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ABSTRACT
National Science Foundation large facilities conduct large-scale
physical and natural science research. They include telescopes that
survey the entire sky, gravitational wave detectors that look deep
into our universe’s past, sensor-driven field sites that collect a range
of biological and environmental data, and more. The Cyberinfras-
tructure Center for Excellence (CICoE) pilot project aims to develop
a model for a center that facilitates community building, fosters
knowledge sharing, and applies best practices in consulting with
large facilities with regard to their cyberinfrastructure. To accom-
plish this goal, the pilot began an in-depth study of how large
facilities manage their data during the course of their research.
Large facilities are diverse and highly complex, from the types of
data they capture, to the types of equipment they use, to the types
of data processing and analysis they conduct, to their policies on
data sharing and use. Because of this complexity, the pilot needed
to find a single lens through which it could frame its growing un-
derstanding of large facilities and identify areas where it could best
serve large facilities. As a result of the pilot’s research into large
facilities, common themes have emerged which have enabled the
creation of a data lifecycle model that successfully captures the data
management practices of large facilities. This model has enabled
the pilot to organize its thinking about large facilities, and frame
its support and consultation efforts around the cyberinfrastructure
used during lifecycle stages. This paper describes the model and
discusses how it was applied to disaster recovery planning for a
representative large facility—IceCube.

CCS CONCEPTS
• Information systems → Data management systems; • Ap-
plied computing → Physical sciences and engineering.
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data lifecycle, data management, cyberinfrastructure, large facilities,
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1 INTRODUCTION
The pilot project—the Cyberinfrastructure Center of Excellence (CI-
CoE) pilot [9]—is a National Science Foundation (NSF)-funded effort
to develop a model for a center that facilitates community building,
fosters knowledge sharing, and applies best practices in consult-
ing with large facilities with regard to their cyberinfrastructure.
Large facilities are “shared-use infrastructure, instrumentation and
equipment that are . . . intended to serve the science community"
[19, p. 1.1-1]. Large facilities serve physical and natural science
disciplines such as astronomy, physics, geoscience, and biology.

These facilities manage scientific data collection equipment such
as large telescopes, interferometers, and distributed sensor arrays.
They collect terabytes of data every year and make it available to
scientists for their research. Examples of large facilities include
the IceCube Neutrino Observatory,1 the Large Synoptic Survey
Telescope (LSST),2 the National Ecological Observatory Network
(NEON),3 the Ocean Observatories Initiative (OOI),4 and the Laser
Interferometer Gravitational-Wave Observatory (LIGO).5 These
facilities are responsible for a diverse set of equipment in multi-
ple locations (sometimes spanning the globe). For example, NEON
has approximately 81 field sites (terrestrial and aquatic) across the
U.S. from which data is collected in three main ways: via airplane,
field tablets, and streaming sensors. It processes the data in a data
center located in Denver, Colorado. IceCube’s neutrino detector
is located at the South Pole, and its main data center is located at
the University of Madison-Wisconsin. It stores data at the National
Energy Research Scientific Computing Center (NERSC)6 in Califor-
nia and performs further processing at the Deutsches Elektronen-
Synchroton research center (DESY)7 in Germany, among other
locations.

Large facilities collect a variety of data types: images, video,
sound, numeric measurements, human observations, physical sam-
ples, etc. They shepherd their data from its collection or creation

1IceCube, https://icecube.wisc.edu/
2LSST, https://www.lsst.org/
3NEON, https://www.neonscience.org/
4OOI, https://oceanobservatories.org/
5LIGO, https://www.ligo.caltech.edu/
6NERSC, https://www.nersc.gov/
7DESY, http://www.desy.de/
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to its filtering and cleaning to its processing and analysis to its
storage and ultimate dissemination. Because they tend to oversee
data as it travels from collection instruments (e.g., sensors) to com-
puters and clusters to consumable media (e.g., website files, disks),
crossing multiple geographic boundaries, large facilities are faced
with a variety of challenges and complexities in managing and
caring for their data. The CICoE pilot’s job is to envision how to
best aid large facilities in better managing this intricate process
while maximizing their use of the end-to-end cyberinfrastructure.
This includes considering how to best support them in matters
of data capture, processing, visualization, security and identity
management, storage and preservation, dissemination, and disaster
recovery. To accomplish this, we needed to first understand the way
large facilities use their cyberinfrastructure to conduct their day-
to-day operations and how they meet research and data challenges
as they arise.

We began by surveying a small set of large facilities to identify
their data management practices and the cyberinfrastructure they
use. The process of learning their strategies has involved a com-
bination of content analysis of publicly available documents (e.g.,
scholarly publications, large facility websites, large facility docu-
ment archives), inference based on learned facts, and clarification
and confirmation of details via interviews and engagement with
facility staff.

Each large facility is a unique, highly complex organization. This
complexity is amplified when considering multiple facilities. So
we needed to find a single lens through which we could frame
our growing understanding of large facilities and better organize
our thinking about them. Regardless of the differences in the type
of science studied, the different types of data created/used, or the
variation in how research operations are conducted, we found that
the large facilities we reviewed tend to traverse a similar path when
caring for data throughout its lifecycle. This shared data lifecycle
is the lens through which we have begun to frame our work with
large facilities; and the purpose of this paper is to report on our
efforts to develop that lens, or if you will, the data lifecycle model.

The main contributions of this work include:

• the introduction of a data lifecycle model, that, to our knowl-
edge, has not been previously created to describe end-to-end
data operations for NSF large facilities,

• a lens through which to better compare and contrast the
ways different large facilities conduct research operations
and manage data, and

• the application of this model to an important aspect of large
facility cyberinfrastructure—disaster recovery planning; specif-
ically, the model was used to provide context and structure
a template used for disaster recovery planning.

In this paper, we will report on other lifecycle models and discuss
why a data lifecycle model for large facilities is needed. We will
then present and describe the data lifecycle model, and show how
we have applied it to the task of disaster recovery planning for a
representative large facility—IceCube. Then we will identify future
steps needed to develop this work further. We anticipate this model
will continue to evolve as we expand our research to other large
facilities.

2 LIFECYCLE MODELS
Data and research lifecycle models abound in the literature. To-
gether [3, 5–7, 26, 30] examine well over 50 models. These models
have many attributes in common such as shared stages, but many
differences as well, particularly with regard to purpose, intended
audience, actors described, and focus. We reviewed these models
to learn from the work of their creators. Specifically, we wanted to
identify any commonalities that could help us validate aspects of
our own model and any different qualities that we should include.

Data lifecycle models are created for a variety of reasons, such as
to promote good data curation and preservation practices (e.g., [1,
15]), to encourage researchers to manage their data more effectively
and make it more available for reuse (e.g., [2, 13, 14, 25, 29, 31]), to
improve data management in specific scenarios such as those that
involve big data or employ cloud resources (e.g., [10, 18, 21, 28]), to
expose available library services or resources needed at different
points in the research process (e.g., [24]).

Models are directed toward different audiences, such as researchers,
data managers of various kinds (e.g., preservationists/archivists,
librarians, repository administrators), systems and software devel-
opers, and data providers. Some models are created to describe
and/or aid very specific audiences with specific interests, such as
those interested in digitizing content or creating digital content [11],
users of linked data [4], cloud customers [21], those that need to see
evidence of the value of open research [23], and those who already
use or would need to use a particular standard [17, 20]. Models may
be intended to guide the individual or an entire community or orga-
nization. Furthermore, models are designed to describe and guide
practitioners in a variety of domains, including industry and busi-
ness [10, 18], physical sciences [1, 2, 13, 27, 29, 31], natural sciences
[2, 23, 31], social sciences [14, 17, 27], and technology [4, 21, 23].

Models are also developed with a particular focus, usually em-
phasizing either the larger research process, technical aspects of
the process, or data-oriented aspects. For example, models that
focus on the larger research process may have stages for things
like study design or proposal writing (e.g., [16, 17, 23]). Those that
emphasize technical aspects may include information about equip-
ment or software used (e.g., [4, 18]). Those focused on data may
include information about things like provenance, ethics around
data use (e.g., confidentiality), particular types of data cleaning and
preparation tasks, or even particular types of analyses that can be
performed on the data (e.g., [14, 17, 18]).

Most model creators do not specifically describe how they de-
rived their model (or, at least we found little detail about their
process). In these cases, we assume that they formed a conceptual-
ization of the research/data process through discussion and debate
among themselves, and that this conceptualization was based on
their close experience with the subject matter and the actors in-
volved. When methods are elucidated however, they tend to include
the review of scholarly literature, examination of artifacts used or
produced in the process of research, and/or observation and inter-
viewing of actors (e.g., [8, 23, 27]). Some models are adapted from
other models and improved upon through more conceptualization
or research to account for new situations and needs.

Most models are intended to represent the ideal situation [6] for
the purpose of acting as a guide for establishing better habits and
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processes. Most models are high level representations, with details
omitted, and they may attempt to cover multiple situations [6]. Carl-
son [6] argues that this obscures the richness and depth of these
situations and fails to adequately delineate the differences between
situations. While this might be true, the differences and details can
be so varied and complex that we would argue it is impossible to
delve too deeply into specific nuances or unique aspects of the situa-
tion without overcomplicating the model and potentially confusing
the audience. For example, the data lifecycle and research process
can be extremely varied with respect to the types of data used
(e.g., text, audio, images), data collection methods employed (e.g.,
interviews, surveys, sensors, observation, recordings), the quantity
of data collected, the data preparation and cleaning methods used
(e.g., manual text cleaning, use of scripts to preprocess text or fil-
ter/reduce the size of streaming data), the types of analyses typically
used which often vary by discipline, and any requirements imposed
by funding agencies on the storage, protection, and dissemination
of data. Although it is important for the model to be sensitive to
variation, like details must necessarily be grouped into overarching
themes. Only truly distinct and compelling characteristics should
be highlighted if the model is to be understandable and useful to
the widest possible intended audience. Carlson also contends that
models are necessarily biased—reflecting the views and interests
of those who create them. Again, this may be true in many cases,
but there are instances where model creators have attempted to
survey and study a range of situations (e.g., [8, 23, 27]) which would
hopefully yield a more impartial depiction. Not to mention in most
of the cases we examined, models were being created to suit spe-
cific needs and uses which necessitates the use of a particular lens.
For example, the model that the Inter-university Consortium for
Political and Social Research (ICPSR) [14] proposes is “biased” in
its inclusion of details specific to the ICPSR data repository (e.g.,
details about using a metadata standard adopted by ICPSR). How-
ever, were it not to include these aspects, the model would not be
achieving one of its aims, which is to instruct individuals on storing
their data in ICPSR’s repository.

These models and ours share many similarities. For example,
almost all have some sort of stage for capturing/collecting, ingest-
ing, or creating data, as ours does. However, there are sufficient
differences in purpose, intended audience, actors described, focus,
and the content of lifecycle stages that we concluded none would
serve as an accurate depiction of large facilities. So we believed
that a model specific to large facilities was needed. To our knowl-
edge, such a model has not been created until now. The purpose
of our model is to guide our research into and engagement
with large facilities, specifically at the intersection of data
management practices and cyberinfrastructure. It represents
an actual situation rather than any set of ideal or recommended prac-
tices. It is a high level representation of an outsider’s perspective on the
situation, but designed intentionally to describe a specific community
(i.e., large facilities) and to satisfy a specific need (i.e., to support the
pilot’s mission to aid large facilities with using cyberinfrastructure
for research).

3 OUR APPROACH
To better understand NSF large facilities, we began by researching
these five large facilities: IceCube, LIGO, LSST, NEON, and OOI.
We selected these five because:

• A broad range of cyberinfrastructure tools, services, and
architectures are employed across these five facilities.

• We believed these five would experience sufficient varia-
tion in the types and magnitudes of challenges faced when
managing data.

• They offered the opportunity to view large facility needs
and activities at different phases in a facility’s lifespan (i.e.,
LSST is under construction; IceCube, NEON, and OOI are in
operations; and LIGO has matured to the point of making
enhancements in their operations and equipment).

• We have existing familiarity and long-term experience work-
ing with some of these large facilities, and so establishing
contact for interviews and fact-checking would be straight-
forward.

For each facility, we selected material to review based on what
was publicly available and relevant to our focus—data management
practices and cyberinfrastructure used. Our information gathering
methods included:

• scholarly literature review,
• examination of design documents and preliminary specifica-
tions created during the process of planning and construction
of large facilities,

• examination of progress reports, revised/updated design doc-
uments, and finalized specifications,

• review of large facilities’ websites, and
• interviews with large facility staff.

So for example, we reviewed journal papers written by IceCube de-
velopers about the data acquisition system they built, and collected
design documents and images from LSST’s document repository.
Some of these facilities had multiple websites, so we reviewed them
all. For example, LIGO has a site for the consortium/administrative
body that oversees the facility (e.g., the LIGO Scientific Collab-
oration),8 sites for different labs or facility locations (e.g., LIGO
Caltech, MIT, Hanford, Livingston),9 and a data portal (e.g., LIGO’s
Gravitational Wave Open Science Center).10

Detailed notes were taken on what was learned about each fa-
cility and then, as common themes emerged, facets of the model
were derived per inductive content analysis [12, 22, 33]. For ex-
ample, it became clear that all five of these large facilities capture
data in a fairly involved manner that may vary based the nature
of data or the equipment used to capture it. Data undergoes an
initial processing phase, usually at the capture location, that may
include filtering noise, down-sizing, adding calibration information,
and/or identifying particularly interesting events that should be
addressed immediately. As a result, our model needed to have a
capture stage as well as an initial processing stage separate from the
more in-depth processing that takes place sometime after capture,
usually at the facility’s data center.

8LIGO Collaboration website, https://www.ligo.org/
9LIGO facility website, https://www.ligo.caltech.edu/
10GWOSC, https://www.gw-openscience.org/
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Carlson [6] suggests that when creating lifecycle models, the
following be considered and factored into the model’s design: scope,
the best practices of other model developers, the importance of
representing real-world activities, and the need to give attention to
the transition between phases.

Scope — Our scope can be defined as follows:
• Actors described: Large facilities (e.g., We did not observe
characteristics of research institutes or labs at universities).

• Topic/focus: Data management practices within the context
of cyberinfrastructure use (e.g., We did not review information
about how research projects were managed or how the budget
was used to purchase equipment).

• Intended audience: CICoE team members, the broader NSF
cyberinfrastructure community, large facility cyberinfras-
tructure managers and architects, and others interested in
the work of large facilities.

• Purpose: To help the CICoE team frame and categorize their
research into large facility cyberinfrastructure, in order to
capture and develop best practices.

Our model was also created with the intention to balance the level
of detail needed to summarize commonalities while also highlighting
the most compelling nuances.

Best practices — As stated earlier in this paper, we reviewed
the work of others who have created lifecycle models and used the
lessons learned from these efforts to inform the design of our model.
For example, because models that had the cleanest and most simpli-
fied representations were the easiest to understand, we mimicked
this simplicity in our own model. Many models were composed
mainly of boxes and arrows, but other models included specific
imagery that, in juxtaposition to the box-and-arrow backdrop, drew
attention to specific aspects of the process. We adopted this for our
Dissemination stage, to draw attention to the user community.

Real-world activities — Our entire effort was grounded in un-
derstanding the real-world activities of large facilities. We reviewed
factual documents that described the design, development, and use
of large facility cyberinfrastructure for research and data manage-
ment. We interviewed large facility staff to verify what we had
learned and gather their feedback on our understanding.

4 THE MODEL
Our data lifecycle model, shown in Figure 1, represents our cur-
rent understanding of large facility operations and how data is
shepherded through the research process. Our goal in creating the
model was to identify the overall commonalities across large facili-
ties with respect to the services offered, functions performed, and
cyberinfrastructure used at each lifecycle stage. It is a high level
model, not intended to capture all the different nuances of various
large facility operations. As such, it consists of five main stages:
Capture, Initial Processing, Central Processing, Archiving/Storage,
and Dissemination.

Capture — As can be imagined, all the large facilities we re-
viewed perform some sort of data capture using some sort of in-
strument. For example, LIGO captures wave forms from its two
interferometers. LSST intends to capture images from its telescope.
NEON captures data from field sensors, tablets used scientists in
the field, and remote sensing airplanes flying over field sites. OOI

captures data from sensors adhered to cables on the ocean floor
and buoys on the ocean’s surface.

Initial Processing — Most of the large facilities we examined
perform some sort of initial filtering and processing. Usually, this is
conducted at the capture site or close by, and is intended to prepare
the data for later transmission to a data center for more involved
processing and analysis. Initial processing may also be conducted
to alert the large facility to particularly interesting scientific events
that require immediate attention. For example, IceCube generates
alerts and reduces the volume of the data at the South Pole, mak-
ing it ready for faster transmission to its data center in Wisconsin.
Similarly, LSST intends to generate real-time alerts as data is cap-
tured, and will prepare the data for its later analysis by performing
detector cross-talk correction and creating metadata. LIGO initially
down-samples their data from 16k Hz to 4k Hz, which not only re-
duces data volume making it more manageable, but also eliminates
considerable noise from the data.

Central Processing — Central processing may involve addi-
tional cleaning and preparation techniques, quality control mea-
sures, and/or the application of algorithms and transformations
that make the data more science-ready. Currently, NEON has one
data center in Denver, Colorado, and performs the bulk of its data
processing there. The data is calibrated, physical units are converted
into standard scientific units, quality control measures are applied,
and gaps in time in the data (due to collection at multiple sensors)
are resolved. In addition, different levels of data products are sys-
tematically generated using several scientific transformations that
leverage automated processing infrastructure in their data center.
OOI conducts the bulk of its processing at its Rutgers data center.
This processing involves various quality control measures, creating
calibration information, formatting the data for later analyses, gen-
erating metadata, and performing specialized processing upon user
request. LIGO may aggregate neutrino events into “superevents" if
they are close in time, and apply Monte Carlo simulations to com-
pare different search techniques. In Wisconsin, IceCube conducts
the bulk of its processing on filtered data sent from the South Pole,
and then uses distributed resources (e.g., Open Science Grid, XSEDE
resources, campus clusters, NERSC) to generate further levels of
science-ready data.

Archiving/Storage — Large facilities archive and store data for
the purposes of retaining a history of observations across time and
ensuring its availability to and use by affiliated scientists and the
general public. Some large facilities replicate data from the main
data center to other locales, such as NEON which keeps replicas
of its Denver data center data in its Boulder headquarters and on
the cloud. Some store data in a variety of locations on different
forms of media. For example, IceCube stores copies of data at the
South Pole, in Wisconsin and California, and in Germany. Some
data is stored on disk, some on tape. The Archiving/Storage stage
is critical because the data is a record of the facility’s fulfillment of
its science mission.

Dissemination — All large facilities are required by NSF to
disseminate their data. Usually they distribute the data first to
their own collaborative or consortium of scientists, and later to the
general public. Some of a large facility’s data, however, may be for
collaborative/consortium eyes only. Large facilities tend to provide
multiple avenues of data access, including download via web-based
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Figure 1: The data lifecycle model for large facilities.

data portal or ftp (e.g., NEON, OOI, LIGO, LSST), API/web services
(e.g., NEON, OOI, LSST), shipments of data (e.g., NEON), distributed
data management systems (e.g., IceCube), or even an in-person visit
to a data center (e.g., LSST).

Movement — Recall that Carlson [6] suggested that model de-
velopers pay particular attention to the transitions between stages.
For large facilities, transitions always involve moving the data from
one instrument or location to another. If the data is not being cap-
tured, processed, stored, or disseminated, it is on its way somewhere.
Hence, movement is a cross-cutting element of our data lifecycle
model. Methods of movement include satellite (e.g., IceCube), un-
dersea cables (e.g., OOI), conventional networks (e.g., NEON, LSST),
and physical transfer of hard disks by plane or other transportation
(e.g., NEON, IceCube).

Other Dimensions — Our research into large facilities con-
tinues to uncover other possible dimensions that may need to be
incorporated into the lifecycle model. Usually these are some form
of attribute of the large facility that affects one or more stages,
or data movement. For example, large facilities often evolve their
data from its original state (which they often refer to as “raw") to
some form of science-ready state. As the data is transformed from
raw, to level 1, to level 2, and on upwards, it may require different
handling. For example, large facilities may disseminate all of their
data or just certain levels of their data; archival policies may vary
based on the level of the data. Other dimensions we have been
noticing include the types of research the large facility conducts
(e.g., experimental, observational, computational), or whether the
large facility is mobile (e.g., OOI which uses ships to rove the ocean)
or largely stationary (e.g., IceCube). Because our research so far
has not shown these possible dimensions to be applicable in all

stages across all large facilities, we have not yet added them to the
lifecycle model. We are still considering their influence.

Because it turns up repeatedly in our work, there is one dimen-
sionwe suspect will mostly likely be added to the lifecycle—whether
the facility captures, processes, archives/stores, and disseminates
data in a distributed or centralizedmanner. For example, both NEON
and OOI collect data from multiple locations, whereas IceCube and
LSST collect from one location. NEON does most of its processing
in one location, while IceCube distributes the processing between
the South Pole, Wisconsin, California, and other locations. When
the work is conducted in a distributed fashion, there may be more
equipment to manage, more network lines to cross, and more po-
tential points of failure. In other words, the cyberinfrastructure
used may become more complex and incur more risk. As we move
forward, expanding our work to other large facilities, we intend to
give more thought to these other possible dimensions and revise
the lifecycle model accordingly.

5 APPLICATION OF THE MODEL TO
DISASTER RECOVERY

Part of fulfilling the pilot’s mission involves advising and consulting
with large facilities on topics such as identity management, data
preservation, and disaster recovery. We first applied our data life-
cycle model to the task of disaster recovery planning and selected
NEON and IceCube as representative large facilities.

We began by creating a disaster recovery planning template
based on the National Institute of Standards and Technology’s
(NIST) Contingency Planning Guide for Federal Information Sys-
tems [32]. Then we completed it for IceCube and NEON, and met
with large facility personnel to discuss the template and make any
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Figure 2: Sample impact matrix from the NIST Con-
tingency Planning Guide for Federal Information Sys-
tems, p. B-3 (https://csrc.nist.gov/publications/detail/sp/800-
34/rev-1/final).

needed revisions. They were able to take the completed template
and use it to formalize their own plans for disaster recovery. In this
section, we will present disaster recovery planning examples from
the IceCube template.

The NIST Guide asks organizations to conduct an initial im-
pact analysis (i.e., take stock of their processes and their effects)
to identify requirements needed for defining recovery procedures
and resources. The impact analysis asks organizations to think
about a variety of factors pertinent to disaster recovery, such as out-
age impact, estimated tolerable downtimes, and resources needed
to respond to an outage or disruption. Organizations are encour-
aged to weigh these factors for each of their business processes
or mission/goals. Large facilities share the same overall mission of
conducting research, and, so far in our research, all operate along
the same data lifecycle. So, for each of these mini-assessments,
we customized the NIST template by using data lifecycle stages
where organizations are asked to list specific business processes.
The Guide urges users to revise “categories and values . . . to reflect
what is appropriate for the organization" [32, p. B-2]. Applying
the lifecycle in this way allowed us to offer a template that would
be useful to all large facilities regardless of subtle differences in
specific business processes.

Here we provide two examples of this customization—for the
outage impact assessment and the estimation of downtimes. For
the outage impact assessment, NIST suggests considering different
ways a disaster could impact an organization, such as its cost, its
potential to harm individuals, or its effect on the organization’s
ability to achieve its mission. These would be inserted as Impact
Categories in the sample skeletal impact matrix shown in Figure 2.
Specific business processes are to be listed in the first column.

For the impact matrix in our template, we adopted the Cost
impact category NIST suggests, and created categories for Science
Mission and Science Return. Stages of the data lifecycle are added to
the Mission/Business Process column. The resulting impact matrix
for large facilities is shown in Figure 3. Then we populated the
impact matrix for IceCube with the appropriate severity values,
shown in Figure 4, and confirmed our assessment with staff from
IceCube.

Capture is an extremely critical function. If the in-ice sensors
fail for more than a couple of hours, they will freeze solid, bringing
them permanently offline, and so terminating all future facility
operations. So they rated a problem with Capture as having Severe
impact for each of the impact categories above. IceCube performs
Initial Processing at the South Pole which involves generating alerts
and performing some quality control measures (e.g., generating
metadata and/or reducing data volume). Because of the urgency of

Figure 3: Impact matrix for large facilities adapted from the
NIST Contingency Planning Guide for Federal Information
Systems.

Figure 4: Impact matrix for IceCube.

Figure 5: Estimated downtimes matrix for IceCube.

alerts, IceCube rated their Initial Processing as Severe in all impact
categories except Cost, which was rated as Moderate. Because a
limited amount of hardware would be needed for replacing bad
equipment, limited expense is incurred. Notice that in the Dissemi-
nation row, impacts are broken out by data type.

For our template’s treatment of estimated tolerated downtimes,
we retained the suggested column categories ofMaximum Tolerable
Downtime or MTD (“the total amount of time leaders/managers are
willing to accept for amission/business process outage or disruption
and includes all impact considerations"), Recovery Time Objective
or RTO (“the maximum amount of time that a system resource can
remain unavailable before there is an unacceptable impact"), and
the Recovery Point Objective or RPO (“the point in time, prior to a
disruption or system outage, to which mission/business process
data must be recovered") [32, p. B-3]. As with the impact matrix,
stages in the data lifecycle were added to Mission/Business Process
column. The result, along with cell values discussed with IceCube,
is shown in Figure 5.

Because a failure in Capture would be Severe for IceCube, their
estimated downtimes tended to be very short (i.e., in hours and not
days). IceCube indicated 1 hour for MTD and RTO. RPO, however,
was not applicable in this case because it is not possible to move
back in time to the Capture stage in case of in-ice sensor failures.

Movement factors heavily in the estimated downtimes matrix.
IceCube, for example, explained that MTD and RTO would vary
based on where the data was in its journey from in-ice sensor,
to the ice-top lab, to another South Pole lab before its transfer to
Wisconsin. So far in our discussions with IceCube and NEON, we
have addressed movement within the context of a given lifecycle
stage. However, because movement pervades the entire lifecycle, it
warrants its own consideration separate from individual stages. So
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we may need to revise our matrices to explicitly define it in rows
of its own.

We anticipate the data lifecycle evolving as we learn more about
other large facilities. As we consider the other dimensions men-
tioned in Section 4, we anticipate needing to change the template
to reflect new knowledge. Even though our work is evolving and
subject to revision, our efforts thus far have been beneficial for the
pilot and the large facilities with which we have engaged. The data
lifecycle has helped us frame our understanding of large facilities
and apply it to disaster recovery planning. Customizing the NIST
disaster planning guide by integrating the data lifecycle has enabled
us to apply best practices to the cyberinfrastructure needs of large
facilities. Engaging with IceCube and NEON around the disaster
recovery template has furthered the pilot’s goal of knowledge shar-
ing and helped clarify the consultative role of an intended center
more fully.

6 FUTURE WORK
Many more large facilities occupy our list for future research, such
as the Academic Research Fleet,11 Cornell’s High Energy Syn-
chrotron Source (CHESS),12 the Large Hadron Collider,13 and the
National Hazards Engineering Research Infrastructure (NHERI).14

As we continue to learn more about other large facilities, we
will necessarily revise the data lifecycle model accordingly. We
don’t anticipate having to add or delete stages, but if our research
uncovers a need to do so, we will be open-minded to the fact. Cur-
rently, we anticipate needing to debate amongst our team the other
possible dimensions that could be added to the model, dimensions
that were mentioned in Section 4. These dimensions include the
level of data, types of research conducted, mobile or stationary
nature of the large facility, whether the large facility operates in a
centralized or distributed manner, whether the large facility farms
some of its compute or storage out or retains full control in-house.
We anticipate that this list will grow as we continue our research
into large facilities.

We also need to examine Movement more fully in regard to how
it should be applied to the disaster recovery template. Currently it
is not explicitly listed, separately from individual lifecycle stages.
Up to this point, we have implicitly considered it when we have
completed the template for a large facility. However, this is a tool
we would like to give to large facilities to complete on their own,
and they may not give Movement adequate attention if the template
fails to explicitly prompt for it.

Future plans also include taking a survey of the hardware, soft-
ware, and services that large facilities use in each stage of the
lifecycle, and then making that information available to the entire
large facilities community. This will enable large facilities to learn
how their counterparts conduct operations, and if they would like
to learn more about these other tools (e.g., pros and cons of use,
how to configure them, lessons learned) they will know where they
can go to learn more.

11 Academic Research Fleet, https://www.unols.org/documents/academic-research-
fleet
12CHESS, https://www.chess.cornell.edu/
13Large Hadron Collider, https://home.cern/science/accelerators/large-hadron-collider
14NHERI, https://hazards.colorado.edu/
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