2019 49th Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN)

GreenFlag: Protecting 3D-Racetrack Memory
from Shift Errors

Alireza Vahid
Electrical Engineering

Georgios Mappouras
Electrical & Computer

Engineering University of Colorado Denver
Duke University Denver, USA
Durham, USA alireza.vahid@ucdenver.edu
gml 18@duke.edu

Abstract—Racetrack memory is an exciting emerging
memory technology with the potential to offer far greater
capacity and performance than other non-volatile memories.
Racetrack memory has an unusual error model, though, which
precludes the use of the typical error coding techniques used by
architects. In this paper, we introduce GreenFlag, a coding
scheme that combines a new construction for Varshamov-
Tenegolts codes with specially crafted delimiter bits that are
placed between each codeword. GreenFlag is the first coding
scheme that is compatible with 3D racetrack, which has the
benefit of very high density but the limitation of a single
read/write port per track. Based on our implementation of
encoding/decoding hardware, we analyze the trade-offs between
latency, code length, and code rate; we then use this analysis to
evaluate the viability of racetrack at each level of the memory
hierarchy.

Keywords—Racetrack Memory; Coding; Fault Tolerance;
Shift Errors

1. INTRODUCTION

Many new non-volatile memory technologies are vying to
replace conventional memory technologies—such as SRAM,
DRAM, and Flash—and racetrack memory [1, 2, 3] has the
potential to provide the best storage density and performance
of any of these contenders. In Table I, we compare racetrack
memory to two of the other emerging non-volatile memories
as well as to SRAM. Competing technologies, such as phase
change memory (PCM) and magneto-resistive random-access
memory (MRAM), are at a disadvantage in terms of density
and performance [4, 5, 6, 7, 8, 9, 10]. SRAM is somewhat
faster than racetrack memory, but it is volatile and two orders
of magnitude less dense. These quantitative advantages—
combined with racetrack’s compatibility with standard
fabrication processes and promising results in research labs [2,
5, 8, 10, 11]—motivate us to explore the potential for
racetrack memory to be used in computer architectures.

As we explain in more detail in Section II, racetrack’s
unique design provides both the advantages mentioned above
but also a new reliability challenge. Racetrack memory stores
bits on a large number of nanowire tracks that can each be
accessed one bit at a time with a fixed port; the bits are shifted
along the fixed track such that the desired bit position is over
the port. This design enables excellent storage density and
short access latencies, but it is unfortunately susceptible to an

Robert Calderbank Daniel J. Sorin
Electrical & Computer Electrical & Computer
Engineering Engineering
Duke University Duke University
Durham, USA Durham, USA

robert.calderbank@duke.edu sorin@ee.duke.edu

TABLE I. COMPARING MEMORY TECHNOLOGIES

PCM | MRAM | SRAM | Racetrack
Volatile No No Yes No
Density (F?) | 4-16 20-60 140 1-2
Read (ns) 10-50 10-35 1-10 3-10
Write (ns) | 50-500 | 10-90 1-10 10-20

error model that is unfamiliar to architects: shift errors. Shift
errors include both deletions and insertions [12, 13]. A
deletion occurs when the track is shifted more than expected
and thus one (or more) bits are skipped, i.e., the memory is
over-shifted. An insertion occurs when the track is shifted less
than expected and the bit under the port does not change, and
we read the same bit twice (or even more), i.e., the memory is
under-shifted.

The goal for architects is to tolerate shift errors without
sacrificing too much of the latency and density benefits
provided by racetrack memory. Error coding—for any
memory technology—exhibits a fundamental tension between
code length (i.e., how many bits are in each codeword), code
rate (i.e., the ratio of the data bits to the sum of the data bits
and the extra bits required for the code), and latency.
Achieving our goal for racetrack memory is complicated by
both its unusual error model (shift errors) and its bit-serial
access nature, because the only ways to improve latency are
to read from multiple tracks in parallel or use shorter
codewords.

Consider a grid of racetrack memory, in which each track
is a horizontal row (even if the track itself is 3D, as discussed
later), and each column is the collection of bits at the same bit
position in each track. Assume we want to be able to read (or
write) C bits at a time. For the best latency, we would prefer
to read one bit from each of C tracks—achieving a parallelism
of C—and thus achieve single-cycle accesses. In theory, we
could do this by coding “vertically”, i.e., encoding
information on a per-column basis. Unfortunately, as we show
in Section III, known vertical coding schemes do not suffice.
Vertical coding may be possible, but such a solution does not
exist today.

If we cannot code vertically, we must code “horizontally”
by encoding information in a group of C bits on a given track.
Each track would be encoded independently. We show in
Section III that commonly used codes like Hamming cannot
handle shift errors, so we have developed a new coding

978-1-7281-0057-9/19/$31.00 ©2019 IEEE 1 IEEE
DOI 10.1109/DSN.2019.00016 @compggglrety

Authorized licensed use limited to: Duke University. Downloaded on September 10,2020 at 22:52:55 UTC from IEEE Xplore. Restrictions apply.

technique, called GreenFlag!, that composes Varshamov-

Tenegolts (VT) codes [14] with specially crafted delimiter bits

that detect and correct shift errors. The architectural trade-off

is that longer GreenFlag codes achieve a better rate but incur

a longer read latency. (The analysis for bandwidth is more

subtle but bandwidth is far less sensitive than latency to the

choice of code.) Assume that codeword length is C bits and
we wish to access B bits (B>C). The best parallelism we can
achieve is to read C bits on each of B/C tracks, thus achieving

a parallelism of B/C. As C increases, the trade-off is that

parallelism decreases (and thus latency increases) and rate

increases. The exact results for latency and bandwidth depend
on the hardware, so we have implemented and evaluated the
circuitry for encoding datawords and decoding codewords.

There is one clever but limited exception to the above
analysis, which is HiFi [12]. HiFi is a horizontal “code” that
can detect and correct errors at the granularity of a single bit.
In the terms of horizontal coding above, it has the ideal C=1
and parallelism of B. However, HiFi requires multiple ports
on each track, and that is only possible with 2-dimensional
(2D) tracks. Because 3D tracks can offer vastly greater density
than 2D tracks [5, 11, 15, 16], we do not consider HiFi or any
other possible scheme that is constrained to 2D tracks.

The architectural viability of racetrack depends on the
possible trade-offs between code length, rate, latency, and
bandwidth, so we analyzed these trade-offs for racetrack with
GreenFlag at each level of the memory hierarchy. Our goal is
to determine the viability of Racetrack with effective error
tolerance, not to promote Racetrack as necessarily the best
option, and our analysis is thus more of a limit study than a
cycle-accurate comparison against other schemes. For a given
level of the memory hierarchy, the viability of racetrack
memory is determined by B/C. Specifically, assume a given
level of cache requires an access latency to B bits that is no
longer than a specified amount of time (e.g., 20ns for an L3
cache). That latency determines the required access
parallelism B/C and, because B is fixed, determines the
codeword length C. In turn, C determines the rate of the code,
and we explore this relationship between C and rate for
GreenFlag codes. If the rate is too low, racetrack might be
considered unattractive compared to existing memory
technologies. For example, we show that the best rate we can
achieve for a LLC cache with a 50ns access latency is 0.125.
It is unlikely that racetrack at this rate is preferable to simply
using SRAM.

We make the following contributions in this paper:

e We present the GreenFlag coding scheme that combines a
novel construction of VT codes with specially crafted
delimiter bits to efficiently detect and correct shift errors.

e We implement and evaluate the GreenFlag hardware
circuitry required to encode datawords and decode
codewords.

e We present the first analysis of the viability of racetrack
memory—based on the trade-off between code length,

code rate, latency, and bandwidth—at each level of the
memory hierarchy.

II. RACETRACK MEMORY

This section introduces the physical model of racetrack
memory and describes its error model.

A. Racetrack Background

Racetrack memory stores data in tape-like tracks. Each
track stores data bits in magnetic domains and neighboring
domains are separated by a domain wall. All read/write ports
and the physical substrate are fixed in position, and as spin-
coherent electric current is passed through a track, its domains
shift by the magnetic read/write port positioned near the track.

Although these tracks can be manufactured in two or three
dimensions—sometimes referred to as horizontal and vertical
racetrack memory, respectively—the three-dimensional
structure is preferred as it can offer dramatically greater
density [5, 11, 16]. With 3D racetrack, the tracks are in a U-
shaped geometry in three dimensions, and the read/write ports
are fixed in position at the bottom of this structure as
illustrated in Fig. 1. The 3D structure of racetrack memory
limits the feasible number of read/write ports per track to one.

Because of the huge density benefits of 3D racetrack
memory, we consider only 3D tracks and, thus, only coding
schemes that can be implemented with one read/write port per
track. However, for simplicity, when we illustrate tracks to
facilitate the description of our code in the following sections,
we use a 2D schematic representation.

B. Error Model

Our error model includes single shift and double shift
errors®. We do not consider triple or higher shift errors as prior
work [12] has shown them to have negligible probability.
Similar to prior work [12], we do not include bit-flip errors, as
we have discovered no data on this phenomenon in the
literature. We do not claim that bit-flip errors are impossible
in racetrack memory; if future evidence of them appears, we
would need to extend our work here to address them.

To explain shift errors, we use an example in which a
number of bits is stored on a track as in Fig. 2(a). To read

A single track
from a Racetrack memory

2 o
Domain £ %
Wall 7
Magnetic
Domain (MD)

;Read/Write Port

Fig. 1. 3D (vertical) racetrack

'Tn car racing, a green flag indicates good track conditions.

2A single shift error occurs when a single shift operation deletes or
inserts a single bit. A double shift error occurs when a single shift
operation deletes or inserts two bits.

Authorized licensed use limited to: Duke University. Downloaded on September 10,2020 at 22:52:55 UTC from IEEE Xplore. Restrictions apply.

Simplified representation of a single track

bo| by] by{ bs| ba| bs| b| by | bs| *o°)

{ e

the data we want to read
() Shifting

direction
oo Igllnl?zl ba] ba] b b b, s

YY) —\
shifting data by one position

(e oee -

data position in the absence of shift errors

(©)

\£2|b3|b4—|b5|b6|b7|b8|b9|b10 oo \

by | b, | bs| ba] bs| be] b5 | bs] bo

s

data position after a single deletion
d
Fig. 2. Error-free shifting and shift ergogs
(write) the stored bits, we need to perform a sequence of
consecutive shift and read (write) operations. A shift is the
injection of current, shown in Fig. 2(b), so as to place the next
bit in racetrack memory under the read/write port.

Suppose we want to read bit by and currently bit by is
positioned under the read/write port. Ideally, we inject the
correct amount of current to perform a single shift operation
and b, is placed under the read/write port as in Fig. 2(c). If the
injected current is larger than expected, then we skip the
domain that contains b; and b, is wrongly positioned under
the read/write port as in Fig. 2(d). We refer to this error as a
deletion error since b, is skipped (i.e., a bit is deleted). On the
other hand, if the injected current is smaller than expected, the
port's position does not change and we might read the same
bit twice. We refer to this error as an insertion error (i.e., an
extra bit is inserted).

We should emphasize that, regardless of whether a shift
error occurs, the memory controller always provides the
desired number of bits, say n. A shift error just affects which
n bits are provided. For instance, if a deletion happens as in
Fig. 2(d), then we receive the first n = 5 bits excluding b,
which are by, bs, by, bs, bg.

We observe that a single deletion (or insertion) can cause
as many as n bit errors, which greatly complicates error
coding, as we show later.

ITII. ERROR CODING FOR RACETRACK

Coding for racetrack is different than for typical memory
technologies because of its bit-serial nature (which affects
performance) and its susceptibility to shift errors (which
makes many standard codes ineffective).

We now discuss two broad approaches to coding for
racetrack—uvertical (across tracks) and horizontal (within a
track)—and show why commonly used coding techniques do
not work.

To clarify the explanation, we use the well-known
Hamming code as a running example. Hamming codes add
parity bits to datawords to form codewords, and they are
parameterized by the bit lengths of the datawords and
codewords. With no loss of generality, we assume a
Hamming(8,4) code that encodes 4-bit datawords as 8-bit
codewords. The code provides SECDED protection.

A. Vertical Coding

Ideally, for performance, we would employ a vertical code
that uses domains across multiple tracks to store a codeword,
as illustrated in Fig. 3. We would use one bit from each of C
different tracks to store the C bits of the codeword. With such
a code, we could read all C bits in parallel with a single shift
and read operation on each track.

In Fig. 3(a) we illustrate an 8-bit codeword ¢ =10101010
from the Hamming (8,4) code striped vertically across C = 8
tracks. Fig. 3(b) shows the state of these 8 tracks after a single
deletion in the first track changes ¢ to ¢’=00101010.

Only one bit position is affected and thus a SECDED
Hamming code like Hamming(8,4) can correctly recover c.
However, the code cannot fix the still-erroneous position of
the domains on that track with respect to the read/write port.
Note that, because the code cannot differentiate between
deletions and insertions, the codeword bits that are striped
across tracks cannot be correctly aligned. Once the position of
the domains becomes incorrect with respect to the port, it
remains incorrect, which can lead to further errors on that
track. Worse, a subsequent error on another track can now lead
to a multiple-error scenario that cannot be corrected by a
SECDED code. Thus, a shift error on one track can easily lead
to a situation in which the data on all 8 tracks are lost.

We are unaware of any existing coding scheme that would
overcome the problem we have just described. We do not
claim that such a code is impossible, but to our knowledge, it
has not yet been invented.

next bit

Xy} I1IO|---

|0|1|...

I]lol---

|0|1|...

I]lol---

IO I 1 |...
a

oo I—I I—l"l
[

Iollllll

\
=
e
=
e
\
\
\

=[10101010]

=[00101010]
(@) (b)

Fig. 3. Hamming code — vertical implementation

Authorized licensed use limited to: Duke University. Downloaded on September 10,2020 at 22:52:55 UTC from IEEE Xplore. Restrictions apply.

c=8

A
- Y
1fofafofrfofafofaf --r
. J
N Y

c=1[10101010]
(@)

N, I 8
I |

Y
c=1[01010101]
(b)

e

next bit

Fig. 4. Hamming code — horizontal implementation

B. Horizontal Coding

Given that vertical coding is not possible, we are left with
horizontal coding, in which each C-bit codeword is written on
the domains of a single track, as illustrated in Fig. 4. The main
drawback of horizontal coding is that we need to perform C
read and C shift operations to read all the domains (bits) of a
single codeword. That means that latency depends on C.

To explain why standard codes do not suffice for handling
shift errors, we use an example.’

Our Hamming(8,4) code has a generate matrix G shown
below.

10 00 0 1 1 1
G = 01 0 01 0 1 1
0 01 01 1 0 1
0 0 01 1110
Assume that we want to store the dataword

d = [1 01 0] on a track. The dataword is first encoded to the
codeword ¢ and then written to the track as shown in Fig. 4(a).
c=d*G=[10101010]

Assume that a single deletion happens during the first shift
operation while we are trying to read c. In Fig. 4(b) we present
the state of the track after the deletion error converts ¢ into ¢’.

¢'=[01010101]

We observe that ¢’ differs from ¢ in every bit position,
which overwhelms the capability of a SECDED code.
Nevertheless, it is instructive to see the resulting dataword d’
that is produced by our code:

¢'=d'*G=[01010101]
d=[0101]

We observe that d' differs from the correct dataword d in
every bit position, despite experiencing only a single shift
error. Through this example it is easy to see that, even if we
had used stronger codes (e.g., DECTED), we still could not
address shift errors. Additionally, even if we could detect and
correct the bit-value errors, the position of the read/write port
with respect to the domains would still be wrong. Thus, any
future read/shift operations would suffer additional bit-value
errors.

C. Conclusion

Based on our observations thus far, we have the following
three goals for GreenFlag:
o GreenFlag must be a horizontal code.

e GreenFlag cannot be a typical code, like Hamming (or
Reed-Solomon, CRC, etc.).

e GreenFlag should be compatible with 3D racetrack and
its limitation of one read/write port per track.

IV. VARSHAMOV-TENENGOLTS CODES

GreenFlag coding is based on Varshamov-Tenengolts
(VT) codes [14], which are part of a family of graph-based
codes. VT codes are constituents of communication systems
where deletions are common, but we are unaware of any prior
use in computer systems. We note that graph-based codes
have been proposed to correct deletion errors in
communication systems [17].

A. Graph Codes

To explain VT codes, we first present graph codes in
general, their key idea, and a simple example. We then
formally define VT codes.

We denote binary strings with boldface letter (e.g., x), and

bits in these strings are denoted by lower case letters (e.g., x;).
To label different binary strings, we use different boldface
letters, e.g., x and y.
Key idea: Consider two binary strings X = x4, X,, ..., X, and
Y = Y1,¥2, -, Yn. In order to be able to use these two strings
to store different values in racetrack memory, we need to be
able to distinguish them even after a single deletion. In other
words, if x; and y; are deleted for i,j € {1,2,...,n}, then the
resulting binary strings should not be identical. If two binary
strings x and y can be confused with a single deletion, we
refer to them as conflicting; if they cannot be confused with a
single deletion, we refer to them as non-conflicting. Consider
the following set of binary strings.

00000 00011 01110 10101 11000 11111
! \) \) \) \))

Co C1 (4] C3 Cy Cs

These six strings/codewords are pairwise non-conflicting.
Let DC]. denote the set of all strings of length 4 that result from

a single deletion in ¢;. In this example, D, = {0000} while
D¢, = {0101,1101,1001,1011, 1010}. Thus, if we read out
“0101” we know that it refers to codeword ¢z = 10101.
Formal definition: Consider all 2" binary strings of length n.
We create a conflict graph N = (V, E), where V is the node
set and E € V X V is the edge set. Each node in this graph
corresponds to a unique binary string of length n (|V| = 2™).
For simplicity, we label the nodes with numbers
0,1,2,..,2" — 1 and we let node i correspond to the binary
expansion (of length n) of i that we denote by b;.

Now, (i,j) € E if and only if b; and b; are conflicting.
Fig. 5 depicts a conflict graph N for n=3. In this graph, a set
of non-conflicting strings corresponds to an independent set;
the maximum number of strings of length n corresponds to
the size of the maximum independent set. This problem is

3 HiFi [12] also illustrates how typical codes fail to tolerate shift
errors. We provide this explanation here for completeness.

Authorized licensed use limited to: Duke University. Downloaded on September 10,2020 at 22:52:55 UTC from IEEE Xplore. Restrictions apply.

4
Fig. 5. Conflict graph N for n=3 :

well-studied in graph theory. For a given n, we denote the
maximum independent set by I,,. We use the binary strings
corresponding to the nodes in the maximum independent set
as our codewords. We note that the maximum independent set
of a graph is not necessarily unique. For the graph in Fig. 5,
the maximum independent set is of size two and includes
nodes 0 and 7.

Although we have demonstrated only how a graph code
works for a deletion, the explanation for insertions is
analogous, and a graph code that can tolerate a single deletion
can also tolerate a single insertion.

There are two major challenges with using graph codes
that we will address when we present GreenFlag in Section V.
First, encoding and decoding require the use of look-up tables,
and those tables can have significant space and latency
overheads. Second, if decoding reveals a shift error, we can
only correct it if we know whether it was a deletion or an
insertion. That problem has not arisen for communication
systems that consider only deletion or insertion errors but not
a mixture of both [18, 19, 20, 21, 22, 23, 24].

B. Varshamov-Tenengolts Codes

We have already shown that it is possible to use graph
codes to tolerate shift errors, but there are two challenges that
must be overcome. One of those challenges—requiring
lookup tables for encoding and decoding, which does not scale
to long codes—has been addressed by a special family of
graph codes called Varshamov-Tenengolts (VT) codes.

VT codes impose an additional constraint on the graph-
based codes in order to enable faster and more efficient
encoding and decoding.

Formal definition: a VT(n) code consists of all binary strings
¢ = (¢4, Cy, ..., C;y) that satisfy:

yo Jic, mOdll +1 0 Equation 1
where the sum is evaluated as an ordinary rational integer. We
refer to Equation 1 as the checksum.

The encoding and decoding algorithms of VT codes
depend on their construction (i.e., how parity bits are
generated and at which positions they appear in the
codeword). There are several ways to construct VT codes, and
in Section V we provide a novel construction method that
allows for efficient encoding and decoding.

Detecting a shift error with a VT code is as simple as
calculating the checksum. If the checksum is zero, then there
was no shift error. Otherwise a shift error occurred.

While error detection is simple, error correction is more
complicated. As with graph codes in general, VT codes can

only correct a shift error if we can first categorize it as a
deletion or insertion. Furthermore, we must be able to detect
“silent” shift errors, in which the shift error does not corrupt
the currently read codeword.

Consider the example in Fig. 6. Assume we are reading
codewords from the example code provided in Section IV.A
for n = 5. In Fig. 6(a) we show the state of the track while we
are attempting to read the codeword 00011, which is
followed by the codeword 11111. When we attempt to read
the last bit of the first codeword, a deletion occurs as shown
in Fig. 6(b). We still correctly read 00011 and the shift error
is not detected (i.e., the shift error is silent at this point). While
this situation may not seem problematic because there are no
bit-value errors, the relative position of the read/write port is
still misplaced. If an additional shift error occurs while
reading in the next codeword it may result in an undetected
error.

The problem arises due to the inability to distinguish the
boundaries between codewords. Prior work [25, 26] has used
predetermined patterns (sometimes called commas) at the end
of each codeword to separate consecutive codewords and
address this boundary problem. We call these patterns
delimiters and they have been used in prior work to detect
deletions or insertions but not a mixture of both. In Section V,
we present a new set of delimiters we have crafted to
distinguish deletions from insertions and that even allow us to
detect double deletion and insertion errors.

V. GREENFLAG CODING

In this section, we present GreenFlag coding. To create
GreenFlag, we have integrated a VT-based horizontal code
with specially crafted delimiter bits that allows us to detect
and correct not only single but also double shift errors.

We first explain how we construct VT codes for
GreenFlag and how we encode and decode in the error-free
case. Then we introduce different delimiter options to help us
categorize detected shift errors as deletions or insertions.
Finally, we describe how GreenFlag corrects shift errors by
both fixing erroneous bits and moving the correct racetrack
domain under the read/write port.

A. GreenFlag Construction: A Novel VT Construction

With an eye on implementation, we introduce a novel
construction algorithm for Varshamov-Tenengolts codes. We
can construct VT(n) codes for any value of n; however, to
provide fast and efficient encoding and decoding, we use
powers of two, i.e., n = 2'. Our encoding and decoding
algorithms are based on the mathematics of VT codes, and we

N 8
YH Y

reading current next codeword
codeword “0001...” (a)

{ eee

cee

ofl1f1fa]afa]a]1]fo]s

deleted bit
(®)
Fig. 6. The boundary problem

Authorized licensed use limited to: Duke University. Downloaded on September 10,2020 at 22:52:55 UTC from IEEE Xplore. Restrictions apply.

have proven them correct. Due to space constraints, proofs
could not be included in this paper but are provided in a
document available on-line [27].

1) Encoding

Suppose n = 2! and k = n— [— 1. We encode k data
bits, dy, d5, ..., dy, into a codeword ¢ of length n such that it
satisfies the checksum as described in Section IV. Such a code
is referred to as GreenFlag(n, k, delimiter_size).

We present the encoding algorithm and an example for
n = 8 in Table II. In this example, [= 3 and we encode k =
n—1—1 = 4 databits (1011) into a codeword of length n =
8. The encoding algorithm creates [+ 1 check bits to ensure
that the checksum holds. We index bit positions in a codeword
from 1 to n (rather than 0 ton — 1).

The rate of this code is given by,

n—log,(n) —1
R(n) = g2(n)
which approaches 1 in the limit of large n.
2)Error-Free Decoding

Because of our novel construction, if the checksum is zero
when reading a codeword, we can simply recover our error-
free dataword by extracting all the bits that are not powers of
two. Thus, this allows for efficient decoding in the common,
error-free case.

However, as we already discussed, a silent shift error can
result in a correct codeword but leave the wrong domain over
the read/write port, thus corrupting subsequent accesses. Error
correction requires that we both detect this situation and
differentiate insertions from deletions.

B. Greenflag’s Delimiters: Categorizing Shift Errors

We use specially crafted delimiters to identify silent shift
errors and to distinguish insertions from deletions. Intuitively,
the delimiters help us to separate codewords from each other
in the presence of shift errors. We refer to a codeword that is

concatenated with delimiter bits as an extended codeword.
TABLE II. ENCODING ALGORITHM WITH EXAMPLE

Encoding Algorithm

Example forn = 8,1 =3

Step 1: Start with a zero-
vector ¢ of length n = 2*

c=00000000

Step 2: Set positions that
are not powers of two to
data bits

d=1011
c=00100110

Step 3: Calculate the
checksum Y7, ic;

8
Z ic;=3+6+7=16
i=1

Step 4: Set s to be the
minimum value that needs
to be added to the
checksum to make it equal
to O modulon + 1

s =9—mod(16,9) =2

Step 5: Setthe [+ 1
positions that are powers
of two to the binary
expansion of s. Start from
c;and set it to be the
MSB. Move all the way to
cpand set it to the LSB

s=2=(0010),

C1=0,C2=1
C3=0,C4=0

c=01100110

extended codeword

0|,0|0|1|1|1|1|1|0|0\|T|0

codeword
Fig. 7. Delimiter example

G

eee)

delimiter next codeword

We choose delimiters to most efficiently achieve our
goals, and tolerating greater numbers of shift errors requires
longer delimiters. All delimiters must be functional when read
from right to left or left to right because domains on a track
can be shifted and read in both directions. In other words,
delimiters should either be palindromic or have their less
significant bits equal to the complement of the corresponding
more significant bits.

We illustrate an example of extended codewords in Fig. 7.
The example has 5-bit VT codewords and 4-bit delimiters of
1100. In the absence of shift errors, when we read an extended
codeword, its last four bits will be the known bits 1100 of the
delimiter.

Choosing the delimiter bits to use can be tricky, because
of edge cases like a shift error in the delimiter bits themselves.
Our crafted delimiters, with the help of the VT codes, can help
us detect and correct shift errors even in such corner cases, and
we exhaustively tested our scheme against every possible
combination of shift errors in data bits and delimiter bits [27].
We now present two options, with different lengths, to show
how the choice of delimiter impacts the ability to identify shift
errors.

Delimiter-1 is the 4-bit pattern d = (dy,d,, d3, dy) =
1100. We use delimiter-1 along with the VT checksum to
categorize shift errors as shown in Table II1. Note that in Table
III we do not include the observation of d,, because any error
that affects the last delimiter bit will be detected when we read
the next extended codeword. Because delimiter-1 can detect
some double shift errors (1 insertion plus 1 deletion) but not
all (double deletion or double insertion), we classify a
GreenFlag(n,k,4) code as a SECSED code for shift errors.

Delimiter-2 is a 6-bit delimiter with the pattern 111000.
Table IV shows how to use the VT checksum and delimiter-2
to categorize shift errors. Unlike delimiter-1, delimiter-2 can
detect and differentiate double deletions and double
insertions. Although VT codes can only recover codewords
from a single shift error, delimiter-2 (with the help of the VT
checksum) enables GreenFlag to correct the relative position
of the read/write port for up to double shift errors. Thus,
double shift errors can now be detected and corrected by re-
reading the extended codeword in the opposite direction. Note
that VT codes enable us to correct single shift errors without
the need to re-read an extended codeword and thus single shift
error correction will be substantially faster than correcting

TABLE III. HOW DELIMITER 1100 IDENTIFIES ERRORS (X =0OR 1)

Observed delimiter bits Decisions
dy | d, | d3 | Checksum
1 1 0 0 Nno error
1 1 0 *+0 1 insertion & 1 deletion
1 0 0 *0 1 deletion
X 1 1 *0 1 insertion

Authorized licensed use limited to: Duke University. Downloaded on September 10,2020 at 22:52:55 UTC from IEEE Xplore. Restrictions apply.

TABLE IV. HOW DELIMITER 111000 IDENTIFIES SHIFT ERRORS (X =0 OR 1)

Observed delimiter bits Decision

d, d, d; d, ds Checksum

1 1 1 0 0 0 no error

1 1 1 0 0 *0 1 deletion and 1 insertion
1 1 0 0 0 X 1 deletion

X 1 1 1 0 X 1 insertion

1 0 0 0 X X 2 deletions

X X 1 1 1 X 2 insertions

TABLE V. DELETION CORRECTION WITH AN EXAMPLE

Deletion Correction Algorithm

Example forn = 8,1l = 3

Step 1: Suppose a VT codeword ¢ = (¢q, ¢y, ..., Cpy) 18
stored in racetrack memory. Using GreenFlag we have
detected a single deletion and thus we observe ¢’ =
(c'y,c'5 0, C'pq).

c=01100110-¢"=0110010

Step 2: Set w to be the Hamming weight (number of 1°s) of
CI

w =

Step 3: Calculate the checksum Y7, ic';

8
Z ic;=2+3+6=11
i=1

Step 4: Set s to be the minimum amount that needs to be
added to the checksum in order to make it 0 modulo n + 1

s=7

Step 5: If s < w, we restore the codeword by adding a 0
immediately to the left of the rightmost s 1’s. Otherwise,
we restore the codeword by adding a 1 immediately to the
right of the leftmost (s —w — 1) 0’s.

s > w — restore the codeword by adding a 1 immediately
to the right of the leftmost (s — w — 1) = 3 zeros to arrive
at the correct codeword: 011001 10.

TABLE VI. INSERTION CORRECTION WITH AN EXAMPLE

Insertion Correction Algorithm

Example forn = 8,1l =3

Step 1: Suppose a VT codeword ¢ = (¢, €y, ..., Cy) 18
stored in racetrack memory. Using GreenFlag we have
detected a single insertion and thus we observe ¢’ =

(€'1, €50 s €'pg).

c=01100110 -c'=011000110

Step 2: Set w to be the Hamming weight (number of 1°s)
of ¢.

Step 3: Calculate the checksum Y7, ic’;

8
z ic;,=24+3+7+4+8=20
i=1

Step 4: Set s to be the minimum amount that needs to be
deducted from the checksum in order to make it 0 modulo
n+1

s=2

Step 5: If s < w, we restore the codeword by removing a
0 immediately to the right of the leftmost s 1°’s.
Otherwise, we restore the codeword by removing a 1

immediately to the left of the rightmost (s — w) 0’s.

s < w — restore the codeword by removinga 0
immediately to the right of the leftmost s = 2 ones to arrive
at the correct codeword: 011 %001 10.

double shift errors. Overall a GreenFlag(n,k,6) code is a
DECDED code for shift
errors.

Note that GreenFlag combines delimiters and the VT
checksum to categorize shift errors. Delimiters alone do not
suffice to detect nor to determine the type of shift errors.

C. Decoding in Presence of Shift Errors

If a shift error is detected, we shift so that the correct
domain is over the read/write port. If it is a double shift error,

we need to re-read the entire extended codeword. In the case
of a single shift error, we correct the erroneous bit values as
explained next.

Correcting a single deletion error: This can be
accomplished using the elegant algorithm proposed by
Levenshtein [28, 29] and which we present in Table V
alongside an example for n=8. The main idea is that we want
to find a position at which inserting a bit will make the
checksum zero. Using the decoding algorithm, we reconstruct
the correct codeword. Then we recover the dataword as

Authorized licensed use limited to: Duke University. Downloaded on September 10,2020 at 22:52:55 UTC from IEEE Xplore. Restrictions apply.

discussed for the error free case. It is worth mentioning that
while the decoding algorithm corrects the codeword, it does
not reveal the exact position where the deletion occurred. In
fact, in the example in Table V, if either of the 1's in positions
6 or 7 was deleted, the algorithm would have behaved in
exactly the same way.

Correcting a single insertion error: Handling an insertion is
very similar to handling a deletion and follows the same logic.
We modify the Deletion Correction Algorithm to handle an
insertion as given in Table VI. Again, it is worth mentioning
that while the algorithm corrects the codeword, it does not
reveal the exact position where the insertion occurred.

D. Block Organization

In order to minimize the access latency of a block,
GreenFlag uses multiple tracks to store a single block similar
to prior work [12, 30]. Assuming a 512-bit block, prior work
uses 512 tracks to stripe a block at a bit granularity. GreenFlag
stripes a block at an extended codeword granularity. For
example, GreenFlag(8,4,6) uses 128 tracks that each stores a
(8+6)-bit-long extended codeword. All 128 extended
codewords can be read in parallel to retrieve a single block.

VI. HARDWARE IMPLEMENTATION

In this section, we discuss the hardware implementation of
the encoding and decoding process of GreenFlag. Designing
an encoder and decoder helps us analyze and understand the
overheads of GreenFlag in terms of latency, energy and area.

We used Verilog to describe all of the hardware down to
the RTL, and we then synthesized it using Synopsys design
compiler with the 15nm CMOS technology node.

A. Encoding
1)Simple Implementation

To start the encoding process, we fill a FIFO queue that
has a size of n = 2!, i.e., the length of our codeword. We place
the desired data bits in all the positions of the queue that are
not powers of 2 as described in Section V. This process
represents steps 1 and 2 of our encoding algorithm.

The content of the FIFO queue is then shifted to a full
adder (FA) as seen in Fig. 8. The FA uses the shifted bits of
the queue as its enable input. In other words, the FA performs
an addition only when the shifted bit has a value of 1. The first
input of the FA is driven by a counter that counts from 0
ton — 1. Additionally the carry input of the FA is always set
to 1 and thus we add the numbers from 1 to n. The second
input is driven through a feedback loop from the output of the
FA. The output is latched in order to allow for correct
synchronization. Thus, we have now completed step 3 of our
algorithm and calculated the desired sum.

We continue by calculating the n + 1 modulo of the sum.
To efficiently perform the modulo operation we exploit some
observations. The calculated sum of step 3 is bounded by the
follow expression.

n n nn+1
DM
i=1 i=1 2

This allows us to efficiently calculate the n + 1 modulo
operation with the following algorithm:

1. Divide sum with n and store the result in quot_tmp.

2. Store the remainder in rem_tmp.

3. If quot_tmp < rem_tmp then remainder =
rem_tmp — quot_tmp.

4. Else quot_tmp = quot_tmp — 1;rem_tmp =
rem_tmp + n; remainder = rem_tmp — quot_tmp

This algorithm performs division with n instead of n + 1,
which is a simple operation, because n is always a power of 2
(i.e., n = 2!). Thus, quot_tmp can be calculated by just
extracting the | —log, n most significant bits of the sum.
Then rem_tmp is the log, n least significant bits. The
modulo block implements this algorithm.

Now we can calculate s by just subtracting the calculated
remainder from n + 1. Note that the result of this operation
is already the desired binary expansion and thus we simply
place the output bits in the codeword positions that are powers
of 2. We have now completed steps 4 and 5 of the encoding
algorithm.

A drawback of this implementation is that the delay
overhead due to encoding depends on the length of the
codeword. As the codewords become larger, in order to
achieve better rate, the delay overhead becomes significant.

2) Performance Optimized Implementation

In order to mitigate the increase in delay overhead we
slightly modify the encoding process by calculating sum in
parallel. We split the FIFO queue into smaller queues of 8-bit
length. Each queue is now connected to a separate FA that
computes a partial sum. Multiple partial sums are computed
in parallel. We then add all the partial sums together to get the
final sum.

This optimization allows us to trade area for lower latency.
We note that although the two implementations differ in
power consumption, there are negligible differences in energy
due to a significant reduction in latency. In other words, we
now spend more power over less time.

B. Decoding

Decoding has some of the same steps as encoding. As we
read our codeword from the racetrack, we calculate the sum as
we did for encoding. We then perform the modulo operation
to get the desired Checksum. Also, as we read the codeword
we calculate its weight w. We use the module “Delimiter” to
store the delimiter bits. We then use the Checksum with the
delimiter bits to decide if there was an error as well as the type

of the error as discussed in Section V.
M\
sum

Enable Out n
1B Full Adder Modulo
o
| n+1
‘S'i In1 Cin In2 \ Out J
o< t 1 n+1
| 1
A pa
2 L= o) InT 2)
S ut
[o3 IS)
o Counter Subtractor
T o
o S
L]
-)
L ~§ [cs C 3
©
ol |5m|dk| oo d2|53 d1|52IS1|

Complete codeword

Fig. 8. Hardware implementation of the encoder

Authorized licensed use limited to: Duke University. Downloaded on September 10,2020 at 22:52:55 UTC from IEEE Xplore. Restrictions apply.

TABLE VII. HARDWARE IMPLEMENTATION OVERHEADS

Encoding (optimized) Decoding (error free)
Codeword length (bits) 4 8 16 32 64 4 8 16 32 64
Cycles 1 12 14 15 16 11 15 23 39 71
Frequency (GHz) 1 1 1 1 1 0.8 0.8 0.8 0.8 0.8
Latency (ns) 1 12 14 15 16 8.75 | 8.75 8.75 8.75 8.75
Power (uW) 10 204 311 755 974 212 286 413 675 812
Energy (pJ) 0.01 2.45 435 1133 | 1558 | 024 | 536 11.87 | 3291 | 72.07
Area (um?) 11 326 646 1117 | 2704 | 652 | 1014 | 1361 | 1754 | 2321
Rate (w/ 6-bit delimiter) | 0.1 0.286 0.5 0.684 | 0814 | 0.1 | 0.286 0.5 0.684 | 0.814

The “Error Correction” module uses the Checksum, w, and
the error decision to decode and recover the correct codeword
by performing steps 4 and 5 of the decoding process. From the
correct codeword we can now extract the initial stored
dataword by just reading the positions that are not powers of
2. The whole process is shown in Fig. 9.

C. Analysis: Latency, Power, Energy, and Area

We now present the results of evaluating the hardware that
we implemented in Verilog and synthesized with Synopsys
Design Compiler. Table VII presents latency, power, energy,
and area results for various codeword lengths (n) for the
optimized encoding process and the error-free decoding
process. These results do not include the actual costs to read
or write a codeword; in Section VII we use these results to
evaluate GreenFlag as a whole.

As expected, overheads tend to increase as n increases.
However, we observe that the latency for error-free decoding
is constant with respect to n. That happens because part of the
decoding process is done in parallel with reading the
codeword from the racetrack.

Even though error-free performance is more critical, we
also study decoding performance in the presence of errors. For
single shift errors, the latency depends on the position of the
error. On average, the expected decoding latency is 8.75ns
(the error-free latency) plus n/2 cycles (at 0.8GHz) to shift
half-way through the codeword. For n = 32, that latency
equals 28.75ns. For double shift errors, the latency is twice the
error-free latency plus the product of n and the latency to re-
read each bit (i.e., 3.7ns to shift and 2.1ns to read, as shown in
Table VII). For n = 32, this latency equals 203ns.

In Wi In h
Delimiter eight
Sum
Qut Out

Final Error

Decision
Out

Racetrack Enable Out]

Full Adder

In1 Cin_In2

Out

Counter

Corrected Codeword ¢

CnICn-1|"' | CSI C4| Csl CZ| C1|

In1In2 In3
¢ Error ¢

Correction

d ees d, d

Dataword d
Fig. 9. Hardware implementation of the decoder

Lastly, we note that a designer could choose to use
GreenFlag only for shift error detection (and not correction)
by (a) simply discarding the “Error Correction” module in Fig.
9 and (b) always using re-read attempts to recover from shift
errors. Although that solution would save some area (~45%)
and energy (~12%) for the decoding hardware, it would cause
all shift errors (single and double) to incur the latency of
double shift errors. Because single shift errors are far more
common [12], we do not consider this option during our
evaluation.

VII. EVALUATION

In this section we evaluate GreenFlag. Recall that our goal
is to determine the viability of Racetrack with effective error
tolerance, not to promote Racetrack as necessarily the best
option, and our analysis is thus more of a limit study than a
cycle-accurate comparison against other schemes.

We assume a best-case racetrack that has the minimum
possible read, write, and shift latencies, based on results from
prior work on quantitative analysis for racetrack memory [31].
We chose the minimum latencies so that we maximize the
significance of GreenFlag’s overheads. We summarize the
characteristics of the best-case racetrack in Table VIII. We
combine racetrack’s latency and energy overheads with the
results of Section VI to calculate the overall overheads of
GreenFlag. For all the results, we use delimiter-2, the 6-bit
delimiter that provides DECDED shift error protection.

A. Block Read and Write Latencies

For 64-byte blocks, Fig. 10 presents the block read and
write latency of GreenFlag for different rates (i.e., for different
codeword lengths). These latencies include shift, read/write
and decoding/encoding delays. For example,
GreenFlag(8,4,6) has 8-bit codewords and 6-bit delimiters,
and reading an extended codeword requires 8+6 shifts and 8+6
reads; its rate is 0.286.

The results of Fig. 10 show that racetrack memory with
GreenFlag cannot achieve the latency expected of an L1 cache
and probably not even the latency of a last-level cache (LLC).

TABLE VIII. BEST-CASE RACETRACK

Operation (per bit) Latency (ns) Energy (pJ)
Read 3.7 224
Write 10.2 998
Shift 2.1 124

Authorized licensed use limited to: Duke University. Downloaded on September 10,2020 at 22:52:55 UTC from IEEE Xplore. Restrictions apply.

GreenFlag(4,1,6) can provide the lowest read latency (67ns)
but with a huge overhead of 0.1 rate. Even if we use
GreenFlag(4,1,4) (that provides SECSED shift protection)
read latency will only drop to 56ns and the rate will be 0.125.
However, the results show that racetrack with GreenFlag
is a viable option for main memory and storage devices.
GreenFlag(32,26,6) and GreenFlag(16,11,6), with rates of
0.684 and 0.5, respectively, can provide latencies comparable
to modern DRAM designs like DDR3 (~100ns), while
GreenFlag(64,57,6) can be used as an extremely low latency
storage device with a rate of 0.814. While these rates may still
seem somewhat low we remind the reader that GreenFlag is,
to the best of our knowledge, the only shift error solution that
can be implemented with only one read/write port.
Compatibility with a single port makes GreenFlag the only
coding scheme that can be used with 3D racetracks and benefit
from their density compared to 2D racetracks [5, 11, 15, 16].

B. Bandwidth

In Fig. 11 we present GreenFlag’s maximum data
bandwidth per track. Bandwidth per track is a more insightful
metric than aggregate bandwidth, at this early stage in the
development of racetrack memory, because it eliminates
orthogonal issues like I/O bottlenecks and open questions
about how large-scale racetrack will be organized.

We calculate the bandwidth per track as the average
number of data bits we can read or write per track per second,
including delimiter and encoding/decoding overheads. For
comparison, we also include the bandwidth of prior work on
tolerating shift errors (HiFi) [12]. Note that HiFi’s bandwidth
is constant (i.e., not a function of #) for reasons explained in
Section VIII.

We observe that, as the rate increases, the read and write
bandwidth per track of GreenFlag increases. This result occurs
because we are accessing more data bits per codeword, while
the decoding and encoding overheads remain almost constant.
GreenFlag achieves up to 1.86x more read bandwidth per
track compared to HiFi, while providing similar write
bandwidth. The reason is that HiFi must perform a write after
every shift operation, which limits how many bits it can
stream per second.

C. Energy

We calculate the average energy per bit for read and write
operations. For GreenFlag this is calculated by amortizing the
cost of an extended codeword, including the decoding and
encoding energy overheads, per bit. Fig. 12 shows that the
energy overheads of GreenFlag decrease as rate increases.
Additionally, we observe that the energy overheads are
significantly lower than prior work [12] (up to 6.6%).

D. Mean Time to Failure (MTTF)

GreenFlag’s ability to tolerate an error when reading a
given extended codeword depends on the probability of a shift
error on any given shift and the specific GreenFlag code used.
GreenFlag’s overall ability to tolerate errors and avoid silent
data corruption (SDC) also depends on the memory
bandwidth demanded. The dependence on bandwidth
distinguishes racetrack memory from other technologies; as

Block Access Latency

Storage
900 L ~ T T T TS T T T T s E s s E TS
800 AN —read
- 700 \\\ - =write
@ 600 \ .
E_SOO " ++<<HiFi read
s 400 — HiFi write
+ 300
3 200 DRAM
_________ —_— e = = = = = == ==
100 b e e e = e = LLC
ol S —Ticohé
0.814 0.684 0.5 0.286 0.1
(n=64) (n=32) (n=16) (n=8) (n=4)

GreenFlag(n,k,6) Rate
Fig. 10. Block access latency
Bandwidth per Track

=—read ==write <<+-HiFiread == HiFi write

0.684 0.5

(n=32) (n=16)
GreenFlag(n,k,6) Rate
Fig. 11. Bandwidth per track

0.814
(n=64)

Energy/Bit
4 , =read =-=write ----HiFiread == HiFi write
35 |00 oo oo oo ———
= 3 ooooooooooooooooooooooooooooooooooooo
£25
% 2 6.6x _ee="
i ST R I -—
c 1 /
“os
0 + + + t >
0.814 0.684 0.5 0.286
(n=64) (n=32) (n=16) (n=8)

GreenFlag(n,k,6) Rate
Fig. 12. Energy per bit
also noted by prior work [12], racetrack errors only occur
during shifts and thus the more the racetrack is used (shifted),
the more possible opportunities for errors.

The expected probability of a single shift incurring an
error is not well known. Prior work [12] has estimated shift
error probabilities based on models and simulations, but
currently there are no empirical results. Thus, we test
GreenFlag over a wide range of single shift error probabilities
ranging from 107 to 10~°. We account for both double shift
errors and the possibility of multiple single shift errors in the
same codeword.

We define failure as the occurrence of a silent data
corruption (SDC). That is, three or more shift errors occur
while reading a single codeword. We then analytically
calculate the probability of failure per extended codeword
(Pr). This probability depends on the length of the codeword
and the single shift error probability, but not the bandwidth
demand (i.e., we assume there is demand for exactly one
extended codeword). Fig. 13 presents the failure probability
per extended codeword for different GreenFlag codes and
different single shift error rates; note that values on y-axis are
in decreasing order. We observe that the failure probability
increases linearly as the codeword length increases.

Authorized licensed use limited to: Duke University. Downloaded on September 10,2020 at 22:52:55 UTC from IEEE Xplore. Restrictions apply.

Failure Probability of Extended Codeword

1E-25 ,
+«++GreenFlag(8,4,6)
1E-23 GreenFlag(16,11,6) . Z
Z 101 GreenFlag(32,266) .= = J=7
i) ==GreenFlag(64,57,6) .- prs
® 1E-19 e o
° ._.-' e
.* rd
s 1E17 s-
et ”f
1E-15 ~-
”
1E-13 = + + + »
1.E-06 1.E-07 1.E-08 1.E-09

Single Shift Error Probability
Fig. 13. SDC error rate per extended codeword
To calculate overall MTTF (across all tracks) we need to
know how often a shift operation occurs. Thus, we assume
different shift intensities that represent peak bandwidths for a
variety of memory technologies like DDR3, SSDs, and 3D-
DRAM. We can now calculate the MTTF as,

1 n 1
MTTF = — X X
Pr Bandwidth 3.154 x 107

where 3.154 x 107is the number of seconds in one year and
n is the length of a codeword.

Fig. 14 presents the MTTF for GreenFlag(64,57,6) and
GreenFlag(32,26,6) for different bandwidths. We set a desired
MTTF goal of 10 years. For very high shift error probabilities
(i.e., greater than 1077), it is difficult to achieve that goal.
However, for lower probabilities we can achieve MTTFs well
beyond 10 years. Overall Fig. 14 can be used to extrapolate
MTTFs for any single shift error probability and can be used
as a guideline when designing reliable memory systems based
on racetrack memory.

VIII.PRIOR WORK

Prior work on handling shift errors in racetrack memory
[12, 13, 32] uses additional read/write ports to access multiple
bits at the same time. These extra ports preclude using the
denser 3D racetrack layout, but they enable detecting and
correcting multiple shift errors. HiFi [12] and its extended
work [32] address bit deletions in racetrack memory by adding
pattern bits at both edges of each track as well as additional
read and write ports. The main idea is to read the pattern in
parallel with the data bits. If the pattern does not match what
was expected, bits are shifted in the reverse direction and the
memory is re-read to recover the bits correctly. As bits are
shifted during consecutive reads, some of the pattern bits are
“shifted out” of the track and virtually get deleted. Thus, for
every shift in racetrack, one data bit and two pattern bits are
read, while at the same time a new pattern bit is written. Chee
at al. [13] propose placing multiple ports with a specific
number of domains between any two consecutive ports. They
encode the data in a way that a shift error can be detected from
observing differences when reading the same data from two
nearby ports. This work however ignores the fact that domains
are virtually deleted if shifted out of the track, something that
can happen as domains are shifted from the first to the second
port.

There is also prior work on the use of Varshamov-
Tenengolts codes [33] to correct segmented errors on deletion
and insertion channels in which deletions or insertions (but
not a mixture of two) could occur. This is a more restrictive

MTTF

LS 4 —16B/s,n=32

1.E+07 =1GB/s, n=64
o LE+06 | — 10GB/s,n=32
5 1.E+05 | ==10GB/s, n=64
L 1LE+04 |100GB/s, n=32
5 }E*‘B —100GB/s, n=64
o LE+02 10 years
£ LE0] [o o o o o ol el e o o
iZ 1.E+00

1.E-01

1.6-02

1.E-03

1.E-04 + + + + >

1.E-06 1.E-07 1.E-08 1.E-09

Single Shift Error Probability

Fig. 14. MTTF for different implementations/bandwidths
model than racetrack memory in which deletions and
insertions could both occur. Moreover, if we input n bits to
deletion and insertion channels with segmented errors, the
output would be a sequence of length n’ from which we can
easily deduce the number of shift errors. Again, this differs
from racetrack memory where the memory controller always
provides the desired number of bits, n, regardless of whether
an error occurs. Moreover, in this work, exhaustive search is
used to find codewords of a given length which makes
implementation infeasible.

Additionally, there is prior work on utilizing racetrack
memory to design caches and memory systems [3, 30, 34], but
none of this work considers the system’s fault tolerance.

IX. CONCLUSION

We have presented GreenFlag, the first error tolerance
scheme for 3D racetrack memory. GreenFlag combines a
novel construction for Varshamov-Tenegolts codes with
specially crafted delimiter bits to detect, categorize and
correct shift errors. Additionally, we designed and synthesized
hardware for encoding and decoding so that we could estimate
latency and energy overheads and, more significantly, analyze
the viability of racetrack for different levels of the memory
hierarchy. Based on current technology, it appears that fault
tolerant 3D racetrack memory is not attractive for caches but
a promising option for main memory and storage.

X. ACKNOWLEDGMENTS

This material is based on work supported by the National
Science Foundation under grants CCF-142-1177 and CCF-
171-7602.

REFERENCES

[1] S. Mittal, “A survey of techniques for architecting processor
components using domain wall memory,” ACM Journal on Emerging
Technologies in Computing Systems, 2016, no. 2, p.29.

L. Thomas, S.-H. Yang, K.-S. Ryu, B. Hughes, C. Rettner, D.-S.
Wang, C.-H. Tsai, K.-H. Shen, and S. S. Parkin, “Racetrack memory:
a high-performance, low-cost, non-volatile memory based on
magnetic domain walls,” in IEEE International Electron Devices
Meeting (IEDM), pp. 24-2, 2011.

[2]

[3] Z.Sun, W. Wu, and H. Li, “Cross-layer racetrack memory design for
ultra high density and low power consumption,” in 50th
ACM/EDAC/IEEE Design Automation Conference (DAC), pp. 1-6,

2013.

Authorized licensed use limited to: Duke University. Downloaded on September 10,2020 at 22:52:55 UTC from IEEE Xplore. Restrictions apply.

(4]

(6]

(7]

[10]

(1]

[12

—

[13]

[14]

[15]

[16

b}

[17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

S. Parkin and S.-H. Yang, “Memory on the racetrack,” Nature
nanotechnology, vol. 10, no. 3, pp. 195-198, 2015.

S. S. Parkin, M. Hayashi, and L. Thomas, “Magnetic domain-wall
racetrack memory,” Science, vol. 320, no. 5873, pp. 190—194, 2008.

M. K. Qureshi, “Pay-as-you-go: low-overhead hard-error correction
for phase change memories,” in the 44th Annual IEEE/ACM
International Symposium on Microarchitecture, pp. 318-328, 2011.

Y. Zhang, W. Zhao, D. Ravelosona, J.-O. Klein, J. Kim, and C.
Chappert, “Perpendicular-magnetic-anisotropy cofeb racetrack
memory,” Journal of Applied Physics, vol. 111, no. 9, p. 093925,
2012.

J. J. Yang, D. B. Strukov, and D. R. Stewart, “Memristive devices for
computing,” Nature nanotechnology, vol. 8, no. 1, pp. 13-24, 2013.

M. Hayashi, L. Thomas, R. Moriya, C. Rettner, and S. S. Parkin,
“Current-controlled magnetic domain-wall nanowire shift register,”
Science, vol. 320, no. 5873, pp. 209211, 2008.

W. Zhao, Y. Zhang, H. Trinh, J. Klein, C. Chappert, R. Mantovan, A.
Lamperti, R. Cowburn, T. Trypiniotis, M. Klaui, et al., “Magnetic
domain-wall racetrack memory for high density and fast data
storage,” in Solid-State and Integrated Circuit Technology (ICSICT),
2012 IEEE 11th International Conference on, pp. 1-4, 2012.

Y.P. Ivanov, A. Chuvilin, S. Lopatin and J. Kosel, "Modulated
magnetic nanowires for controlling domain wall motion: toward 3D
magnetic memories," ACS NANO, 10(5), pp.5326-5332, 2016.

C. Zhang, G. Sun, X. Zhang, W. Zhang, W. Zhao, T. Wang, Y. Liang,
Y. Liu, Y. Wang, and J. Shu, “Hi-Fi playback: Tolerating position
errors in shift operations of racetrack memory,” in Proceedings of
ACM/IEEE 42nd Annual International Symposium on Computer
Architecture (ISCA), pp. 694-706, 2015.

Y. M. Chee, H. M. Kiah, A. Vardy, V. K. Vu, and E. Yaakobi,
“Coding for racetrack memories,” arXiv preprint arXiv:1701.06874,
2017.

R. R. Varshamov and G. M. Tenengolts, “Codes which correct single
asymmetric errors,” Avtomatika i Telemekhanika (in Russian), vol.
26, no. 2, pp. 288-292, 1965.

M. Hirofumi, H. Fukuzawa, A. Kikitsu and Y. Fukuzumi, "Magnetic
Memory Device and Method of Magnetic Domain Wall Motion,"
U.S. Patent 8,792,271, issued July 29, 2014.

D. Sanz-Hernandez, R.F. Hamans, J.W. Liao, A. Welbourne, R.
Lavrijsen and A. Fernandez-Pacheco, "Fabrication, detection and
operation of a three-dimensional nanomagnetic conduit," arXiv
preprint arXiv:1706.03710.

N. J. Sloane, “On single-deletion-correcting codes,” Codes and
Designs, pp. 273-291, 2002.

R. G. Gallager, “Sequential decoding for binary channels with noise
and synchronization errors,” tech. rep., DTIC Document, 1961.

R. L. Dobrushin, “Shannon’s theorems for channels with
synchronization errors,” Problemy Peredachi Informatsii, vol. 3, no.
4, pp. 18-36, 1967.

S. N. Diggavi and M. Grossglauser, “On transmission over deletion
channels,” in the Annual Allerton Conference on Communication
Control and Computing, vol. 39, pp. 573-582, 2001.

A. Kavcic and R. Motwani, “Insertion/deletion channels: Reduced-
state lower bounds on channel capacities,” in IEEE International
Symposium on Information Theory, pp. 229-229, 2004.

S. Diggavi, M. Mitzenmacher, and H. Pfister, “Capacity upper bounds
for deletion channels,” in Proceedings of the International
Symposium on Information Theory (ISIT), pp. 1716-1720, 2007.

M. Mitzenmacher, “A survey of results for deletion channels and
related synchronization channels,” Probability Surveys, vol. 6, pp. 1—
33,2009.

J. Ullman, “On the capabilities of codes to correct synchronization
errors,” IEEE Transactions on Information Theory, vol. 13, no. 1, pp.
95-105, 1967.

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

G. Tenengolts, “Nonbinary codes, correcting single deletion or
insertion (corresp.),” IEEE Transactions on Information Theory, vol.
30, no. 5, pp. 766769, 1984.

F. Palun’ci'’c, K. A. Abdel-Ghaffar, and H. C. Ferreira,
“Insertion/deletion detecting codes and the boundary problem,” IEEE
Transactions on Information Theory, vol. 59, no. 9, pp. 5935-5943,
2013.

G. Mappouras, A. Vahid, R. Calderbank and D. J. Sorin "Support
Material for GreenFlag: Protecting 3D-Racetrack Memory from Shift
Errors,"
https://www.dropbox.com/s/03pf0emvsa8onpp/Racetrack DSN_19
Support Material.pdf?d1=0, accessed: 2019-3-8.

V. L. Levenshtein, “Binary codes capable of correcting deletions,
insertions and reversals,” in Soviet physics doklady, vol. 10, p. 707,
1966.

V. Levenshtein, “Binary codes capable of correcting spurious
insertions and deletions of ones,” Problems of Information
Transmission, vol. 1, no. 1, pp. 8-17, 1965.

R. Venkatesan, S.G. Ramasubramanian, S. Venkataramani, K. Roy
and A. Raghunathan, "Stag: Spintronic-Tape Architecture for
GPGPU Cache Hierarchies," in International Symposium on
Computer Architecture (ISCA), ACM/IEEE, pp. 253-264, 2014.

C. Zhang, G. Sun, W. Zhang, F. Mi, H. Li, and W. Zhao, "Quantitative
modeling of racetrack memory, a tradeoff among area, performance,
and power," in 20th Asia and South Pacific Design Automation
Conference (ASP-DAC), pp. 100-105, 2015.

X. Wang, C. Zhang, X. Zhang and G. Sun, "np-ECC: Nonadjacent
Position Error Correction Code For Racetrack Memory," in
International ~ Symposium on Nanoscale Architectures
(NANOARCH), pp. 23-24, IEEE, 2016.

Z. Liu and M. Mitzenmacher, “Codes for deletion and insertion
channels with segmented errors,” IEEE Transactions on Information
Theory, vol. 56, no. 1, pp. 224-232, 2010.

R. Venkatesan, V. Kozhikkottu, C. Augustine, A. Raychowdhury, K.
Roy, and A. Raghunathan, “TapeCache: a high density, energy
efficient cache based on domain wall memory,” in ACM/IEEE
international symposium on Low power electronics and design, pp.
185-190, 2012.

Authorized licensed use limited to: Duke University. Downloaded on September 10,2020 at 22:52:55 UTC from IEEE Xplore. Restrictions apply.

