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a b s t r a c t

The need to evaluate expressions of the form I(f ) := trace (W T f (A)W ), where the matrix
A ∈ Rn×n is symmetric, W ∈ Rn×k with 1 ≤ k ≪ n, and f is a function defined on
the convex hull of the spectrum of A, arises in many applications including network
analysis and machine learning. When the matrix A is large, the evaluation of I(f ) by
first computing f (A) may be prohibitively expensive. In this situation it is attractive to
compute an approximation of I(f ) by first applying a few steps of a global Lanczos-type
method to reduce A to a small matrix and then evaluating f at this reduced matrix. The
computed approximation can be interpreted as a quadrature rule. The present paper
generalizes the extended global Lanczos method introduced in Bentbib et al. (2018)
and discusses the computation of error-bounds and error estimates. Numerical examples
illustrate the performance of the techniques described.

© 2020 Elsevier B.V. All rights reserved.

1. Introduction

Let A ∈ Rn×n be a large symmetric matrix, f a function defined on the convex hull of the spectrum of A, and w ∈ Rn

a vector of unit Euclidean norm. Application of m ≤ n steps of the (standard) Lanczos method to A with initial vector w
yields the partial Lanczos decomposition

AVm = VmTm + gmeTm, (1.1)

where the matrix Vm ∈ Rn×m has orthonormal columns with initial column w, Tm ∈ Rm×m is a symmetric tridiagonal
matrix, and gm ∈ Rn satisfies V T

mgm = 0; see, e.g., [1,2] for details on the Lanczos algorithm. Throughout this paper ei
denotes the ith column of the identity matrix of suitable order, and the superscript T stands for transposition. Generally,
m ≪ n in applications of the Lanczos method. We assume that m is small enough so that the Lanczos decomposition (1.1)
with the stated properties exists. This is the generic situation. Then

range(Vm) = Km(A,w), (1.2)

where the right-hand side denotes the Krylov subspace

Km(A,w) := span{w, Aw, . . . , Am−1w}. (1.3)
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Introduce the spectral factorization

A = UΛUT , Λ = diag[λ1, λ2, . . . , λn] ∈ Rn×n (1.4)

with an orthogonal matrix U ∈ Rn×n. Substituting the spectral factorization into

I(f ) := wT f (A)w

gives

I(f ) = wTUf (Λ)UTw =

m∑
j=1

f (λj)µ2
j , (1.5)

where µj = eTj U
Tw. The right-hand side of (1.5) can be written as a Stieltjes integral determined by a piece-wise constant

non-decreasing distribution function µ(λ) with jumps at the λj. Let dµ(λ) denote the measure associated with µ(λ). Then

I(f ) =

∫
f (λ)dµ(λ). (1.6)

We note for future reference that the measure dµ(λ) defines an inner product

(f , g) :=

∫
f (λ)g(λ)dµ(λ) (1.7)

for polynomials f and g of low enough degree.
Golub and Meurant [3,4] observed that the nontrivial entries of the symmetric tridiagonal matrix Tm in (1.1) are

recursion coefficients for a sequence of orthonormal polynomials with respect to the inner product (1.7). In particular,
the eigenvalues of Tm are the zeros of the orthonormal polynomial of degree m. This led Golub and Meurant [3,4] to show
that the expression

Gm(f ) := eT1 f (Tm)e1 (1.8)

is the m-point Gauss quadrature rule for approximating the Stieltjes integral (1.6). Hence,

Gm(f ) = I(f ) ∀f ∈ P2m−1, (1.9)

where P2m−1 denotes the set of polynomials of degree at most 2m − 1. Substituting the spectral factorization of Tm into
(1.8) transforms the right-hand side into a sum of m terms and shows that the eigenvalues of Tm are the nodes and the
square of the first component of normalized eigenvectors are the weights of the quadrature rule. This observation forms
the basis for the Golub–Welsch algorithm [5] for the efficient computation of nodes and weights of a Gauss quadrature
rule from Tm. However, we remark that it may not be necessary to first evaluate (1.8) by determining the nodes and
weights of the Gauss rule and then compute f at the nodes. For some functions f , it may be more efficient to compute
f (Tm) directly by one of the methods discussed in [6]; see [7] for an illustration.

The quadrature rule (1.8) is obtained by applying m steps of the (standard) Lanczos method to A with initial vector
w. An analogous rule can be computed by applying the global Lanczos method to A with initial block vector W ∈ Rn×k

with block size 1 < k ≪ n. The global Lanczos method is a block Lanczos method with a particular inner product. It was
first proposed and investigated by Elbouyahyaoui et al. [8] and Jbilou et al. [9]. The global block Lanczos method uses the
inner product between block vectors

⟨W1,W2⟩ := trace(W T
1 W2), W1,W2 ∈ Rn×k, (1.10)

and the induced Frobenius norm

∥W1∥F := ⟨W1,W1⟩
1/2.

This method can be applied to approximate expressions of the form

I(f ) := trace(W T f (A)W ), (1.11)

where W ∈ Rn×k with 1 ≤ k ≪ n. The problem of estimating the trace of a matrix f (A), without evaluating f (A),
is a classical problem in numerical linear algebra; see, e.g., [10–18]. The need to evaluate or approximate expressions
of the type (1.11) arises in various applications, including in network analysis and when solving ill-posed problem;
see, e.g., [13,17,19–22] for discussions of these applications. An approximation of the trace of f (A) can be computed by
approximating expressions (1.11) for several block vectors W := Em, 1 ≤ m ≤ n/k, where the

Em = [ek(m−1)+1, . . . , ekm] ∈ Rn×k (1.12)

are block axis vectors. For notational simplicity, we here assume that n is a multiple of k; see [13] for details on the
computations.



C. Jagels, K. Jbilou and L. Reichel / Journal of Computational and Applied Mathematics 381 (2021) 113027 3

The method described in this paper for approximating expressions of the form (1.11) is particularly well suited for
problems with a matrix A that allows efficient solution of linear systems of equations with this matrix. This includes
semiseparable matrices [23] and, in particular, symmetric positive definite Toeplitz matrices [24].

This paper is organized as follows. Section 2 reviews the global Lanczos method. This method gives approximations of
integrals that are exact when the integrand is a polynomial of low enough degree, analogously to (1.9). However, the error
in the computed approximation may be large if the integrand cannot be well approximated by a polynomial of moderate
degree. The extended global Lanczos method determines approximations of integrals that are exact when the integrand
is a Laurent polynomial of low enough order. The method described in this paper may determine approximations of an
integral with much higher accuracy than the (standard) global Lanczos method when the support of the measure includes
points close to the origin, and the integrand has a singularity there. The extended global Lanczos method recently has
been described in [25] for the special case when the numerator and denominator degrees of the Laurent polynomials that
define the approximant are about the same. Section 3 extends this method to allow more general Laurent polynomials.
The method is derived by applying results in [26] for the extended Lanczos method. The computations with the method
exploit that, analogously to computations with the standard Lanczos method, short recursion relations can be applied in
the computations with the extended global Lanczos method. Section 4 is concerned with bounding the quadrature error of
Gauss–Laurent quadrature rules associated with the extended global Lanczos method. These bounds require that certain
derivatives of the integrand do not change sign on the convex hull of the support of the measure. A method that can be
applied to evaluate error estimates is described in Section 5. This technique has been developed by Spalević [27–29] for
estimating the error in Gauss quadrature rules. We describe an extension that can be applied to estimate the quadrature
error in Gauss–Laurent rules. A few computed examples are presented in Section 6 and concluding remarks can be found
in Section 7.

2. The global Lanczos algorithm and Gauss quadrature

Let A ∈ Rn×n be a large symmetric matrix and W ∈ Rn×k be a block vector with 1 ≤ k ≪ n. Application of m steps of
the global Lanczos algorithm gives the global Lanczos decomposition

A[V1, V2, . . . , Vm] = [V1, V2, . . . , Vm ]̂Tmk + βm+1Vm+1ET
m, (2.1)

where the block columns Vj ∈ Rn×k are orthonormal with respect to the inner product (1.10), i.e.,

⟨Vi, Vj⟩ =

{
1, i = j,
0, i ̸= j.

The global Lanczos method simplifies to the standard Lanczos method when the block size k is one. Analogously to (1.2),
the range of [V1, V2, . . . , Vm], given by

{∑m
j=1 γjVj, γj ∈ R

}
, is the block Krylov subspace

Km(A,W ) = span{W , AW , . . . , Am−1W }.

The matrix T̂mk ∈ Rmk×mk in (2.1) can be expressed as

T̂mk = Tm ⊗ Ik, (2.2)

where Ik ∈ Rk×k is the identity matrix, and the matrix

Tm =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

α1 β2
β2 α2 β3

β3
. . .

. . .

. . .

. . .

. . .
. . . βm
βm αm

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
∈ Rm×m

is symmetric and tridiagonal. Its entries, as well as the block vectors in the decomposition (2.1), are determined by
Algorithm 2.1. The symbol ⊗ in (2.2) denotes the Kronecker product. Moreover, Em is the block axis vector (1.12) and
βm+1 > 0 in (2.1). We assume that m is small enough so that the decomposition (2.1) with the stated properties exists.

Algorithm 2.1 (The Global Lanczos Method).
Input: symmetric matrix A ∈ Rn×n, initial block vector W ∈ Rn×k,

number of steps ℓ.
Output: global Lanczos decomposition (2.1).
V0 = 0, β1 = ∥W∥F , V1 = W/β1
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for j = 1 : ℓ do
Ṽ = AVj − βjVj−1,
αj = ⟨Vj, Ṽ ⟩

Ṽ = Ṽ − αjVj
βj+1 = ∥Ṽ∥F , Vj+1 = Ṽ/βj+1

end

The expression (1.11) can be written as

I(f ) = ∥W∥
2
F trace(V

T
1 f (A)V1) = ∥W∥

2
F trace(Ṽ

T
1 f (Λ)Ṽ1),

where we assume that W ∈ Rn×k
\{0}, V1 = W/∥W∥F , and Ṽ1 = UTV1; cf. (1.4). We define analogously to (1.6) the

Stieltjes integrals

Ii(f ) := eTi Ṽ
T
1 f (Λ)Ṽ1ei =

∫
f (λ)dµi(λ), i = 1, 2, . . . , k,

where µi(λ) is a piece-wise constant non-decreasing distribution function that has jumps at the eigenvalues λj of A and
dµi(λ) is the associated measure. Therefore,

I(f ) = ∥W∥
2
F

k∑
i=1

Iif = ∥W∥
2
F

∫
f (λ)dµ(λ),

where

µ(λ) :=

k∑
i=1

µi(λ) (2.3)

is a piece-wise constant non-decreasing distribution function with jumps at the eigenvalues λj. The measure associated
with µ(λ) defines the inner product

(f , g) :=

∫
f (λ)g(λ)dµ(λ) (2.4)

for polynomials f and g of sufficiently small degree.
It is shown in [13] that the entries of the tridiagonal matrix Tm in (2.2) are recursion coefficients for orthonormal

polynomials associated with the inner product (2.4). This provides the connection between the global Lanczos method
and Gauss quadrature. A proof of the following result is provided in [13].

Proposition 2.1. Let the symmetric tridiagonal matrix Tm in (2.2) be determined by Algorithm 2.1. Then

Gm(f ) := ∥W∥
2
Fe

T
1 f (Tm)e1 (2.5)

is an m-point Gauss quadrature rule associated with the inner product (2.4) defined by the distribution function (2.3). In
particular, Gm(f ) = I(f ) for all f ∈ P2m−1, where I(f ) is defined by (1.11). Substituting the spectral factorization of Tm into
(2.5) yields the quadrature rule in terms of its nodes and weights.

Assume that the convex hull of the support of the measure dµ does not contain the origin. Gauss quadrature rules are
well suited to approximate integrals with an integrand that allows accurate approximation by a polynomial of fairly low
degree. However, when the integrand is non-differentiable on or close to the support of the measure, Gauss quadrature
rules (2.5) may yield low accuracy also for fairly large values of m. In this situation, it may be beneficial to use quadrature
rules that are exact for Laurent polynomials, which are rational functions of the form p(x)/xk, where p is a polynomial and
k is a positive integer. Further, Druskin and Knizhnerman [30] have shown that the approximation by Laurent polynomials
may be beneficial, compared with polynomial approximation, also when approximating entire functions on an interval
not containing the origin.

3. The extended global Lanczos algorithm and Gauss–Laurent rules

The extended global Lanczos method exploits that orthogonal Laurent polynomials associated with a non-negative
measure on the real axis satisfy short recursion relations; see [26,31–36] for this and related results.

3.1. Recursion relations for extended Krylov subspaces

This section first reviews results in [26] on recursion relations of orthonormal bases for extended Krylov subspaces of
the form

Kℓ,m(A,w) = span{A−ℓ+1w, . . . , A−1w,w, Aw, . . . , Am−1w}, (3.1)
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and subsequently describes the extended global Lanczos process. We will in this section assume A to be symmetric and
positive definite. Generically, Kℓ,m(A,w) is of dimension m+ ℓ− 1. The space K1,m(A,w) is the standard Krylov subspace
(1.3).

Njåstad and Thron [35] showed that orthonormal bases for the sequence of nested extended Krylov subspaces

K1,1(A,w) ⊂ K2,2(A,w) ⊂ · · · ⊂ Km,m(A,w) ⊂ Rn

satisfy a short recursion relation, i.e., the number of terms of the recursion relation can be bounded independently of m.
The derivation of the recursion relations uses properties of orthogonal Laurent polynomials. A survey of this and related
results is provided by Jones and Njåstad [34]. We remark that these references do not discuss Krylov subspaces; however,
the results presented can be applied to Krylov subspace computations.

Generation of an orthonormal basis for the subspace Km,m(A,w) requires the evaluation of m − 1 matrix–vector
products with the matrix A and the solution of m − 1 linear systems of equations with A. For many matrices A, the
evaluation of matrix–vector products with A can be carried out faster on modern computers than the solution of systems
of equations with A, also when A already is available in factored form. This suggests that it may be interesting to choose
m larger than ℓ in (3.1). In [26], short recursion formulas are derived for generating an orthonormal basis for a sequence
of extended Krylov subspaces of the form

K1,i+1(A,w) ⊂ K2,2i+1(A,w) ⊂ . . . ⊂ Km,mi+1(A,w) ⊂ . . . ⊂ Rn,

where i is a positive integer. The computation of this basis is based on the use of orthogonal Laurent polynomials. The
recursion formulas generate orthogonal Laurent polynomials with respect to the inner product (1.7). This is equivalent to
determining the vectors, in order,

v0, v1, . . . , vi, v−1, vi+1, . . . , v2i, . . . , v−m+1, . . . , vim (3.2)

with v0 = w, which makes up an orthonormal basis for the extended Krylov subspace Km,im+1(A,w). The meaning of the
subscripts in the sequence (3.2) is that vj for j > 0 is determined by multiplying the most recently generated vector by
A and orthogonalizing the vector so obtained against selected already available vectors, while v−j for j ≥ 1 is computed
by multiplying the most recently generated vector by A−1 and orthogonalizing the vector so obtained against selected
already available vectors. Typically, the matrix A−1 is not explicitly formed; instead a linear system of equations with
the matrix A is solved. The number of explicit orthogonalizations required for generating each vector vj, j ∈ Z, can be
bounded independently of the magnitude of j. Details are described in [26]. To facilitate the implementation, we describe
an algorithm at the end of this section.

Introduce the matrix

Vτ := [v0, v1, . . . , vi, v−1, vi+1, . . . , v2i, . . . , v−m+1, . . . , vim] ∈ Rn×τ ,

where

τ := m(i + 1). (3.3)

The recursion coefficients for generating the basis (3.2) as outlined determine a pentadiagonal matrix Hτ = [hj,k] ∈ Rτ×τ

such that

AVτ = VτHτ + zτ eTτ , (3.4)

where

zτ = hτ+1,τv−m + hτ+2,τvim+1.

Thus,

Hτ = V T
τ AVτ (3.5)

is the orthogonal projection of A onto Km,im+1(A,w). Since A is symmetric and positive definite, so is Hτ . We remark that
the matrix Hτ is the analogue of the tridiagonal matrix Tm in (1.1).
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Example 3.1. Consider the matrix Hτ for i = 3 and m = 3. Then τ = 12. The matrix H12 may have non-vanishing entries
in the positions marked by ‘‘∗’’:

H12 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∗ ∗

∗ ∗ ∗

∗ ∗ ∗

∗ ∗ ∗ ∗

∗ ∗ ∗

∗ ∗ ∗ ∗

∗ ∗ ∗

∗ ∗ ∗ ∗

∗ ∗ ∗

∗ ∗ ∗ ∗

∗ ∗ ∗

∗ ∗

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. □

It is shown in [26] that the matrix (3.5) plays an analogous role for Gauss–Laurent quadrature rules, which are designed
for the exact integration of functions in suitable spaces of Laurent polynomials, as the matrix Tm for Gauss rules.

Theorem 3.1 (Gauss–Laurent Quadrature). Let τ be given by (3.3) and define the quadrature rule

Hτ (f ) = eT1 f (Hτ )e1. (3.6)

Then

I(f ) = Hτ (f ) ∀f ∈ L2m−2,2mi+1,

where

L2m−2,2mi+1 := span{x−2m+2, x−2m+3, . . . , 1, . . . , x2mi, x2mi+1
}, (3.7)

is a space of Laurent polynomials equipped with the inner product (1.7). We assume here that the dimension of the spaces (3.7)
is small enough so that (1.7) indeed is an inner product.

The quadrature rule (3.6) has τ nodes. Its nodes and weights can be computed by a Golub–Welsch-type algorithm
described in [26]. For some integrands f , e.g., for f (t) = 1/t , it may suffice to compute the Cholesky factorization of Hτ
in order to evaluate the right-hand side of (3.6).

The discussion in this section has, so far, been concerned with the evaluation of Gauss–Laurent quadrature rules
associated with the inner product (1.7), which is connected to the standard Lanczos algorithm. To instead evaluate Gauss–
Laurent rules associated with the inner product (2.4), which is connected to the extended global Lanczos algorithm, is
straightforward: only the inner product has to be replaced. In particular, the structure of the matrix Hτ is the same for both
inner products, but the value of the entries may differ. An algorithm for the extended global Lanczos method therefore
can be based on the analysis presented in [26]. We conclude this section by describing such an algorithm.

3.2. Recursion relations for extended global Krylov method

Analogous to the global Lanczos method, we consider an initial block vector W ∈ Rn×k with block size 1 ≤ k ≪ n
and the inner product (2.4). The orthogonal block vectors equivalent to the orthogonal sequence in (3.2) are denoted by
V ∈ Rn×k. The notation V ∈ Li,j signifies that V = ψ(A)V0 and that ψ(x) ∈ Li,j. The following discussion briefly describes
the construction of Hτ in (3.5). The first i + 1 block vectors satisfy the three-term recursion formulas for the Lanczos
method,

AV0 = h1,1V0 + h2,1V1,

...

AVi−1 = hi−1,iVi−2 + hi,iVi−1 + hi+1,iVi,

where hj,k = ⟨AVj, Vk⟩. This concludes the computation of the first i+1 block vectors. Assume that for some 1 ≤ j ≤ m−1,
the block vectors

V0, V1, . . . , Vi, V−1, Vi+1, . . . , V2i, V−2, . . . , Vij,

have been computed. The following discusses the computation of the next i+ 1 block vectors beginning with V−j; that is,
with the incrementation of the reciprocal power. Let ℓ = (i + i)j. Then

A−1Vij = gℓ−i,ℓV−j+1 + gℓ−i+1,ℓVij−i+1 + · · · + gℓ,ℓVij + gℓ+1,ℓV−j, (3.8)
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where gj,k = ⟨A−1Vj, Vk⟩. Note that the computation of V−j involves an expression with i + 2 terms. (For i = 1, this
reduces to a three-term recursion formula). It is necessary to find the entries of the ℓth column of Hτ pertaining to this
step. The computation of hℓ,ℓ and hℓ,ℓ+2 is discussed below. The (ℓ+ 1)st column is determined by the requirement that
AV−j ∈ Lj−1,ij+1 ⊥ Lj−1,ij−1, Hence, it satisfies a three-term recursion

AV−j = hℓ,ℓ+1Vij + hℓ+1,ℓ+1V−j + hℓ+2,ℓ+1Vij+1.

The (ℓ+2)nd column of Hτ is determined by the requirement that AVij+1 ∈ Lj−1,ij+2 ⊥ Lj−1,ij−1. Observe that the numerator
degree has increased from the previous expression, but the orthogonality condition has not changed. This gives a four-term
recursion,

AVij+1 = hℓ,ℓ+2Vij + hℓ+1,ℓ+2V−j + hℓ+2,ℓ+2Vij+1 + hℓ+3,ℓ+2Vij+2.

For i > 2, the entries in the next i−1 block columns correspond to AVij+2, . . . , AVℓ−1, which satisfy a standard three-term
recursion formula

We return to the ℓth column of Hτ . It is determined by the requirement that AVij ∈ Lj−2,ij+1 ⊥ Lj−1,ij−2 and satisfies a
four-term recursion formula

AVij = hℓ−1,ℓVij−1 + hℓ,ℓVij + hℓ+1,ℓV−j + hℓ+2,lVij+1. (3.9)

The recursion coefficients are obtained by multiplying Eq. (3.8) by A, which gives an equation in gℓ,ℓAVij. Specifically, the
known expressions for

AV−j+1, AVij−i+1, . . . , AVij, AV−j

in terms of the Laurent orthogonal vectors are substituted into the modified expression and comparisons of like terms in
the two formulas yield the coefficients in (3.9). The off-diagonal entries have been determined by symmetry for i > 1.
The diagonal entry is given by

hℓ,ℓ = (1 − gℓ−1,ℓhℓ,ℓ−1 − gℓ+1,ℓhℓ,ℓ+1)/gℓ,ℓ.

For i = 1, we have

hℓ,ℓ+2 = −gℓ+1,ℓhℓ+2,ℓ+1/gℓ,ℓ.

These formulas are the basis for the following algorithm. We remark that even though the algorithm is formulated with the
matrices A and A−1, storage and computation of these matrices are not explicitly required. The algorithm needs functions
for the evaluation of matrix-block-vector products with A and for the solution of linear systems of equations with the
matrix A and k right-hand side vectors.

Algorithm 3.1 (Orthogonalization Process for Km,im+1(A, v)).
Input: m, i, W ∈ Rn×k

\{0}, 1 ≤ k ≪ n; functions for evaluating
matrix-block-vector products with A ∈ Rn×n, and for solving linear
systems of equations with A.

Output: orthogonal basis {Vk}
im+1
k=−m+1 for Km,im+1(A,W ), nontrivial

entries hij of Hτ .
V−1 := 0 ∈ Rn×k;
h1,0 := ||W ||F ; V0 := W/h1,0; h0,1 := h1,0;
for j = 1 : i do

U := AVj−1 − hj−1,jVj−2;
hj,j := ⟨Vj−1,U⟩;
U := U − hj,jVj−1;
hj+1,j := ||U ||F ; Vj := U/hj+1,j; hj,j+1 := hj+1,j;

end
for j = 1 : m − 1 do
ℓ := (1 + i)j;
Ŵ := A−1Vij; gℓ−i,ℓ := ⟨V−j+1, Ŵ ⟩;
Ŵ := Ŵ − gℓ−i,ℓV−j+1;
for k = 1 : i do

gℓ−i+k,ℓ := ⟨Vij−i+k, Ŵ ⟩; Ŵ := Ŵ − gℓ−i+k,ℓVij−i+k;
end
gℓ+1,ℓ := ||Ŵ ||F ; V−j := Ŵ/gℓ+1,ℓ;
U := AV−j; hℓ,ℓ+1 := ⟨Vij,U⟩; U := U − hℓ,ℓ+1Vij;
hℓ+1,ℓ+1 := ⟨V−j,U⟩; U := U − hℓ+1,ℓ+1V−j;
hℓ+2,ℓ+1 := ||U ||F ; Vij+1 := U/hℓ+2,ℓ+1;
hℓ+1,ℓ := hℓ,ℓ+1; hℓ+1,ℓ+2 := hℓ+2,ℓ+1;
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hℓ,ℓ := (1 − gℓ−1,ℓhℓ,ℓ−1 − gℓ+1,ℓhℓ,ℓ+1)/gℓ,ℓ;
hℓ,ℓ+2 := −gℓ+1,ℓhℓ+2,ℓ+1/gℓ,ℓ;
hℓ+2,ℓ := hℓ,ℓ+2;
if i > 1 do
U := AVij+1; U := U − hℓ,ℓ+2Vij − hℓ+1,ℓ+2V−j;
hℓ+2,ℓ+2 := ⟨Vij+1,U⟩; U := U − hℓ+2,ℓ+2Vij+1;
hℓ+3,ℓ+2 := ||U ||F ; Vij+2 := U/hℓ+3,ℓ+2;
hℓ+2,ℓ+3 := hℓ+3,ℓ+2;

end
for k = 3 : i do
U := AVij+k−1 − hℓ+k−1,ℓ+kVij+k−2;
hℓ+k,ℓ+k := ⟨Vij+k−1,U⟩; U := U − hℓ+k,ℓ+kVij+k−1;
hℓ+k+1,ℓ+k := ||U ||F ; Vij+k := U/hℓ+k+1,ℓ+k;
hℓ+k,ℓ+k+1 := hℓ+k+1,ℓ+k;

end
end
U := AV(i+1)m; h(i+1)m,(i+1)m := ⟨V(i+1)m,U⟩;

Analogous to (3.4), Algorithm 3.1 produces a matrix Vτ ∈ Rn×kτ and a matrix of recursion coefficients Ĥτ ∈ Rkτ×kτ

that satisfy the equation

AVτ = Vτ Ĥτ + Z̃τEτ , (3.10)

where

Vτ = [V0, V1, . . . , Vi, V−1, Vi+1, . . . , V2i, . . . , Vm+1, . . . , Vim] (3.11)

and

Ĥτ = Hτ ⊗ Ik,
Z̃τ = hτ+1,τV−m + hτ+2,τVim+1, (3.12)
Eτ = [0k×(τ−1)k Ik].

We also define the vector of orthonormal Laurent polynomials,

Φτ (x) := [φ0(x), . . . , φi(x), φ−1(x), . . . , φ−m+1(x), . . . , φim(x)]T , (3.13)

with respect to the measure dµ(x). We have

Vj = φj(A)V0, j = 0, 1, . . . , i,−1, i + 1, i + 2, . . . .

The block vector Z̃τ ∈ Rn×k in (3.10) is a linear combination of the orthonormal Laurent block vectors generated by
Algorithm 3.1, but does not belong to the generated sequence. We denote the normalized block vector by Zτ = Z̃/h̃τ+1,τ .
The normalization factor, h̃τ+1,τ = ∥Z̃∥, may be derived from (3.12) and the orthogonality of the block vectors V−m and
Vim+1:

h̃τ+1,τ =

√
h2
τ+1,τ + h2

τ+2,τ . (3.14)

We denote the polynomial associated with Z by ψτ ∈ Lm−1,im+1 in order to distinguish it from the sequence of polynomials
in (3.13) generated by Algorithm 3.1. It satisfies

Zτ = ψτ (A)V0

and is orthogonal to Lm−1,im with respect to the inner product (2.4). This leads to the polynomial vector equivalent of
(3.10),

xΦτ (x) = HτΦτ (x) + h̃τ+1,τψτ (x)eτ , (3.15)

which we utilize in the next section when discussing Radau rules.

4. Bounds for Gauss–Laurent rules

The degree of ψτ ∈ Lm−1,im+1 ⊥ Lm−1,im along with its orthogonality conditions guarantees that ψτ has τ distinct zeros,
{xj}τj=1. These zeros are eigenvalues of Hτ ; see [26, Theorem 5.1]. Assume that f is differentiable. Then the Laurent–Hermite
interpolation polynomial, L̂ ∈ L2m−2,2im+1, that interpolates f and its derivative at the nodes xj may be constructed. An
expression for the approximation error f − L̂ ∈ L2m−2,2im+1 shown in [26, Theorem 5.4] can be used to derive the following
error term for Gauss–Laurent quadrature.
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Theorem 4.1. Assume that f is 2τ times continuously differentiable in the convex hull of the support of the measure dµ. Then
the quadrature rule Hτ defined in Theorem 3.1 satisfies

(I − Hτ )(f ) =
d2τ

dt2τ
(
t2m−2f (t)

)
t=c

I(ψ2
τ )

a2τ (2τ )!

for some scalar c in the convex hull of the support of the measure dµ and where aτ is the leading coefficient of ψτ .

Assume that f satisfies the conditions of Theorem 4.1 and that

d2τ

dx2τ
(
x2(m−1)f (x)

)
≥ 0, a < x < b,

in some open interval (a, b) containing the spectrum of A. Then Theorem 4.1 gives a lower bound for I(f ). We have

Hτ (f ) ≤ I(f ). (4.1)

4.1. Bounds derived for Gauss–Laurent–Radau quadrature rules

A Gauss–Laurent–Radau rule can be implemented by using the following modification of the pentadiagonal matrix Hτ
in (3.10),

H̃a
τ+1 =

[
Hτ h̃τ+1,τ eτ

h̃τ+1,τ eTτ αa

]
∈ R(τ+1)×(τ+1). (4.2)

The superscript a of H̃a
τ+1 is a value a ≤ λ1 and αa denotes that the last diagonal element is a function of a. We obtain

AVτ+1 = Vτ+1Ĥa
τ+1 + Ṽ aEτ+1,

where Vτ+1 = [Vτ Z] ∈ Rn×k(τ+1), and Vτ and Zτ are defined in (3.11) and (3.12), respectively. The trailing block vector,
Ṽ a, satisfies

Ṽ a
= ψ̃a

τ+1(A)V0

for some Laurent polynomial ψ̃a
τ+1 ∈ Lm−1,im+2. Here Ṽ a is not chosen to satisfy an orthogonality condition, rather it is

chosen so that ψ̃a
τ+1(a) = 0. This is the Radau condition. It guarantees that a is an eigenvalue of the modified recursion

matrix (4.2). To determine the matrix (4.2), it suffices to consider the Radau modification of (3.15) with the partitioning

x
[
Φτ (x)
ψτ (x)

]
=

[
Hτ h̃τ+1,τ eτ

h̃τ+1,τ eTτ αa

][
Φτ (x)
ψτ (x)

]
+

[
0

ψ̃a
τ+1(x)

]
, 0 ∈ Rτ .

The Radau condition with x = a yields the linear system of equations

(Hτ − aI)Φ(a) = −h̃τ+1,τψτ (a)eτ ,
αaψτ (a) = aψτ (a) − h̃τ+1,τ eTτΦ(a).

Both equations are multiplied by −h̃τ+1,τ/ψτ (a). The equation

(Hτ − aI)Φ̂(a) = h̃2
τ+1,τ eτ

then is solved for the vector Φ̂(a), where Φ̂(a) = −h̃τ+1,τΦ(a)/ψτ (a). It now follows from the second equation that

αa = a + eTτ Φ̂(a);

see [3,4,26,37–39] for more details.
The value a in the above argument may be replaced by a value b ≥ λn. This results in a modified recursion matrix

Hb
τ+1 with the trailing diagonal entry given by

αb = b + eTτ Φ̂(b).

In each case, the polynomials ψ̃a
τ+1(x) and ψ̃b

τ+1(x) have a zero at a and at b, respectively. The remaining τ zeros are
distinct and lie in the interval (λ1, λn); see [26]. This yields the (τ +1)-point Gauss–Laurent–Radau rules eT1 f (Ĥ

a
τ+1)e1 and

eT1 f (Ĥ
b
τ+1)e1 for the extended global Lanczos approximation of I f defined by (1.11). The following bounds can be shown

similarly as [26, Theorem 7.1].

Corollary 4.2. Let f be a 2τ + 1 times continuously differentiable function in the open interval (a, b). Assume that

d2τ+1

dx2τ+1

(
x2(m−1)f (x)

)
≥ 0
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in this interval. Then

eT1 f (Ĥ
a
τ+1)e1 ≤ vT f (A)v ≤ eT1 f (Ĥ

b
τ+1)e1. (4.3)

The bounds will be illustrated in Section 6.

5. Estimating the error in Gauss–Laurent rules

Spalević [27–29] describes an approach to estimate the error in Gauss quadrature rules. Related results can be
found in [40]. Extensions to Gauss–Szegő quadrature rules are discussed in [41]. This section presents an extension to
Gauss–Laurent rules.

The matrices that arise in Spalević’s approach to estimate the error in Gauss quadrature rules have the structure

M̂ =

⎡⎣ M1 β1eτ O
β1eTτ α β2eT1
O β2e1 M2

⎤⎦ ∈ R(2τ+1)×(2τ+1), (5.1)

where M1,M2 ∈ Rτ×τ are symmetric tridiagonal matrices with the same spectra and nonvanishing subdiagonal entries.
Further, α, β1, β2 ∈ R with β1β2 ̸= 0, and O ∈ Rτ×τ denotes the matrix of only zeros.

We will first discuss how the spectrum of the concatenated matrix M̂ relates to the spectrum of the matrix M1. In our
discussion, we will only require the matrices M1,M2 ∈ Rτ×τ to be symmetric and have the same spectrum with distinct
eigenvalues. To gain some insight into the spectrum of M̂ , we apply a sequence of similarity transformations. Related
transformations have been used by Borges and Gragg [42] in their development of a divide-and-conquer method for the
computation of eigenvalues of a generalized eigenvalue problem with symmetric tridiagonal matrices. Basic results on
arrowhead matrices, also referred to as bordered matrices, can be found in [43, p. 94 ff.].

Theorem 5.1. Let the matrix M̂ ∈ R(2τ+1)×(2τ+1) have the structure (5.1), where the symmetric matrices M1,M2 ∈ Rτ×τ have
the same spectra with distinct eigenvalues. Under suitable conditions on the eigenvectors of M1 and M2, the eigenvalues of M1
are eigenvalues of M̂, and the remaining eigenvalues of M̂ interlace the eigenvalues of M1.

Proof. Introduce the spectral factorizations

M1 = W1ΛW T
1 , M2 = W2ΛW T

2

with Λ = diag[λ1, λ2, . . . , λτ ] ∈ Rτ×τ a diagonal matrix of eigenvalues and W1,W2 ∈ Rτ×τ orthogonal matrices of
eigenvectors. Define the block diagonal matrix

Ŵ =

[ W1
1

W2

]
∈ R(2τ+1)×(2τ+1)

and the vectors w1 = β1W T
1 eτ and w2 = β2W T

2 e1. Here and below we do not explicitly mark zero-matrices. The matrix

Ŵ T M̂Ŵ =

⎡⎣ Λ w1
wT

1 α wT
2

w2 Λ

⎤⎦ (5.2)

is similar to (5.1) and has nontrivial entries only on the diagonal and in column and row τ + 1. Clearly, if β1 = β2 = 0,
then each eigenvalue of M1 is an eigenvalue of M̂ of algebraic multiplicity two. In particular, the interlacing of eigenvalues
in the statement of the theorem does not hold.

We turn to the situation when β1 ̸= 0 and β2 = 0. Then, clearly, the eigenvalues of M2 are eigenvalues of M̂ . To secure
that the remaining eigenvalues of M̂ interlace the eigenvalues of M1, it suffices to require that all entries of the vector w1
are nonvanishing; see the discussion following Eq. (5.5) with the vector w replaced by w1.

The case when β1 = 0 and β2 ̸= 0 can be treated similarly as above: we apply the permutation matrix

P̂0 = [e2τ+1, e2τ , . . . , e2, e1] ∈ R(2τ+1)×(2τ+1)

from the right and from the left to the matrix (5.2) to obtain a matrix with the structure just considered. To secure that
the eigenvalues of M̂ interlace the eigenvalues of M1, it suffices to require that no entry of the vector w2 vanishes.

We turn to the situation when β1β2 ̸= 0. Multiplication of the matrix (5.2) by the permutation matrix

P̂ = [e1, e2, . . . , eτ , eτ+2, eτ+3, . . . , e2τ+1, eτ+1] ∈ R(2τ+1)×(2τ+1)

from the right and left gives the arrowhead matrix

P̂T Ŵ T M̂Ŵ P̂ =

⎡⎣ Λ w1
Λ w2

wT
1 wT

2 α

⎤⎦ . (5.3)



C. Jagels, K. Jbilou and L. Reichel / Journal of Computational and Applied Mathematics 381 (2021) 113027 11

We now apply τ Givens rotations from the right to the columns j and j + τ of (5.3), for j = 1, 2, . . . , τ , to eliminate the
vector w1 (and simultaneously modify the vector w2). The product of these Givens rotations is denoted by the matrix
Ĝ ∈ R(2τ+1)×(2τ+1). We also multiply (5.3) by ĜT from the left. This defines a similarity transformation. The new matrix
obtained is of the form

ĜT P̂T Ŵ T M̂Ŵ P̂Ĝ =

⎡⎣ Λ 0
Λ w

0T wT α

⎤⎦ , (5.4)

which shows that the eigenvalues of the matrix M1 also are eigenvalues of M̂ . The remaining τ + 1 eigenvalues of M̂ are
the eigenvalues of the trailing (τ + 1) × (τ + 1) submatrix of (5.4). Assume that λ differs from all diagonal entries of Λ.
Then [

Λ w
wT α

]
− λI =

[
I 0

wT (Λ− λI)−1 1

][
Λ− λI w

0T
−s(λ)

]
, (5.5)

where s(λ) is the spectral function

s(λ) = λ− α +

τ∑
j=1

w2
j

λj − λ
, w = [w1, w2, . . . , wτ ]

T . (5.6)

The zeros of s(λ) are eigenvalues of the matrix (5.5). If all entries wj of w are nonvanishing, then s(λ) has τ + 1 distinct
zeros that interlace the diagonal entries of Λ. □

Borges and Gragg [42] considered the situation when the matrices M1 and M2 are symmetric and tridiagonal.

Corollary 5.2. Let the matrices M1 and M2 be symmetric and tridiagonal with all subdiagonal entries nonvanishing. Let
β1β2 ̸= 0. Then the eigenvalues of M1 are eigenvalues of M̂, and the remaining eigenvalues of M̂ interlace the eigenvalues of
M1.

Proof. The eigenvectors of a symmetric tridiagonal matrix with non-vanishing subdiagonal entries have non-vanishing
first and last entries. This secures that the function (5.6) has τ + 1 distinct zeros that interlace the eigenvalues of M1. □

Spalević [27] obtained Corollary 5.2 from results by Peherstorfer [44] on orthogonal polynomials and quadrature.
Theorem 5.1 is more general and provides an algebraic proof of Corollary 5.2.

The Gauss–Laurent quadrature rules of Section 3 are associated with pentadiagonal matrices Hτ , the entries of which
are generated by Algorithm 3.1. The matrix associated with the generalized rule is

Ĥ2τ+1 :=

⎡⎣ Hτ β1eτ O
β1eTτ α β2eT1
O β2e1 PHτP

⎤⎦ , (5.7)

where

P = [eτ , eτ−1, eτ−2, . . . , e2, e1].

It remains to determine the non-zero entries in the ‘‘cross’’ formed by the (τ + 1)st row and column of Ĥ2τ+1.
We first examine the Lanczos case, i = 0, developed by Spalević, in which Hτ is the tridiagonal Jacobi matrix. We denote

the Lanczos polynomials by pk, k = 0, 1, . . . , τ , τ + 1, where pk ∈ Pk ⊥ Pk−1. The entries in the cross are determined by
coefficients in the recursion formula for pτ+1(x),

hτ+1,τ+2pτ+1(x) = xpτ (x) − hτ+1,τpτ−1(x) − hτ+1,τ+1pτ (x).

This yields

α = hτ+1,τ+1, β1 = hτ+1,τ , β2 = hτ+1,τ+2. (5.8)

The matrix (5.7) contains the recursion coefficients for the polynomials

p0, p1, . . . , pτ+1, p̃τ+2, . . . , p̃2τ+1.

We refer to the polynomials p̃τ+2, p̃τ+3, . . . , p̃2τ+1 as Spalević polynomials. Define the polynomial vector

P2τ+1(x) = [p0(x) . . . pτ+1(x), p̃τ+2(x), . . . , p̃2τ (x)]T .

Our interest is in the orthogonality conditions satisfied by the Spalević polynomials. Consider the matrix formula

xP2τ+1(x) = Ĥ2τ+1P2τ+1(x) + p̃2τ+1(x)e2τ+1.
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Equating the τ +2, τ +3, . . . , 2τ +1 components on the left-hand side of the equation with those on the right-hand side
yields the following recursion formulas:

hτ−1,τ p̃τ+2(x) = xpτ+1(x) − hτ+1,τ+2pτ (x) − hτ ,τpτ+1(x), (5.9)
hτ−2,τ−1p̃τ+3(x) = xp̃τ+2(x) − hτ−1,τpτ+1(x)

− hτ−1,τ−1p̃τ+2(x), (5.10)
...

h1,2p̃2τ (x) = xp̃2τ−1(x) − h2,3p̃2τ−2(x) − h2,2p̃2τ−1(x),
p̃2τ+1(x) = xp̃2τ (x) − h1,2p̃2τ−1(x) − h1,1p̃2τ (x).

Consider the recursion relation (5.9) for p̃τ+2(x):

hτ−1,τ p̃τ+2(x) = xpτ+1(x) − hτ+1,τ+2pτ (x) − hτ ,τpτ+1(x)
= xpτ+1(x) − hτ+1,τ+2pτ (x) − hτ+2,τ+2pτ+1(x)

+ (hτ+2,τ+2 − hτ ,τ )pτ+1(x)
= hτ+1,τ+2pτ+2(x) + (hτ+2,τ+2 − hτ ,τ )pτ+1(x),

where we have used the recursion formula for the polynomial pτ+2(x) ∈ Pτ+2 ⊥ Pτ+1 in the orthogonal Lanczos sequence.
In other words, p̃τ+2(x) is a linear combination of pτ+1(x) and pτ+2(x) and, hence, satisfies p̃τ+2(x) ∈ Pτ+2 ⊥ Pτ .

Consider now the recursion formula (5.10) for p̃τ+3(x). This polynomial is a linear combination of xp̃τ+2(x), pτ+1(x),
and p̃τ+2(x). Its degree and orthogonality conditions depend on xp̃τ+2(x). Clearly, it is of degree τ + 2. The orthogonality
condition satisfied by p̃τ+2(x) is determined by

(q, xp̃τ+2(x)) = 0 q ∈ Pτ−1.

But (q, xp̃τ+2(x)) is not necessarily 0 if q ∈ Pτ . Hence, p̃τ+3(x) ∈ Pτ+3 ⊥ Pτ−1. The argument can be repeated with the
remaining Spalević polynomials,

p̃τ+k(x) ∈ Pτ+k ⊥ Pτ−k+2 k = 2, 3, . . . , τ + 1.

This yields the following result.

Lemma 5.3. The Spalević polynomial p̃2τ+1(x) has degree 2τ + 1 and is orthogonal to linear functions with respect to the
measure dµ(λ). Its zeros are the eigenvalues of Ĥ2τ+1; by Theorem 5.1, they are distinct. Denote them in increasing order by
x1, x2, . . . , x2τ , x2τ+1. Then p̃2τ+1(x) = pτ (x)q(x) for some q ∈ Pτ+1. The interlacing property stated in Theorem 5.1 guarantees
that the zeros of pτ are those with even index and the ones of q are those with odd index.

We proceed analogously when i > 0. The eigenvalues of Hτ are the zeros of ψτ ∈ Lm−1,im+1 ⊥ Lm−1,im in (3.15). We
have

h̃τ+1,τψτ = hτ+1,τφ−m + hτ+2,τφim+1, (5.11)

where h̃τ+1,τ is given by (3.14). The next polynomial in the orthogonal Laurent sequence is φ−m ∈ Lm,im ⊥ Lm−1,im,
in which the denominator power is incremented. However, if we proceed by analogy, it is necessary to determine the
recursion coefficients used to compute a function ψτ+1 ∈ Lm−1,im+2 ⊥ Lm−1,im+1. It will satisfy a three-term recursion
formula

h̃τ+2,τ+1ψτ+1 = xψτ − h̃τ+1,τφim − h̃τ+1,τ+1ψτ . (5.12)

The entries in the cross are the recursion coefficients

α = h̃τ+1,τ+1, β1 = h̃τ+1,τ , β2 = h̃τ+1,τ+2,

where β1 = h̃τ+1,τ is given by (3.14) and α = h̃τ+1,τ+1 equals (xψτ , ψτ ). The latter can be determined by the orthogonality
of the polynomials in the recursion formula (5.12),

h̃τ+1,τ+1 = (h2
τ+1,τhτ+1,τ+1 + 2hτ+1,τhτ+2,τhτ+1,τ+2 + h2

τ+2,τhτ+2,τ+2)/h̃2
τ+1,τ .

Observe that these assignments are equivalent to β1 and α in (5.8) since in the case of i = 0, hj,j+k = 0 for |k| ≥ 2. The
last entry in the cross, β2 = h̃τ+2,τ+1, is the norm of the monic polynomial ψτ+1. This too is equivalent to the case i = 0,
since hτ+2,τ+1 is the norm of the (τ + 1)st monic orthogonal polynomial in the Lanczos sequence.

We denote the Laurent–Spalević polynomials by ψ̃τ+k, k = 2, . . . , τ +1. The denominator power of these polynomials
remains a constant m−1. The numerator power increases by one at each step so that ψ̃τ+k ∈ Lm−1,im+k+1, k = 2, . . . , τ+1.
The analysis of these polynomials follows by considering the Lanczos polynomials p̆k(x), which are orthogonal with
respect to the positive measure dµ(x)/xm−1. They are of degree k and are orthogonal to Lm−1,k−m with respect to the
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original measure dµ(x). The non-zero entries of the tridiagonal Jacobi matrix, T̆τ , are the recursion coefficients for p̆k(x),
k = 0, 1, 2, . . . , τ − 1. Its eigenvalues are the zeros of p̆τ (x). It is shown in [45] that the spectra of T̆τ and Hτ are identical
but differ for dimensions larger than τ . This is because the Laurent process increments the denominator power at the next
step, whereas the denominator power remains constant in the rational Lanczos scheme. However, the denominator power
is not incremented in the Spalević method. We conclude that the spectra of Ĥ2τ+1 and of the matrix M̂ of (5.1) are the
same where M1 and M2 are constructed from T̆τ and the cross entries are determined from the recursion coefficients that
generate p̆τ+1(x) as outlined in the case for i = 0. In particular, the zeros of the Spalević polynomial ψ̃2τ+1 ∈ Lm−1,im+τ+2
are the eigenvalues of Ĥ2τ+1 and retain one degree of orthogonality with respect to dµ(x). This discussion yields the
following theorem.

Theorem 5.4 (Spalević–Laurent Quadrature). Define the quadrature rule

Ĥ2τ+1(f ) = eT1 f (Ĥ2τ+1)e1. (5.13)

Then

I(f ) = Ĥ2τ+1(f ) ∀f ∈ L2m−2,2mi+4, (5.14)

Proof. The last Spalević polynomial in the sequence satisfies

ψ̃2τ+1(x) =
P(x)
x2m−1 , P ∈ P2τ+1,

where the zeros of P are the eigenvalues of Ĥ2τ+1. By Theorem 5.1, it has 2τ + 1 distinct zeros and, hence, the rule (5.13)
is interpolatory. By Lemma 5.3, it is orthogonal to P1. Invoking [38, Theorem 1.45], the rule is exact for polynomials of
degree 2τ + 1 − 1 + 2 or 2τ + 2 with respect to the measure dµ(x)/xm−1. This yields 2m − 2 denominator plus 2mi + 4
numerator degrees of accuracy with respect to the original measure dµ(x). □

Example 5.1. Consider the matrix Ĥ2τ+1 for i = 1 and m = 2. Then τ = 4 and the rule eT1 Ĥ9e1 will be exact for Laurent
polynomials in L2,8. The matrix Ĥ9 may have non-vanishing entries in the positions marked by ‘‘∗’’. The circled entries
comprise the cross.

Ĥ9 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∗ ∗

∗ ∗ ∗ ∗

∗ ∗ ∗

∗ ∗ ∗ ∗⃝

∗⃝ ∗⃝ ∗⃝

∗⃝ ∗ ∗ ∗

∗ ∗ ∗

∗ ∗ ∗ ∗

∗ ∗

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

6. Numerical examples

The computations in this section are performed using MATLAB with about 15 significant decimal digits. The first two
examples compare the performance of the standard global Lanczos method (i = 0) with the global rational Lanczos
methods for the cases i = 1, 2, 3. In all computed examples, we use Krylov subspaces of dimension τ = 12, 24, 36, 48,
and 60. These dimensions are divisible by 2, 3, and 4, and assure that the denominator degree of the rational Lanczos
methods considered increases by at least one in each step. We determine the actual value If , given by (1.11), as well
as approximations Hτ f given by (3.6). The figures display the errors |If − Hτ f | in logarithmic scale for all methods. All
matrix functions are computed by means of the spectral decomposition of the matrix.

Example 6.1. Let A be the symmetric positive definite tridiagonal Toeplitz matrix [−1, 2,−1] of order 3000 and
f (x) = exp(−x)/

√
x. The block vector W ∈ R3000×4 has normally distributed random entries with mean zero and variance

one. Fig. 6.1 compares the errors in approximations of the different methods applied to the function f (x) = exp(−x)/
√
x.

The increase in the denominator power for each of the rational Lanczos methods speeds up the convergence, whereas the
standard Lanczos method gives a much larger approximation error in the allotted number of iterations. □

Example 6.2. The matrix in this example is obtained by discretization of the self-adjoint differential operator L(u) =
1
10uxx

− 100uyy in the unit square. Each derivative is approximated by the standard three-point stencil with 60 equally spaced
interior nodes in each space dimension. Homogeneous boundary conditions are used. This yields a 3600 × 3600 symmetric
positive definite matrix A. The initial block vector W ∈ R3600×4 for the standard and rational Lanczos processes is chosen
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Fig. 6.1. Example 6.1: Errors in approximations of f (x) = exp(−x)/
√
x for Lanczos (◦−◦), i = 1(× · · · ×), i = 2(+ − −+), and i = 3(∗−·−∗) for

subspaces of dimension τ = 12, 24, 36, 48, 60.

Fig. 6.2. Example 6.2: Errors in approximations of f (x) = ln(x) for Lanczos (◦−◦), i = 1(× · · · ×), i = 2(+ − −+), and i = 3( ∗−·−∗) for subspaces of
dimension τ = 12, 24, 36, 48, 60.

to be the unit vector with all entries 1/
√
60. Fig. 6.2 compares the errors in approximations of the different methods

applied to the function f (x) = ln(x). As in the previous example, the increase in the denominator power for each of the
rational Lanczos methods speeds up the convergence. The errors in approximations determined by the standard Lanczos
method are decreasing, but much slower than the errors in approximations determined by the rational methods. □

Example 6.3. The purpose of this example is to illustrate the bounds (4.1) and (4.3). The function f (x) = exp(x) satisfies
the conditions stated in Theorem 4.1 and Corollary 4.2. We apply f to the symmetric positive definite Toeplitz matrix
A ∈ R3000×3000 with entries aj,k = 1/(1 + |j − k|). The vector W ∈ R3000×4 has normally distributed random entries with
mean zero and variance one. We remark that fast direct solution methods are available for linear systems of equations
with this kind of matrix; see, e.g., [23,24]. Table 6.1 displays the residuals

res(Hi) = If − eT1 f (Hi)e1 (6.1)

for τ = 4, 8, 12, and for i = 0 (Lanczos) and i = 1. The column headings indicate the matrix used in the argument of
res(·). The smallest eigenvalue of A is λ1 = 0.3863 and the largest one is λ3000 = 14.3174. We chose the Radau parameters
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Table 6.1
Example 6.3: Residuals in Gauss–Laurent and Gauss–Radau rules. The Radau nodes are
fixed at a = 0.3 and b = 14.5. The matrix A is a positive definite Toeplitz matrix and
f (x) = exp(x).

τ Hi=0 H̃a
i=0 H̃b

i=0 Hi=1 H̃a
i=1 H̃b

i=1

4 1 · 102 5 · 101
−3 · 101 5 · 102 3 · 102

−1 · 102

8 9 · 10−4 2 · 10−4
−2 · 100 3 · 100 8 · 10−1

−3 · 101

12 9 · 10−11 1 · 10−11
−3 · 10−11 2 · 10−3 5 · 10−4

−1 · 10−3

Table 6.2
Example 6.4: Residuals in Gauss–Laurent and Gauss–Radau rules. The Radau nodes are
fixed at a = 0.3 and b = 14.5. The matrix A is a positive definite Toeplitz matrix and
f (x) = exp(x)/x.

τ H̃a
i=0 H̃b

i=0 H̃a
i=1 H̃b

i=1 H̃a
i=3 H̃b

i=3

8 −1 · 10−2 4 · 10−3 3 · 10−2
−7 · 10−2 1 · 10−4

−3 · 10−4

12 5 · 10−3 2 · 10−4 2 · 10−6
−4 · 10−5 7 · 10−10

−2 · 10−9

16 −2 · 10−5 9 · 10−6 2 · 10−9
−7 · 10−9

−2 · 10−12 1 · 10−12

Table 6.3
Example 6.5: Residuals in Gauss–Laurent and Spalević rules. The matrix A ∈ R3600×3600 is
generated from the L(u) operator and f (x) = 1/

√
x.

τ Hi=0 Ĥi=0 Hi=2 Ĥi=2 Hi=5 Ĥi=5

6 1 · 100 4 · 10−1 2 · 10−2 7 · 10−4 1 · 100 4 · 10−1

12 5 · 10−1 2 · 10−1 1 · 10−4 1 · 10−5 5 · 10−3 3 · 10−4

18 2 · 10−1 4 · 10−2 8 · 10−6 4 · 10−9 1 · 10−4 8 · 10−6

24 7 · 10−2 1 · 10−2 1 · 10−10 2 · 10−11 1 · 10−6 8 · 10−8

a = 0.3 and b = 14.5. The order of the Radau matrices, Ha
i and Hb

i , is τ + 1. The signs of the residuals are in accordance
with the bounds of Section 4. □

Example 6.4. We consider the Toeplitz matrix and initial vector, W , of Example 6.3 with the prescribed Radau nodes. The
function f (x) = exp(x)/x has a pole at x = 0 and the derivatives change signs. Table 6.2 displays the residuals (6.1) in the
approximations determined by the upper and lower Radau rules for i = 0, i = 1 and i = 3. The denominator power is
the largest for i = 1, but i = 3 exhibits superior convergence properties for this example. □

Example 6.5. Table 6.3 compares the approximations of I(f ) using the Gauss–Laurent methods for i = 0, i = 2, and i = 5
along with those resulting from the accompanying Spalević matrices for each case. The function f (x) = 1/

√
x is applied to

the matrix A resulting from the discretization of the L(u) operator along with the block vector W defined in Example 6.2.
The Gauss–Laurent matrices are denoted by Hi=j, j = 0, 2, 5, and the associated Spalević matrices are denoted by Ĥi=j. The
values of τ are chosen so that τ is an integral multiple of six. This assures that the denominator degree of the rational
Lanczos methods considered increases by at least one in each step. The matrices Hi=0 and Hi=5 are identical for τ = 6
since the denominator power is zero for the case i = 5 and for this value of τ . The Spalević rules match an additional
moment and consequently perform slightly better. □

Example 6.6. This example retains the same function and matrix used in Example 6.5. Table 6.4 compares the difference

E i=k
τ = eT1 Ĥ

i=k
2τ+1e1 − eT1H

i=k
τ+1e1

for i = 0, i = 2, and i = 5. The matrix H i=k
τ+1 is of order τ + 1 and its eigenvalues are the roots of ψτ+1 ∈ Lm−1,im+2 ⊥

Lm−1,im+1 in (5.12). The rule eT1H
i=k
τ+1e1 will be exact for f ∈ L2m−2,2mi+3. □

7. Conclusion

Recurrence relations for extended global Lanczos methods with the numerator degree roughly an arbitrary integer
multiple of the denominator degree are described. Error bounds determined by pairs of Gauss–Laurent and Gauss–
Laurent–Radau rules are discussed. These bounds apply to certain integrands. Error estimates for more general integrands
are developed. These estimates generalize error estimates for Gauss quadrature rules developed by Spalević.
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Table 6.4
Example 6.6: Difference between rules eT1 Ĥ

i=k
2τ+1 and eT1H

i=k
τ+1e1 . The matrix

A ∈ R3600×3600 is generated from the L(u) operator and f (x) = 1/
√
x.

τ E i=0
τ E i=2

τ E i=5
τ

6 1 · 100 1 · 10−2 1 · 100

12 5 · 10−1 1 · 10−4 3 · 10−3

18 2 · 10−1 1 · 10−7 5 · 10−5

24 4 · 10−2 1 · 10−10 6 · 10−7
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