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Abstract—Racetrack memory is an exciting emerging 
memory technology with the potential to offer far greater 
capacity and performance than other non-volatile memories. 
Racetrack memory has an unusual error model, though, which 
precludes the use of the typical error coding techniques used by 
architects. In this paper, we introduce GreenFlag, a coding 
scheme that combines a new construction for Varshamov-
Tenegolts codes with specially crafted delimiter bits that are 
placed between each codeword. GreenFlag is the first coding 
scheme that is compatible with 3D racetrack, which has the 
benefit of very high density but the limitation of a single 
read/write port per track. Based on our implementation of 
encoding/decoding hardware, we analyze the trade-offs between 
latency, code length, and code rate; we then use this analysis to 
evaluate the viability of racetrack at each level of the memory 
hierarchy. 

Keywords—Racetrack Memory; Coding; Fault Tolerance; 
Shift Errors 

I. INTRODUCTION 
Many new non-volatile memory technologies are vying to 

replace conventional memory technologies—such as SRAM, 
DRAM, and Flash—and racetrack memory [1, 2, 3] has the 
potential to provide the best storage density and performance 
of any of these contenders. In Table I, we compare racetrack 
memory to two of the other emerging non-volatile memories 
as well as to SRAM. Competing technologies, such as phase 
change memory (PCM) and magneto-resistive random-access 
memory (MRAM), are at a disadvantage in terms of density 
and performance [4, 5, 6, 7, 8, 9, 10]. SRAM is somewhat 
faster than racetrack memory, but it is volatile and two orders 
of magnitude less dense. These quantitative advantages—
combined with racetrack’s compatibility with standard 
fabrication processes and promising results in research labs [2, 
5, 8, 10, 11]—motivate us to explore the potential for 
racetrack memory to be used in computer architectures. 

As we explain in more detail in Section II, racetrack’s 
unique design provides both the advantages mentioned above 
but also a new reliability challenge. Racetrack memory stores 
bits on a large number of nanowire tracks that can each be 
accessed one bit at a time with a fixed port; the bits are shifted 
along the fixed track such that the desired bit position is over 
the port. This design enables excellent storage density and 
short access latencies, but it is unfortunately susceptible to an 

error model that is unfamiliar to architects: shift errors. Shift 
errors include both deletions and insertions [12, 13]. A 
deletion occurs when the track is shifted more than expected 
and thus one (or more) bits are skipped, i.e., the memory is 
over-shifted. An insertion occurs when the track is shifted less 
than expected and the bit under the port does not change, and 
we read the same bit twice (or even more), i.e., the memory is 
under-shifted. 

The goal for architects is to tolerate shift errors without 
sacrificing too much of the latency and density benefits 
provided by racetrack memory. Error coding—for any 
memory technology—exhibits a fundamental tension between 
code length (i.e., how many bits are in each codeword), code 
rate (i.e., the ratio of the data bits to the sum of the data bits 
and the extra bits required for the code), and latency. 
Achieving our goal for racetrack memory is complicated by 
both its unusual error model (shift errors) and its bit-serial 
access nature, because the only ways to improve latency are 
to read from multiple tracks in parallel or use shorter 
codewords.  

Consider a grid of racetrack memory, in which each track 
is a horizontal row (even if the track itself is 3D, as discussed 
later), and each column is the collection of bits at the same bit 
position in each track. Assume we want to be able to read (or 
write) C bits at a time. For the best latency, we would prefer 
to read one bit from each of C tracks—achieving a parallelism 
of C—and thus achieve single-cycle accesses. In theory, we 
could do this by coding “vertically”, i.e., encoding 
information on a per-column basis. Unfortunately, as we show 
in Section III, known vertical coding schemes do not suffice. 
Vertical coding may be possible, but such a solution does not 
exist today.  

If we cannot code vertically, we must code “horizontally” 
by encoding information in a group of C bits on a given track. 
Each track would be encoded independently. We show in 
Section III that commonly used codes like Hamming cannot 
handle shift errors, so we have developed a new coding 

TABLE I. COMPARING MEMORY TECHNOLOGIES 

 PCM MRAM SRAM Racetrack 
Volatile No No Yes No 

Density (ܨଶ) 4-16 20-60 140 1-2 
Read (ns) 10-50 10-35 1-10 3-10 
Write (ns) 50-500 10-90 1-10 10-20 
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technique, called GreenFlag 1 , that composes Varshamov-
Tenegolts (VT) codes [14] with specially crafted delimiter bits 
that detect and correct shift errors. The architectural trade-off 
is that longer GreenFlag codes achieve a better rate but incur 
a longer read latency. (The analysis for bandwidth is more 
subtle but bandwidth is far less sensitive than latency to the 
choice of code.) Assume that codeword length is C bits and 
we wish to access B bits (B>C). The best parallelism we can 
achieve is to read C bits on each of B/C tracks, thus achieving 
a parallelism of B/C. As C increases, the trade-off is that 
parallelism decreases (and thus latency increases) and rate 
increases. The exact results for latency and bandwidth depend 
on the hardware, so we have implemented and evaluated the 
circuitry for encoding datawords and decoding codewords.  

There is one clever but limited exception to the above 
analysis, which is HiFi [12]. HiFi is a horizontal “code” that 
can detect and correct errors at the granularity of a single bit. 
In the terms of horizontal coding above, it has the ideal C=1 
and parallelism of B. However, HiFi requires multiple ports 
on each track, and that is only possible with 2-dimensional 
(2D) tracks. Because 3D tracks can offer vastly greater density 
than 2D tracks [5, 11, 15, 16], we do not consider HiFi or any 
other possible scheme that is constrained to 2D tracks.  

The architectural viability of racetrack depends on the 
possible trade-offs between code length, rate, latency, and 
bandwidth, so we analyzed these trade-offs for racetrack with 
GreenFlag at each level of the memory hierarchy. Our goal is 
to determine the viability of Racetrack with effective error 
tolerance, not to promote Racetrack as necessarily the best 
option, and our analysis is thus more of a limit study than a 
cycle-accurate comparison against other schemes. For a given 
level of the memory hierarchy, the viability of racetrack 
memory is determined by B/C. Specifically, assume a given 
level of cache requires an access latency to B bits that is no 
longer than a specified amount of time (e.g., 20ns for an L3 
cache). That latency determines the required access 
parallelism B/C and, because B is fixed, determines the 
codeword length C. In turn, C determines the rate of the code, 
and we explore this relationship between C and rate for 
GreenFlag codes. If the rate is too low, racetrack might be 
considered unattractive compared to existing memory 
technologies. For example, we show that the best rate we can 
achieve for a LLC cache with a 50ns access latency is 0.125. 
It is unlikely that racetrack at this rate is preferable to simply 
using SRAM. 

We make the following contributions in this paper: 
 We present the GreenFlag coding scheme that combines a 

novel construction of VT codes with specially crafted 
delimiter bits to efficiently detect and correct shift errors. 

 We implement and evaluate the GreenFlag hardware 
circuitry required to encode datawords and decode 
codewords. 

 We present the first analysis of the viability of racetrack 
memory—based on the trade-off between code length, 

                                                           
1In car racing, a green flag indicates good track conditions. 

code rate, latency, and bandwidth—at each level of the 
memory hierarchy. 

II. RACETRACK MEMORY 
This section introduces the physical model of racetrack 

memory and describes its error model.  

A. Racetrack Background 
Racetrack memory stores data in tape-like tracks. Each 

track stores data bits in magnetic domains and neighboring 
domains are separated by a domain wall. All read/write ports 
and the physical substrate are fixed in position, and as spin-
coherent electric current is passed through a track, its domains 
shift by the magnetic read/write port positioned near the track. 

Although these tracks can be manufactured in two or three 
dimensions—sometimes referred to as horizontal and vertical 
racetrack memory, respectively—the three-dimensional 
structure is preferred as it can offer dramatically greater 
density [5, 11, 16]. With 3D racetrack, the tracks are in a U-
shaped geometry in three dimensions, and the read/write ports 
are fixed in position at the bottom of this structure as 
illustrated in Fig. 1. The 3D structure of racetrack memory 
limits the feasible number of read/write ports per track to one.  

Because of the huge density benefits of 3D racetrack 
memory, we consider only 3D tracks and, thus, only coding 
schemes that can be implemented with one read/write port per 
track. However, for simplicity, when we illustrate tracks to 
facilitate the description of our code in the following sections, 
we use a 2D schematic representation.  

B. Error Model 
Our error model includes single shift and double shift 

errors2. We do not consider triple or higher shift errors as prior 
work [12] has shown them to have negligible probability. 
Similar to prior work [12], we do not include bit-flip errors, as 
we have discovered no data on this phenomenon in the 
literature. We do not claim that bit-flip errors are impossible 
in racetrack memory; if future evidence of them appears, we 
would need to extend our work here to address them. 

To explain shift errors, we use an example in which a 
number of bits is stored on a track as in Fig. 2(a). To read 

2A single shift error occurs when a single shift operation deletes or 
inserts a single bit. A double shift error occurs when a single shift 
operation deletes or inserts two bits. 
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Fig. 1. 3D (vertical) racetrack 
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(write) the stored bits, we need to perform a sequence of 
consecutive shift and read (write) operations. A shift is the 
injection of current, shown in Fig. 2(b), so as to place the next 
bit in racetrack memory under the read/write port.  

Suppose we want to read bit ܾଵ and currently bit ܾ଴  is 
positioned under the read/write port. Ideally, we inject the 
correct amount of current to perform a single shift operation 
and ܾଵ is placed under the read/write port as in Fig. 2(c). If the 
injected current is larger than expected, then we skip the 
domain that contains ܾଵ  and ܾଶ is wrongly positioned under 
the read/write port as in Fig. 2(d). We refer to this error as a 
deletion error since ܾଵ is skipped (i.e., a bit is deleted). On the 
other hand, if the injected current is smaller than expected, the 
port's position does not change and we might read the same 
bit twice. We refer to this error as an insertion error (i.e., an 
extra bit is inserted).  

We should emphasize that, regardless of whether a shift 
error occurs, the memory controller always provides the 
desired number of bits, say n. A shift error just affects which 
n bits are provided. For instance, if a deletion happens as in 
Fig. 2(d), then we receive the first ݊ = 5 bits excluding ܾଵ, 
which are ܾଶ, ܾଷ, ܾସ, ܾହ, ܾ଺. 

We observe that a single deletion (or insertion) can cause 
as many as n bit errors, which greatly complicates error 
coding, as we show later.  

III. ERROR CODING FOR RACETRACK 
Coding for racetrack is different than for typical memory 

technologies because of its bit-serial nature (which affects 
performance) and its susceptibility to shift errors (which 
makes many standard codes ineffective). 

We now discuss two broad approaches to coding for 
racetrack—vertical (across tracks) and horizontal (within a 
track)—and show why commonly used coding techniques do 
not work.  

To clarify the explanation, we use the well-known 
Hamming code as a running example. Hamming codes add 
parity bits to datawords to form codewords, and they are 
parameterized by the bit lengths of the datawords and 
codewords. With no loss of generality, we assume a 
Hamming(8,4) code that encodes 4-bit datawords as 8-bit 
codewords. The code provides SECDED protection. 

A. Vertical Coding 
Ideally, for performance, we would employ a vertical code 

that uses domains across multiple tracks to store a codeword, 
as illustrated in Fig. 3. We would use one bit from each of C 
different tracks to store the C bits of the codeword. With such 
a code, we could read all C bits in parallel with a single shift 
and read operation on each track.  

In Fig. 3(a) we illustrate an 8-bit codeword c =10101010 
from the Hamming (8,4) code striped vertically across C = 8 
tracks. Fig. 3(b) shows the state of these 8 tracks after a single 
deletion in the first track changes c to c΄= 00101010.  

 Only one bit position is affected and thus a SECDED 
Hamming code like Hamming(8,4) can correctly recover c. 
However, the code cannot fix the still-erroneous position of 
the domains on that track with respect to the read/write port. 
Note that, because the code cannot differentiate between 
deletions and insertions, the codeword bits that are striped 
across tracks cannot be correctly aligned. Once the position of 
the domains becomes incorrect with respect to the port, it 
remains incorrect, which can lead to further errors on that 
track. Worse, a subsequent error on another track can now lead 
to a multiple-error scenario that cannot be corrected by a 
SECDED code. Thus, a shift error on one track can easily lead 
to a situation in which the data on all 8 tracks are lost. 

We are unaware of any existing coding scheme that would 
overcome the problem we have just described. We do not 
claim that such a code is impossible, but to our knowledge, it 
has not yet been invented. 

Simplified representation of a single track

  ଼ܾ  ܾ଻  ܾ଺  ܾହ  ܾସ  ܾଷ   ܾଽ  ܾଵ଴  ܾଶ
data position after a single deletion

  ܾ଻  ܾ଺  ܾହ  ܾସ  ܾଷ  ܾଶ   ଼ܾ   ܾଽ  ܾଵ
data position in the absence of shift errors

  ܾ଺  ܾହ  ܾସ  ܾଷ  ܾଶ  ܾଵ   ܾ଻   ଼ܾ  ܾ଴
Shifting 
direction

shifting data by one position
(b)

(a)

(c)

(d)

  ܾ଺  ܾହ  ܾସ  ܾଷ  ܾଶ  ܾଵ   ܾ଻   ଼ܾ  ܾ଴
the data we want to read

Fig. 2. Error-free shifting and shift errors 
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Fig. 3. Hamming code – vertical implementation 

3

Authorized licensed use limited to: Duke University. Downloaded on September 10,2020 at 22:52:55 UTC from IEEE Xplore.  Restrictions apply. 



 
 
 

 

B. Horizontal Coding 
Given that vertical coding is not possible, we are left with 

horizontal coding, in which each C-bit codeword is written on 
the domains of a single track, as illustrated in Fig. 4. The main 
drawback of horizontal coding is that we need to perform C 
read and C shift operations to read all the domains (bits) of a 
single codeword. That means that latency depends on C. 

To explain why standard codes do not suffice for handling 
shift errors, we use an example.3  

Our Hamming(8,4) code has a generate matrix G shown 
below. ܩ = ൦1 0 00 1 00 0 1 0 0 10 1 00 1 1 110 1110 0 0 1 1 1 1 0൪ 

Assume that we want to store the dataword  ݀ = [1 0 1 0] on a track. The dataword is first encoded to the 
codeword c and then written to the track as shown in Fig. 4(a). ܿ = ݀ ∗ ܩ = [1 0 1 0 1 0 1 0] 
 Assume that a single deletion happens during the first shift 
operation while we are trying to read c. In Fig. 4(b) we present 
the state of the track after the deletion error converts c into ܿ′.  ܿ′ = [ 0 1 0 1 0 1 0 1] 

We observe that ܿ′ differs from c in every bit position, 
which overwhelms the capability of a SECDED code. 
Nevertheless, it is instructive to see the resulting dataword ݀′ 
that is produced by our code: ܿᇱ = ݀ᇱ ∗ ܩ = [0 1 0 1 0 1 0 1 ] ݀′ = [0 1 0 1] 

We observe that ݀′ differs from the correct dataword d in 
every bit position, despite experiencing only a single shift 
error. Through this example it is easy to see that, even if we 
had used stronger codes (e.g., DECTED), we still could not 
address shift errors. Additionally, even if we could detect and 
correct the bit-value errors, the position of the read/write port 
with respect to the domains would still be wrong. Thus, any 
future read/shift operations would suffer additional bit-value 
errors.  

C. Conclusion 
Based on our observations thus far, we have the following 

three goals for GreenFlag: 
 GreenFlag must be a horizontal code. 

                                                           
3 HiFi [12] also illustrates how typical codes fail to tolerate shift 
errors. We provide this explanation here for completeness. 

 GreenFlag cannot be a typical code, like Hamming (or 
Reed-Solomon, CRC, etc.). 

 GreenFlag should be compatible with 3D racetrack and 
its limitation of one read/write port per track. 

IV. VARSHAMOV-TENENGOLTS CODES 
GreenFlag coding is based on Varshamov-Tenengolts 

(VT) codes [14], which are part of a family of graph-based 
codes. VT codes are constituents of communication systems 
where deletions are common, but we are unaware of any prior 
use in computer systems. We note that graph-based codes 
have been proposed to correct deletion errors in 
communication systems [17]. 

A. Graph Codes 
To explain VT codes, we first present graph codes in 

general, their key idea, and a simple example. We then 
formally define VT codes.  

We denote binary strings with boldface letter (e.g., ࢞), and 
bits in these strings are denoted by lower case letters (e.g., ݔଵ). 
To label different binary strings, we use different boldface 
letters, e.g., ࢞ and ࢟. 
Key idea: Consider two binary strings ࢞ = ,ଵݔ  ,ଶݔ … , = ࢟ ௡ andݔ ,ଵݕ  ,ଶݕ … ,  ௡. In order to be able to use these two stringsݕ
to store different values in racetrack memory, we need to be 
able to distinguish them even after a single deletion. In other 
words, if ݔ௜ and ݕ௝ are deleted for ݅, ݆ ∈ {1,2, … , ݊}, then the 
resulting binary strings should not be identical. If two binary 
strings ࢞ and ࢟ can be confused with a single deletion, we 
refer to them as conflicting; if they cannot be confused with a 
single deletion, we refer to them as non-conflicting. Consider 
the following set of binary strings. 

൞ 1 0 000000 00011 ૙ࢉ↓01110 ૚ࢉ↓ ૛ࢉ↓
0 0 110101 11000 ૜ࢉ↓11111 ૝ࢉ↓ ૞ࢉ↓ ൢ 

These six strings/codewords are pairwise non-conflicting. 
Let ࢐ࢉܦ  denote the set of all strings of length 4 that result from 
a single deletion in ௝ܿ. In this example, ࢉܦ૙ = {0000} while ࢉܦ૜ = {0101, 1101, 1001, 1011, 1010}. Thus, if we read out 
“0101” we know that it refers to codeword ࢉ૜ = 10101. 
Formal definition: Consider all 2௡ binary strings of length ݊. 
We create a conflict graph ܰ = (ܸ,  where ܸ is the node ,(ܧ
set and ܧ ⊆ ܸ × ܸ is the edge set. Each node in this graph 
corresponds to a unique binary string of length ݊ (|ܸ| = 2௡). 
For simplicity, we label the nodes with numbers 0, 1, 2, … , 2௡ − 1 and we let node ݅ correspond to the binary 
expansion (of length ݊) of ݅ that we denote by ࢏࢈. 

Now, (݅, ݆)  ∈ ܧ  if and only if ࢏࢈  and ࢐࢈  are conflicting. 
Fig. 5 depicts a conflict graph ܰ for ݊=3. In this graph, a set 
of non-conflicting strings corresponds to an independent set; 
the maximum number of strings of length ݊ corresponds to 
the size of the maximum independent set. This problem is 

(a)

 0 1 0 1 0 1  1  0
ܿ =  1 0 1 0 1 0 1 0

 1

(b)

 0 1 0 1 0 1  10

next bit

ܿ =  0 1 0 1 0 1 0 1

ܥ = 8

Fig. 4. Hamming code – horizontal implementation 
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well-studied in graph theory. For a given ݊, we denote the 
maximum independent set by ܫ௡ . We use the binary strings 
corresponding to the nodes in the maximum independent set 
as our codewords. We note that the maximum independent set 
of a graph is not necessarily unique. For the graph in Fig. 5, 
the maximum independent set is of size two and includes 
nodes 0 and 7.  

Although we have demonstrated only how a graph code 
works for a deletion, the explanation for insertions is 
analogous, and a graph code that can tolerate a single deletion 
can also tolerate a single insertion. 

There are two major challenges with using graph codes 
that we will address when we present GreenFlag in Section V. 
First, encoding and decoding require the use of look-up tables, 
and those tables can have significant space and latency 
overheads. Second, if decoding reveals a shift error, we can 
only correct it if we know whether it was a deletion or an 
insertion. That problem has not arisen for communication 
systems that consider only deletion or insertion errors but not 
a mixture of both [18, 19, 20, 21, 22, 23, 24]. 

B. Varshamov-Tenengolts Codes 
We have already shown that it is possible to use graph 

codes to tolerate shift errors, but there are two challenges that 
must be overcome. One of those challenges—requiring 
lookup tables for encoding and decoding, which does not scale 
to long codes—has been addressed by a special family of 
graph codes called Varshamov-Tenengolts (VT) codes.  
 VT codes impose an additional constraint on the graph-
based codes in order to enable faster and more efficient 
encoding and decoding.  
Formal definition: a VT(n) code consists of all binary strings ࢉ = (ܿଵ, ܿଶ, … , ܿ௡) that satisfy: n                                  ∑ icini=1 mod n + 1≡ 00                 Equation 1 

where the sum is evaluated as an ordinary rational integer. We 
refer to Equation 1 as the checksum. 

The encoding and decoding algorithms of VT codes 
depend on their construction (i.e., how parity bits are 
generated and at which positions they appear in the 
codeword). There are several ways to construct VT codes, and 
in Section V we provide a novel construction method that 
allows for efficient encoding and decoding. 

Detecting a shift error with a VT code is as simple as 
calculating the checksum. If the checksum is zero, then there 
was no shift error. Otherwise a shift error occurred.  

While error detection is simple, error correction is more 
complicated. As with graph codes in general, VT codes can 

only correct a shift error if we can first categorize it as a 
deletion or insertion. Furthermore, we must be able to detect 
“silent” shift errors, in which the shift error does not corrupt 
the currently read codeword. 

Consider the example in Fig. 6. Assume we are reading 
codewords from the example code provided in Section IV.A 
for ݊ = 5. In Fig. 6(a) we show the state of the track while we 
are attempting to read the codeword 00011,  which is 
followed by the codeword 11111. When we attempt to read 
the last bit of the first codeword, a deletion occurs as shown 
in Fig. 6(b). We still correctly read 00011 and the shift error 
is not detected (i.e., the shift error is silent at this point). While 
this situation may not seem problematic because there are no 
bit-value errors, the relative position of the read/write port is 
still misplaced. If an additional shift error occurs while 
reading in the next codeword it may result in an undetected 
error.  

The problem arises due to the inability to distinguish the 
boundaries between codewords. Prior work [25, 26] has used 
predetermined patterns (sometimes called commas) at the end 
of each codeword to separate consecutive codewords and 
address this boundary problem. We call these patterns 
delimiters and they have been used in prior work to detect 
deletions or insertions but not a mixture of both. In Section V, 
we present a new set of delimiters we have crafted to 
distinguish deletions from insertions and that even allow us to 
detect double deletion and insertion errors. 

V. GREENFLAG CODING 
 In this section, we present GreenFlag coding. To create 

GreenFlag, we have integrated a VT-based horizontal code  
with specially crafted delimiter bits that allows us to detect 
and correct not only single but also double shift errors. 

We first explain how we construct VT codes for 
GreenFlag and how we encode and decode in the error-free 
case. Then we introduce different delimiter options to help us 
categorize detected shift errors as deletions or insertions. 
Finally, we describe how GreenFlag corrects shift errors by 
both fixing erroneous bits and moving the correct racetrack 
domain under the read/write port. 

A. GreenFlag Construction: A Novel VT Construction 
With an eye on implementation, we introduce a novel 

construction algorithm for Varshamov-Tenengolts codes. We 
can construct VT(݊) codes for any value of ݊; however, to 
provide fast and efficient encoding and decoding, we use 
powers of two, i.e., ݊ =  2௟ . Our encoding and decoding 
algorithms are based on the mathematics of VT codes, and we 

0

1

4

2

3

6

5

7

Fig. 5. Conflict graph N for n=3 

(a)

 1 1 1 1 0 0  1  10

reading current 
codeword “0001…”

 1

(b)

 1 1 1 1 1 1  1 00 1

next codeword

deleted bit

Fig. 6. The boundary problem 
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have proven them correct. Due to space constraints, proofs 
could not be included in this paper but are provided in a 
document available on-line [27]. 

1) Encoding 
Suppose ݊ =  2௟  and ݇ =  ݊ − ݈ − 1. We encode ݇  data 

bits, ݀ଵ, ݀ଶ, … , ݀௞, into a codeword c of length ݊ such that it 
satisfies the checksum as described in Section IV. Such a code 
is referred to as GreenFlag(݊, ݇,  .(݁ݖ݅ݏ_ݎ݁ݐ݈݅݉݅݁݀

 We present the encoding algorithm and an example for ݊ = 8 in Table II. In this example, ݈ = 3 and we encode ݇ =݊ − ݈ − 1 = 4 data bits (1011) into a codeword of length ݊ =8. The encoding algorithm creates ݈ + 1 check bits to ensure 
that the checksum holds. We index bit positions in a codeword 
from 1 to ݊ (rather than 0 to ݊ − 1). 

The rate of this code is given by, ܴ(݊) = ݊ − (݊)ଶ݃݋݈ − 1݊  
which approaches 1 in the limit of large n. 

2) Error-Free Decoding 
Because of our novel construction, if the checksum is zero 

when reading a codeword, we can simply recover our error-
free dataword by extracting all the bits that are not powers of 
two. Thus, this allows for efficient decoding in the common, 
error-free case. 

However, as we already discussed, a silent shift error can 
result in a correct codeword but leave the wrong domain over 
the read/write port, thus corrupting subsequent accesses. Error 
correction requires that we both detect this situation and 
differentiate insertions from deletions. 

B. Greenflag’s Delimiters: Categorizing Shift Errors 
We use specially crafted delimiters to identify silent shift 

errors and to distinguish insertions from deletions. Intuitively, 
the delimiters help us to separate codewords from each other 
in the presence of shift errors. We refer to a codeword that is 
concatenated with delimiter bits as an extended codeword. 

We choose delimiters to most efficiently achieve our 
goals, and tolerating greater numbers of shift errors requires  
longer delimiters. All delimiters must be functional when read 
from right to left or left to right because domains on a track 
can be shifted and read in both directions. In other words, 
delimiters should either be palindromic or have their less 
significant bits equal to the complement of the corresponding 
more significant bits. 

We illustrate an example of extended codewords in Fig. 7. 
The example has 5-bit VT codewords and 4-bit delimiters of 
1100. In the absence of shift errors, when we read an extended 
codeword, its last four bits will be the known bits 1100 of the 
delimiter.  

Choosing the delimiter bits to use can be tricky, because 
of edge cases like a shift error in the delimiter bits themselves. 
Our crafted delimiters, with the help of the VT codes, can help 
us detect and correct shift errors even in such corner cases, and 
we exhaustively tested our scheme against every possible 
combination of shift errors in data bits and delimiter bits [27]. 
We now present two options, with different lengths, to show 
how the choice of delimiter impacts the ability to identify shift 
errors.  
 Delimiter-1 is the 4-bit pattern ݀ = (݀ଵ, ݀ଶ, ݀ଷ, ݀ସ) =1100. We use delimiter-1 along with the VT checksum to 
categorize shift errors as shown in Table III. Note that in Table 
III we do not include the observation of ݀ସ, because any error 
that affects the last delimiter bit will be detected when we read 
the next extended codeword. Because delimiter-1 can detect 
some double shift errors (1 insertion plus 1 deletion) but not 
all (double deletion or double insertion), we classify a 
GreenFlag(n,k,4) code as a SECSED code for shift errors.  

Delimiter-2 is a 6-bit delimiter with the pattern 111000. 
Table IV shows how to use the VT checksum and delimiter-2 
to categorize shift errors. Unlike delimiter-1, delimiter-2 can  
detect and differentiate double deletions and double 
insertions. Although VT codes can only recover codewords 
from a single shift error, delimiter-2 (with the help of the VT 
checksum) enables GreenFlag to correct the relative position 
of the read/write port for up to double shift errors. Thus, 
double shift errors can now be detected and corrected by re-
reading the extended codeword in the opposite direction. Note 
that VT codes enable us to correct single shift errors without 
the need to re-read an extended codeword and thus single shift 
error correction will be substantially faster than correcting 

TABLE II. ENCODING ALGORITHM WITH EXAMPLE 

Encoding Algorithm Example for ݊ = 8, ݈ = 3 
Step 1: Start with a zero-
vector c of length ݊ = 2௟ ࢉ = 0 0 0 0 0 0 0 0  
Step 2: Set positions that 
are not powers of two to 
data bits 

ࢊ = ࢉ   1011 = 0 0 1 0 0 1 1 0  
Step 3: Calculate the 
checksum ∑ ݅ܿ௜௡௜ୀଵ  ෍ ݅ܿ௜௜଼ୀଵ = 3 + 6 + 7 = 16 

Step 4: Set ݏ to be the 
minimum value that needs 
to be added to the 
checksum to make it equal 
to 0 modulo ݊ + 1 

 
ݏ  = 9 − (16,9)݀݋݉ = 2 

Step 5: Set the ݈ + 1 
positions that are powers 
of two to the binary 
expansion of s. Start from ܿଵand set it to be the 
MSB. Move all the way to ܿ௡and set it to the LSB 

ݏ = 2 = (0010)ଶ 
  ܿଵ = 0, ܿଶ = 1  ܿଷ = 0, ܿସ = 0 
ࢉ  = 0 1 1 0 0 1 1 0 

TABLE III. HOW DELIMITER 1100 IDENTIFIES ERRORS (X = 0 OR 1) 

Observed delimiter bits Decisions ݀ଵ ݀ଶ ݀ଷ Checksum 
1 1 0 0 no error 
1 1 0 ≠ 0 1 insertion & 1 deletion 
1 0 0 ≠ 0 1 deletion 
X 1 1 ≠ 0 1 insertion 

 1 1 1 1 0 0  1  00

codeword

 0
delimiter

 1  0
next codeword

extended codeword

Fig. 7. Delimiter example 
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double shift errors. Overall a GreenFlag(n,k,6) code is a 
DECDED code for shift  
errors. 

Note that GreenFlag combines delimiters and the VT 
checksum to categorize shift errors. Delimiters alone do not 
suffice to detect nor to determine the type of shift errors. 

C. Decoding in Presence of Shift Errors 
If a shift error is detected, we shift so that the correct 

domain is over the read/write port. If it is a double shift error, 

we need to re-read the entire extended codeword. In the case 
of a single shift error, we correct the erroneous bit values as 
explained next. 
Correcting a single deletion error: This can be 
accomplished using the elegant algorithm proposed by 
Levenshtein [28, 29] and which we present in Table V 
alongside an example for n=8. The main idea is that we want 
to find a position at which inserting a bit will make the 
checksum zero. Using the decoding algorithm, we reconstruct 
the correct codeword. Then we recover the dataword as 

TABLE IV. HOW DELIMITER 111000 IDENTIFIES SHIFT ERRORS (X = 0 OR 1) 

Observed delimiter bits Decision ࢊ૚ ࢊ૛ ࢊ૜ ࢊ૝ ࢊ૞ Checksum 
1 1 1 0 0 0 no error 
1 1 1 0 0 ≠ 0 1 deletion and 1 insertion 
1 1 0 0 0 X 1 deletion 
X 1 1 1 0 X 1 insertion 
1 0 0 0 X X 2 deletions 
X X 1 1 1 X 2 insertions 

TABLE V. DELETION CORRECTION WITH AN EXAMPLE 

Deletion Correction Algorithm Example for ࢔ = ૡ, ࢒ = ૜ 
Step 1: Suppose a VT codeword ࢉ = (ܿଵ, ܿଶ, … , ܿ௡) is 
stored in racetrack memory. Using GreenFlag we have 
detected a single deletion and thus we observe  ࢉ′ =(ܿ′ଵ, ܿ′ଶ, … , ܿ′௡ିଵ). 

ࢉ  = 0 1 1 0 0 1 1 0 → ᇱࢉ = 0 1 1 0 0 1 0 

Step 2: Set ߱ to be the Hamming weight (number of 1’s) of ܿ′.  ߱ = 3 
Step 3: Calculate the checksum ∑ ݅ܿ′௜௡௜ୀଵ  ෍ ݅ܿ′௜௜଼ୀଵ = 2 + 3 + 6 = 11 

Step 4: Set ݏ to be the minimum amount that needs to be 
added to the checksum in order to make it 0 modulo  ݊ + 1 

ݏ  = 7 
Step 5: If ݏ ≤ ߱, we restore the codeword by adding a 0 
immediately to the left of the rightmost 1 ݏ’s. Otherwise, 
we restore the codeword by adding a 1 immediately to the 
right of the leftmost (ݏ − ߱ − 1) 0’s. 

ݏ > ߱ → restore the codeword by adding a 1 immediately 
to the right of the leftmost (ݏ − ߱ − 1) = 3 zeros to arrive 
at the correct codeword: 0 1 1 0 0 1 1 0. 

TABLE VI. INSERTION CORRECTION WITH AN EXAMPLE 

Insertion Correction Algorithm Example for ࢔ = ૡ, ࢒ = ૜ 
Step 1: Suppose a VT codeword ࢉ = (ܿଵ, ܿଶ, … , ܿ௡) is 
stored in racetrack memory. Using GreenFlag we have 
detected a single insertion and thus we observe  ࢉ′ =(ܿ′ଵ, ܿ′ଶ, … , ܿ′௡ାଵ). 

ࢉ  = 0 1 1 0 0 1 1 0 → ᇱࢉ = 0 1 1 0 0 0 1 1 0 

Step 2: Set ߱ to be the Hamming weight (number of 1’s) 
of ܿ′.  ߱ = 4 
Step 3: Calculate the checksum ∑ ݅ܿ′௜௡௜ୀଵ  ෍ ݅ܿ′௜௜଼ୀଵ = 2 + 3 + 7 + 8 = 20 

Step 4: Set ݏ to be the minimum amount that needs to be 
deducted from the checksum in order to make it 0 modulo  ݊ + 1 

ݏ  = 2 

Step 5: If ݏ ≤ ߱, we restore the codeword by removing a 
0 immediately to the right of the leftmost 1 ݏ’s. 
Otherwise, we restore the codeword by removing a 1 
immediately to the left of the rightmost (ݏ − ߱) 0’s. 

ݏ ≤ ߱ → restore the codeword by removing a 0 
immediately to the right of the leftmost ݏ = 2 ones to arrive 
at the correct codeword: 0 1 1 0×0 0 1 1 0. 
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discussed for the error free case. It is worth mentioning that 
while the decoding algorithm corrects the codeword, it does 
not reveal the exact position where the deletion occurred. In 
fact, in the example in Table V, if either of the 1's in positions 
6 or 7 was deleted, the algorithm would have behaved in 
exactly the same way. 
Correcting a single insertion error: Handling an insertion is 
very similar to handling a deletion and follows the same logic. 
We modify the Deletion Correction Algorithm to handle an 
insertion as given in Table VI. Again, it is worth mentioning 
that while the algorithm corrects the codeword, it does not 
reveal the exact position where the insertion occurred. 

D. Block Organization 
In order to minimize the access latency of a block, 

GreenFlag uses multiple tracks to store a single block similar 
to prior work [12, 30]. Assuming a 512-bit block, prior work 
uses 512 tracks to stripe a block at a bit granularity. GreenFlag 
stripes a block at an extended codeword granularity. For 
example, GreenFlag(8,4,6) uses 128 tracks that each stores a 
(8+6)-bit-long extended codeword. All 128 extended 
codewords can be read in parallel to retrieve a single block.  

VI. HARDWARE IMPLEMENTATION  
In this section, we discuss the hardware implementation of 

the encoding and decoding process of GreenFlag. Designing 
an encoder and decoder helps us analyze and understand the 
overheads of GreenFlag in terms of latency, energy and area. 

We used Verilog to describe all of the hardware down to 
the RTL, and we then synthesized it using Synopsys design 
compiler with the 15nm CMOS technology node. 

A. Encoding 
1) Simple Implementation 
To start the encoding process, we fill a FIFO queue that 

has a size of ݊ = 2௟ , i.e., the length of our codeword. We place 
the desired data bits in all the positions of the queue that are 
not powers of 2 as described in Section V. This process 
represents steps 1 and 2 of our encoding algorithm. 

 The content of the FIFO queue is then shifted to a full 
adder (FA) as seen in Fig. 8. The FA uses the shifted bits of 
the queue as its enable input. In other words, the FA performs 
an addition only when the shifted bit has a value of 1. The first  
input of the FA is driven by a counter that counts from 0 
to ݊ − 1. Additionally the carry input of the FA is always set 
to 1 and thus we add the numbers from 1 to ݊. The second 
input is driven through a feedback loop from the output of the 
FA. The output is latched in order to allow for correct 
synchronization. Thus, we have now completed step 3 of our 
algorithm and calculated the desired sum. 

We continue by calculating the ݊ + 1 modulo of the sum. 
To efficiently perform the modulo operation we exploit some 
observations. The calculated sum of step 3 is bounded by the 
follow expression. ෍ ݅ܿ௜௡௜ୀଵ  ≤ ෍ ݅௡௜ୀଵ =  ݊(݊ + 1)2  

This allows us to efficiently calculate the ݊ + 1 modulo 
operation with the following algorithm: 

1. Divide ݉ݑݏ with ݊ and store the result in ݌݉ݐ_ݐ݋ݑݍ. 
2. Store the remainder in ݌݉ݐ_݉݁ݎ. 
3. If ݌݉ݐ_ݐ݋ݑݍ ≤ ݎ݁݀݊݅ܽ݉݁ݎ then ݌݉ݐ_݉݁ݎ ݌݉ݐ_݉݁ݎ = −   .݌݉ݐ_ݐ݋ݑݍ
4. Else ݌݉ݐ_ݐ݋ݑݍ = ݌݉ݐ_ݐ݋ݑݍ  − ݌݉ݐ_݉݁ݎ= ݌݉ݐ_݉݁ݎ ;1 + ݎ݁݀݊݅ܽ݉݁ݎ ;݊ = ݌݉ݐ_݉݁ݎ  −   ݌݉ݐ_ݐ݋ݑݍ

This algorithm performs division with ݊ instead of ݊ + 1, 
which is a simple operation, because ݊ is always a power of 2 
(i.e., ݊ = 2௟ ). Thus, ݌݉ݐ_ݐ݋ݑݍ  can be calculated by just 
extracting the ݈ − logଶ ݊  most significant bits of the sum. 
Then ݌݉ݐ_݉݁ݎ   is the logଶ ݊  least significant bits. The 
modulo block implements this algorithm. 

Now we can calculate ݏ by just subtracting the calculated ݎ݁݀݊݅ܽ݉݁ݎ from ݊ + 1. Note that the result of this operation 
is already the desired binary expansion and thus we simply 
place the output bits in the codeword positions that are powers 
of 2. We have now completed steps 4 and 5 of the encoding 
algorithm. 

A drawback of this implementation is that the delay 
overhead due to encoding depends on the length of the 
codeword. As the codewords become larger, in order to 
achieve better rate, the delay overhead becomes significant.  

2) Performance Optimized Implementation 
In order to mitigate the increase in delay overhead we 

slightly modify the encoding process by calculating sum in 
parallel. We split the FIFO queue into smaller queues of 8-bit 
length. Each queue is now connected to a separate FA that 
computes a partial sum. Multiple partial sums are computed 
in parallel. We then add all the partial sums together to get the 
final sum.  

This optimization allows us to trade area for lower latency. 
We note that although the two implementations differ in 
power consumption, there are negligible differences in energy 
due to a significant reduction in latency. In other words, we 
now spend more power over less time.   
B. Decoding 

Decoding has some of the same steps as encoding. As we 
read our codeword from the racetrack, we calculate the sum as 
we did for encoding. We then perform the modulo operation 
to get the desired Checksum. Also, as we read the codeword  
we calculate its weight ω. We use the module “Delimiter” to 
store the delimiter bits. We then use the Checksum with the  
delimiter bits to decide if there was an error as well as the type 
of the error as discussed in Section V.  

  ݀ ଵ
0  ݀ ଶ

  ݀ ௞
0 0

0ܿ௡ܿ ௡ି
ଵ

ܿ ହܿ ସ
ܿ ଷܿ ଶ

ܿ ଵ
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In1 In2
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݉ݑݏ
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Fig. 8. Hardware implementation of the encoder 
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The “Error Correction” module uses the Checksum, ω, and 
the error decision to decode and recover the correct codeword  
by performing steps 4 and 5 of the decoding process. From the 
correct codeword we can now extract the initial stored 
dataword by just reading the positions that are not powers of 
2. The whole process is shown in Fig. 9. 

C. Analysis: Latency, Power, Energy, and Area 
We now present the results of evaluating the hardware that 

we implemented in Verilog and synthesized with Synopsys 
Design Compiler. Table VII presents latency, power, energy, 
and area results for various codeword lengths (݊ ) for the 
optimized encoding process and the error-free decoding 
process. These results do not include the actual costs to read 
or write a codeword; in Section VII we use these results to 
evaluate GreenFlag as a whole. 

As expected, overheads tend to increase as ݊ increases. 
However, we observe that the latency for error-free decoding 
is constant with respect to ݊. That happens because part of the 
decoding process is done in parallel with reading the 
codeword from the racetrack.  

Even though error-free performance is more critical, we 
also study decoding performance in the presence of errors. For 
single shift errors, the latency depends on the position of the 
error. On average, the expected decoding latency is 8.75ns 
(the error-free latency) plus ݊/2 cycles (at 0.8GHz) to shift 
half-way through the codeword. For ݊ = 32 , that latency 
equals 28.75ns. For double shift errors, the latency is twice the 
error-free latency plus the product of n and the latency to re-
read each bit (i.e., 3.7ns to shift and 2.1ns to read, as shown in 
Table VII). For ݊ = 32, this latency equals 203ns.  

Lastly, we note that a designer could choose to use 
GreenFlag only for shift error detection (and not correction) 
by (a) simply discarding the “Error Correction” module in Fig. 
9 and (b) always using re-read attempts to recover from shift 
errors. Although that solution would save some area (~45%) 
and energy (~12%) for the decoding hardware, it would cause 
all shift errors (single and double) to incur the latency of 
double shift errors. Because single shift errors are far more 
common [12], we do not consider this option during our 
evaluation. 

VII.  EVALUATION 
 In this section we evaluate GreenFlag. Recall that our goal 

is to determine the viability of Racetrack with effective error  
tolerance, not to promote Racetrack as necessarily the best 
option, and our analysis is thus more of a limit study than a 
cycle-accurate comparison against other schemes. 

We assume a best-case racetrack that has the minimum 
possible read, write, and shift latencies, based on results from 
prior work on quantitative analysis for racetrack memory [31]. 
We chose the minimum latencies so that we maximize the 
significance of GreenFlag’s overheads. We summarize the 
characteristics of the best-case racetrack in Table VIII. We 
combine racetrack’s latency and energy overheads with the 
results of Section VI to calculate the overall overheads of 
GreenFlag. For all the results, we use delimiter-2, the 6-bit 
delimiter that provides DECDED shift error protection. 

A. Block Read and Write Latencies 
 For 64-byte blocks, Fig. 10 presents the block read and 

write latency of GreenFlag for different rates (i.e., for different 
codeword lengths). These latencies include shift, read/write 
and decoding/encoding delays. For example, 
GreenFlag(8,4,6) has 8-bit codewords and 6-bit delimiters, 
and reading an extended codeword requires 8+6 shifts and 8+6 
reads; its rate is 0.286. 

The results of Fig. 10 show that racetrack memory with 
GreenFlag cannot achieve the latency expected of an L1 cache 
and probably not even the latency of a last-level cache (LLC). 

TABLE VII. HARDWARE IMPLEMENTATION OVERHEADS 

 Encoding (optimized) Decoding (error free) 
Codeword length (bits) 4 8 16 32 64 4 8 16 32 64 

Cycles 1 12 14 15 16 11 15 23 39 71 
Frequency (GHz) 1 1 1 1 1 0.8 0.8 0.8 0.8 0.8 

Latency (ns) 1 12 14 15 16 8.75 8.75 8.75 8.75 8.75 
Power (uW) 10 204 311 755 974 212 286 413 675 812 
Energy (pJ) 0.01 2.45 4.35 11.33 15.58 0.24 5.36 11.87 32.91 72.07 
Area (ܕܝ૛) 11 326 646 1117 2704 652 1014 1361 1754 2321 

Rate (w/ 6-bit delimiter) 0.1 0.286 0.5 0.684 0.814 0.1 0.286 0.5 0.684 0.814 

TABLE VIII. BEST-CASE RACETRACK 

Operation (per bit) Latency (ns) Energy (pJ) 
Read 3.7 224 
Write 10.2 998 
Shift 2.1 124 
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Fig. 9. Hardware implementation of the decoder 
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GreenFlag(4,1,6) can provide the lowest read latency (67ns) 
but with a huge overhead of 0.1 rate. Even if we use 
GreenFlag(4,1,4) (that provides SECSED shift protection) 
read latency will only drop to 56ns and the rate will be 0.125. 

However, the results show that racetrack with GreenFlag 
is a viable option for main memory and storage devices. 
GreenFlag(32,26,6) and GreenFlag(16,11,6), with rates of 
0.684 and 0.5, respectively, can provide latencies comparable 
to modern DRAM designs like DDR3 (~100ns), while 
GreenFlag(64,57,6) can be used as an extremely low latency 
storage device with a rate of 0.814. While these rates may still 
seem somewhat low we remind the reader that GreenFlag is, 
to the best of our knowledge, the only shift error solution that 
can be implemented with only one read/write port. 
Compatibility with a single port makes GreenFlag the only 
coding scheme that can be used with 3D racetracks and benefit 
from their density compared to 2D racetracks [5, 11, 15, 16]. 

B. Bandwidth 
In Fig. 11 we present GreenFlag’s maximum data 

bandwidth per track. Bandwidth per track is a more insightful 
metric than aggregate bandwidth, at this early stage in the 
development of racetrack memory, because it eliminates 
orthogonal issues like I/O bottlenecks and open questions 
about how large-scale racetrack will be organized.  

We calculate the bandwidth per track as the average 
number of data bits we can read or write per track per second, 
including delimiter and encoding/decoding overheads. For 
comparison, we also include the bandwidth of prior work on 
tolerating shift errors (HiFi) [12]. Note that HiFi’s bandwidth 
is constant (i.e., not a function of n) for reasons explained in 
Section VIII. 

We observe that, as the rate increases, the read and write 
bandwidth per track of GreenFlag increases. This result occurs 
because we are accessing more data bits per codeword, while 
the decoding and encoding overheads remain almost constant. 
GreenFlag achieves up to 1.86× more read bandwidth per 
track compared to HiFi, while providing similar write 
bandwidth. The reason is that HiFi must perform a write after 
every shift operation, which limits how many bits it can 
stream per second. 

C. Energy 
We calculate the average energy per bit for read and write 

operations. For GreenFlag this is calculated by amortizing the 
cost of an extended codeword, including the decoding and 
encoding energy overheads, per bit. Fig. 12 shows that the 
energy overheads of GreenFlag decrease as rate increases. 
Additionally, we observe that the energy overheads are 
significantly lower than prior work [12] (up to 6.6×). 

D. Mean Time to Failure (MTTF)  
GreenFlag’s ability to tolerate an error when reading a 

given extended codeword depends on the probability of a shift 
error on any given shift and the specific GreenFlag code used. 
GreenFlag’s overall ability to tolerate errors and avoid silent 
data corruption (SDC) also depends on the memory 
bandwidth demanded. The dependence on bandwidth 
distinguishes racetrack memory from other technologies; as 

also noted by prior work [12], racetrack errors only occur 
during shifts and thus the more the racetrack is used (shifted), 
the more possible opportunities for errors.  

The expected probability of a single shift incurring an 
error is not well known. Prior work [12] has estimated shift 
error probabilities based on models and simulations, but 
currently there are no empirical results. Thus, we test 
GreenFlag over a wide range of single shift error probabilities 
ranging from 10ି଺ to 10ିଽ.  We account for both double shift 
errors and the possibility of multiple single shift errors in the 
same codeword. 

We define failure as the occurrence of a silent data 
corruption (SDC). That is, three or more shift errors occur 
while reading a single codeword. We then analytically 
calculate the probability of failure per extended codeword 
( ௙ܲ). This probability depends on the length of the codeword 
and the single shift error probability, but not the bandwidth 
demand (i.e., we assume there is demand for exactly one 
extended codeword). Fig. 13 presents the failure probability 
per extended codeword for different GreenFlag codes and 
different single shift error rates; note that values on y-axis are 
in decreasing order. We observe that the failure probability 
increases linearly as the codeword length increases.  
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To calculate overall MTTF (across all tracks) we need to 
know how often a shift operation occurs. Thus, we assume 
different shift intensities that represent peak bandwidths for a 
variety of memory technologies like DDR3, SSDs, and 3D-
DRAM. We can now calculate the MTTF as, ܨܶܶܯ = 1ܲ௙ × ℎݐ݀݅ݓ݀݊ܽܤ݊ × 13.154 × 10଻ 

where 3.154 × 10଻is the number of seconds in one year and 
n is the length of a codeword. 

Fig. 14 presents the MTTF for GreenFlag(64,57,6) and 
GreenFlag(32,26,6) for different bandwidths. We set a desired 
MTTF goal of 10 years. For very high shift error probabilities 
(i.e., greater than 10ି଻), it is difficult to achieve that goal. 
However, for lower probabilities we can achieve MTTFs well 
beyond 10 years. Overall Fig. 14 can be used to extrapolate 
MTTFs for any single shift error probability and can be used 
as a guideline when designing reliable memory systems based 
on racetrack memory.  

VIII. PRIOR WORK 
Prior work on handling shift errors in racetrack memory 

[12, 13, 32] uses additional read/write ports to access multiple 
bits at the same time. These extra ports preclude using the 
denser 3D racetrack layout, but they enable detecting and 
correcting multiple shift errors. HiFi [12] and its extended 
work [32] address bit deletions in racetrack memory by adding 
pattern bits at both edges of each track as well as additional 
read and write ports. The main idea is to read the pattern in 
parallel with the data bits. If the pattern does not match what 
was expected, bits are shifted in the reverse direction and the 
memory is re-read to recover the bits correctly. As bits are 
shifted during consecutive reads, some of the pattern bits are 
“shifted out” of the track and virtually get deleted. Thus, for 
every shift in racetrack, one data bit and two pattern bits are 
read, while at the same time a new pattern bit is written. Chee 
at al. [13] propose placing multiple ports with a specific 
number of domains between any two consecutive ports. They 
encode the data in a way that a shift error can be detected from 
observing differences when reading the same data from two 
nearby ports. This work however ignores the fact that domains 
are virtually deleted if shifted out of the track, something that 
can happen as domains are shifted from the first to the second 
port.  

 There is also prior work on the use of Varshamov-
Tenengolts codes [33] to correct segmented errors on deletion 
and insertion channels in which deletions or insertions (but 
not a mixture of two) could occur. This is a more restrictive 

model than racetrack memory in which deletions and 
insertions could both occur. Moreover, if we input ݊ bits to 
deletion and insertion channels with segmented errors, the 
output would be a sequence of length ݊′ from which we can 
easily deduce the number of shift errors. Again, this differs 
from racetrack memory where the memory controller always 
provides the desired number of bits, ݊, regardless of whether 
an error occurs. Moreover, in this work, exhaustive search is 
used to find codewords of a given length which makes 
implementation infeasible. 

 Additionally, there is prior work on utilizing racetrack 
memory to design caches and memory systems [3, 30, 34], but 
none of this work considers the system’s fault tolerance. 

IX. CONCLUSION 
We have presented GreenFlag, the first error tolerance 

scheme for 3D racetrack memory. GreenFlag combines a 
novel construction for Varshamov-Tenegolts codes with 
specially crafted delimiter bits to detect, categorize and 
correct shift errors. Additionally, we designed and synthesized 
hardware for encoding and decoding so that we could estimate 
latency and energy overheads and, more significantly, analyze 
the viability of racetrack for different levels of the memory 
hierarchy. Based on current technology, it appears that fault 
tolerant 3D racetrack memory is not attractive for caches but 
a promising option for main memory and storage. 
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