Z AN ¢ (QTECN)) .
k=1

gN) (V) (V)

The nodes 1"/, x5 ’,...,xy ~ are known to be distinct and in the convex hull of the

support of d\, and the weights )\gN), /\éN), ey )\%V) are positive. This quadrature rule
can be applied to approximate the integral

7/ = [ f@)ir@).
It is characterized by the property

If=6nf  Vf€Pan-1,

where Pon_1 denotes the set of polynomials of degree at most 2N — 1; see, e.g.,
Gautschi [16] and Szegd [36] for discussions on Gauss quadrature.
The Christoffel function associated with the Gauss rule (2.3) can be expressed as

-1

N-—-1
(2.4) Av@) = [ S @) |
j=0

see, e.g., Szegb [36, Chapter 2]. Evaluation of this function at the Gaussian nodes
yields the Gaussian weights,

(2.5) MY =an (V) 1<k=w,
which also are known as Christoffel numbers. Gautschi [12, Theorem 2.1] showed the

following result for square Vandermonde-like matrices.

PROPOSITION 1. Let the Vandermonde-like matriz defined by (1.1) with n = N

be determined by the orthonormal polynomials that satisfy (2.2) and by the Gaussian

nodes xy, := ac,(CN), 1<k<N. Then

N

N » 1/2
(2.6) kp(VNn) = (Z )‘J(CN) : Z (A;N)> ) .
k=1

k=1
where the )\,(CN) are the Gaussian weights (2.5).

The Cauchy—Schwarz inequality applied to the right-hand side of (2.6) shows that
kr(Vnn) > N

with equality if and only if all Christoffel numbers A™, k = 1,2,..., N, are equal.
Gautschi [12] showed that the Chebyshev measure

(2.7) d\(z)=(1-22)"""de, -1<az<1,
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determines quadrature nodes that give optimally conditioned Vandermonde-like
matrices Vi n for all N > 1. To prove this, Gautschi [12] applied the following
result due to Posse [31].

THEOREM 1. Let d\ be a nonnegative measure on the interval [—1,1] with
infinitely many points of support, and let pg,p1,p2,... be a sequence of normalized
orthogonal polynomials, i.e., they satisfy deg(p;) = j, for all j = 0,1,2,..., and
(2.2). Denote the zeros of py by x(lN),xéN), e ,xg\lfv). If for all N = 1,2,3,..., it

holds that N
1
[ poana) =ow Yop ()
-1 k=1

for some scalar vy and all polynomials p € Pon_1, then dX is the Chebyshev measure
(2.7) or a scaled version thereof.

We recall that the normalized orthogonal polynomials with respect to this measure
are given by

1 .
Vo), =0,
(2.8) pj(x) = 5 .
\/;Tj(ac), i=12,...,
where the T;(x) are Chebyshev polynomials of the first kind. They can be defined as
(2.9) T;(x) = cos(j arccos(x)), i=0,1,2...,

for —1 < 2 < 1. The Gaussian nodes and weights associated with the measure (2.7)
are given by

(2.10) xﬁcN) :cos<2];N17r>, )\,(CN) :%, 1<k<N.
Obviously, the result of Theorem 1 also holds for an arbitrary compact interval [a, b]
provided that the measure dA and the nodes (2.10) are transformed correspondingly.
Square Vandermonde-like matrices with distinct nodes (1.1) are known to be
nonsingular; see, e.g., [35, section 3.6]. Let the Vandermonde-like matrix Vy n have
the singular values 01 > 09 > -+ > ony > 0. Gautschi’s proof [12, Theorem 2.1]
of Proposition 1 shows that the singular values are square roots of the reciprocal
Christoffel numbers, up to a renumbering.

COROLLARY 1. All singular values of the Vandermonde-like matriz Vy n are
equal if the polynomials p; are defined by (2.8) and the nodes are the Chebyshev points
(2.10). Then Vn,n is optimally conditioned, i.e., kp(Viy,n) = N and ko(Vy n) = 1.

Let pg,p1,p2, ... be a family of normalized orthogonal polynomials with respect
to an inner product (2.1) that is defined by a nonnegative measure d\ on the real
axis with infinitely many points of support. It is interesting to note that any square
Vandermonde-like matrix that is defined by such a family of polynomials pg, p1, p2, - - -
can be made optimally conditioned by an appropriate choice of nodes and row scaling.
This can be shown as follows. Let ¢ € R be a constant and let the nodes 1, zs,..., TN
be the zeros of the polynomial py(x) —cpy—1(x). It follows from [36, Theorem 3.3.4]
that the zeros of py(z) — cpy—1(z) are distinct and real. The Christoffel-Darboux
formula for ¢ # j yields

Z pr(xi)pr(z;) = pn—1 PN (@)pN-1(2;) — PN (25)pN -1 (i)

(2.11)

)

N—-1
k=

0 UN Ty — Ty
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where py, is the leading coefficient of pg(x). Since py(z;) = ¢pn—1(x;), we have

pn(xi)pN—1(x;) = cpn—1(z)pn—1(x;), pn(xj)pN-1(2i) = cpn_1(z;)pNn—1(2s).

Substitution into (2.11) yields
N—1
> pe(wpr(e;) =0, i
k=0

Hence, the rows of the matrix Vi, n are orthogonal. Normalizing the rows of Vy n
makes the matrix orthogonal and, therefore, optimally conditioned.

3. Rectangular Vandermonde-like matrices. We extend the results of the
previous section to rectangular Vandermonde-like matrices. The first lemmas are
concerned with some basic properties that will be used in the sequel.

LEMMA 1. Let po,p1,...,Pn—1 be polynomials such that deg(p;) = j, and assume
that the points x1,x2,...,xN are distinct in the complex plane. Then the rectangular
Vandermonde-like matriz (1.1) is of full rank.

Proof. Let m = min{n, N}. The leading m x m principal submatrix of the matrix
(1.1) is nonsingular by [35, Theorem 3.6.11]. d

The following result will be used in the sequel.

LEMMA 2. An optimally conditioned matriz A € CN*™ can be written as A = 0@,
where o is positive constant and the matriz QQ has orthonormal columns if N > n and
orthonormal rows if N < n.

Proof. The lemma follows from the SVD of A = USW*. Here U € CN*Y and
W € C™*™ are unitary matrices. Assume that N > n. Then ¥ = diag[oy,03,...,0,] €
RV*" with 04 = --+ = 0,,. Let the matrix U € CN*" be made up of the n first col-
umns of U. Then A = 01(7 W*, where the matrix UW* has orthonormal columns.
The proof for N < n proceeds similarly. 0

LEMMA 3. Let the polynomials po,p1,...,pn—1 be Chebyshev polynomials (2.8),
and let the nodes x; be the zeros (2.10) of pn. Then, for 1 <n < N,

Nn
VN nllr =1/ —-
T

Proof. The polynomials (2.8) satisfy for 0 <i,j < N,

N . .
(3.1) S s (i) = { O it
k=1

Therefore,
* Nn
||VnN||§7 = trace(V; NVNn) = — 0

Let Vy ny € RV*" be optimally conditioned. The following theorem shows that
rectangular submatrices obtained by removing the last few rows or the last few col-
umns of Vy n also are optimally conditioned.

THEOREM 2. Rectangular Vandermonde-like matrices Vi, of normalized Cheby-
shev polynomials (2.8) with the nodes (2.10) are optimally conditioned for all 1 <
n < N. Also rectangular Vandermonde-like matrices Vi, n of normalized Chebyshev
polynomials (2.8) with the nodes (2.10) are optimally conditioned for all1 < m < N.
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Proof. The polynomials pg,p1,...,pn—1 defined by (2.8) are orthogonal with
respect to a discrete inner product (3.1). The matrix Vi y satisfies VKE NVYNN = %I N,
where I denotes the identity matrix of order N. It follows that all singular values
are \/N/x.

We first consider the situation when Vj, has more rows than columns, i.e.,
1 < n < N. The matrix Vi, consist of the first n columns of Vx n. Therefore,
VJTI,nVN,n = %In. Hence, all singular values of Vi ,, are /N/=, and it follows that the
matrix Vy , is optimally conditioned.

Now consider the matrices V;;, y with more columns than rows, i.e., 1 <m < N.
It follows from VNNV N = %IN that Vi, NV, n = %Im. Hence, the matrix V, v
is optimally conditioned. ]

We note that Theorem 2 remains valid also when arbitrary rows or columns are
deleted from the matrix Vi n.

The Christoffel numbers for the Gauss rule (2.3) associated with the Chebyshev
measure (2.7) easily can be determined by using the fact that the matrix Vy y is
optimally conditioned. We have Vy NV v = X7, and it follows from (2.4) and (2.5)
that the diagonal entries of this matrix are the reciprocal values of the Christoffel
numbers.

The matrix Vy n is closely related to the discrete cosine transform DCT-III
matrix, which is important in numerous applications in science and engineering; see
[32]. The latter matrix is obtained from Vy y by scaling by the factor \/% , using the

relation (2.9), and the fact that the nodes x,(CN) are given by (2.10). This yields the
orthonormal cosine transform matrix

1 2 g T 2 oo 2m 2 oo N—D7
VN N COS 3oy N COS oy N €08 N

1 2 3 2 23w .. 2 (N-1)3m
VN \V N COSan \V ¥ COS 2N VN COS TN

T P (2N—1)7 P 22N-r P (N—1)(2N 1)
N \NCOS TN N €05 TN ~ CO8 2N

Since the above matrix is orthogonal, we obtain optimally conditioned submatrices
by removing either selected rows or columns.

We would like to explore whether the measure that generates optimally condi-
tioned Vandermonde matrices of Theorem 2 is unique. Towards this end, we first show
the following result, which gives a different characterization of the measure (2.7) than
Theorem 1. The result is required to show Theorem 4 below.

THEOREM 3. Let d\ be a nonnegative measure on [—1,1] with infinitely many
points of support. Assume that the moments p; = f_ll vid\(x), j =0,1,2, satisfy
(3:2) po=1,  pa>pi.

Let po(x),p1(x),p2(x),... be a sequence of associated monic orthogonal polynomials.

Denote the zeros of pn(x) by gcgN)wéN), . ,xs\]fv). If for all N = 1,2,3,..., it holds
that

(3.3) /_11 p(x)d\(z) = vNn ﬁ:p (xg_N))

for some scalar vy and all polynomials p € Py, then dX is a scaled Chebyshev measure
(2.7).
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Proof. 1t suffices to show that if for any IV, there is a constant vy such that

1 N m
(3.4) / xmdN(x) =vN Z (:cch)) for m=0,1,2,
-1 k=1

then d is the measure (2.7) or a scaling thereof. Consider (3.4) for increasing values
of m. For m = 0, we have

/1 d\(z) = Nvy.

-1

We may assume that fil dA(z) = 1. Then vy = 1/N. Turning to m = 1, we get

1 1 N (
N
(3.5) e = [ldi(I) = ﬁ;xk ).

Express the monic orthogonal polynomial py € Py in the form

N—2+

N N—1
pn(x) =2 +anN-_1T +an N-2T -+ ano-

The relations between the zeros and coefficients of py (also known as Vieta’s formulas)
yield

N
(3.6) ZxéN) = —aN,N-1,
k=1
(3.7) > e =ann-a
1<k<I<N

Any sequence of monic orthogonal polynomials associated with a nonnegative measure
with support on a real interval satisfies a recurrence relation of the form

(3.8) pe(z) = (x — ag)pr—1(x) — Br—1pr—2(x), k=2,3,...;

see, for example, [16, Theorem 1.27]. Here we assume that the measure has infinitely
many points of support.

Comparing coefficients of 2%~ in the right-hand side and left-hand side of (3.8)
for k= N,N —1,...,2, we obtain the relations

GN,N-1 = —QN + GN-1,N—2,
GN-1,N—2 = —QN-1 + aAN-2 N-3,
a1 = —Qg2 +aj -

Summing these relations yields
ann-—1=—(any +ay_1+ -+ a2) +aip.

It follows from p;i(x) =  + a1,0 = ¢ — oy that

N
AN N-1 = — E Qj.
k=1
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Using (3.6) and (3.5) gives

N
Z o = Nﬂ/l
k=1
Letting N = 1,2,... in the above sum, we obtain
(39) H1 =01 =Qg ="+ = QN.
Hence,
(310) aGN,N—-1 = 7N‘ul.

This relation holds for N =1,2,3,....
Consider the case m = 2. We have

' Lo~ (L 0)?

15 :z/lxzd)\(x) = NZ (:ck ) .
- k=1

Using

N N 2
() = (L) 2 3 A
= k=1

k=1 1<k<I<N

together with (3.5) and (3.7) gives

N
5 (

(311) AN N—-2 = N,u? —/1,2).

Comparing coefficients of the power 2*~2 in the left-hand side and right-hand side of
(3.8) for k=N+2,N+1,...,2, gives the relations, in order,

AN4+2,N = ON+1,N—1 — ON+20N+1,N — BN+1,

AN+1,N—1 = ON,N—2 — AN+1aN,N—1 — BN,

a3l = G0 — 3021 — B2,

a0 = —anai,0 — P1.

Summing these relations and using (3.9) yields

N-1 N1
aN,N—2 = —[h1 E g k—1 — E Bk

Taking into account that ay ,—1 = —kpq for k =1,2,3,... (cf. (3.10)) shows that

N-1 N—1 N—1
N(N -1
aN,N72:/L% E k— E Bk:/ﬁ%_ E B-
k=1 k=1 k=1

It now follows from (3.11) that

N-1

Zﬁk:%(lw_lﬁ)-

k=1
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Letting N = 2,3,4,... in the above sum, we obtain

B 1
B o= By= =By = 5 (a2~ 12).
2 2
To simplify the notation, let
o? 1 9
7T 5(/12 — pi)-

By the assumptions on the moments, we may choose o =,/2(u;—u2) positive. Then

0_2 2

S Be=Ba=- =By ="

Substituting these values of ; and the values (3.9) of the a4 into (3.8), we obtain

pr =

po(z) = 1, pi(x) =2—p,

(3.12) .
pk(x) = (x_ﬂl)pk—l(x) - %pk—2($)7 k:25377N+1

Let fk denote the monic Chebyshev polynomial of the first kind of degree k
associated with the measure (2.7). Comparing the recursion relation (3.12) with that
for the T}, shows that

(3.13) pil@) = " T, (W> k=0,1,2,....
o
It follows from (3.13) that the zeros of the polynomial py(x) are
2k —1
(3.14) x,(CN)zul—l—acos( 5 77), k=1,2,...,N.

They lie in the interval [—o 4+ p1,0 + p1]. By [36, Theorem 6.1.1] the zeros of any
family of orthogonal polynomials are dense on the support of the measure d\, which
by assumption is [—1,1]. That means [—o + p1,0 + u1] = [—1,1]. This implies that
1 =0 and o = 1. Hence, dA is 1/7 times the measure (2.7). |

We chose the support of the measure dX to live in the interval [—1, 1] in Theorem
3 to emphasize the relation to Theorem 1. However, this property is not required to
show (3.14). We therefore have the slightly more general result.

COROLLARY 2. Let d)\ be a nonnegative measure on the real axis with infinitely
many points of support, let the moments satisfy (3.2), and let po(x), p1(x), p2(x), ...
be a sequence of monic orthogonal polynomials associated with the measure. Denote

the zeros of py(x) by ng),ng), ... ,xg\],v). If for all N = 1,2,3,..., it holds that

/p(x)d)\(x) =N ﬁ:p (x§-N))

for some scalar vy and all polynomials p € Py, then dX is a Chebyshev measure (2.7)
(possibly scaled and translated).

Proof. Tt follows from the assumption of the corollary that the polynomial py
has the zeros (3.14). These are the zeros of a Chebyshev polynomial of the first kind
of degree N for the interval [—o + p1,0 + ], where 0 =/2(u2—42), and pq and po
are moments of d\. It follows that d\ is a scaled Chebyshev measure for the interval
[0+ p1,0+ . o
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THEOREM 4. Let pg,p1,---,Pn—1 be a family of orthonormal polynomials with
respect to an inner product determined by a nonnegative measure d\ on the real axis
with infinitely many points of support, i.e., the polynomials satisfy (2.2). Assume that
the first moments of d\ have the properties (3.2). Let gcgN)wéN), . ,:cg\],v) denote the
nodes of an N-point Gauss quadrature Tule associated with the measure dA. Consider
the real N x n Vandermonde-like matriz Vi, determined by the polynomials p;, 0 <
j < n, and nodes xp = xECN), 1 <k <N. Letn > 3. Then the matriz Vy
is optimally conditioned for all N > n if and only if d)\ is a scaled or translated

Chebyshev measure of the first kind.

Proof. Suppose that the matrix Vi , of the form (1.1) with n > 3 is optimally
conditioned for any IV with respect to the Frobenius norm. This is equivalent to Vi
being optimally conditioned with respect to the spectral norm. The columns of Vi ,
then are orthogonal and of the same Euclidean norm. In other words,

N

(3.15) > pilwr)pi(ae) =0, i#£j 0<ij<n,
k=1

and there is a constant cy such that
N
CN:pr(xk), 0<i<n.
k=1

Any polynomial [ € Py can be represented in the form

() = dapa(z) + dip1(x) + dopo(z)

for certain scalar coefficients di. We have pg = 1. Therefore pg(z) = 1. Due to the
orthogonality of the polynomials pg, p1, p2 with respect to (2.1) and (3.15), we have

/ @)dA () = do(po, 1) = do

and

N N

> U(xk) = do Y polax) = doN.

k=1 k=1
This shows that (3.3) holds for the constant vy = 1/N. It follows from Theorem 3
that dX is a scaled and possibly translated Chebyshev measure (2.7). d

The following result shows that if the Vandermonde-like matrix Vy , has suffi-
ciently many more rows than columns, then suitable row scaling of Vi, will render
a matrix with orthonormal columns. We will comment on the consequences for com-
putation after the proof.

THEOREM 5. Let the rectangular Vandermonde-like matriz Vi, be defined by
a family of orthonormal polynomials py,p1,- .., Pn_1 with respect to a nonnegative
measure d\, i.e., the polynomials satisfy (2.2). Let x1,2a,...,xn be real distinct
nodes, and assume that n < L%J Then, generally, the columns of Vi, can be
made orthonormal by scaling of the rows.

Proof. Given arbitrary real distinct nodes x1, s, ...,z N, one can determine real
weights A1, Ag, ..., Ay such that

(3.16) /p(:r)d)\(x) =p(x)A1 +p(z2)do + -+ plan) AN Vp € Pn_1;
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see, e.g., [36, Theorem 3.4.1]. The right-hand side of (3.16) is known as an interpo-
latory quadrature rule. We will assume that all weights Ay are nonvanishing. This is
the generic situation.

Since n < L%J, we have p;p; € Py_1 for all 0 < 4,5 < n. Therefore,

N

bij = /Pi(z)pj(x)d/\(x) = pi(wr)p; (x) e,

k=1

where d;; is the Kronecker delta.

Let A = diag[)\}/Q,/\;/Z, .. .,)\}\,/2]. Then the matrix AV, has orthogonal col-
umns of Euclidean norm one. Note that if a weight A; is negative, then the corre-
sponding diagonal entry of A is purely imaginary. a

We remark that the usefulness of Theorem 5 in computations is limited. The
theorem suggests that it may suffice to use about twice as many nodes as the degree
of the highest-degree polynomial that defines the Vandermonde-like matrix Vi, to
produce a row-scaled matrix AVy,, with orthonormal columns. Let f € RY, and
consider the least-squares approximation problem

(3.17) min [[Vy,ny = f2-

Replacing this problem by

(3.18) min [AVy ny — Af2
ye]Rn

may not be appropriate when the diagonal entries of A vary considerably in magnitude.
Assume that the nodes z1, z2, ..., 2y that define the matrix Vi, are equidistant on
the interval [—1,1]. When Vi, is a standard Vandermonde matrix, then it is known
that in order to make the problem not too ill-conditioned, one has to require that,
roughly, n < % N; see Barnard et al. [2]. More general results are shown by Platte
et al. [30]. A difficulty that arises when using n ~ N/2 is that the weights in (3.18),
i.e., the diagonal entries of A, may vary considerably in magnitude. This depends on
that the quadrature rule (3.16) is a Newton—Cotes rule; see, e.g., [35, Chapter 3] for a
discussion of these rules. The magnitude of the weight A; of largest magnitude grows
quickly when NN increases. This can make it difficult to determine the matrix AV,
in finite precision arithmetic, as well as to justify the solution of the least-squares
problem (3.18).

4. Szeg6—Vandermonde matrices. In this section we consider polynomials
that are orthogonal with respect to an inner product on the unit circle in C of the
form

(4.1) (f,9)x = j f(2)g9(2)dA(B), =z =exp(if), i=+/—1.

The bar denotes complex conjugation, d\ is a nonnegative measure with infinitely
many points of support, and the functions f and g are polynomials. Let pg, p1,po, ...
be a family of polynomials that are orthonormal with respect to the inner product
(4.1), i.e.,

L j=kF,

(pjapk)A: {0, itk
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with deg(p;) = j for all j > 0. Polynomials that are orthogonal with respect to the
inner product (4.1) are commonly referred to as Szegd polynomials. They have many
applications in signal processing and frequency analysis; see, e.g., [21, 33].

Integrals of the form

™

If = | Flexp(if))dA(6)

-7

can be approximated by the quadrature formula

N
(4.2) Snfi=3 AN (z,gM) :
k=1

where the /\,(CN) > 0 are weights and the z,(cN) are distinct nodes on the unit circle in

C. The quadrature rule (4.2) is said to be an N-point Gauss—Szeg6 rule if
(4.3) If=Snf Vf€A niin-1,

where

. -1 2 -2 N-1 _—N+1
A_N+17N_1.7span{1,z,z L2270z , 2 }

The existence of Gauss—Szegé quadrature rules is shown in, e.g., [25, Theorem 7.1].
The weights of Gauss—Szeg0 rules are unique and the nodes are unique up to a rotation

on the unit circle, i.e., z%N) can be chosen arbitrarily on the unit circle. The other
nodes, zéN), .. .,zﬁVN), are then uniquely determined; see, e.g., [24] for a discussion

and extension.
Let (4.2) be an N-point Gauss—Szeg6 rule. The Christoffel function associated
with the measure d\ is given by

N-1 -1
(4.4) An(z) == (Z Pk(z)|2> ;
k=0

see [29]. This expression is analogous to (2.4). Similarly to (2.5), the weights of the
N-point Gauss—Szegé rule (4.2) are given by

AN Z Ay (zliN)) . k=1,2,....N.
The nodes z,(cN), k=1,2,...,N, of the Gauss—Szegd rule (4.2) are zeros of a so-called
para-orthogonal polynomial,

(4.5) By (z,wy) :=pn(z) + wypy(2),

that satisfies the orthogonality relations

(4.6) / FBu(2)NO) = 0, = exp(if), 1<k<N-—1,
where the parameter wy € C can be chosen arbitrarily such that |wy| = 1, and
P (2) := 2Vpn(1/%) denotes the reversed polynomial associated with py; see Gonzéles
et al. [17] or Jones et al. [25] for details. Note that £ > 01in (4.6). A different approach
to define the nodes z,gN) is described by Gragg [18]. Efficient algorithms for computing
the nodes and weights of Gauss—Szegd rules are considered in [1, 19, 20, 22, 34].

We show a few properties of Vandermonde-like matrices defined by Szegé poly-
nomials. These properties are analogous to those of the Vandermonde-like discussed
in sections 2 and 3.
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LeEMMA 4. Let pg,p1,--.,PN—1 be Szegd polynomials associated with a nonnega-
tive measure d\ on the unit circle with infinitely many points of support. In particular,
deg(p;) = j for all j. Let ng),zéN), .. (N) be nodes of the N-point Gauss—Szegd
rule (4.2). Then the Szegé'fVandermonde matmx

N N
po(zt™) pr(™) pr—1(z")
Ve o — po(z5N) pl(Z(N)) pn_1 (V)
N,N = ;
v (N
po(2") iz o ) pr-1(z5)

can be row scaled to become optimally conditioned.

Proof. The existence of a Gauss—Szeg6 rule (4.2) implies discrete orthogonality
of the Szegd polynomials. We will use this to show the lemma. Clearly, p;(z) €
span{1l,z,...,2N "1} for 0 < j < N. For z on the unit circle, we have z = 27!, and,
therefore, p;(z) € span{l,z71,..., 27N *1} for 0 < j < N. It now follows from (4.2)

and (4.3) that

al oy _ " 1 £=7,
;)‘k pg( )pj( ( )) :/ W(Z)pj(z)d)‘(e):{ 0, g#i

—T

D:diag[\/@,\/@,...,\/@}

Then the matrix Q = DV, y is unitary and, consequently, optimally conditioned. O

Let

THEOREM 6. Let z1,29,...,2N be distinct complex numbers, and let po,p1, ...,
PN—1 be a family of orthonormal polynomials with respect to the inner product (4.1).
Then

N 1/2
r(Van) > (Z An(20) Z (An(20)) > )
= =

where the matriz Vi n is determined by the values of the polynomials p; at the nodes
2k, and Ay is the Christoffel function (4.4) associated with the measure d\.

Proof. Consider the Lagrange polynomials

N
Z—Zy
4.7 1(2) = ., k=1,2,...,N,
(4.7) k(2) 21:[121@*24
0#£k

which form a basis for Py_1.
The polynomials pg,p1,...,pn—1 are linearly independent. Therefore, the La-
grange polynomials can be expressed as linear combinations of the p;,

@11 ai2 - Q1N po(Z) 11(2)

a21 a22 T 2N :
(4.8) . , - -

anNi an2 -°° AaNN pNn-1(2) In(2)
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Similarly, the polynomials p; can be expressed as linear combinations of Lagrange
polynomials,

po(21) po(z2) -+ polzn) l1(2) Po(2)

p1(21) pi(z2) -+ pilen) : :
(4.9) : : : T

pvo1(z) pyoi(z) - pvealm) | lnG)]  lpvei(2)

It follows from (4.8) and (4.9) that V1\771]:/' = [aij]é\,’j:r Consequently,
x N
NCRICENEDS

=1 \J

N N N .

- Z Z Z Gyjlek / pj—1(2)pr—1(2)dA(0)

(=1 j=1 k=1 -
A 2 _7)? 1 )
=2 > lausf = |Vak] . = vk,

Nevai [29] shows that the Christoffel function associated with a nonnegative measure
d) on the unit circle satisfies

N N
ag;pj—1( Z arkpr—1(z) | dA(9)
=1

o~
Il
—_

<
Il
—_

(4.10) M) = min [ QPO ¢ = explio).

The Lagrange polynomials (4.7) satisfy I, € Py_1 and l;(z¢) = 1. It follows from
(4.10) that

/ ) A0) > in / p(2)[2dA0) = A (z), = = exp(if).
- S

Therefore,

HVNNH / ZW )[? dA(® Zf: z = exp(i6).

=1

In view of (4.4), we obtain

N
Vw7 = Z(AN(ZZ))71~
(=1

Hence,

N

IVl HVNNH > ZAN (20) - Y (An(z)) ",

(=1

and the theorem follows. 0

A special type of para-orthogonal polynomials (4.5), sometimes referred to as
Delsarte—Genin para-orthogonal polynomials, satisfy the recurrence relations

(4.11) R (2) = z2pn-1(2) +piv(2), (2 = DRY(2) = zpn(2) — piv(2),
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for N =0,1,2,..., with p_;(2) = 0. These polynomials were first considered in [7].
They are associated with symmetric or skew-symmetric measures on the unit circle in
C and are important because they relate Szegé polynomials to orthogonal polynomials
on the interval [—1,1]; see [7, 8, 39]. Applications include frequency analysis; see
[5]. The following result for the polynomials (4.11) is analogous to Theorem 3 for
polynomials that are orthogonal on a real interval.

THEOREM 7. Let {R%)}ﬁzo and {RE\?)}]OVOZO be families of para-orthogonal poly-
nomials (4.11) associated with a symmetric nonnegative measure d\ on the unit circle
with infinitely many points of support. If for all N = 2,3,..., there is an N-node
Gauss—Szeqd quadrature rule, whose nodes are the zeros ofRS\}) or Rﬁ) with all weights
equal, then dA(0) is a multiple of d. When d\ is a skew-symmetric nonnegative mea-
sure on the unit circle, there is no such Gauss—Szegd quadrature rule.

Proof. Assume that for every N > 2 there is a real scalar vy such that

™ N m
(4.12) M = / 2™dA0) = vn Z (z,iN)> , m=0,1,2,...,

- k=1
where z = exp(if) and the nodes Z§N), zéN), ceey Z](VN) are the zeros of the polynomials

Rg\l,) or Rf,). We may scale the measure dA so that o = [ dA(f) = 1. Setting
m =0 in (4.12) gives

- N
1 :/ dA(0) =vy Y 1=wyN,
- k=1
ie., vy = % Turning to m = 1, we get
py = / zdA(0) = i ZZ](CN)'
- k=1

Delsarte and Genin [7] showed that both families of para-orthogonal polynomials

Rg\l,) and RE\?), defined by (4.11) and associated with a symmetric or skew-symmetric
measure d\, satisfy a three-term recurrence relation of the form

RN(Z):(z+1)RN71<Z)_4dNZRN72(Z)? N:2337"'7

(4.13) Ro(z) =1, Ri(z)=z+1,

see also [6] for more details. Consider the coefficient ay, y—_1 of the polynomial
(4.14) Ry(z) = 2N 4 aNyN,lszl + aN7N722N72 + -+ anpo.

We obtain from Vieta’s formulas that
N

(4.15) ann-1=— 2" =-Nm, N>2.
k=1

Comparing the coefficients ay y—1 in the left-hand sides of (4.13) and (4.14) for
decreasing degrees N, we obtain
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an,N—1=an—1,N—2 + (1 —4dy),
an—1,N—2=an—2Nn-3+ (1 —4dn_1),
(4.16)
as1 = a1+ (1 —4ds),

aio = 1.
The relations (4.15) and (4.16) give
a1 =2—4dy = 2.
Hence, dy = %(1 + p1). For N > 3, we obtain similarly that
(4.17) ann—1=—(N—1Dp + (1 +4dy) = —Npq,

and, therefore, dy = +(1 4 ). It follows that

d 1
(4.18) 2 ody=-=dy = (14 m).

2 4
Bracciali et al. [6] show that the coefficients da,ds,...,dyx are positive. Hence,
pwy > —1.

Turning to the coefficient ay y_2 in (4.14), we get from Vieta’s formulas that
aNN_3 = Z zéN)Zj(-N)-
1<0<j<N

It now follows from

Mo = /W sz)\(G) = % ((ZYV))Q 4+ 4 (z](VN))2)
that, for NV > 3,

((ZYV) +~-~+z§VN))2 = ((z%N))Q +o (Z§VN))2)>

(Nui — p2).

aN,N—2
(4.19)

I\D‘ZM"_‘

Comparing the coefficients ay y_2 on the left-hand sides of (4.13) and (4.14), we
obtain

(4.20) anN—2 =aN-1,N-3 +an—1,N—2 — (1 + pt1)an—2 n_3.

Using the relation (4.17) twice (with N replaced by N — 1 and N — 2) and (4.19)
(with N replaced by N — 1) in (4.20) gives

(4.21) pa = 3 + 2.

Now consider the coefficient an y_3. We will derive an expression for the third
moment

U3 = /Tr 23d\(0) = % ((ng))S + 4 (zJ(VN))s) ,  z=-exp(ib),
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in terms of py. Vieta’s formula applied to (4.14) yields

(4.22) aN N—3 = — Z zéN)z](.N)z,(cN).
1<0<j<k<N
Any set of N complex numbers z1, 23, ..., 2y satisfies the identity
1 N 3 N N N

1<0<j<k<N =1 =1 =1 =1
Application of this relation to the nodes ng), zéN), e z](VN) in (4.22) and using (4.12)
gives

L 33 2

(423) AN N-3 = _E(N M1 — 3N 1253250 + 2N,U,3)

Comparing the coefficients an y_3 in the left-hand sides of (4.13) and (4.14) yields
anN-3 =aN-1,N—4+an—1,n—3— (1 4+ p1)an—2n—a, N >4,
and using the relations (4.19), (4.21), and (4.23) gives
(4.24) s = 1043 + 1245 + 3p.
From (4.6) the para-orthogonal polynomial Ry satisfies
/7r 2Ra(2)dA(0) = 0;

see, e.g., [25]. Combining the recurrence relation (4.13) and dy = 5(1+ 1), we obtain
Ry(z) = 2% — 2u12 + 1. Hence,

/ 2(2% = 212 + 1)dN(0) = ps — 2u1pio + py = 0.

Using (4.21) and (4.24) yields
43 + 8% + dpy = 4pa (g +1)% = 0.
Since py > —1, it follows that p; = 0. Therefore, (4.18) simplifies to
do 1
—_— = d —_ ... = d = —.
2 P N7y

We obtain from the recursion formula (4.13) that Ry(z) = 2% + 1 for N > 0. The
zeros of Ry are given by

2k — 1
z,(CN):exp(i N 7r>7 k=1,2,...,N.

Thus, they are equidistant on the unit circle. These nodes define an N-node Gauss—
Szegb quadrature rule. This rule is exact for all functions in A_ny1 n41; cf. (4.3).
Therefore, by (4.12),

wi = /Tr 2Zd\0) = vn i (z,(CN)y

- k=1 ]::tl,:t277:|:(N_1)

N
2k —1
VNZexp (ij N 7r> =0,
k=1
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Thus, all moments except for pp vanish. When dA(9) is a symmetric measure, this only
leaves one possible solution for dA(f), namely, dA(0) = %d@, because po is assumed
to be one. If, instead, dA(0) is a skew-symmetric measure, then also py vanish. This
contradicts that pg = 1. 0

The monic Szeg6 polynomials associated with the measure dA(f) = %d@ are

py(z) =2, N=0,1,2,....

The nodes of an N-point Gauss—Szeg6 rule associated with this measure are equidis-
tant on the unit circle. They are given by

P
(4.25) 2p = exp(ifr), O = 0o + ﬁ”(k ~1), k=1,2,...,N,

where 0y € R is arbitrary.
Consider the Vandermonde matrix

1 21 e Z{V_l
N-1

(4.26) Vi = ? 2
1 ZN e Z%_l

defined by the nodes (4.25). It is easy to show that
VNyNVJQ’},N = NI.

Hence, all singular values of the matrix Vi, y equal N*/2. It follows that ro(Vy y) = 1
and kp(Vy n) = N. Thus, the matrix (4.26) is optimally conditioned. We will show
that this also holds for the corresponding rectangular Vandermonde matrices.

LEMMA 5. Rectangular n x N Vandermonde matrices

1z - 2N7!
(4.27) VN = b Zév._l

1 z, -- 3711\7.—1
with nodes

2
2z = exp(ify), Or =00+ Mﬂ(k— 1, k=1,2,...,n,

where M = max{n, N} and 0y € R is arbitrary, are optimally conditioned; i.e., all
singular values of V,, n are equal. Moreover, with m = min{n, N},

Vanlz = VM, Vvl = 1/vAM,

4.28
(4.28) VmM, Vigle = /m/M.

Vo, w7

Proof. The result follows in the same way as the proof of Theorem 2, and by
observing that all singular values o1, 02,...,0p, of V,, y are equal to v M. Therefore,
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||Vn,N||2 =01 =V M?
V! yll2 =1/01 =1/VM,

[Vanle=+/oF +- 402 = VmM,

IV nle =vor?+ - +on*=/m/M. 0

The above lemma is in agreement with the observation by Bazédn [3] that matrices
of the form (4.27), with N > n, are fairly well conditioned when the nodes z; are close
to the unit circle and no pair of distinct nodes are very close to each other.

THEOREM 8. For any N and n, N > n, matrices of the form (4.27) can be
row scaled to be optimally conditioned if and only if the arguments 0y of the nodes
zr = prexp(ify) are of the form 0, = 6y + %jk for 1 < k < n, where the jj are
integers such that the nodes z1, 23, ..., 2, are distinct.

Proof. Consider the row scaling DV, n of the matrix (4.27), where
D = diag[dy,da,...,dy,], dp>0 Vk.

It follows from Lemma 2 that if the matrix DV,, y is optimally conditioned, then its
rows are orthogonal and have all the same Euclidean norm. Let the nodes of the
matrix (4.27) be of the form z; = pyexp(iby), k =1,2,...,n, where d; € R. Assume
that the rows of DV, ; are orthogonal. This implies that the nodes 21, 22, ..., 2, are
distinct. The orthogonality of consecutive rows of the matrix DV, y yields

drdis1 + drdp1Zrzi1 + drdp1Zrzi g +

+dpdpaZy e =0, k=1,2,...,n—1.
Let ¢x := 0x4+1 — 0. The above equations can be written as
(4.29) 1+ prprr1 exp(idn) + prpp i1 exp(i20)+- - +pn  priy exp(i(N—1)¢g) =0
for k=1,2,...,n — 1. The equations (4.29) imply that
pﬁ’pﬁ_l exp(iN¢r) =1, k=1,2,...,n—1.

It follows that ¢ = %’“jk for k =1,2,...,n — 1, where the j; are integers such that
the nodes 21, 22, ..., 2, are distinct. We choose the scaling factors d; so that all rows
of DV, y have the same norm. The matrix DV,, y then satisfies the conditions of
Lemma 2 and therefore is optimally conditioned. ]

The discrete Fourier transform (DFT) matrix can be expressed as /% Vy,n. De-
note the nodes by 21, 29, ..., 2zy. Theorem 8 shows that the DFT matrix is orthogonal
if and only if the nodes are equidistant on the unit circle.

5. General Vandermonde-type matrices. This section considers Vander-
monde matrices, whose nodes are zeros of certain orthogonal polynomials on an
interval or on the unit circle. Eisinberg et al. [9] showed that the condition num-
ber ko(Vy, n) of a rectangular (standard) Vandermonde matrix V,, y € RV*" with
N > n and Chebyshev nodes, is independent of the number of nodes N. We extend
this result to Vandermonde-type matrices of the form (1.1), where the polynomials p;
are not required to be orthogonal and deg(p;) may be different from j.
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THEOREM 9. Let {pi}?z_ol be a set of linearly independent polynomials in Pp,_1,
and let {li}?:_ol be an arbitrary set of polynomials in P,,_1. Hence, m > n. The
polynomaals lg, 11, ..., l,_1 may be linearly dependent. Let the nodes x1,xs,..., TN be
zeros of the Chebyshev polynomial Ty (x) with N > m, and define the Vandermonde-
type matrices

po(xl) Pn—l(fﬂl) ﬁo(aﬂl) in—l(xl)
(5.1) Pyn = pole2) e pna(2) - olr2) e ()
po@n) - Pas(zn) o(ey) - loi(ey)

There are constants {d, }?:1 that can be chosen independently of N, such that

IPnalle = /Xdi, IPL e = /Feda,
(5.2) 1Pyl = y/2ds, 1PLlle = V/Fda,

ILnnllr =/ 5ds, ILnallz = /5 ds

for all N > m.
Proof. The polynomials p; and I;, 0 < i < n, can be expressed as
m—1 m—1
pi(r) = cinTe(z), li(z)= éiwTr(z),
k=0 k=0

where the T}, denote normalized Chebyshev polynomials. We express the matrices
(5.1) in factored form,

PN,n = TN,mC> LN,n = TN,mC7

where
To(z1) -+ Tnoa(w)

(5.3) Ty =
TO(SUN) fmq(fUN)

and

o0 - €o,n—1 o0 - Co,n—1
O e s . e .
Cm—1,0 *°° Cm—-1mn—1 ém—1,0 ém—1,n—1

Since Py, is of full rank, so are the matrices T ,,, and C. It follows from Theorem 2
and Lemma 2 that TN, =+/XU, where the matrix U has orthonormal columns. We

obtain
N
IPNnllr = TN mCllr =1/ ;||C||F7
PT _ CTTT _ |7 ot
|| N,nHF - || N,m”F - NH ||F’
~ T A
ILnnllF = 1TnmCllF = 4/ NHCHF-
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Similarly,

N s T ~
125 nll2 = 4/ —Cll2, IIPva,nHz:\/NIIC*Hz, ILnnllz = 4/ 7 1Cl2-

Letting
di=|Cllr, do=|CM|lp, dz=|Cll, da=|C2, ds=ICllr, ds=]Cll2

concludes the proof. O

We remark that while the constants d;, 1 < j <6, in (5.2) are independent of IV,
they may be large. Their sizes depend on the choice of polynomials p; and .

If deg(p;) = ¢ for 0 < ¢ < n, then Py, = Tn,,C for some nonsingular upper
triangular matrix C' € R™*"™. This means that the QR factorization of Py, is ex-
plicitly known. The following result follows directly from Theorem 9 and generalizes
[26, Proposition 2.2], which is concerned with Vandermonde matrices with Cheby-
shev nodes.

COROLLARY 3. Let the matriz Py, be given by (5.1). Then the condition num-
bers kp(Pn.y) and ko(Pn.,) can be bounded independently of N.

Let for the moment the nodes x1, s, ..., 2N in the matrix (5.3) be distinct, but
otherwise arbitrary, and let C' € R™*". Then

(5.4) TN mClFICTTY Ml < ICNEICT I E N TN mll2 1T 2,
(5.5) TN Cll2ICTTY llz < ICHANCT 2 T ll2 I T -

Letting the x; be Chebyshev nodes yields ||TN,m||2||TJJ{,7m||
therefore minimizes the upper bounds in (5.4) and (5.5).

o =1 (see Theorem 2) and

Ezxample 5.1. We compare numerically condition numbers of Vandermonde-like
and Vandermonde matrices determined by Chebyshev nodes and optimal nodes. The
optimal nodes, i.e., the nodes that minimize the condition number xkp(Vy,,), are
determined with Wolfram Mathematica Software using the minimizer NMinimize. We
cannot be certain that the nodes so computed indeed are optimal, but the minimiza-
tion function NMinimize gave the same nodes for many different initial node choices.
Computed condition numbers for Vandermonde-like matrices defined by Legendre
polynomials and Chebyshev polynomials of the second kind for Chebyshev and opti-
mal nodes are shown in Table 5.1 and Table 5.2, respectively. Corresponding results

TABLE 5.1
Example 5.1. Frobenius condition numbers of Vandermonde-like matrices Vi n defined by
Legendre polynomials and Chebyshev or optimal nodes.

n N  Chebyshev nodes  Optimal nodes

5 5 6.1-109 5.2-100
10 10 1.3-10! 1.1-10!
20 20 2,910t 2.3-101
35 35 5.4 - 10! 4.3-10!
40 40 6.2-10! 5.0-10!
5 10 6.1-10Y 5.0 - 100
10 20 1.3- 10! 1.0 - 10t
20 40 2.9-10! 2.2-10!
35 70 5.4 - 10" 4.1-10!

40 80 6.2-10! 4.7-101
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TABLE 5.2
Ezample 5.1. Frobenius condition numbers of Vandermonde-like matrices Vi , defined by
Chebyshev polynomials of the second kind and Chebyshev or optimal nodes.

n N Chebyshev nodes  Optimal nodes

5 5 8.2.100 5.5 - 100
10 10 2.3-10! 1.3-10%
20 20 6.4 - 10! 3.2-10!
35 35 1.5 - 102 7.0 - 10!
40 40 1.8 102 8.5-101

5 10 8.2.100 5.0 - 100
10 20 2.3-10! 1.1-10!
20 40 6.4- 10t 2.8 - 10t
35 70 1.5 - 102 6.0- 10!
40 80 1.8 - 102 7.3- 10"

TABLE 5.3

Example 5.1. Frobenius condition numbers of Vandermonde matrices Vi , with Chebyshev and
optimal nodes.

n N  Chebyshev nodes  Optimal nodes

5 5 2.8 - 10! 2.3-10!
10 10 2.3-10° 1.6 - 103
20 20 1.5-107 9.9.10%
35 35 8.3-1012 5.1-1012
40 40 3.3-1013 2.6-1013
5 10 2.8-10! 1.7 - 101
10 20 2.3-102 1.2-103
20 40 1.5-107 7.5-100
35 70 8.3-1012 4.0-1012
40 80 3.3-.1013 1.6 - 1013

for (standard) Vandermonde matrices are displayed in Table 5.3. As can be expected,
the matrices of Table 5.3 have much larger condition numbers than the matrices of
Tables 5.1 and 5.2. Chebyshev nodes can be seen to be “near-optimal” in the sense
that the condition numbers for the Chebyshev nodes for all examples are larger by
only a fairly small factor than the condition numbers for optimal nodes for all com-
binations of n and N reported.

Numerical experiments suggest that the nodes that minimize the condition num-
ber kp(Vn ) are unique. A similar observation for square Vandermonde-like matrices
is reported by Gautschi [14]. In fact, our experiments suggest that kp(Vy,) is a
locally convex function of the nodes in a neighborhood of the optimal nodes. We
remark that it is not hard to show, that for the special case when

cop €1+ cory

‘/2)2(.%1,.’1)2) = |: Co C1+ Caxa :|
the condition number xp(Va2(x1,22)) is strongly convex in the whole region —oco <
r1 < 9 < oo. This follows from the fact that the Hessian of r%(Vaa(x1,22)) is
positive definite. O

The following result is an analogue of Theorem 9 for polynomials with nodes on
the unit circle.

THEOREM 10. Let {pi}?:_ol be a set of linearly independent polynomials of the
form
pi(2) = cin2" Heind T o g T
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with m > n and let k1 > 0 be an arbitrary integer. Further, let {li}?:_ol be a set of
arbitrary polynomials of the form

ko+1 + ka+m—1

ZZ(Z) = éi)lzkz + éi)QZ R éiym,lz
with ko > 0 an arbitrary integer. Let the nodes z1,z22,...,2n be equidistant on the
unit circle, i.e., zi, = exp(ify), where 6 = 0y + % with 6y € R arbitrary. Consider
the Vandermonde-like matrices

po(z1) -+ pn-1(z1) lo(z21) -+ ln—1(21)
e e B
po(2n) -+ prno1(2n) lo(zn) -+ ln—1(zw)
There are constants {d, }?:17 that can be chosen independently of N, such that
(5.6) 1Pyalle = VRdy, 1Py lr = 2,
’ ’ VN
d
1Pynlle =VNds, 1P lle =~
|LnnllF = VNds, |Lnnll2 = VNds
for all N > m.

Proof. We have the factorizations

Pyn=D1ZC, Lyn,=DyZC,

where
_q; k1 k1 k1 _ ka ko k2
D, = diag [zl ) %o ,...,ZN:| , Dy =diag [zl ) %o ,...,ZN:| ,
and
m—1
1 21 - Zl .
"
7 1 29 e 22
m—1
1 ZN “ee ZN
Moreover,
€00 Cn—1,0 o0 - Cn—1,0
C = , C=
Com—-1 *°° Cpn—1,m—1 éo,m—l én—1,m—1

The matrices D and Dy are unitary. Using the bounds (4.28), we obtain

IZnnlle = [1D22C]F = | ZII2ICllF = VN|Cl|r,
1Py lr = 1T 2Dl = 12121 CTllr = F5 1011

The remaining bounds (5.6) follow similarly. d
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Conclusion. Gautschi investigated the conditioning of square Vandermonde

and Vandermonde-like matrices determined by orthogonal polynomials with respect to
an inner product defined by a measure with support on the real axis. This paper shows

results

for rectangular Vandermonde and Vandermonde-like matrices. Orthogonal

polynomials that define the latter matrices are determined by an inner product that
is associated with a measure with support on the real axis or on the unit circle.
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