
Applied Numerical Mathematics 151 (2020) 161–171
Contents lists available at ScienceDirect

Applied Numerical Mathematics

www.elsevier.com/locate/apnum

A novel iterative method for discrete Helmholtz 

decomposition

JaEun Ku a, Lothar Reichel b,∗
a Department of Mathematics, Oklahoma State University, 401 Mathematical Sciences, Stillwater, OK 74078, USA
b Department of Mathematical Sciences, Kent State University, Kent, OH 44242, USA

a r t i c l e i n f o a b s t r a c t

Article history:
Received 18 June 2019
Accepted 27 December 2019
Available online 7 January 2020

Keywords:
Finite element method
Nearly singular system
Variational problem

A new iterative method for the computation of the discrete Helmholtz decomposition 
of a vector is presented. We are particularly interested in computing the discrete 
Helmholtz decomposition when the given vector is discretized by a mixed finite element 
method defined by Raviart-Thomas (RT) or Brezzi-Douglas-Marini (BDM) elements. The 
decomposition is computed by solving a system of linear equations by an iterative method, 
that splits a given vector into a divergence-free component and a curl-free component. 
Each iteration cycle uses a well-developed solver based on the algebraic multigrid method 
for computing a projection onto H(div) or H(curl). Only a few iteration cycles are required 
to compute an accurate approximate solution. As a by-product, we obtain an iterative 
method for the solution of linear systems of equations with a nearly singular matrix.

© 2020 IMACS. Published by Elsevier B.V. All rights reserved.

1. Introduction

The Helmholtz decomposition splits a vector field into a curl-free component and a divergence-free component. This 
decomposition is useful, for instance, when modeling, analyzing, and manipulating fluids, and is applied in visualization, 
computer graphics, astrophysics, and imaging; see, e.g., [3] and references therein.

The finite element method (FEM) is a widely used technique for approximating the solution of boundary and initial 
value problems for partial differential equations (PDEs). Mixed finite element spaces, such as spaces made up of Raviart-
Thomas (RT) or Brezzi-Douglas-Marini (BDM) elements, see [7,8,22], are commonly used as approximation spaces when 
solving incompressible fluid and electromagnetic problems. To the best of our knowledge, there is no efficient algorithm for 
computing the discrete Helmholtz decomposition for mixed element spaces. This decomposition is described in, e.g., [1,9].

The aim of this paper is to present a new iterative method for computing the discrete Helmholtz decomposition of a 
given vector in a mixed finite element space. Our iterative method has a simple structure, which makes it easy to implement. 
In each iteration step, the method uses an algebraic multigrid method (AMG) to determine the projection of a given vector 
onto divergence-free or curl-free components. Typically only few iteration steps are required. The computed components 
are essentially orthogonal. This is an important property of the discrete Helmholtz decomposition. Our iterative method is 
based on a scheme for computing the solution of a linear system of equations with a nearly singular matrix. This scheme is 
an extension of the method described in [17].

This paper is organized as follows. Section 2 introduces necessary notation and describes the background of our decom-
position method. The iterative method is presented in Section 3, where also its convergence properties are studied. Section 4
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discusses iterative solution of nearly singular systems. Numerical examples are presented in Section 5, and concluding re-
marks can be found in Section 6.

2. Problem formulation

This section discusses the Helmholtz decomposition and introduces notation to be used subsequently.

2.1. The Helmholtz decomposition

Let Vh be a discrete subspace of (L2(�))n , where � ∈Rn is a bounded simply connected polygonal domain with bound-
ary ∂�. Our discussion is for n = 2 space-dimensions; however, the method generalizes in a straightforward manner to 
n = 3 space-dimensions. We are interested in the situation when Vh is a mixed finite element space, such as a Raviart-
Thomas (RT) space or a Brezzi-Douglas-Marini (BDM) space; see [22] and [7,8]. Our analysis is presented for RT spaces, but 
can easily be extended to BDM spaces. The Helmholtz decomposition is based on the fact that a vector f ∈ Vh can be split 
into divergence-free and curl-free components; see [12].

2.2. Discrete spaces

Let Th be a quasi-uniform family of triangulations of �, where h > 0 is a parameter representative of the diameter of the 
triangles; see [4]. We denote the triangles of Th by T . For each nonnegative integer r, the Raviart-Thomas space of index r
is given by

Vh = {v ∈ H(div) : v|T ∈ Pr(T ) + (x, y)Pr(T ) for all T ∈ Th}. (2.1)

Here Pr(T ) denotes the set of polynomials of degree at most r on T , and H(div) = {σ ∈ (L2(�))2 : ∇ · σ ∈ L2(�)}. We refer 
to [2] and references therein for more detailed discussions on properties and implementations of RT spaces.

2.3. The Helmholtz decomposition of Vh

Introduce the space

Wh = {s ∈ H1 : s|T ∈ Pr+1(T )}
of continuous piece-wise polynomials of degree at most r + 1 on T with a derivative, as well as the space

Sh = {q ∈ L2 : q|T ∈ Pr(T )}
of (possibly discontinuous) piece-wise polynomials of degree at most r on T . Define the discrete gradient operator gradh :
Sh → Vh by

(gradhq,v) = −(q,∇ · v) ∀v ∈ Vh.

The discrete Helmholtz decomposition of Vh is given by

Vh = gradh Sh ⊕ curl Wh,

where curl = (− ∂
∂ y , ∂

∂x )T ; cf. [1,9]. Hence, a vector f ∈ Vh can be decomposed according to

f = fdiv + fcurl, (2.2)

where fdiv ∈ gradh Sh and fcurl ∈ curl Wh . This decomposition is orthogonal with respect to both standard L2 and H(div)

inner products.

2.4. A variational problem

Our approach to computing the Helmholtz decomposition of a vector is based on the equation

(∇ · σ ,∇ · τ ) + δ(σ ,τ ) = (f,τ ) ∀τ ∈ Vh. (2.3)

The above variational problem may be thought of as a realization of a partial differential equation with the natural boundary 
condition, i.e., ∇ · σ = 0 on ∂�; see [1]. Note that the second term in the left-hand side of (2.3) with the parameter δ > 0
makes the operator in the left-hand side positive definite. As a result, the existence and uniqueness of the solution σ ∈ Vh
of (2.3) is guaranteed. Also, this term allows us to compute the components fdiv and fcurl of f, satisfying fdiv ∈ gradh Sh
and fcurl ∈ curl Wh , by using an iterative method and taking advantage of the different convergence behaviors of these 
components. We can observe in computed examples reported in Section 5 that a smaller δ > 0 gives slightly more accurate 
approximations of fdiv and fcurl , while also slightly increasing the number of iterations.
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Remark 2.1. One can develop a method for computing the Helmholtz decomposition based on the variational problem

(curlσ , curlτ ) + δ(σ ,τ ) = (f,τ ) ∀τ ∈ Vh.

The analysis of such a method is almost identical to the analysis of our method, which is based on (2.3).

2.5. Two linear operators

Define the linear operators A and Aδ by

(Aσ ,τ ) = (∇ · σ ,∇ · τ ) + (σ ,τ ) ∀τ ∈ Vh,

(Aδσ ,τ ) = (∇ · σ ,∇ · τ ) + δ(σ ,τ ) ∀τ ∈ Vh.

The operator A is symmetric and positive definite. Its smallest eigenvalue is larger than or equal to 1. Hence, all eigenvalues 
of A−1 lie in the semi-open interval (0, 1]. The operator Aδ can be expressed as

Aδ = A + (δ − 1)I. (2.4)

This shows that Aδ also is symmetric and positive definite for δ > 0, with its eigenvalues bounded below by δ.
Using orthogonality, one can show that the two summand spaces gradh Sh and curl Wh are invariant under A and Aδ . 

Moreover, we have

Aψ = ψ and Aδψ = δψ ∀ψ ∈ curl Wh. (2.5)

2.6. A linear equation

We would like to compute an accurate approximation of the Helmholtz decomposition of a vector f ∈ Vh . To achieve this, 
we solve

Aδσ h = f (2.6)

by an iterative method. The method splits f into a divergence-free component fcurl and a curl-free component fdiv; cf. (2.2). 
To understand the splitting procedure, we consider (2.6) as two problems with data vectors fcurl and fdiv,

Aδ(σ curl) = fcurl and Aδ(σ div) = fdiv. (2.7)

These two subproblems cannot be solved separately, because we do not know the components fcurl and fdiv of f. Instead, 
we will apply our iterative method to the solution of (2.6) and use the fact that the components of the computed iterates 
associated with the solutions of the subproblems (2.7) converge with different rates to separate f into fcurl and fdiv.

Thus, we apply our iterative method to (2.6). The iterates generated are made up of a linear combination of approxi-
mations of σ curl and σ div. The rates of convergence of these approximations towards σ curl and σ div differ. This makes it 
possible to separate them and in this manner determine the components fcurl and fdiv of f. In detail, using (2.5), we obtain

σ curl = fcurl

δ
since Aδ

(
fcurl

δ

)
= fcurl.

Let σ div satisfy

Aδ(σ div) = fdiv.

Then

Aδ

(
σ div + fcurl

δ

)
= fdiv + fcurl = f. (2.8)

In our iterative method for the approximation of the solution of (2.8), the rates of convergence towards the components 
σ div and fcurl

δ
of the solution differ and depend on the choice of the parameter δ > 0. This is analyzed in Section 3, and it 

allows us to split f into fcurl and fdiv. To simplify our notation, we will in the remainder of this paper denote fdiv and fcurl
by f1 and f2, respectively.

3. The iterative method

We first describe our iterative method, then analyze its convergence behavior, and finally discuss its application to the 
Helmholtz decomposition of a vector.
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3.1. Derivation of the iterative method

The splitting (2.4) yields

Aδσ h = Aσ h + (δ − 1)σ h = f,

which suggests that equation (2.8) be solved with the iterative method

σ n+1 = (1 − δ)A−1σ n + A−1f. (3.1)

Here and below the iteration number is indicated by an integer subscript of σ .

Remark 3.1. The convergence rate of the iterates (3.1) is very slow for small δ > 0. In fact, the error reduction rate is 1 − δ

due to the divergence-free component of f in curl Wh . A convergence analysis is presented in the next subsection. Because of 
the slow convergence of the divergence-free component of the solution, a standard stopping criterion based on measuring 
‖σ n − σ n−1‖ is not appropriate. Here the norm ‖ · ‖ is induced by the standard inner product. Instead, we will use the 
quantities Fn defined in line 6 of Algorithm 3.1 to determine when to terminate the iterations.

Algorithm 3.1 Iterative method.

1: Input: tolerance TOL> 0 and given vector f
2: Output: Helmholtz decomposition of f and approximate solution σ ∗
3: σ 0 := 0
4: for n = 0, 1, 2, . . .
5: σ n+1 := (1 − δ)A−1σ n + A−1f
6: if Fn := ‖σ n − σ n−1 − 1

(1−δ)
(σ n+1 − σ n)‖ < TOL

7: σ ∗ := σ n + (1−δ)
δ

(σ n − σ n−1)

8: exit
9: end if
10: end for

At exit from Algorithm 3.1, σ ∗ is an approximate solution of (2.6), and σ n−σn−1
(1−δ)n is an approximation of f2. The Helmholtz 

decomposition of f is

f = f1 + f2 =
(

f − σ n − σ n−1

(1 − δ)n

)
+ σ n − σ n−1

(1 − δ)n
.

Remark 3.2. The stopping criterion in Algorithm 3.1 based on the size of Fn is meaningful since it removes the slowly 
convergent component; see Lemma 3.2 below, and it is effective for computing the Helmholtz decomposition. However, if 
one instead is interested in determining an accurate approximate solution of (2.6), then a different stopping criterion should 
be used. For instance, one might terminate the iterations when ‖σ n − σ n−1‖ is sufficiently small.

Remark 3.3. The application of A−1 in Algorithm 3.1 is carried out with an algebraic multigrad method. We use the public 
domain code provided by Notay [21]; see Section 5 for details. The algorithm therefore is simple to implement. Computed 
examples reported in Section 5 illustrate that only fairly few iteration steps of the algorithm are required. This makes the 
algorithm quite fast.

3.2. Convergence analysis

Recall that

f = f1 + f2, f1 ∈ gradh Sh, f2 ∈ curl Wh, (3.2)

and let σ 1 and σ 2 denote the solutions of

Aδσ 1 = f1 and Aδσ 2 = f2.

Then, clearly, σ = σ 1 + σ 2, and it follows that

σ 1 = (1 − δ)A−1σ 1 + A−1f1,

σ 2 = (1 − δ)A−1σ 2 + A−1f2.

These equations suggest that we decompose the iterates in (3.1) as
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σ n = σ 1
n + σ 2

n, (3.3)

where

σ 1
n+1 = (1 − δ)A−1σ 1

n + A−1f1,

σ 2
n+1 = (1 − δ)A−1σ 2

n + A−1f2.
(3.4)

We have the following identities for σ 1
n and σ 2

n .

Lemma 3.1. Let the sequences {σ 1
n}∞n=0 and {σ 2

n}∞n=0 be defined by (3.4) with σ 1
0 = 0 and σ 2

0 = 0. Then

σ 1
n =

n∑
k=1

(1 − δ)k−1 A−kf1 ∈ gradh Sh (3.5)

and

σ 2
n =

n∑
k=1

(1 − δ)k−1f2 = 1 − (1 − δ)n

δ
f2 ∈ curl Wh. (3.6)

Proof. Equation (3.5) is obtained from the first equation of (3.4) with σ 1
0 = 0. Turning to (3.6), we use that f2 ∈ curl Wh

and the relations (2.5) to obtain

σ 2
n = (1 − δ)n−1f2 + (1 − δ)n−2f2 + · · · + (1 − δ)f2 + f2

= 1 − (1 − δ)n

1 − (1 − δ)
f2 = 1 − (1 − δ)n

δ
f2. �

Let {(λi, ψ i)}m
i=1 be the eigenpairs of A−1 on gradh Sh , where {ψ i}m

i=1 is an orthonormal basis for gradh Sh . Without loss 
of generality, we may assume that λ1 is the largest eigenvalue, where we recall that 0 < λi ≤ 1 for all i = 1, 2, . . . , m. Then

f1 =
m∑

i=1

ciψ i (3.7)

for certain coefficients ci . Using (3.5), we obtain

σ 1
n =

n∑
k=1

m∑
i=1

(1 − δ)k−1λk
i ciψ i .

Convergence of the sequence σ 1
1, σ

1
2, . . . is fast due to the factors A−k in (3.5), while convergence of the sequence σ 2

1, σ
2
2, . . .

defined by (3.6) is slow when δ > 0 is small. On the other hand, σ 2
n is a multiple of f2, and we can take advantage of this 

fact to terminate the iterative process based on the convergence of the sequence σ 1
1, σ

1
2, . . . .

Lemma 3.2. Let

En := σ n − σ n−1 = (1 − δ)n−1 A−nf1 + (1 − δ)n−1f2

and let Fn be defined as in line 6 of Algorithm 3.1, i.e.,

Fn = ‖En − 1

(1 − δ)
En+1‖.

Then

(1 − λ1)‖σ 1
n − σ 1

n−1‖ ≤ Fn ≤ ‖σ 1
n − σ 1

n−1‖, (3.8)

where 0 < λ1 ≤ 1 is the largest eigenvalue of A−1 on gradh Sh. Moreover,

‖σ 1
n − σ 1

n−1‖ = (1 − δ)n−1

(
m∑

i=1

λ2n
i c2

i

)1/2

. (3.9)
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Proof. Using (3.5), (3.6) with (3.3), we obtain

En − 1

(1 − δ)
En+1 = (1 − δ)n−1 A−nf1 − (1 − δ)n−1 A−n−1f1.

Now, (3.7) and the fact that {(λi, ψ i)}m
i=1 are eigenpairs of A−1 give

En − 1

(1 − δ)
En+1 = (1 − δ)n−1

m∑
i=1

(λn
i − λn+1

i )ciψ i = (1 − δ)n−1
m∑

i=1

λn
i (1 − λi)ciψ i .

Since λ1 is the largest eigenvalue and the eigenfunctions {ψ i}m
i=1 are orthonormal, we have

(1 − λ1)
2(1 − δ)2(n−1)

m∑
i=1

λ2n
i c2

i ≤ F 2
n ≤ (1 − δ)2(n−1)

m∑
i=1

λ2n
i c2

i . (3.10)

Using (3.5), the fact that {(λi, ψ i)}m
i=1 are eigenpairs of A−1, and (3.7) yield

σ 1
n − σ 1

n−1 = (1 − δ)n−1
m∑

i=1

λn
i ciψ i .

Thus

‖σ 1
n − σ 1

n−1‖2 = (1 − δ)2(n−1)

m∑
i=1

λ2n
i c2

i . (3.11)

Taking square roots on both sides, we obtain (3.9). Now, combining (3.11) with (3.10) gives (3.8). This completes the 
proof. �

If Fn is small, then σ 1
n is an accurate approximation of σ 1. This was already shown in [17]. However, even when σ 1

n is 
an accurate approximation of σ 1,

σ 2
n = 1 − (1 − δ)n

δ
f2

may be a poor approximation of σ 2 = 1
δ

f2 when (1−δ)n

δ
f2 is large due to that δ > 0 is small. We therefore define an 

approximate solution of (2.6) as in line 7 of Algorithm 3.1, i.e.,

σ ∗ = σ n + (1 − δ)

δ
(σ n − σ n−1).

Define the projection of f onto the space curl Wh by

Phf := σ n − σ n−1

(1 − δ)n−1 . (3.12)

Theorem 3.3. Let f ∈ Vh have the Helmholtz decomposition f = f1 + f2 , where f1 ∈ gradh Sh and f2 ∈ curl Wh. Let σ = σ 1
h + 1

δ
f2 be 

the solution of (2.6). Then

‖f2 − Phf‖ = ‖σ 1
n − σ 1

n−1‖
(1 − δ)n−1 ≤ TOL

(1 − λ1)(1 − δ)n−1 ,

where the σ 1
n and TOL are defined by Algorithm 3.1. Also, let σ ∗ denote the approximation of σ defined in line 7 of Algorithm 3.1. Then

‖σ − σ ∗‖ ≤ ‖σ 1
h − σ 1

n‖ + 1 − δ

δ
‖σ 1

n − σ 1
n−1‖.

Proof. We obtain from (3.6) that

σ n = σ 1
n + σ 2

n = σ 1
n + 1 − (1 − δ)n

δ
f2. (3.13)

Again using (3.6), we have

σ n − σ n−1 = σ 1
n − σ 1

n−1 + (1 − δ)n−1f2. (3.14)
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Thus,

f2 − σ n − σ n−1

(1 − δ)n−1 = −σ 1
n − σ 1

n−1

(1 − δ)n−1 . (3.15)

Combining (3.15) with (3.9), (3.8) and Fn < TOL gives∥∥∥∥f2 − σ n − σ n−1

(1 − δ)n−1

∥∥∥∥ =
(

m∑
i=1

λ2n
i c2

i

)1/2

≤ TOL

(1 − λ1)(1 − δ)n−1 .

Using (3.13) and (3.14), we obtain

(1 − δ)

δ
(σ n − σ n−1) = (1 − δ)

δ
(σ 1

n − σ 1
n−1) + (1 − δ)n

δ
f2. (3.16)

Equations (3.13) and (3.16) show that

σ ∗ = σ n + (1 − δ)

δ
(σ n − σ n−1) = σ 1

n + 1

δ
f2 + (1 − δ)

δ
(σ 1

n − σ 1
n−1).

Thus

‖σ − σ ∗‖ ≤ ‖σ 1 − σ 1
n‖ + 1 − δ

δ
‖σ 1

n − σ 1
n−1‖.

This completes the proof. �
Remark 3.4. It follows from (3.16) that

σ n − σ n−1

(1 − δ)n−1 = f2 + σ 1
n − σ 1

n−1

(1 − δ)n−1 . (3.17)

Due to (3.11) and Lemma 3.2, the second term in the right-hand side is small since Fn in our stopping criterion is of about 
the same size as ‖σ 1

n − σ 1
n−1‖. The equality (3.17) therefore suggests the application of the projector (3.12) onto curl Wh .

4. The solution of nearly singular systems of equations

We consider the solution of nearly singular linear systems of equations determined by the variational problem (2.3) with 
0 < δ � 1 very small, and use Raviart-Thomas finite element spaces defined in Section 3 to approximate σ ∈ H(div). Solu-
tion methods for linear systems of equations with a general singular or nearly singular matrix have received considerable 
attention in the literature; see, e.g., [10,11,13–15,23]. The problem that we are considering has a structure that makes it 
possible to compute a useful approximate solution in a simple manner.

4.1. Approximation properties

Let V = H(div). Define the subspace

Q r
h = {q ∈ L2(�) : q|K ∈ Pr(K ) for each K ∈ Th},

and let L Ph : L2(�) → Q r
h be the local L2 projection, i.e., for K ∈ Th ,

(g − L Ph g, vh)K =
∫
K

(g − L Ph) · vhdx = 0 ∀ vh ∈ Q r
h.

The projector L Ph onto Q r
h satisfies

‖v − L Ph(v)‖ ≤ Chr+1‖v‖Hr+1(�)

for all v ∈ Hr+1(�); see [24].
Let the finite element space Q r

h × Vh be defined with respect to Th . We let Vh be the Raviart-Thomas space of index r; 
see (2.1) and [22]. The Raviart-Thomas projection operator �h : V → Vh , discussed in [7], satisfies

∇ · �hτ = L Ph(∇ · τ ) ∀τ ∈ Vh. (4.1)

We have the following approximation property, see [7],

‖τ − �hτ‖ ≤ Chr+1‖τ‖Hr+1(�) ∀τ ∈ (Hr+1(�))n. (4.2)
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4.2. An error estimate

Define the approximate solution σ h ∈ Vh of (2.3) by

(∇ · σ h,∇ · τ h) + δ(σ h,τ h) = (f,τ h) ∀τ h ∈ Vh. (4.3)

We have the following basic error estimate.

Theorem 4.1. Let σ and σ h satisfy (2.3) and (4.3), respectively. Then

‖σ − σ h‖ ≤ ‖σ − �hσ‖,
where �h : V → Vh is the RT projection operator satisfying (4.1) and (4.2).

Proof. Subtracting (4.3) from (2.3) gives

(∇ · (σ − σ h),∇ · τ h) + δ(σ − σ h,τ h) = 0. (4.4)

Using (4.1), (4.4) and the Cauchy-Schwarz inequality, we get

‖σ − σ h‖2 = (σ − σ h,σ − σ h)

≤ (σ − σ h,σ − σ h) + 1

δ
(∇ · (�hσ − σ h),∇ · (�hσ − σ h))

= (σ − σ h,�hσ − σ h) + 1

δ
(∇ · (σ − σ h),∇ · (�hσ − σ h))

+(σ − σ h,σ − �hσ )

= (σ − σ h,σ − �hσ )

≤ ‖σ − σ h‖‖σ − �hσ‖,
which yields the desired inequality. �
4.3. An iterative method for nearly singular systems

When δ > 0 is tiny, equation (2.6), or equivalently equation (2.3), are nearly singular. The vector defined in line 7 of 
Algorithm 3.1 typically is not an accurate approximation of the solution of (2.6) due to a large factor 1

δ
. To overcome this 

difficulty, we combine Algorithm 3.1 with the iterative method for solving nearly singular linear systems developed in [17]. 
The iterative method described in [17] is applicable when f ∈ gradh Sh . Here, we extend the method to be applicable when 
f ∈ Vh ⊂ (L2(�))2.

Consider the Helmholtz decomposition (3.2). We apply Algorithm 3.1 to obtain an approximation Phf of f2, and use 
f1 = f − Phf as an approximation of σ 1. Note that the solution σ h

2 of (4.3) corresponding to f2 is f2
δ

, and the solution σ 1
h of 

(4.3) corresponding to f1 can be determined by the iterative method described in [17]. The computations are summarized 
by Algorithm 4.1.

Algorithm 4.1 Iterative method for nearly singular system.

1: Input: tolerance TOL> 0 and f1
2: Output: approximate solution σ 1

h
3: σ 1

0 := 0
4: for n = 0, 1, 2, . . .
5: σ 1

n+1 := (1 − δ)A−1σ 1
n + A−1f1

6: if ‖σ 1
n − σ 1

n−1‖ < TOL
7: σ 1

h := σ 1
n

8: exit
9: end if
10: end for

We define the solution of (4.3) as σ h
1 +σ h

2. Computed examples reported in [17] show that the number of iterations with 
Algorithm 4.1 to achieve a desired accuracy can be reduced by vector extrapolation. We will not dwell on extrapolation in 
the present paper, and instead refer to [17] as well as to the references [5,6,16] for discussions on extrapolations methods.
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Table 5.1
Performance for different δ values with h = 1

32 .

δ 0.1 0.3 0.5 0.7 0.9

‖f2 − Phf‖ 3.0 · 10−13 4.2 · 10−12 4.2 · 10−12 8.8 · 10−11 1.8 · 10−9

(f1, Phf) 5.8 · 10−11 1.2 · 10−11 1.3 · 10−11 2.7 · 10−10 5.6 · 10−9

‖∇ · Phf‖ 6.8 · 10−9 8.6 · 10−9 1.8 · 10−8 1.7 · 10−8 1.9 · 10−8

# of iterations 9 8 8 7 6

5. Numerical examples

This section presents examples that illustrate the convergence behavior of the iterative scheme defined by Algorithms 3.1
and 4.1. We refer to [2] for details on the implementation of the FEM, such as the enumeration of edges and nodes.

Let � = [0, 1]2 and discretize on a uniform mesh with mesh size h. Unless stated otherwise, h = 1
32 . We use the lowest 

order Raviart-Thomas element space, denoted by Vh , to approximate the space H(div) in our experiments. Let φ1, φ2, . . . , φN
be an edge basis for Vh , i.e.,

Vh = span{φ1,φ2, . . . ,φN}.
For h = 1

32 , the total number of edges (which is the number of unknowns) is N = 3136. For a function f = ∑N
i=1 f iφi ∈

H(div), we let 
f = [ f1, f2, . . . , f N ]T denote its vector representation with respect to the basis φ1, φ2, . . . , φN . The algebraic 
equation corresponding to line 7 of Algorithm 3.1 can be written as


σ n+1 = (1 − δ)S−1 B 
σ n + S−1 B
f,
where

D = [dij], dij = (∇ · φ j,∇ · φi), B = [bij], bij = (φ j,φi),

and S = D + B; see [17] for more details. We use the AMG solver developed and made available by Notay [18–21] for the 
computation of S−1
y for a vector 
y ∈RN .

Example 1. Helmholtz decomposition. We would like to compute the Helmholtz decomposition of the vector f ∈ L2(�)

defined by f = f1 + f2, where

f1 = −gradh(2(x − x2) + (y − y2) + δ(x − x2)(y − y2)), f2 = φ1 − φ33 + 1√
2
φ34.

Note that f2 = curl ζ ∈ curl Wh , where ζ is the piece-wise linear polynomial with the value 1 at the vertex (0, 0) and the 
value 0 at the other vertices.

We compute the iterates σ n by Algorithm 3.1 with TOL= 10−20. The approximation Phf of f2 is defined as in (3.12). 
Table 5.1 shows the convergence behavior of Phf. We see that Phf provides an accurate approximation of f2. Moreover, 
f − Phf furnishes an approximation of f1 of the same accuracy since

f1 − (f − Phf) = f1 − (f1 + f2 − Phf) = −(f2 − Phf).

The vectors f1 and Phf are nearly orthogonal. Table 5.1 shows the inner product (f1, Phf). Also note that

cos−1
( (f1, Phf)

‖f1‖‖Phf‖
)

≈ 1.5708,

which is about π
2 .

Example 2. Nearly singular system. We solve the nearly singular system defined by (4.3) with δ = 10−k , k = 6, 8, 10, 12. The 
mesh sizes are h = 1

32 and h = 1
64 . The problem data f is defined by f = f1 + f2, where

f1 = −gradh(2(x − x2) + 2(y − y2) + δ(x − x2)(y − y2)),

f2 = δ curl((x − x2)(y − y2)).

As described in Subsection 4.3, we first compute the approximation Phf of f2 with Algorithm 3.1. We use TOL = 10−20

in the algorithm, which then requires 9 iterations for all values of δ; see Table 5.2 for details.
Then we use f − Phf as input data for Algorithm 4.1 to determine an approximation of σ h

1 corresponding to the data f1. 
When computing the approximation of σ h

1, we use TOL = 10−10 in Algorithm 4.1, which requires 4 iterations for all values 
of δ. Results are collected in Table 5.3. Note that Phf is our approximation of σ 2.
δ h
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Table 5.2
Performance for different δ values with h = 1

32 .

δ (0.1)6 (0.1)8 (0.1)10 (0.1)12

‖f2 − Phf‖ 6.6 · 10−13 6.6 · 10−15 1.6 · 10−16 1.5 · 10−16

‖σ 1 − σ h
1‖ 4.7 · 10−3 4.7 · 10−3 4.7 · 10−3 4.7 · 10−3

‖σ 2 − σ h
2‖ 7.6 · 10−3 7.6 · 10−3 7.8 · 10−3 2.1 · 10−1

‖σ 2−σ h
2‖

‖σ 2‖ 5.0 · 10−8 5.1 · 10−10 5.3 · 10−12 1.4 · 10−12

Table 5.3
Performance for different δ values with h = 1

64 .

δ (0.1)6 (0.1)8 (0.1)10 (0.1)12

‖f2 − Phf‖ 5.8 · 10−14 5.9 · 10−16 8.4 · 10−17 8.3 · 10−17

‖σ 1 − σ h
1‖ 2.3 · 10−3 2.3 · 10−3 2.3 · 10−3 2.3 · 10−3

‖σ 2 − σ h
2‖ 3.8 · 10−3 3.8 · 10−3 6.4 · 10−3 5.1 · 10−1

‖σ 2−σ h
2‖

‖σ 2‖ 2.5 · 10−8 2.5 · 10−10 4.3 · 10−12 3.4 · 10−12

Table 5.4
Performance of proposed solution σ P

h and σ D
h for different δ values with h = 1

128 .

δ (0.1)6 (0.1)8 (0.1)10 (0.1)12

‖σ 1 − σ h
1‖ 1.2 · 10−3 1.2 · 10−3 1.2 · 10−3 1.2 · 10−3

‖σ 2 − σ h
2‖ 1.9 · 10−3 1.9 · 10−3 1.5 · 10−2 1.4 · 100

‖σ 2−σ h
2‖

‖σ 2‖ 1.3 · 10−8 1.3 · 10−10 9.8 · 10−12 9.7 · 10−12

‖σ − σ P
h ‖ 2.2 · 10−3 2.2 · 10−3 1.5 · 10−3 1.4 · 100

‖σ − σ D
h ‖ 2.2 · 10−3 2.2 · 10−3 2.3 · 10−2 −

Table 5.5
Performance of proposed solution σ P

h and σ D
h for different δ values with h = 1

128 .

δ (0.1)6 (0.1)8 (0.1)10 (0.1)12

‖σ 1 − σ h
1‖ 1.2 · 10−3 1.2 · 10−3 1.2 · 10−3 1.2 · 10−3

‖σ 2 − σ h
2‖ 1.9 · 100 1.9 · 101 1.9 · 102 1.9 · 103

‖σ 2−σ h
2‖

‖σ 2‖ 7.8 · 10−6 1.3 · 10−2 1.3 · 10−2 1.3 · 10−2

‖σ − σ P
h ‖ 1.9 · 100 1.9 · 101 1.9 · 102 1.9 · 103

‖σ − σ D
h ‖ 1.9 · 100 1.9 · 101 2.1 · 103 −

Example 3. Our last two tables show the quality of the computed solutions, σ P
h , determined by our proposed iterative 

method (Algorithm 4.1), and compares them to the quality of the solutions, σ D
h , computed with the MATLAB direct solver \. 

Table 5.4 shows results when f = f1 + δcurl(x − x2)(y − y2) and Table 5.5 for f = f1 + √
δcurl(x − x2)(y − y2). Note that 

σ P
h = σ 1

h + σ 2
h , where σ 1

h and σ 2
h are defined in Example 2. Algorithm 4.1 can be seen to yield higher accuracy when δ > 0

is small. The entries − in Tables 5.4 and 5.5 indicate that the MATLAB direct solver was not able to compute a solution. 
Further illustrations of the iterative method can be found in [17].

6. Conclusion

The paper describes a new iterative method for accurate approximation of the Helmholtz decomposition of a given 
vector. The method can be applied to a finite element solution for the simulation of incompressible fluids to satisfy a 
divergence-free condition.
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