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Finite element method that splits a given vector into a divergence-free component and a curl-free component.
Nearly singular system Each iteration cycle uses a well-developed solver based on the algebraic multigrid method
Variational problem for computing a projection onto H(div) or H(curl). Only a few iteration cycles are required

to compute an accurate approximate solution. As a by-product, we obtain an iterative
method for the solution of linear systems of equations with a nearly singular matrix.
© 2020 IMACS. Published by Elsevier B.V. All rights reserved.

1. Introduction

The Helmholtz decomposition splits a vector field into a curl-free component and a divergence-free component. This
decomposition is useful, for instance, when modeling, analyzing, and manipulating fluids, and is applied in visualization,
computer graphics, astrophysics, and imaging; see, e.g., [3] and references therein.

The finite element method (FEM) is a widely used technique for approximating the solution of boundary and initial
value problems for partial differential equations (PDEs). Mixed finite element spaces, such as spaces made up of Raviart-
Thomas (RT) or Brezzi-Douglas-Marini (BDM) elements, see [7,8,22], are commonly used as approximation spaces when
solving incompressible fluid and electromagnetic problems. To the best of our knowledge, there is no efficient algorithm for
computing the discrete Helmholtz decomposition for mixed element spaces. This decomposition is described in, e.g., [1,9].

The aim of this paper is to present a new iterative method for computing the discrete Helmholtz decomposition of a
given vector in a mixed finite element space. Our iterative method has a simple structure, which makes it easy to implement.
In each iteration step, the method uses an algebraic multigrid method (AMG) to determine the projection of a given vector
onto divergence-free or curl-free components. Typically only few iteration steps are required. The computed components
are essentially orthogonal. This is an important property of the discrete Helmholtz decomposition. Our iterative method is
based on a scheme for computing the solution of a linear system of equations with a nearly singular matrix. This scheme is
an extension of the method described in [17].

This paper is organized as follows. Section 2 introduces necessary notation and describes the background of our decom-
position method. The iterative method is presented in Section 3, where also its convergence properties are studied. Section 4
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discusses iterative solution of nearly singular systems. Numerical examples are presented in Section 5, and concluding re-
marks can be found in Section 6.

2. Problem formulation
This section discusses the Helmholtz decomposition and introduces notation to be used subsequently.
2.1. The Helmholtz decomposition

Let V}, be a discrete subspace of (L2(£2))", where €2 € R" is a bounded simply connected polygonal domain with bound-
ary 9€2. Our discussion is for n = 2 space-dimensions; however, the method generalizes in a straightforward manner to
n = 3 space-dimensions. We are interested in the situation when Vj is a mixed finite element space, such as a Raviart-
Thomas (RT) space or a Brezzi-Douglas-Marini (BDM) space; see [22] and [7,8]. Our analysis is presented for RT spaces, but
can easily be extended to BDM spaces. The Helmholtz decomposition is based on the fact that a vector f € V, can be split
into divergence-free and curl-free components; see [12].

2.2. Discrete spaces

Let 7, be a quasi-uniform family of triangulations of 2, where h > 0 is a parameter representative of the diameter of the
triangles; see [4]. We denote the triangles of 7, by T. For each nonnegative integer r, the Raviart-Thomas space of index r
is given by

Vp={ve H(div) :v|T € P.(T) + (x, y)P,(T) forall T € Tp}. (2.1)

Here P.(T) denotes the set of polynomials of degree at most r on T, and H(div) = {0 € (L2(2))?: V- 0 € L»(Q)}. We refer
to [2] and references therein for more detailed discussions on properties and implementations of RT spaces.

2.3. The Helmholtz decomposition of V,

Introduce the space

Wh={seH':s|r € Pry1(T)}

of continuous piece-wise polynomials of degree at most r +1 on T with a derivative, as well as the space
Sn={q€L2:qlr € Pr(T)}

of (possibly discontinuous) piece-wise polynomials of degree at most r on T. Define the discrete gradient operator grad, :

Sh — Vi, by
(grad,q,v) =—(q,V-v) YveV,.

The discrete Helmholtz decomposition of Vj, is given by

Vj, = grad; S, @ curl Wy,

R
ay’ ox

f= fdiv + fcurlv (2-2)

where fgi, € grad, Sy and f.; € curl Wy. This decomposition is orthogonal with respect to both standard L, and H(div)
inner products.

where curl = (— )T; cf. [1,9]. Hence, a vector f € V,, can be decomposed according to

2.4. Avariational problem

Our approach to computing the Helmholtz decomposition of a vector is based on the equation

V-o,V-o)+8(0,t1)=(f, 1) VT V) (2.3)

The above variational problem may be thought of as a realization of a partial differential equation with the natural boundary
condition, i.e.,, V-0 =0 on 92; see [1]. Note that the second term in the left-hand side of (2.3) with the parameter § > 0
makes the operator in the left-hand side positive definite. As a result, the existence and uniqueness of the solution o €V
of (2.3) is guaranteed. Also, this term allows us to compute the components fg, and f.,; of f, satisfying f4;, € grad,Sy
and f. € curl Wy, by using an iterative method and taking advantage of the different convergence behaviors of these
components. We can observe in computed examples reported in Section 5 that a smaller § > 0 gives slightly more accurate
approximations of fgj, and f, while also slightly increasing the number of iterations.
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Remark 2.1. One can develop a method for computing the Helmholtz decomposition based on the variational problem

(curlo,curlt)+d6(0,7)=(f, ) VT €V,

The analysis of such a method is almost identical to the analysis of our method, which is based on (2.3).
2.5. Two linear operators

Define the linear operators A and A; by

(Ao, t)=(V-0,V-T)+(0,T) VT EV,
(Aso,t)=(V-0,V-T)+6(0,T) VT €V}

The operator A is symmetric and positive definite. Its smallest eigenvalue is larger than or equal to 1. Hence, all eigenvalues
of A~! lie in the semi-open interval (0, 1]. The operator As can be expressed as

As=A+ - 1DIL (2.4)

This shows that As also is symmetric and positive definite for § > 0, with its eigenvalues bounded below by §.
Using orthogonality, one can show that the two summand spaces grad,Sy and curl W, are invariant under A and As;.
Moreover, we have

AYvy=v¢% and As;¢¥ =6y V¢ €curlWy. (2.5)
2.6. A linear equation

We would like to compute an accurate approximation of the Helmholtz decomposition of a vector f € Vj,. To achieve this,
we solve

Asop =f (2.6)

by an iterative method. The method splits f into a divergence-free component f;;; and a curl-free component fg;,; cf. (2.2).
To understand the splitting procedure, we consider (2.6) as two problems with data vectors f.,y and fgiy,

As(0 cur) =fcurr and  As(0 giv) = Ly (2.7)

These two subproblems cannot be solved separately, because we do not know the components f., and fg;, of f. Instead,
we will apply our iterative method to the solution of (2.6) and use the fact that the components of the computed iterates
associated with the solutions of the subproblems (2.7) converge with different rates to separate f into f.,; and fg;,.

Thus, we apply our iterative method to (2.6). The iterates generated are made up of a linear combination of approxi-
mations of oy and o g. The rates of convergence of these approximations towards o .y and o g, differ. This makes it
possible to separate them and in this manner determine the components f.,;; and fg;, of f. In detail, using (2.5), we obtain

fcurl s fcurl
acurl:T since  As 5 = Icurl-

Let o gjy satisfy
As(0 div) = faiv-

Then
f
As <0div + %ﬂ) = faiy + foun = 1. (2.8)

In our iterative method for the approximation of the solution of (2.8), the rates of convergence towards the components
0 4iv and % of the solution differ and depend on the choice of the parameter § > 0. This is analyzed in Section 3, and it
allows us to split f into f.y and fg;,. To simplify our notation, we will in the remainder of this paper denote fg;, and fcyy
by f; and f;, respectively.

3. The iterative method

We first describe our iterative method, then analyze its convergence behavior, and finally discuss its application to the
Helmholtz decomposition of a vector.
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3.1. Derivation of the iterative method

The splitting (2.4) yields

A(;O'h:AO’h‘f‘(S—])O'h :f,

which suggests that equation (2.8) be solved with the iterative method

onp1=(1=8)A""o,+A7'f (3.1)

Here and below the iteration number is indicated by an integer subscript of o .

Remark 3.1. The convergence rate of the iterates (3.1) is very slow for small § > 0. In fact, the error reduction rate is 1 — 4§
due to the divergence-free component of f in curl Wj. A convergence analysis is presented in the next subsection. Because of
the slow convergence of the divergence-free component of the solution, a standard stopping criterion based on measuring
lon — o n—1| is not appropriate. Here the norm | - || is induced by the standard inner product. Instead, we will use the
quantities F, defined in line 6 of Algorithm 3.1 to determine when to terminate the iterations.

Algorithm 3.1 Iterative method.

1: Input: tolerance TOL> 0 and given vector f

2: Output: Helmholtz decomposition of f and approximate solution o *
3: 09:=0

4: forn=0,1,2,...

5 On1:=1-8Alo,+A7f

6:  ifFyi=]00—0n 1~ qi5@ni1—0n)| <TOL

7 o* :=an+“‘%‘”(an—an,1)

8 exit

9 end if

0: end for

[y

On—0On-1
1-="

At exit from Algorithm 3.1, 0* is an approximate solution of (2.6), and is an approximation of f,. The Helmholtz

decomposition of f is

f=f1+f2=(f—

O'n—dn_1> On—0n-1
a-on a-on

Remark 3.2. The stopping criterion in Algorithm 3.1 based on the size of F, is meaningful since it removes the slowly
convergent component; see Lemma 3.2 below, and it is effective for computing the Helmholtz decomposition. However, if
one instead is interested in determining an accurate approximate solution of (2.6), then a different stopping criterion should
be used. For instance, one might terminate the iterations when |6, — 0,—1] is sufficiently small.

Remark 3.3. The application of A~! in Algorithm 3.1 is carried out with an algebraic multigrad method. We use the public
domain code provided by Notay [21]; see Section 5 for details. The algorithm therefore is simple to implement. Computed
examples reported in Section 5 illustrate that only fairly few iteration steps of the algorithm are required. This makes the
algorithm quite fast.

3.2. Convergence analysis

Recall that
f=f +f,, f;egrad,S;,, f)ecurlWy, (3.2)
and let o1 and o, denote the solutions of
Aso1=f; and Aso=1£f.
Then, clearly, 0 =01 + 02, and it follows that
o1=(1-8Alo1 +A'fy,
02=(1-8A"o2+A7'f.

These equations suggest that we decompose the iterates in (3.1) as
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on=0)+02, (33)
where

ol =0-8)A"o)+ AT,

(3.4)
02, =(10-8)Ao2 +A7'E,.
We have the following identities for o'} and ¢2.
Lemma 3.1. Let the sequences {o'}}°° , and {02}°° , be defined by (3.4) with o} =0 and 63 = 0. Then
n
o,=> (1-8 1A, e grad, Sy (3.5)
k=1
and
- 1—(1=98"
o= "1-8F,= —hearw, (3.6)
k=1

Proof. Equation (3.5) is obtained from the first equation of (3.4) with 0(1] = 0. Turning to (3.6), we use that f, € curl Wy
and the relations (2.5) to obtain

0l=(1-""H+(1-)"Hh+ - +(A-Oh+5
1-1-=-8§" 1—-(1-=-68"
= = f,.

T1-a-9s ° 5
Let {(A;, ¥;)}_, be the eigenpairs of A~1 on grad,S;, where {¥;}, is an orthonormal basis for grad;,S,. Without loss
of generality, we may assume that A; is the largest eigenvalue, where we recall that 0 < ; <1 foralli=1,2,...,m. Then
m
fi=) civi (3.7)
i=1

for certain coefficients c;. Using (3.5), we obtain

n m
on=>_Y (1=8"rfay;

k=1 i=1

Convergence of the sequence a}, a%, ... is fast due to the factors A~ in (3.5), while convergence of the sequence a%, a%, .

defined by (3.6) is slow when § > 0 is small. On the other hand, oﬁ is a multiple of f;, and we can take advantage of this
fact to terminate the iterative process based on the convergence of the sequence a}, a%, e

Lemma 3.2. Let
Eni=0n—0n1=(1-8""AT"fi+(1-8""'f
and let F,, be defined as in line 6 of Algorithm 3.1, i.e.,
Fo = By — —— il
1-19)
Then

A=r)loy—ol I <Fn<lol—all, (3.8)

where 0 < A1 < 1 s the largest eigenvalue of A~' on grad,, S;. Moreover,

m 1/2
log—ohqll=1—8)"" (fo"cf) : (3.9)

i=1
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Proof. Using (3.5), (3.6) with (3.3), we obtain

Enii=(1—8"T1TA7" — (1 -8 1A 1f,.

Ep

(-9
Now, (3.7) and the fact that {(A;, ¥;)}]L, are eigenpairs of A1 give

1 m m
En— ——Ei=(1-8)"1) A=A ey =1 =8"" Y Al —2)av;.

1-9 i=1 i=1
Since A1 is the largest eigenvalue and the eigenfunctions {y;}" ; are orthonormal, we have
m m
(1 =2’ = 8D "ae? < Fy < (1—8)>" DY a2}, (3.10)
i=1 i=1

Using (3.5), the fact that {(;, ¥;)}{1; are eigenpairs of A~1, and (3.7) yield

m
op—0p 1 =1=8""> My,
i=1

Thus
m
oy —on 4> =@1—=8""D3 3. (311)
i=1

Taking square roots on both sides, we obtain (3.9). Now, combining (3.11) with (3.10) gives (3.8). This completes the
proof. O

1

If F, is small, then (7,11 is an accurate approximation of o !. This was already shown in [17]. However, even when o, is

an accurate approximation of o',
1—-(1-=8§"
2
or=———"f
n 5 2
may be a poor approximation of o2 = %fz when (1_58)" fy is large due to that § > 0 is small. We therefore define an
approximate solution of (2.6) as in line 7 of Algorithm 3.1, i.e.,

1-9

o =0+ (0n—0n_1).

Define the projection of f onto the space curl W}, by

(312)

Theorem 3.3. Let f € V}, have the Helmholtz decomposition f = f; + f,, where f; € grad;, Sy and f; € curl Wy, Let 0 = 0}1 + %fz be
the solution of (2.6). Then

1 1

0o,—0 TOL

If2 — Pyl = 19n = onall ,
1=8)m1 = (1—rpA -1

where the 0,11 and TOL are defined by Algorithm 3.1. Also, let 0* denote the approximation of o defined in line 7 of Algorithm 3.1. Then
1-6

lo =0l < lloy, = ol + ——lloy =0yl
Proof. We obtain from (3.6) that
1—(1 ="
an:aﬂ,—I—aﬁ:a,ﬁ—i—%fz. (3.13)

Again using (3.6), we have

On—0p1=0)—0} 1 +(1-8)""h. (3.14)
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Thus,

1 1
On—0p-1  0y,—0p 4

D D
Combining (3.15) with (3.9), (3.8) and F, < TOL gives

m 1/2
TOL
= Zkf”cf < .
(1= =1

i=1

Using (3.13) and (3.14), we obtain

20—y = 152
8 8

Equations (3.13) and (3.16) show that

(1-9)
8

f>

(3.15)

On—0n-1
(1—6)n-1

f, —

(1-9)"
8

(ol—ol D+

f. (3.16)

(1—-36)

o =0,+ 5

1 1
(0p—0p_1).

1
(On—0n1)=0)+ gfz +
Thus
* 1 1 1-46 1 1
lo —o™|| < llo —(fnllJr—(S lop =0,

This completes the proof. O

Remark 3.4. It follows from (3.16) that

1 1
Opn—0n-1 Op— 01
T =kt n—1"
a1-=4" 1-9)
Due to (3.11) and Lemma 3.2, the second term in the right-hand side is small since F, in our stopping criterion is of about
the same size as ||<r,17 - 0’1117] I. The equality (3.17) therefore suggests the application of the projector (3.12) onto curl Wy,

(317)

4. The solution of nearly singular systems of equations

We consider the solution of nearly singular linear systems of equations determined by the variational problem (2.3) with
0 < & « 1 very small, and use Raviart-Thomas finite element spaces defined in Section 3 to approximate o € H(div). Solu-
tion methods for linear systems of equations with a general singular or nearly singular matrix have received considerable
attention in the literature; see, e.g., [10,11,13-15,23]. The problem that we are considering has a structure that makes it
possible to compute a useful approximate solution in a simple manner.

4.1. Approximation properties

Let V= H(div). Define the subspace

Q) ={q€L*(Q) : qlx € Pr(K) foreach K €Ty},
and let LPy : Ly(R2) — Q,q be the local L, projection, i.e., for K € 7p,

(& —LPhg, vk = /(g —LPp)-vpdx=0 VvpeQy.
K

The projector LP;, onto Q; satisfies
lv — LPR(W)|| < CH™H [ v]| yra1 g

for all v e H'+1(Q); see [24].
Let the finite element space Q; x Vj, be defined with respect to 7. We let V; be the Raviart-Thomas space of index r;
see (2.1) and [22]. The Raviart-Thomas projection operator Iy : V— Vp, discussed in [7], satisfies

V-TIpt=LPy(V-T) VT €V} (4.1)
We have the following approximation property, see [7],

It =TTl < Ch™ izl yrar gy VT e (HTH(Q)" (4.2)
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4.2. An error estimate

Define the approximate solution o, € Vi, of (2.3) by

Voo, V-tp)+80n,th)=E 1h) YThE V) (4.3)

We have the following basic error estimate.

Theorem 4.1. Let 0 and oy, satisfy (2.3) and (4.3), respectively. Then

lo —onl <llo —To|,

where Iy, : V. — Vy, is the RT projection operator satisfying (4.1) and (4.2).

Proof. Subtracting (4.3) from (2.3) gives

(V-(6—0op),V-th)+8(0 —0op, th) =0. (44)

Using (4.1), (4.4) and the Cauchy-Schwarz inequality, we get
lo —onl*=(0 —0h0—0ap)

1
S(G—Gh,d—Gh)+g(V'(Hh0—0h),V-(Hh0—Uh))

=(<T—Uh,HhU—(Th)-i-%(v'(ﬂ—(fh),v'(nhd—Gh))
+( —op, 0 —I}0)

=(0 —op,0 —I10)

<llo —onllle — Mo,

which yields the desired inequality. O

4.3. An iterative method for nearly singular systems

When § > 0 is tiny, equation (2.6), or equivalently equation (2.3), are nearly singular. The vector defined in line 7 of
Algorithm 3.1 typically is not an accurate approximation of the solution of (2.6) due to a large factor % To overcome this
difficulty, we combine Algorithm 3.1 with the iterative method for solving nearly singular linear systems developed in [17].
The iterative method described in [17] is applicable when f € grad;, S;,. Here, we extend the method to be applicable when
fe Vi, C(La(Q)%

Consider the Helmholtz decomposition (3.2). We apply Algorithm 3.1 to obtain an approximation Ppf of f;, and use
f; =f — Pyf as an approximation of ;. Note that the solution 0’5 of (4.3) corresponding to f5 is %2 and the solution 0,11 of
(4.3) corresponding to f; can be determined by the iterative method described in [17]. The computations are summarized

by Algorithm 4.1.

Algorithm 4.1 Iterative method for nearly singular system.

1: Input: tolerance TOL> 0 and f;
2: Output: approximate solution ‘7;]1
3: 0'(1) =0
4: forn=0,1,2,...
5: o) =0-0)ATTel+ATf
6: iflo! -0} ;| <TOL
7: ol=0l
8: exit
9: end if
10: end for

We define the solution of (4.3) as aﬁ‘ +ag. Computed examples reported in [17] show that the number of iterations with
Algorithm 4.1 to achieve a desired accuracy can be reduced by vector extrapolation. We will not dwell on extrapolation in
the present paper, and instead refer to [17] as well as to the references [5,6,16] for discussions on extrapolations methods.
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Table 5.1

Performance for different § values with h = .
B 0.1 0.3 0.5 0.7 0.9
12 — Ppf|l 3.0-100% 42.107'2  42.107'2 g88-107"" 1.8.10°°
(1, Ppf) 5.8-10"1 1.2-1071 1.3-107""  27.1079  56.107°
IV - Ppf|l 6.8-107° 8.6-107° 1.8-1078 1.7-1078 1.9-10°8
# of iterations 9 8 8 7 6

5. Numerical examples

This section presents examples that illustrate the convergence behavior of the iterative scheme defined by Algorithms 3.1
and 4.1. We refer to [2] for details on the implementation of the FEM, such as the enumeration of edges and nodes.

Let Q = [0, 1]% and discretize on a uniform mesh with mesh size h. Unless stated otherwise, h = 31—2 We use the lowest
order Raviart-Thomas element space, denoted by Vy, to approximate the space H(div) in our experiments. Let ¢, ¢, ..., oy
be an edge basis for Vy, i.e.,

Vy =span{¢,, ¢, ..., oy}

For h = 31—2 the total number of edges (which is the number of unknowns) is N = 3136. For a function f= Zf\’:] fig; €
H(div), we let f= [f1, f2, ..., fN]T denote its vector representation with respect to the basis ¢, ¢,, ..., ¢y. The algebraic
equation corresponding to line 7 of Algorithm 3.1 can be written as

Gni1=1—8S'BG,+ S 1Bf,

where

D=[djl. dij=(V-¢;,V-¢)), B=[bjjl, bij=(¢;, &),

and S =D + B; see [17] for more details. We use the AMG solver developed and made available by Notay [18-21] for the
computation of S~y for a vector y € RV,

Example 1. Helmholtz decomposition. We would like to compute the Helmholtz decomposition of the vector f € Ly(Q2)
defined by f=f; + f,, where

1
fi = —grad, Cx —x) + (y —yH +8x -y —y)), fa=¢; — ¢33+ Edm-

Note that f; = curl¢ € curl Wy, where ¢ is the piece-wise linear polynomial with the value 1 at the vertex (0,0) and the
value 0 at the other vertices.

We compute the iterates o, by Algorithm 3.1 with TOL= 1020, The approximation Pjf of f, is defined as in (3.12).
Table 5.1 shows the convergence behavior of Ppf. We see that Ppf provides an accurate approximation of f,. Moreover,
f — Pyf furnishes an approximation of f; of the same accuracy since

fi — (f— Ppf) =1f; — (f1 + £, — Ppf) = —(f2 — Pyf).
The vectors f; and Pyf are nearly orthogonal. Table 5.1 shows the inner product (f;, Pxf). Also note that

-1 ( (f17 th)
cos _
€1 11| PrEll
which is about 7.

) ~1.5708,

Example 2. Nearly singular system. We solve the nearly singular system defined by (4.3) with § =107%, k=6, 8,10, 12. The
mesh sizes are h = 31—2 and h= 6]—4. The problem data f is defined by f=f; + f;, where

fi = —grad, 2(x — x*) + 2(y — yH) + 8(x = x)(y — y?)).
f, = s curl((x — x*)(y — y?)).

As described in Subsection 4.3, we first compute the approximation Pjf of f, with Algorithm 3.1. We use TOL = 10~20
in the algorithm, which then requires 9 iterations for all values of §; see Table 5.2 for details.

Then we use f— Pyf as input data for Algorithm 4.1 to determine an approximation of a’} corresponding to the data fj.
When computing the approximation of o’i’, we use TOL = 10710 in Algorithm 4.1, which requires 4 iterations for all values

of §. Results are collected in Table 5.3. Note that FT“f is our approximation of aﬁ.
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Table 5.2
Performance for different § values with h = 5.
s (0.1)8 0.1)8 0.1)10 (0.1)12
Iy — Pyf|l 6.6-10713 6.6-1071° 1.6-10716 1.5-10716
ot —alt 47-1073 4.7-1073 4.7-1073 4.7-1073
loz — ol 7.6-1073 7.6-1073 7.8-1073 2.1-1071
_sh
foa-eil 5.0-1078 5.1-10710 5.3-10712 1410712
Table 5.3
Performance for different § values with h = 617.
H) 0.1)8 0.1)8 0.1 0.1)12
12 — Ppf|l 5.8.10714 5.9.10716 8.4-10717 8.3.107"7
ot —alt 2.3.1073 2.3.1073 2.3.1073 2.3.1073
loz — ol 3.8.1073 3.8.1073 6.4-1073 5.1-107"
_ah
o2t 2.5-10°8 25-10710 43.10°12 3.4.1012
Table 5.4
Performance of proposed solution a,’: and a,’l) for different § values with h = %.
B 0.1)8 0.1)8 0.1)1° 0.1)'2
ot —alt 1.2-1073 1.2-1073 1.2-1073 1.2-1073
oz — ol 1.9-1073 1.9-1073 1.5-1072 1.4-100
_gh
ez~ 1.3.10°8 1.3.10710 9.8-10712 9.7-1012
lo —afl 2.2-1073 2.2.1073 1.5.1073 1.4-10°
lo —aPl 2.2-1073 2.2-.1073 2.3.1072 —
Table 5.5
Performance of proposed solution a}" and a,? for different § values with h = 11%.
s 0.1)8 (0.1)8 0.1)1° 0.1)12
o1 —ah 1.2.1073 1.2.1073 1.2-1073 1.2-1073
oz — ol 1.9-100 1.9-10! 1.9-10% 1.9-10%
_ah
Sl 7.8-10°6 1.3-1072 131072 1.3-1072
lo—ofll 1.9-10° 1.9-10' 1.9-102 1.9-10%
lo —opll 1.9-10° 1.9-10! 2.1-10° -

Example 3. Our last two tables show the quality of the computed solutions, o ,’; , determined by our proposed iterative
method (Algorithm 4.1), and compares them to the quality of the solutions, 6,?, computed with the MATLAB direct solver \.
Table 5.4 shows results when f=f; + scurl(x — x2)(y — y?) and Table 5.5 for f=f; + +/Scurl(x — x*)(y — y2). Note that
of =0} 407, where 0} and o7 are defined in Example 2. Algorithm 4.1 can be seen to yield higher accuracy when § > 0
is small. The entries — in Tables 5.4 and 5.5 indicate that the MATLAB direct solver was not able to compute a solution.
Further illustrations of the iterative method can be found in [17].

6. Conclusion

The paper describes a new iterative method for accurate approximation of the Helmholtz decomposition of a given
vector. The method can be applied to a finite element solution for the simulation of incompressible fluids to satisfy a
divergence-free condition.
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