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Abstract—This paper introduces a new algorithm for consensus
optimization in a multi-agent network, where all agents collabora-
tively find a minimizer for the sum of their private functions. All
decentralized algorithms rely on communications between adja-
cent nodes. One class of algorithms use communications between
some or all pairs of adjacent agents at each iteration. Another
class of algorithms uses a random walk incremental strategy, which
sequentially activates a succession of agents. Existing incremental
algorithms require diminishing step sizes to converge to the so-
lution, and their convergence is slow. In this work, we propose a
random walk algorithm that uses a fixed step size and converges
faster to the solution than the existing random walk incremental
algorithms. Our algorithm uses only one link to communicate
the latest information from an agent to another. Since this style
of communication mimics a man walking in a network, we call
our algorithm Walkman. We establish convergence for convex and
nonconvex objectives. For decentralized least squares, we derive
a linear rate of convergence and obtain a better communication
complexity than those of other decentralized algorithms. Numeri-
cal experiments verify our analysis results.

Index Terms—Consensus optimization, decentralized method,
random walk.

I. INTRODUCTION

ONSIDER a directed graph G = (V, E), where V =
{1,2,...,n} is the set of agents and E is the set of m
edges. We aim to solve the following optimization problem:

min
zeRP

(@) + = 3 fie), (1)
i=1
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Fig. 1. Communications in the k-th iteration for gossip type methods.

where each f; is locally held by agent 7 and r is a globally known
regularizer. Both f; and r can be non-convex. An algorithm
is decentralized if it relies only on communications between
neighbors (adjacent agents); there is no central node that collects
or distributes information to the agents. Decentralize consen-
sus optimization finds applications in various areas including
wireless sensor networks, multi-vehicle and multi-robot control
systems, smart grid implementations, distributed adaptation and
estimation [1], [2], distributed statistical learning [3]-[5] and
clustering [6].

A. The Literature

There are several decentralized numerical approaches to solve
problem (1) or its special case without the regularizer r. One
well-known approach lets every agent exchange information
with all, or a random subset, of its direct neighbors per iter-
ation. This is illustrated in Fig. 1, where agent ¢ is collecting
information from all its neighbors (to update its local vari-
ables). This approach includes well-known algorithms such as
diffusion [1], [2] and consensus [7], [8], distributed ADMM
(D-ADMM) [9]-[13], EXTRA [14], PG-EXTRA [15], gradient
tracking [16]-[21], exact diffusion [22], NIDS [23] and beyond.
Among them, Push-Sum [24], DEXTRA [25], EXTRAPUSH
[26], subgradient-push [27], and Push-Pull methods [20], [21]
are designed for directed graphs, while DIGing is for time-
varying graphs. The aforementioned algorithms have good con-
vergence rates in the number of iterations. D-ADMM, EXTRA,
DIGing, exact diffusion, and NIDS all converge linearly to the
exact solution assuming strong convexity and using constant
step-sizes. Their communication per iteration is relatively high.
Depending on the density of the network, the costs are O(n)
computation and O(n)-0(n?) communications per iteration.

To alleviate the communication burden of decentralized op-
timization methods, another line of works [28]-[30] study the
communication pattern illustrated in Fig. 2, specifically, ran-
domly activating one edge for bi-directional communication
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Fig. 2.
methods.

Communications in 5 adjacent iterations for randomized gossip type

Fig. 3.
methods.

Communications in 5 adjacent iterations for random walk based

Fig. 4. Communications in the k-th iteration for RW-ADMM.

in each iteration. Among them, randomized gossip algorithms
proposed in [28], [29] are designed to solve average consensus
problem. More recently, ESDACD [30] implements such ran-
dom activation to solve general smooth strongly-convex consen-
sus problem. In general, the selected edges are not continuous,
some global coordination is required to ensure non-overlapping
of iterations.

Another approach is based on the (random) walk (sub)
gradient method [31]-[35], where a variable x will move through
a (random) succession of agents in the network. At each it-
eration, the agent ¢ that receives x updates it using one of
the subgradients of f;, followed by sending x to a (random)
neighbor. Fig. 3 illustrates the communications along a walk
(1,4,8,1,2,4,5,...). Since only one node and one link are used
at each iteration, this approach only costs O(1) computation
and O(1) communication per iteration. Thanks to the natural
continuity of random walk, it is easy for the involved agents
to coordinate. The works [34], [35] apply random walks in the
context of adaptive networks and relies on stochastic gradients. If
these algorithms use a constant step-size, their iterates converge
to a neighborhood of the solution. If the step-size is small,
the neighborhood upper bound will be proportionally small but
convergence becomes slow. For applications where convergence
to the exact solution is required, decaying step-sizes must be
used, which leads to slow convergence. The authors of recent
work [36] study a mixture of each node exchanging information
with all pattern and random walk pattern as shown in Fig. 4, and
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TABLE I
COMMUNICATION COMPLEXITIES OF VARIOUS ALGORITHMS WHEN SOLVING
DECENTRALIZED LEAST SQUARES PROBLEM WITH A2 (P) Is CLOSE TO 1. THE
NETWORK HAS n NODES AND m ARCS, m € [n,n(n — 1)], WITH EACH
NODE Is CONNECTED BY m/n ARCS. THE QUANTITY € IS THE TARGET
ACCURACY, P IS THE PROBABILITY TRANSITION MATRIX, AND A2 (P) IS THE
SECOND LARGEST EIGENVALUE OF P, ONE OF THE MEASURES OF THE
CONNECTIVITY OF THE NETWORK

Algorithm | Communication Complexity

1 In® (n)
o(n (1) g3

Walkman (proposed)

p-apMM (1] | 0 (n(3) - (72))
EXTRA [14]

O( ) ()
o () (=Hhw))

1y, __vmn
O(ln(e) <1—A2<P>>)
=

o(m(t) 5ws)

In (
Exact diffusion [22] In (
ESDACD [30]

RW-ADMM [36]

propose RW-ADMM, where each node in the random walk starts
computing after collecting information from all its neighbors.
RW-ADMM is proved to converge under constant stepsize on
the sacrifice of more communication per iteration.

B. Contribution

In this paper we propose Walkman, a new random walk
algorithm!! for decentralized consensus optimization that uses
a fixed step-size and converges to the exact solution. It is sig-
nificantly faster than the existing random-walk (sub)gradient
incremental methods.

When both r and f; are possibly non-convex and f; are
Lipschitz differentiable, we show that the iterates 2* generated
by Walkman will converge to the stationary point x* almost
surely. In addition, we establish a linear convergence rate for
decentralized least squares.

Walkman is communication efficient. For decentralized least
squares, the communication complexity of Walkman compares
favorably with existing popular algorithms. In Walkman, the
activation of agents follows a Markov chain — the probability to
activate adjacent agent iy depends only on the current agent iy,
which is defined as p(i41|ix ). Define the transition probability
matrix P € R™*" where [P];; = p(ir+1 = jlix = 1) € [0, 1].
Matrix P models the communication pattern of Walkman and
affects its convergence performance. The communication com-
plexity of various decentralized algorithms are summarized in
Table I. We show that, if

In*/3(n) N 1
e T om2/3 )

which implies the connectivity of the network is at least moder-
ate, then Walkman uses less communication than all the state-
of-the-art decentralized algorithms listed in the table.

X (P) <1

C. Discussion

Walkman is a random-walk algorithm. Its efficiency depends
on how long it takes the walk to visit all the agents. This time is
known as the cover time. When Walkman only needs to visit
every agent at least once (which is the case to compute the

U Communication pattern is shown in Fig. 3.
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consensus average), the cover time is exactly the complexity
of Walkman. For the cover times of random walks in various
graphs, we refer the reader to [37, Chapter 11].

For more general problems, Walkman must visit each agent
infinitely many times to converge. Its efficiency depends on how
frequently all of the agents are revisited. For a random walk, this
can be described by the mixing time of the underlying Markov
chain. Next, we present relevant assumptions.

Assumption 1: The random walk (i)g>0, i € V, forms an
irreducible and aperiodic Markov chain with transition prob-
ability matrix P € R™*" where [P];; = p(ix41 = jlix = 1) €
[0, 1] and stationary distribution 7 satisfying 7* P = 7" .

If the underlying network is a complete graph, we can choose
Psothat P;j = p(ig41 = jlip = 1) = + foralli, j € V,acase
analyzed in [38, §2.6.1] (barring asynchronicity therein). For a
more general network that is connected, we need the mixing time
(for given 0 > 0), which is defined as the smallest integer ()
such that, forall 7 € V,

H[PT(5)]Z,,: _ 71_TH < om., 3)

where 7, := min,cy m;, and [PT(‘S)]L: denotes the <th row of
P*(%) This inequality states: regardless of current state i and
time k, the probability of visiting each state j after T(J) more
steps is (dm.)-close to 7, that is, for all 4, j € V,

[P — 7| < om.. @

A good reference for mixing time is [37]. The mixing time
requirement, inequality (3), is guaranteed to hold for!?!

T((S) = ’71%‘(13) In (;7/13“

for o(P) = sup{[lfTPII/|IfIl: 71 =0, € R"}.

We will use inequality (4) to show the sufficient descent of
a Lyapunov function L%.B1 A similar Lyapunov function has
been used in [39] and extended in [40]. However, the analyses
in [39], [40] only help us show Lg > Lg“ and the existence
of a lower bound. Because a random walk (ij)>o is neither
essentially cyclic nor i.i.d. random, we must use a new analytic
technique, which is motivated by the recent paper [41]. This new
technique integrates mixing-time bounds with a conventional
line of convergence analysis.

For decentralized least squares, we give the communication
complexity bound of Walkman in term of o (P). This quantity
also determines the communication complexity bounds of D-
ADMM, EXTRA, and exact diffusion. Therefore, we can com-
pare their communication complexities. For moderately well
connected networks, we show in §V that the bound of Walkman
is the lowest.

(&)

[2lHere is a trivial proof. For any k > 1, by definition, it holds [Pk]Z —
7l = ([P*¥1],. —7")P, and ([P*);. — 7)1 =0. Hence, [[PF];.—
|| < |[[P* Y, — 7T ||o(P) <+ < |Li. —7'||o*(P). We can bound
e —nT P < (1 -m)2 + 3, w2 < (1-m)2 4 (1—m)? = 2(1 -
7,)2. Therefore, by ensuring v/2(o (P))*(®) (1 — 7,) < &7, which simplifies
to condition (5) by Taylor series, we guarantee (3) to hold.

BlSee equation (16) for the definition of LE.
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Even though D-ADMM, EXTRA, and exact diffusion use
more total communications, their communications are simul-
taneous over different edges, so they may take less fotal time.
However, this time will increase and even overpass the Walkman
time if different edges have different communication latencies
and bandwidths, and if synchronization overhead is included. In
an ideal situation where every communication takes the same
amount of time and synchronization has no overhead, Walkman
is found to be slower in time, unsurprisingly.

Although this paper does not discuss data privacy, Walkman
protects privacy better than diffusion, consensus, D-ADMM,
etc., since the communication path is random and hence instead
of periodically communicating local information, only the cur-
rent iterate ¥ is sent out by the active agent. Updating history
is neither sent nor traceable.

The limitation of this paper lies in that the linear convergence
rate analysis applies only to least squares (though convergence
and a sublinear convergence rate are established for more general
problems) and that the transition matrix is stationary. They need
more space to address in our future work. Another direction to
generalize this work is to create multiple simultaneous random
walks, which may reduce the total solution time. The information
exchange across random walks will require careful design and
analysis.

In the rest of this paper, §II derives Walkman, §III presents
the main convergence result and the key lemmas, §1V focuses on
least squares and obtains its linear convergence rate of Walkman,
§V analyzes communication complexities and make compar-
isons between Walkman and other algorithms, §VI presents
numerical simulation results, and finally §VII summarizes the
findings of this paper.

II. DERIVATION OF WALKMAN

Walkman can be derived by modifying existing algorithms to
use a random walk, for example, ADMM [42], [43] or PPG [44].
By defining

vi=col{y,y2, ..., yn} ER™, F(»):= > filyi), (6)
i=1

where the operation col(-) refers to stacking vectors column by
column, we can compactly rewrite problem (1) as

1
i —F
min r(z) + ~F(),

subjectto 1 ®xz —y =0, )
where 1 = [11 ... 1]" € R” and ® is the Kronecker product.

The constraint is equivalentto x — y; = O fori = 1,...,n. The
augmented Lagrangian for problem (7) is

muy@w:mm+%<Fwwwan®m—w

+ §un ®c —yl2>, ®)

where z:=col{z,...,2,} € R" is the dual variable
(Lagrange multipliers) and 5 > 0 is a constant parameter.
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The standard ADMM algorithm is an iteration that minimizes
Lg(z,v;2) in x, then in v, and finally updates z. Applying
ADMM to problem (7) yields (not our algorithm)

kb1 _ 1 zn: ( k Zf) (9a)
X - — i o |

n 2\
= proxér(sﬁkﬂ), (9b)

k
E4+1 _ k1, Zi ;
Y, =Pproxiy (ac + E) , VieV (9¢c)

2 =2k Bt — b Y, VieV (9d)

where the proximal operator is defined as prox.;(z):=
arg min, f(y) + 2%/ ly — x||3. Since computing the sum in (9a)
needs information from all the agents, it is too expensive to
realize in a decentralized fashion. However, if each ADMM
iteration updates only y;, and z;, in (9c) and (9d), keeping
the remaining {y; }i, . { i }ii, unchanged, the algorithm then
changes to:

zFtl = prox%T(fk"'l), (10a)
( k1 Zf) .
prox., |z =), i=
k1 5 B (10b)
Yk, otherwise
k k1 _ o kHly o
z; + 6 T - Yq 9 1 =1k
RIS ( Y ) | (100)
2k otherwise
k+1 k
FhH2 _ ghHl | 1 it iy, 1 gk — Zig
n \ 7" 64 n\’"% B
(10d)
If we initialize {y?}"_; and {z?}"_; so that
1 & ( 29>
—1 0 i
PRRET ol (s A Y (1)

for example, by simply settingy? = 0and z{ = 0,i = 1,...,n,
then with only the i-th part of variables ¥ and z updated in each
(10), mathematical induction implies that (10d) automatically
maintains

—k41 1Zn:(k sz>
z = - v — — |-
P> i T g

Note that, the second equation of the initialization condition
in (11) can be conducted locally, whereas the constraint on Z*
only involves the agent where the random walk starts. Therefore,
a simple initialization satisfying (11) can be realized without
any “consensus”’-type preprocessing. We call (10) Walkman. Its
decentralized implementation is presented in Algorithm 1. The
variable 7" is updated by agent i;, and passed as a token to agent
t1-

Use V f; instead of prox,. If the regularizer r is proximable,
i.e., prox,,. can be computed in O(n) or O(npolylog(n)) time,
the computational resources are mainly consumed on solving the
minimization problem in step (10b). We can avoid it by using the
cheaper gradient descent, like in diffusion, consensus, EXTRA,

IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 68, 2020

Algorithm 1: Walkman.

Initialization: initialize 3 and 2! so that (11) holds;
Repeat for £k = 0,1, 2, ... until convergence
agent iy, do:

update k1 according to (10a);

update yf:l according to (10b) or (10b);

update zfjl according to (10c);

update 2 according to (10d);

send Z¥12 via edge (i, 7x41) to agent 15 1
End

DIGing, exact diffusion, and NIDS. If f; is differentiable, we
replace (10b) with the update:

1 1
b _ T + =z Ve, i=ig

K3
y R
yr,

(10b%)
otherwise.

Compare to (10b), update (10b’) saves computations but can
cause more iterations and thus more total communications. One
can choose between (10b) and (10b’) based on computation and
communication tradeoffs in applications. In the next section, we
are going to analyze their performance.

III. CONVERGENCE

In this section we present convergence of Walkman based on
the following assumptions.

Assumption 2: The objective function in  original
problem (1), 7(z) + 1 31" | f;(2), is bounded from below by
/ and is coercive over RP, that is, r(z) + = >, fi(z) — oo

for any sequence {2}, C RP with ||z¥|| P2 .

Assumption 2 is not over R™? but RP, so it is easy to satisfy.
Assumption 3: Bach f;(x) is L-Lipschitz differentiable, that
is, for any u, v € RP,

IVfi(u) =V fi()[| < Lllu —of|, i=1,...,n. (12)

Assumption 4: The lower semi-continuous function r(x) is
~y-semiconvex, that is, 7(-) + % | - || is convex or equivalently,

r(y) + 2lly = 2l? > r(2) + (d.y — @), V. ¥d € Or(a).
(13)
We first introduce the notation used in our analysis. The first

time that the Markov chain (iy)r>0 hits agent ¢ is denoted as
T; := min{k : i;, = i}, and their max over i is

LT}

By iteration 7', every agent has been visited at least once. Based
on Assumption 1, the Markov chain is positive recurrent and,
therefore, Pr(T < oo) = 1. For k > T, let t(k,4) denote the
iteration of the last visit to agent ¢ before k, that is,

T := max{Ty,.. (14)

(k1) = max{k’ : iy =i, k' < k}. (15)

Next, we define two separate Lyapunov functions for Walk-
man updating ¥ using (10b) (computing proxi 7,) and (10b”)
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(computing V f; (yF)):

L = Lg(a*,y%; 2%), (16)

2 < . )
Mk = Lk I T(kﬂ)+1 o T(k,z) 2 17
A R an

where Lg(x,; £) is defined in (8). We establish the descent of
L’g (resp. Mg) for Walkman using (10b) (resp. (10b*)).

Lemma 1: Under Assumptions 2, 3, and 4, the iterates
(2, 9% 2%) >0 generated by Walkman (10), or Algorithm 1,
satisfy the following properties:

1) for (10b) and § > max{y,2L + 2}, (Lg);@o is lower

bounded and convergent;

1) for (10b’) and 8 > max{~y,2L? + L + 2}, (M[];)kzo is

lower bounded and convergent;

2) for Walkman with either (10b) or (10b’), the sequence

(xF, ¥, 2%);50 is bounded.

See the Appendix for a proof. Based on Lemma 1, we establish
the convergence of subgradients of L%.

Lemma 2: Take Assumptions 1-4 and Walkman with 3 given
in Lemma 1. For any given subsequence (including the whole se-
quence) with its index (ks),>0, there exists a sequence {g*}1>0
with g € 8L’5+1 containing an almost surely convergent sub-

=0) = 1.

Proof: The proof sketch is summarized as follows.
1) We construct g¥ € OLE™ and show that its subvector

. . k—t(d)—-1
gF = (g%, g%, gb) satisfies limy o E[lq) 7|2 = 0,

where the mixing time t(J) is defined in (5).
2) For k > 0, define the filtration of sigma algebras:

subsequence (¢"*/ ) >0, that is,

m@mm%
J—00

k

X::a(:zo,... k0 E 50 k

LA Y Y 2 2 g, .

i),

‘We show that

k—1(6)—1 — — —

E (Jlaf ™ @) 2(1 - oym gt O,
where 7, is the minimal value in the Markov chain’s
stationary distribution. From this bound and the result in
step 1), we can get limy,_... B[ g*|| = 0.

3) From the result in the last step, we use some inequalities
and the Borel-Cantelli lemma to obtain an almost surely
convergent subsubsequence of g”.

The details of these steps are given in the Appendix. ]

Theorem 1: Under Assumptions 1-4, for 8 > max{~, 2L +

2} (resp. B > max{y,2L? + L + 2}), it holds that any limit
point (z*,y*, 2*) of the sequence (z*,»*, z*) generated by
Walkman with (10b) (resp. (10b’)) satisfies: z* =y}, © =
1,...,n, where z* is a stationary point of (1), with probability
1, that is,

Pr <O € or(z") + % ZVfo*)) =1 (18)
i=1

If the objective of (1) is convex, then z* is a minimizer.

2517

Proof: By statement 2) of Lemma 1, the sequence
(% y* 2%) is bounded so there exists a convergent subse-
quence (z¥s, y¥s, z¥+) converging to a limit point (x*, y*, z*)
as s — oco. By continuity, we have

Lg(z*, 3%, 2") = lim Lg(ak, yk= zFe). (19)
5—00

Lemma 2 finds a subsubsequence gksi € 8Lg+1 such that

Pr(lim; ., [|¢"*/ || = 0) = 1. By the definition of general sub-
gradient (cf. [45, Def. 8.3]), we have 0 € OLg(x*,y*, z*).

This completes the proof of Theorem 1. |

Next, we derive the convergence rate for Walkman with a
specific initialization, z) = V f; (). Specifically, to avoid con-
sensus preprocessing, we need V f;(y)) = yY. In other words,
y? is a stationary point for the problem minyegs fi(y) — g llyl|%.
This preprocessing can be accomplished without communica-
tion.

Theorem 2: [Gradient sublinear convergence] Consider
Walkman using either (10b) or (10b’) update. Under Assump-
tions 1-4, with 8 given in Lemma 1, and local variables ini-
tialized as V f;(y?) = By? = 29, Vi € {1,...,n}, there exists
a sequence {g*} x>0 with g* € aLgH satisfying

C
: k|2 0 _
ir;l}r%EHg I© < —=(Lg = [), VK >T(6) +2, (20)

where C'is a constant merely depending on 3, L, and n, T(6).
With 5, L, v independent from the network structure, one has
C~0O( &@;:ﬂ% ), where T(0) is defined in (5).
Proof: The detailed proof can be found in Appendix C. W
It is possible, though more cumbersome, to show a sublinear
convergence rate under a more general initialization. We decided
not to pursue it.

IV. LINEAR CONVERGENCE FOR LEAST SQUARES

In this section, we focus on the decentralize least-squares
problem:

11
in = > =[Aiy — bl
min — > SllAiyi = bil

i=1

subjectto Yy, =y =+ =y, = x, 2D

which is a special case (7) with regularizer r = 0, local objective
fi(yi) == 3| Aiyi — bs||* and gradient V f;(y;) = A (Asy; —
b;). The Lipschitz constant L in Assumption 3 equals o}, =
max; omax(A;-rAi), where 0y,,.x (+) takes largest eigenvalue. To
assure that there exists a single optimum to problem (21), the
following analysis is based on the assumption that the matrix
Sy AIAZ- isreversible, which implies (21) is strongly convex.

We apply Walkman (or Algorithm 1) updating with prox,,
i.e., utilizing (10b), and starting from

y) = (ATA; — BI) H(AlY;), Vi€V,

(22)
(23)

where (22) is well defined for 3 > max; amax(AiTAi ). This is
to ensure yY — 20 /8 = 0 and thus (11) for all k¥ > 0.
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We analyze the complexities of Walkman for problem (21)
based on the Lyapunov function hg(y) : R" — R,

n

1 B 2 1 2 1
ats) = = 3 (DI = S1Aut’” + 3il?)
i=1

Ly 4o, (24)

where T :=1[(I- %AIAl), o (I- %AlAn)] € Rpxmp
and c:= n—lﬁ S Alb; € RP. The following lemma relates
hg(y) and the augmented Lagrangian sequence.

Lemma 3: With initialization (22) and (23), it holds that

ha(¥*) = Lg (2T, 5% 2%). (25)

Proof: From the optimality condition of (10b), we can verify

T k k+1 (@) g
Aik(Aikyi:l —b;,) =Bzt + Zf; - 5%:1 = Zik+17

(26)

for k > 1, where (a) follows from (10c). In Walkman, each pair
of y; and z; is either updated together, or both not updated. Then
by applying (23) and (26), we get

o = AT(Awf —b;), Vi€V, k>0, 27)
Substituting (27) into (10d) and (10a) yields z*+! = TyF +
¢, Vk > 0.Eliminating z¥ and 2" 1 in L (2%, y*; 2*) using
the above formulas produces (25). |

The following lemma establishes that k() is strongly con-
vex and Lipschitz differentiable.

Lemma 4: For anetwork with n > 2 agents, and the parame-
ter B > 0%, Where 0 := max; oax (AT A;), the function
hs(-) is

1) strongly convex with modulus v = , and

2) Lipschitz differentiable with Lipschitz constant L =

B(1 = 1(1 - Zis)?),

Proof: As a quadratic function, hg(-) is v-strongly convex
with E—Lipschitz gradients if, and only if, its Hessian (by (24))
H satisfies

(n=1)(B=0pax)
n2

B

1 _
vVI<H:="1,,— —A - T'T < LI, (28)
n n

where A := diag(ATA;, ATA,,...,ATA,). With 3 > max;
Omax(ATA;), we define the symmetric positive definite matri-
cesD, := (I— %A;'-A,;)l/2 fori € V. The spectral norm of D;
satisfies

0 r*nax % 0 max(l &2—1 &7) > %

Stacking D;’s into

(30)
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Then, for any vector w := col{wy, ..., w,} € R" where w; €
RP, we have the interval bounds for ||diag(D)w||:

D1’IU1
|diag(D)wl| = (31)
D,w,
e [(1 - Zoax ), wﬂ @
It is easy to check
wTHw :g(diag(D)w)T (I — %DTD>(diag(D)w). (33)
Therefore, we get (28) from
wTHwW > B (1 - l) |diag(D)w||? (34)
n n
é _ l _ % 2
22 (B o
and
wHw < 2 (| ding(Dpwl? - 1) (6)
<= L (1= T ) ) )
n ¢ n 153 ¢
_ 6 1 O-:;lax : 2
—5<1‘E<1‘ . ))le (38)
L
[}

Lemma 5: With > o, .., the unique minimizer of hg(-)
is ¥ :=col{yf,...,ys} with yr=a*= (> ATA)™!
(>, ATb;). These components are also the unique solution to
(21), as well as the unique minimizer of >_"; 1[|A;z — b;[|%.

Proof: Since y* must satisfy Vhg(»*) = 0, we have

B 1,1 g LT
D) =2 (=2 ATA ) -2 (1-2ATA, ) (Ty*
vlh/3<y> n Yi 6 () iYi n ﬂ 4 ? ( y +C)
1
- g <I—EAZTAi) (Wi —Tv —¢)=0.  (39)
Since I — FAJA; - 0 with 3 > 7,,., we conclude
v Ty —e=0,Yi=1,...,n, (40)

which implies y* given in the Lemma. It is easy to verify the
rest of the Lemma using optimality conditions. |
Define one epoch as t(9) iterations, and let
. s
Wy = min{hs ()}, F:=Ehs("™) —hg, @)
where we use ¢ to index an epoch. The next lemma is fundamen-
tal to the remaining analysis.
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Lemma 6: Under Assumption 1 and 8 > 207 . + 2, for any
0 > 0, we have
26%1(9)
F} < ———L(F, — Fop1) - E[p"™@ —p*2, @2
¢ 771(1_5)77*( 1= Fi1) - Elly U5 42
where T(9) is defined in (5).
Proof: We first upper bound ||V hg(y*)||?. Verify
Vihs(F) = gng (4 — T ). 43)
Investigate step (10b) for i = 7y, as
1 1,17
Yt = argymin §||Azy —bi||* + g y —ahtt — Bzf
= (ATA; + BI) ' (A]b; + BaF Tt + 2F)
D(ATA; + 1) (BT + e+ ATA})
1 ~1
= k+<I+ BAIAl) (Tyk—kc—yf)
1 -1
2k -3 (I+ EAIAz) D;? (Vihs()) . (@4)
where (a) follows from (27) and T"s definition. Thence,
_B
1VehsM) = 2| (1 25 (AT AL)2) 6t — o)
< glly’“+1 - y’“ll, (45)

For any k& > t(d) — 1, we further have
Vi (7O |2
= IV h(OF " OFY) = Vi hg (5
< 2| Vi hg(VFTOH) —
(19) 28°7

S I
- n? n?
d=k—1(8)+1

QﬂQT/ 2ﬁ2 k
max{ FURERCY Z Hyd"_l—y

d=k—1(8)+1

) + Vi ha (5|2
VichsOM)I* +2[ Vi hs (6F))1?

_yk”Z

IN

d||2

28%7(6 k
< nQ( ) Z ||yd+1

d=k—7(8)+1

-7 (46)

Where T = 1(d) — 1 and the last inequality holds because /5 >
07 - With the filtration X% = {30, ... ¥ g, ... g1},

IE(”%,JLg(y’C O 12|k T6)+1)

= E (|| Vi hs 04O 2pA O )
N

Z PT((S) % T(a)u||th3(yk_T(6)+1)“2
Jj=1

D (1= o)m | Vhs PO 2

> (1= 0)m[Vhs(y I

Reverting the sides of (47) and taking expectation over
Xk-TO)+1 " followed by applying (46), we have for k

(47)

2519
>1(6)—1
E||th(yk*T(5)+l)H2
2ﬂ2 k . .
_n21— Z E ([v% = »%)1%) . (48)
d k—1(8)+
Notice that
hg(¥*) — hg(* 1)
(25) La(a+1, y%; 29) — Ly(ah+2, yk+1, 24+
= Lp(a" 1,5k, Zk)ng+1+ng+1iLﬁ(xk+27yk+1; 2
1
> =]k — o2 49)
n

where the last line follows from parts 1 and 2 of Lemma 1.
Combining (49) and (48), we get

E[[Vhg (5" )2

253°1(9) o
<—/— - T(6)+1y _ E+1y)
<o ge E(rOM T =hs M) (s0)
Now with k£ = (¢ + 1)T(d) — 1, (50) reduces to
E[|Vhs(»")|”
287(0) <(5) (t+1)7(5)
< T _ T
< o= o7 B (B 07 s+
() _26%1(8)
= ey (P Fa) (51)
By the convexity of hs(-),
Ehg(y"™ )~y < E(Vhg ('), »"O—y*) (52)

Since both sides of (52) are nonnegative, we square them and
use the Cauchy-Schwarz inequality to get

F? <E|Vhs(3'™ )2 - E[y"™ (53)

Substituting (50) into (53) completes the proof. [ |
Now we are ready to establish the linear convergence rate of
the sequence (F})i>0.

_y*||2.

Theorem 3: Under Assumption 1, for 8 > 207 .. + 2, we
have linear convergence (with v given in Lemma 4):
n(l—0)mr\ "
Fo1 <14+ ———F— F, Vt>0. 54
t+1 S ( + 1527(0) > t =z (54

Proof: By the strong convexity of hg(-) and y* =
arg min hg(y), it holds for any y € R™ that,

v * *
Sy =1 < hs() = hs (7). (55)
Hence,
2Eh ytT(é) — h* 2F
EHytT(ﬁ) 73}*H2 < ( 5( ) ﬁ) _ (56)
14 14
Substituting (56) into (42), we have
C 48%7(0)
th < ; (Ft - Ft+l) Ft, where C = m (57)
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By (49), the sequence {hs(»*)} is non-increasing, implying

0 < Fyy1 < F,. This together with (57) yields
C

FiFiq < > (Fy — Fry1) F, (58)

which is equivalent to (54). |

Theorem 3 states that Walkman for decentralized least squares
converges linearly by epoch (every () iterations).

V. COMMUNICATION ANALYSIS

This section derives and compares communication complexi-
ties with some state-of-the-art methods to solve problem (68) in
solving two different types of problems: the decentralized least
squares problem and the general nonconvex nonsmooth prob-
lem. In the following analysis, communication of p-dimensional
variables between a pair of agents is taken as 1 unit of commu-
nication, while v and L are taken as constants independent from
network scale n.

A. Solving Least Squares Problem

First, we establish the communication complexity of Walk-
man. From (55) and (41), we have

2 (54) /9 1—&mr\ "
E[y"® — 2 < 2F, < (_) (1 N n(l—&)m 1/) 7,
14 1%

45327(8)
(59

To achieve mean-square deviation G := E[|»'™(®) — y*||2 <,
it is enough to have

2Fy n(l—&mr\
() (i) s« @
which is implied by
B 2k n(l —o6)mw
t-ln(yﬁ)/ln<1+—4ﬁ%(6) ) 61)

Since [ can be regarded as constants that are independent of
network size n, and v is O( %), we can write:

t~ O (m (%) /In <1+ %))

For each epoch ¢, there are T(0) iterations, which use O(t(9))
communication. Hence, to guarantee G; < ¢, the total commu-
nication complexity is

O( <ln (%) /In (1 + %)) 'T(5)>

Recall the definition of T(J) in (5), by setting § as 1/2, the
communication complexity is

of|m (%) /In <1+ u

epoch number

(62)

(63)

—o(P))m. 1 ! 2
. n—=

21In 7% 1—0o(P) m |’
* —— ———

comm. per epoch

(64)

where we remember o(P) := sup scgn. ra— |/ TP|I/[ f]-
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For simplicity of expression and comparison, in the suc-
ceeding parts we assume that the Markov chain is reversible
with P = PT and it admits a uniform stationary distribution
7l = 7TP with:

T=[1/n,...,1/n]" € R",
which implies 7, = min; 7; = 1/n. With P being a symmet-
ric real matrix, we also have o(P) = Ay(P) = max{|\;(P)]| :

Ai(P) # 1}. We get the total communication complexity of
Walkman as
In(n)

O( (h“ (5)/m (1 i 12;12?2(:)))> (1 - )\Q(P)) (65)

epoch numbers

comm. per epoch

1) Communication Comparisons: For comparison, we list
the communication complexities of some existing algorithms.

Firstly, we study the communication complexity of ESDACD
[30], which is an accelerated generalization to the randomized
gossip method originally designed to solve the average con-
sensus problem. When applying ESDACD, the agents should
be synchronized to keep track of which iteration the network
is going through. And in each iteration, only one edge in the
network is activated to communicate bi-directionally. Based on
Theorem 1 and following the derivation of Section B2 of [30],
with algorithmic parameter yi; ; = 1 and all the edges uniformly
selected with probability 1/m,!* the communication complexity
of ESDACD to achieve the deviation G; < eis

0 (ln G) ' dmin(lwi A2(P))> |

where d.,i, denotes the smallest degree among d, . .., d,.

As for RW-ADMM [36], in each iteration, it evokes the com-
munications between the activated agent and all its neighbors,
and thus consumes d,y. communications per iteration where
dove = % >, d; is the averaged degree in the network. This
implies that RW-ADMM requires more communications than
Walkman per iteration. To calculate the communication com-
plexity of RW-ADMM, we consider a simple d-regular graph in
whichm = nd/2. We also assume the state transition matrix P is
symmetric and doubly stochastic so that myax = Tmin = 1/7.
In addition, we assume the current agent will activate one of
its d neighbors with a uniform probability p = 1/d and thus
it holds that pyax = Pmin = 1/d. Under these conditions, the
communication complexity for RW-ADMM is verified as

o(n(}) 75

Next, we consider gossip based methods. D-ADMM [11] has:

(66)

(67)

(68)

0 m(%)/ln(wm) o

comm. per iter.

iteration numbers

[#INonuniform selection of edges is not practical in real applications. Since
each agent should generate the randomly selected edge in each iteration with
the same seed, nonuniform selection of edges implies each agent should cache
the diverse sampling probabilities for each edge.

You created this PDF from an application that is not licensed to print to novaPDF printer (http://www.novapdf.com) apply.



http://www.novapdf.com/

MAQO et al.: WALKMAN: A COMMUNICATION-EFFICIENT RANDOM-WALK ALGORITHM FOR DECENTRALIZED OPTIMIZATION

where m is the number of edges. The communication complexity
of EXTRA [14] is

o(n(2) o) )

As to exact diffusion [22], the communication complexity is

o () /(o 5552) ) )

where C' only depends on the condition number of the objective
function, independent of \o(P) and n.

Considering the case € < 1/e, it holds In(n/e) <Inn -
In(1/e). Since In(1 + =) = « for z close to 0, Walkman in (65)
can be simplified to:

o(o(2) )

We similarly simplify the communication complexities in (68),
(69), and (70). They are listed in Table I in §I-A. Clearly,
ESDACD has a better communication complexity than all the
compared methods but may still be worse than Walkman.

Walkman is more communication efficient than ESDACD
when

(69)

(70)

(71)

nln®(n) m
(1= 22(P))* ™ (dmin(1 = A2(P)))1/2°

With dyin < m/n, a sufficient condition for (72) is
1/3 1 2 1/3
AﬁP)<1—ﬁ—i£@ﬂ—zlf<£) (T3
m

= mi/3

where the approximation holds for In(n) < n and with In(n)
ignored. Condition (73) indicates the network has moderately
good connectivity. When this holds, Walkman exhibits superior
communication efficiency than every compared algorithm.

2) Communication for Different Graphs: Let us consider
three classes of graphs for concrete communication complex-
ities.

Example 1 (Complete graph) In a complete graph, every agent
connects with all the other nodes. The number of edges m =
O(n?) and \y(P) = 0, dyin = n. Consequently, the commu-
nication complexity of Walkman is O(In(1/¢)n1n®(n)) while
that of ESDACD is O(In(1/¢)n?/?), and those of the other algo-
rithms are O(In(1/¢)n?). Noticing In®(n) < n'/2, Walkman is
more communication efficient.
Example 2 (Random graph) Consider the random graphs by
Edgar Gilbert [46], G(n, p), in which an n-node graph is gener-
ated with each edge populating independently with probability
€ (0,1). Let A € R™*" denote the adjacency matrix of the
generated graph, with A; ; = 1 if nodes 4 and j are connected,
and O otherwise. The (4, j)-th (i # j) entry of the transition prob-

ability matrix Pis P; j; = j;L where dyax = max; Z
is the maximal degree of all the n nodes. By union bound and
Bernstein’s inequality and Theorem 1 of [47], one has

1 - (P) = O(1).

(72)

(74)

With such setting, Walkman exhibits a communication com-
plexity of roughly O(In(1/¢)nIn® n) while that of ESDACD is
O(In(1/€)n3/?), and the other algorithms have O(In(1/¢)n?).

2521

Hence, Walkman is more communication-efficient when n is
sufficiently large.

Example 3 (Cycle graph) Consider a cycle, where each agent
connects with its previous and next neighbors. One can verify
that

1— A (P) O (1/n%),

and m = O(n). Hence, Walkman has a communication com-
plexity of roughly O(In(1/€)n®In®n) while, in (68) and (66),
D-ADMM and ESDACD have O(n? In(1/¢)), and in (70) ~(70),
EXTRA and exact diffusion have O(n3In(1/¢)), so Walkman
is less communication-efficient.

=0 (1 —cos(2r/n)) = (75)

B. Solving General Nonconvex Nonsmooth Problems

According to Theorem 2, we first derive the communication
complexity of Walkman. To achieve the ergodic gradient de-
viation E; := ming<; E|[g¥||?> < € for any t > T(6) + 2, it is
sufficient to have

C
— (L3

Taking L% and f as constant independent from n and the network

structure, one has
1 )2 +1
toofl. X0+
e (1-9)nm.

Recall the definition of T(4) in (5), by setting 0 as 1/2, the
communication complexity is

In? (L
1 A ) (78)
e nm(l—o(P))?

~f)<e (76)

(77)

We consider a reversible Markov chain with PT = P em-
bedded on an undirected graph, and have the communication
complexity of Walkman is

o T nwe)

1) Communication Comparisons on Different Graphs: Next,
we compare the communication complexity of Walkman with
existing algorithms, D-GPDA [48] and xFILTER [48] on two
specific types of graph structures. On a complete graph, the
communication complexity of Walkman is O(ln ), whereas,
according to [48], the better communication complexity be-
tween D-GPDA and xFILTER is O("—:) Next, we consider the
cycle graph which is sparsely connected. Walkman consumes
O(n* In” =) amount of communication on it, whereas the better
commumcatlon complexity between D-GPDA and xFILTER
is O(%) Hence, we can draw a similar conclusion as in
Section V-A, that is, Walkman is more communication efficient
on a more densely connected graph.

(79)

VI. NUMERICAL EXPERIMENTS

In this section, we compare Walkman with existing state-of-
the-art decentralized methods through numerical experiments.
Consider a network of 50 nodes that are randomly placed in
a 30 x 30 square. Any two nodes within a distance of 15 are
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Fig. 5. Performance of decentralized algorithms on least squares.

connected; others are not. We set the probability transition ma-
trix P as [P];; = 1/d,. Algorithmic parameters in the following
experiments are set as follows. For the random-walk (RW)
incremental algorithm, we have used both a fixed step-size of
0.001 and a sequence of decaying step-sizes min{0.01,5/k}.
For other algorithms, we have hand-optimized their parameters
by grid-search.

A. Decentralized Least Squares

The first experiment uses least squares in (21) with A; €
R5*10 2 € R'%and b; € R®. Eachentryin A; is generated from
the standard Gaussian distribution, and b; := A;xq + v;, where
zo ~ N (0, I19) and v; ~ N(0,0.1 x I5). Fig. 5 compares dif-
ferent algorithms. In this experiment, the comparison meth-
ods include the randomized-gossip type method (ESDACD),
those with dense communications (D-ADMM, EXTRA, exact
diffusion), DIGing over time-varying graph, RW Incremental
method and RW-ADMM with mixed communication pattern. To
be noted, we implement all these methods in the synchronous
fashion, i.e., an iteration would not start before a priori iteration
completes. As for a method over time-varying graph, DIGing is
conducted with merely one edge uniformly randomly chosen in
each time instance. For ESDACD, the activated edge in each it-
eration is also drawn independently from a uniform distribution.

In the left plot of Fig. 5, we count one communication for
each transmission of a p-length vector (p = 10 is the dimension
of ). It is observed that Walkman with (10b) is much more com-
munication efficient than the other algorithms, while Walkman
with (10b”) is comparable to ESDACD and DIGing. In the right
plot of Fig. 5, we illustrate the running times of these methods.

While a running time should in general include the times
of computing, communication, and other overheads, we only
include communication time and allows simultaneous commu-
nication over multiple edges for non-incremental algorithms.
However, we assume each communication follows an i.i.d.
exponential distribution with parameter 1. Each iteration of D-
ADMM, EXTRA, and exact diffusion waits for the completion
of the slowest communication (out of 2m communications),
which determines the communication time of that iteration.
In contrast, ESDACD, DIGing, random-walk incremental al-
gorithms and Walkman only use one communication per iter-
ation. The communication time per iteration of RW-ADMM
is in between, as it waits for the slowest communication in
the neighborhood to complete. Under our setting, Walkman
takes longer to converge than D-ADMM, EXTRA, and exact
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Fig. 6. Performance of decentralized algorithms on logistic regression.

diffusion. It is observed that Walkman with (10b) outperforms
RW-ADMM and ESDACD in both communication cost and run-
ning time. In addition, D-ADMM is also observed more efficient
than RW-ADMM, which is consistent with the communication
complexity we derived in (67).

B. Decentralized Sparse Logistic Regression
The second experiment solves the logistic regression problem

n b
. 1
min )\Hl’”l—l—% Z Z log (1+ exp(—yijv;rjx)) )

i=1 j=1

(80)

where y;; € {—1,1} denotes the label of the jth sample kept
by the ith agent, and v;; € R” represents its feature vector, and
there are b samples kept by each agent. In this experiment, we set
b = 10,p = 5. Each sample feature v;; ~ N (0,1). To generate
vi;» we first generate arandom vector 2° € R> ~ N(0, ). Then
we generate a uniformly distributed variable z;; ~ ¢/(0,1), and
if z;; <1/[1+ exp(fv;rj:vo)], y;j is taken as 1; otherwise y;;
is set as —1. We run the simulation over the same network as
the above least-square problem. Due to the nonsmooth term
in (80), EXTRA and exact diffusion is not applicable in this
problem. Instead, we compare Walkman with PG-EXTRA [15],
D-ADMM and random walk proximal gradient method, which
conducts one-step proximal gradient operation when an agent
receives the variable z.

The communication efficiency of Walkman is also observed
in Fig. 6.

C. Decentralized Non-Negative Principal Component Analysis

To test the performance on solving nonconvex, nonsmooth
problem, the third experiment solves the Non-Negative Principal
Component Analysis (NN-PCA) problem

ol (1< o
min =% —aT [ =Y wiyl | o+ 1c(z), 8D

i=1 j=1

where 1< denotes the indicator function of the feasible space
C={zeRl:|z|| <l,z; >0,Vie{l,...,p}}, yi; €R?
denotes the j-th sample kept by the ¢-th agent, and there are
b samples kept by each agent. In this experiment, we utilize
the training set of the MNIST [49] dataset to form the samples,
and set b = 1000. Each agent only keeps samples with a same
label. Noticing that the NN-PCA problem is nonconvex, we use
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optimality gap to measure the distance between the algorithmic
variables to problem’s saddle points, which is defined as
Iproj, (ot (= V £(&*)) + VF(a)|2 + [|sy* — 1 @ 2*|2,

where the first term measures how close is 9,.(z%) + V f(2%) to
0, and the second term measures the consensus violation of the
copies kept by agents. For PG-EXTRA and D-ADMM, since
there is only »*, we take z* as the mean of {y¥,... y*}. For
RW Incremental methods, since there is only 2F, the second
term of optimality gap is naturally 0. We run the simulation
over the same network as the above two problems. Under either
optimality criterion, the communication efficiency of Walkman
is also observed in Fig. 7.

VII. CONCLUSION

We have proposed a (random) walk algorithm, called Walk-
man, for decentralized consensus optimization. The (random)
walk carries the current solution z and lets it updated by
every visited agent. Any limit point of the sequence of z is
almost surely a stationary point. Under convexity assumption,
the sequence converges to the optimal solution with a fixed
step-size, which makes Walkman more efficient than the existing
random-walk algorithms. We have found Walkman uses less to-
tal communication than popular algorithms such as D-ADMM,
EXTRA, exact diffusion, and PG-EXTRA though taking longer
wall-clock time to converge. Random walks also add another
layer of privacy protection.

APPENDIX A
PROOF OF LEMMA 1

The proof of Lemma 1 takes a few steps, Lemmas 7-9.

Lemma 7 shows that the update on the dual variable can be
bounded by that of the primal variable.

Lemma 7: Under Assumption 3, (2, y*, ), o7, the se-
quence generated by Walkman iteration (10), satisfies

1) if Walkman uses (10b), it holds

|25 — ¥ = |25 —2F | < LA =) (82)

2) if Walkman uses (10b’), it hold

k1 _ gk gkl E.ip)+1 ki
=28 =2k || < Lfjy™ k)t —yrthin)),

(83)

[E

2523

Proof: Part 1) Remember agent iy, is activated at iteration k.
The optimality condition of (10b) for ¢ = i implies

Ve = (28 + 8@ =yt =0.  (84)
Substituting the above into (10c) yields
Vii(yFth) = 28 for i = iy. (85)
Hence, for i = ij,, we have:
5= LB By g
= V"))
(12 k1 (k)1 (0) K+l k
< Llly; ™ —y; | = Llly7™ =il
(86)

where T(k, ¢) is defined in (15). Equality (a) holds because 2 =

zz(k’i)ﬂ and (b) holds because yr = T(k D71 On the other
hand, when ¢ # iy, agent i is not actlvated at k, so ||zF —
28| = L|jyF*" — y¥|| = 0, and we have (82).
Par 2) Substituting (10b’) into (10c) yields
Viiyt) = =" for i =iy (87)
Comparing (85) and (87) and using z¥ = zf(k’i)ﬂ and yF =
yg(k’l)ﬂ, we get (83) using a similar derivation for (86). [ |

Lemma 8 shows that the z-update in Walkman, i.e., (10a),
provides sufficient descent of the augmented Lagrangian.

Lemma 8: Recall LZ defined in (16). Under Assumption 4,
for 5 > =, k > 0, the Walkman iterates satisfy

L’g—Lﬁ(xk“,y z) B — WHk xk+1H2.

(88)

Proof: We rewrite the augmented Lagrangian in (8) as

1

o 6 \ZHZ
LB(.ﬁ,y,Z)—T(%)-f—g F 1®wx _y+ﬂ -
(89)
Applying the cosine identity |[|b+ c||? — |la +c||* = ||b—
al|> + 2{(a + ¢,b — a), we have
Lg - Lﬁ(xk+1,yk;zk) _ T(Q:k) + ’I”(SCkJrl)
2 2
s - B kil ok, 2
-2 1 — ll 1 Z
on @I =y + 3l " L A 3
— ﬁ i ||:Ck k+1||2+2 K1 k_'_z_zk xk_karl
i=1
B
> §||xk _ xk+1||2 _ <dk,xk _ .’L’k+1>7 (90)

where d* is defined as

dF = — gt gk i (@) k1
Z v+ € ar(z"Y), 1)

where (a) comes from the optimality condition of (10a).
Assumption 4 states 7(z") + % ||z% — 2" T2 > r(zF ) +
(d*, 2% — x*+1) | substituting which into (90) gives us (88). W
In Lemma 9, we derive the lower bound of descent in the
augmented Lagrangian over the updates of ¥ and z.
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Lemma 9: Recall L’E; defined in (16). Under Assumption 3,
forany k > T,
1) if 8 > 2L + 2, Walkman using (10b) satisfies
Lﬁ(:rk-i-l7 yk; Zk) o

ng+1 k —yk+1H2.

1
> —|ly (92)
n

2) if § > L, Walkman using (10b’) satisfies

Lg(z"*h,y%; 2%) — LE
> B8 ||yk_yk+1||2__||yT(k,Lk)+1_yT(k7tk)||2. (93)
2n B

Proof: From the Lagrangian (8), we derive

k
Lg(z" 1, % 2%y — LB+1

k B k
—yh) + Sl - g

1
- - <f (vl + (2h,

k k k 6 k
= L (i) = (2T 2 T =yl = Sl - yﬁl)

g

k+1 ”2

(a 1 /8
= - (fik (W) — fi (i) + +5 lys — il

1
T
® 1 K B k
<fzk (yzk) fik (y“:rl) EHylk - yzk+1||2

1
— (Y =y Y i () - IIijl—ziHQ) (95)

5
©1/( L B 1
> E<_§||yzk_yfk+1” +§||ka yﬁ“HQ—EH 2t — ||>
(96)
@ 1 L k+1 B k412
> 5( gllylk—yzk 12 +5llylk—y1k I

- E”yzk - yz:—l”Q)

)1 1
> =llyi, —us P = =t = ©7)
n n
where equality (a) holds due tol|b+ c||? — [la +c||* = ||b —

al|> + 2{a + ¢, b — a) and recursion (10c), equality (b) holds
because of (85), inequality (c) holds because f;(-) is L-Lipschitz
differentiable, inequality (d) holds because of (86), and inequal-
ity (e) follows from the assumption 8 > 2L + 2.

Next, we study Walkman using (10b’). The above equation
array holds to (94). By substituting (87) into (94), we get

k+1 k. oky _ kRl
Lp(z"7, 0% 2%) — Ly

k+1H2

1
= (fm(yfk) — fu (i) + gl\yik Yy,

1
— (yF =y, Vfu(yfk»——IIka“—Zi2)- (98)

B
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While (95) has V f;, ( yf}fl) (98) involves V f;, (yF ). However,
from (98), using V f;, (-) being L-Lipschitz, we still get (96), to
which we can apply Lemma 7 2) to get (93). |

In Lemma 10, we establish the sufficient descent in Lyapunov
functions of Walkman.

Lemma 10: Recall Lg and M g defined in (16) and (17).
Under Assumptions 3 and 4, for any k£ > T,

1) if 8 > max{~, 2L + 2}, Walkman using (10b) satisfies

Lk Lk+1 B— ’Y” k_ k+1|| 4= ‘

VP =R %

99)

2) if 8 > max{v,2L? + L + 2} the Walkman using (10b”)
satisfies

Mg_MSHZﬂ—VH k_ k+1H 4= Hy yk+1||2

(kyik)+1 T(k,ik)”Q.

Hy -y (100)
Proof: Statement 1) is a direct result of adding (88) and (92).
To prove statement 2), noticing

k+1 k L
’_f(k+1,i)+1_y"_r(k+1,i) _ Yi = —Yi» L=1k
' ’ y;(k’z)H - yz(k’l), otherwise,
(101)
we derive
k k+1
Mg — Mg
k (kyig)+1 ki k
e ()
L2 . . .
_ LE _ Lngl_’_7 (HyT(k’“")J"l—yT(k?““)H2—||yk+1—yk||2)_
(102)
Substltutmg (88) and (93) into (102) and using 5 8 _L_12>1
and 1 — ﬁ 2, we complete the proof of statement 2). |

Lemma 11 states that both Lyapunov functions are lower
bounded.

Lemma 11: For 8 > max{v,2L + 2} (resp. S > max{~,
2L% + L + 2}), Walkman using (10b) (resp. (10b’)) ensures a
lower bounded sequence (L} )x=o (resp. (M) o).

Proof: For Walkman using (10b) and & > T, we have

n

1
L =r(@®) + = > (£ + (&, 2" =)
j=1
+%||11 ® -k |2
G - k k\ kK
= r(a") + n Z (fj(yj) + <ij(yj)al’ - yg>)
j=1
+£||1®mk—yk||2
(a) ij + —H]- ®$ yk”Q
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—L
7”1 ® zF—yF|?

(®)

> — 00 (103)

where (a) holds as each f; is Lipschitz differentiable and (b)
from Assumption 2 and 3 > L. So, Lg is lower bounded.
Next, for Walkman using (10b’) and k£ > T, we derive

(87 1< k,
ME'E @)+ = 3 (K0 + (V)b =)
7j=1
6 k k2 L? T(k,i)+1 T(k,i) 12
Z 1 _ - T, T,
oIl @2t kP + = ZHyz il
( 1 < i
x _~_g Z ( (y;(kﬂ))_vfj(y;c)’xk_y;_c>>
7j=1
— L

L& , ki
DD Al
i=1
®) -

> r(at) + = 50 (53 IV ) - ij<y§>||2)

11 ® 2" —y"|1” +

=1
B—L—-2 2 |
e 11 @ z*—y*||* + ZIIyZ yl

(© 1 « 2172

> mi ky 4+ = (zF | k|12

2 min | 742D g oIt

(d)

S oo, (104)

where (a) holds because each f; is Lipschitz differentiable, (b)
holds due Young’s inequality, (c) follows from the assumption
B > 2L? + L + 2 and the Lipschitz smoothness of each fj,and
(d) holds due to Assumption 2. Therefore, M g is bounded from
below. ]

With above lemmas, we are ready to prove Lemma 1.

Proof of Lemma 1: Recall that the maximal hitting time 7'
is almost surely finite. The monotonicity of (L’g)k>T (resp.
(M g)k>T) in Lemma 10 and their lower boundedness in
Lemma 11 ensure convergence of (L} )x>0 (resp. (Mf)j=0).

For statement 2), We first consider Walkman with (10b).
By statement 1) and (103), r(z*) + 1 F'(x") is upper bounded
,T}{r(xt) +L1F(xh)}, Lg‘“}, and |1 ®
a% — y*||% is upper bounded by max{max;cjo,  7{[|1®
at — '}, L5} By Assumption 2, the sequence (z*) is
bounded. The boundedness of |1 ® x* — y*||? further leads
to that of (y*). Finally, (85) and Assumption 3 ensure (z*) is
bounded, too. Altogether, (¥, 3% z¥) is bounded. Starting from
statement 1)’ and (104), a similar argument leads to boundedness
of (z*, ¥, z¥) for Walkman using (10b”). |

by max{maxej,...

APPENDIX B
PROOF OF LEMMA 2

Following the aforementioned proof idea, we provide the
detailed proof of Lemma 2 in this Section.

2525

Proof of Lemma 2: First, recall Lemma 10 and T" < oo, for
Walkman using (10b), we have

o0

> (Blla* — 2* 2+ B[ -3 ?) < 400 (105)
k=0
and for Walkman using (10b”),
> (Efa* — 2+ EfpF — 542
k=0
+ B[y ) — iR a5y < oo, (106)
Hence, by Lemma 10,
SO(Ell* — 22 4 By — 4
k=0
+ E||z* — 2FT2) < +oo,  (107)

holds for Walkman using either (10b) or (10b”).

The proof starts with computing the subdifferentials of the
augmented Lagrangian (89) with the updates in (10):
B 1

(i =y + (R = 2,

Yiy, ik

8zL§+1 >dF —

ik ik
(91) B, k1 k 1 k1 kN ..k
- _(ylk - ylk) + E(zzk - Z’Lk) = w ) (108)
Vijg-H _ (ny( k-‘rl) 1~_c+1 + B(y;c-‘rl _ xk+1)) ,
(109)
1
E+1 _ k41 k+1
Vi Lyt = (25— ). (110)
For notational brevity, we define g* and ¢ as
wk wk
9" = | VoL | gf = |V LETH | (111)
V. Lyt V., Li

where i € V is an agent index, and g” is the gradient of LZH.

For ¢ € (0,1) and k > ©(J) + 1, by the triangle inequality:
k—1(8)—1 k—(6)—
e e e A
k' 6)—1
<2)g;, " —dbIP+2 a1 (1)
——
A B

Below, we upper bound A and B separately. A has three parts
corresponding to the three components of ¢. Its first part is

H,wk’—”r(é)—l _ wk||2 < 2Hwk—’r(6)—1”2 + 2||wk||2

4 _ _
Sﬁ(52||yk+1_yk”2+ﬂ2”yk T(é)_ylc T

Zk “2+||Zk7T(6)—Zk7T(6)71 H2)

@12,

+ |24+ (113)

where the 2nd inequality follows from (108). Then by (109), we
bound the 2nd part of A

||Vy1,¢L/lc O vylk L]HlHQ
@) 4L +46% | jx@)-1 & k=t(6)-1 _ _k
< I Sl T P

432 .
n %Hmk—r(&—l e
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2 2 Kk
- (t(6) +2)(4+4p% +4L%) Z (th_

t+112
< a |

t=k—1(6)—1

+||yt_yt+1||2+||Zt_Zt+1H2), (114)

where (a) uses the inequality of arithmetic and geometric means
and the Lipschitz differentiability of f; in Assumption 3. From
(110), the 3rd part of A can be bounded as

V-, qu(é)q -V., Lk+1H2
2 - - k—t(6)-1
< (b = R O )
k
2((8) + 2)
< === (2t = 2P 4 Y = R). (1)
t=k—1(6)—1

Substituting (113), (114) and (115) into term A, we get a constant
Cy ~ O(% ), depending on (), 8, L and n, such that

k

A<C Y (It = TP P42 -2 ?).
t=k—1(8)—1
(116)
To bound the term B, using (110) and (10c), we have
1
k+1 _ Sl k
Vzik 5 nﬂ( -2 ), (117)

Applying (109), (85) and (87), we derive Vyik L’E“ for Walk-
man using (10b) or (10b°):

1
. (Z:ck - ka+1) ?

(10b): V,, L’g,“: (118)

(10b°): V,, L= (vm S =V fa (ui)+ 2 2t
(119)
For both, we have

B S 02 (Hyk+1 o kaQ + ||Zk+1 o Zk”2) ,
for a constant C'y depending on L, 8 and n, in the order of ~
O(#) Then substituting (116) and (120) into (112) and taking

expectations yield

(120)

k
Elg, "7 P<e > (Bllat — 2t + Byt -yt
t=k—7(6)-1

+ E”Zt _ Zt+1H2),

(121)

where C' = C; + (5, and one has C ~ O(T(i)jl). Recalling
(107), we get the convergence

k—(5)— 1”2

hm IE||q 0, (122)

which completes the proof of step 1).
In step 2), we compute the conditional expectation:

k—1(8)—
E (Il )2 | x*@)

k—T(6 k—1(6
Z PO, i (IVLl ™2 + |9, L5 )12
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+ V5, L))

@
> (1= 8)m g @17,

(123)
where (a) follows from (4) and the definition of ¢* in (111).
Then, with (122), it holds
lim E|¢g*||> = lim E[|g" "2 =0 (124)
k—o0 k—o0

By the Schwarz inequality (E||¢g*||)? < E|g"*||?, we have

lim E|g*|| = 0. (125)
k—o00

Next, we prove step 3). By Markov’s inequality, for each ¢ > 0,
it holds that

Ellg"|
€

B im Pr(||gk|| = €) = 0.
k—o0

(126)

Pr(||lg"|| > €) <

When a subsequence (k;)s>o is provided, (126) implies.

lim Pr(||g*|| > ¢) =0 (127)
S§—00

Then, for j € N, select e = 277 and we can find a nondecreasing
subsubsequence (s, ), such that

Pr(|lg* || > 277) <277, Vhky 2k (128)
Since,
S Pr(lg | > 27) sz - (129)
j=1 Jj=1
the Borel-Cantelli lemma yields
Pr(' 3 '):O, (130)
J
and thus
Pr(’_ > =1 (131)
J
This completes step 3) and thus the entire Lemma 2. |

APPENDIX C
PROOF OF THEOREM 2

We provide the detailed proof of Theorem 2 in this section.

Proof of Theorem 2: Tt can be simply verified that under the
specific initialization, (85) and (87) hold for all k£ > 0, and
consequently ensure Lemmas 7-10 hold for all k& > 0. For g*
defined in (111), (121) and (123) hold. Jointly applying (121)
and (123), for any k > 7(6) + 1, one has

k

< X e

“t=k—1(5)—-1
+ Ey' = "2+ E|zf -2

Ellgh 1

t+1||2)
(132)
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According to Lemmas 7 and 10, for Walkman using (10b) and
k > 1(d) + 1, it holds,

k
Z (E||zt—xt+1H2+E|\yt—yt+1||2+ﬂi||zt _ Zt+1H2)
t=k—1(6)-1

<max{ 2
- B

2 k—t(6)—1 k—+1
J(1+L )n} (ELB ~EL} )

-
(133)
It implies that for any & > 0, it holds
EllngZ < (EL’E _ ELE+T(5)+2) 7 (134)

where € := max{z%, (1 + Lz)n}(li—%m. It can be simply

verified that C" = O(%) Lett' := 1(d) + 2. Then for any

K > v/, summing (134) overk € {K — 7',..., modv K} gives
5]
ZE||9K7ZT/||2 < (ELﬁmOdTlK B EL?)
1=1

<cLh - g, (139)

where the last inequality follows from the nondecreasing prop-
erty of the sequence (L) >0 and the fact that (Lf;)j> is lower
bounded by f.

According to (135), one has

minE|¢*||2 < min E|¢5 7|
mElg'|” < min Bl

1 L%
< E ZE”!JK_ZT I
=1

/C/
h@% =)
D),

(136)

where the constant C'(t' + 1) = O((ﬂli);—:;*). [ |
We consider a reversible Markov chain on an undirected
graph. Recalling the definition of T(d) in (5) and taking §

as 1/2, one has T(§) ~ —%__ That is, to guarantee that

1-Ao(P)°
ming<x Ellg*[]* < e,
In%n

OG'(WH))

iterations would be sufficient for Walkman using either (10b) or
(10p°).

(137)
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