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Abstract Non-stationary regularizing preconditioners have recently been proposed
for the acceleration of classical iterative methods for the solution of linear discrete
ill-posed problems. This paper explores how these preconditioners can be combined
with the flexible GMRES iterative method. A new structure-respecting strategy to
construct a sequence of regularizing preconditioners is proposed. We show that flex-
ible GMRES applied with these preconditioners is able to restore images that have
been contaminated by strongly non-symmetric blur, while several other iterative
methods fail to do this.
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1 Introduction

We are concerned with the restoration of blurred and noise-corrupted images in
two space-dimensions. The blurring is modeled by a convolution and the image
degradation model is of the form

g(x) = [K f ](x) + ν(x) =
∫
R2

h(x − y) f ( y)d y + ν(x), x ∈ � ⊂ R
2, (1)
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where f represents the (desired but unavailable) exact image, h the space invari-
ant point-spread function (PSF) with compact support, ν random noise, and g the
(available) blurred and noise-corrupted image. Hence, f and g are real-valued non-
negative functions that determine the light intensity of the desired and available
images, respectively.

Discretization of the integral equation (1) at equidistant nodes gives the linear
system of algebraic equations

gi =
∑
j∈Z2

hi− j f j + νi , i ∈ Z
2. (2)

The entries of the discrete images g = [gi ] and f = [ f j ] represent the light intensity
at each picture element (pixel) and ν = [νi ]models the noise-contamination at these
pixels. The pixels with index i ∈ [1, n]2 make up the finite field of view (FOV), which
for notational simplicity is assumed to be square. We would like to determine an ac-
curate approximation of the exact image f in the FOV given h = [hi ], distributional
information about ν, and the blurred image g in the FOV.

The linear systemof algebraic equations defined by (2)with i restricted to [1, n]2 is
underdetermined when there are non-vanishing coefficients hi with i �= 0, because
then there are n2 equations, while the number of unknowns is larger. A common
approach to determine a meaningful solution of this kind of underdetermined system
is to impose boundary conditions on the image to obtain a linear system of algebraic
equations with a square matrix,

A f = g, A ∈ R
n2×n2 , f , g ∈ R

n2 . (3)

Theboundary conditions specify that the f j -values in (2) at pixels outside theFOVare
linear combinations of f j -values at certain pixels inside the FOV. Popular boundary
conditions include zero Dirichlet boundary conditions (ZDBCs), periodic bound-
ary conditions (PBCs), reflective boundary conditions (RBCs) discussed in [28], and
anti-reflective boundary conditions (ARBCs) proposed in [33]. Detailed descriptions
and analyses of these boundary conditions can be found in [15, 24, 25]. This paper
focuses on ARBCs, which yield an accurate model and often allow simple imple-
mentation. We restrict our attention to ARBCs only for the sake of simplicity, but
we remark that more accurate boundary conditions and other strategies for dealing
with boundary artifacts recently have been proposed in the literature, see [6, 10, 18,
29], and can be applied to construct preconditioners as well. Theoretical results on
optimal preconditioning for ARBCs are discussed in [9].

Due to the space-invariance of the PSF, the matrix A has a block Toeplitz-type
structure. The detailed structure depends on the boundary conditions. For instance,
ZDBCs give a block-Toeplitz–Toeplitz-block (BTTB) structure, while PBCs make
A a block-circulant-circulant-block (BCCB) matrix. This is discussed in more detail
below.
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Quadrantally symmetric PSFs, i.e., PSFs that are symmetric with respect to both
the horizontal and vertical axes, arise, e.g., when modeling symmetric Gaussian blur.
The associatedmatrix A in (3) allows diagonalization by a fast transformwhenRBCs
or ARBCs are imposed. These transforms can be applied to develop fast methods for
the approximate solution of (3); see [1, 5, 28].

For symmetric PSFs, the matrix A is symmetric and many iterative regularization
methods can be applied to the approximate solution of (3), such as non-stationary
iterative methods and variants of the minimal residual method; see [12, 16]. On the
other hand, for strongly non-symmetric PSFs specially designed iterative regulariza-
tion methods have to be applied; see [14, 20] for illustrations.

The matrix A in (3) generally is severely ill-conditioned and may be numerically
rank-deficient. We refer to linear system of equations (3) with such a matrix as
linear discrete ill-posed problems. Due to the error in the right-hand side vector g in
(3), which is caused by the noise ν in (2), and because of the ill-conditioning of the
matrix, one generally is not interested in the exact solution of (3) (if it exists). Instead
one typically would like to compute a suitable approximate solution that furnishes an
accurate approximation of the desired image f . Such an approximate solution can be
computed by regularizing the system of equations (3), e.g., by replacing this system
by a nearby one, whose solution is less sensitive to the error in g. Regularization
methods require the choice of a regularization parameter that determines the amount
of regularization.

The present paper is concerned with the development of fast and stable iterative
regularization methods for the approximate solution of (3) when the matrix A is
defined by a non-symmetric PSF h with ARBCs. In particular, we focus on GMRES-
type iterative methods. The (standard) GMRES method is commonly used for the
iterative solution of large linear systems of equations with a square non-symmetric
matrix that is obtained by the discretization of a well-conditioned problem, such as
an elliptic partial differential equation with Dirichlet boundary conditions. In this
context, preconditioners are employed to accelerate the convergence of the iterative
method. An advantage of GMRES, when compared to other iterative methods such
as CGLS, is that GMRES does not require the evaluation of matrix-vector products
with AT , the transpose of A. This is commented on further in Sect. 3.

Preconditioners applied to the iterative solution of linear discrete ill-posed prob-
lems (3) should avoid propagating the error ν in g into the the computed approximate
solution.We will show that such preconditioners can be determined by incorporating
a threshold parameter in their definition. Note that the preconditioning strategy for
GMRES proposed in [14] can determine accurate restorations, but may require many
iterations when the noise level is low. In fact, typically linear discrete ill-posed prob-
lems of the form (3) are more difficult to solve when the noise level is low than when
it is high, because the restoration of the former kind of images generally requires
more iterations.

We would like to investigate the use of non-stationary preconditioning with
GMRES-type methods with the aim to obtain accurate restorations within only a few
iterations also when the noise level is low and the PSF is strongly non-symmetric.
Instead of solving right-preconditioned systems of the form
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AP z = g, z = P−1 f (4)

by GMRES, we propose to use the flexible GMRES (F-GMRES) method first de-
scribed by Saad [30] to solve, at step k,

APk z = g, z = P−1
k f , (5)

where the preconditioner Pk is modified in each iteration. The application of F-
GMRES to the solution of linear discrete ill-posed problems has previously been
discussed by Gazzola and Nagy [19] and Morikuni et al. [27]. The preconditioners
developed in the present paper are new. Exploiting the tools developed within the
framework of preconditioned Landweber iterative methods [7, 8], we define precon-
ditioners for F-GMRES. By using a suitable sequence of preconditioners Pk in (5),
we obtain a preconditioned F-GMRES method that is well suited for image restora-
tion. The preconditioner Pk depends on a thresholding parameter αk , whose choice
will be discussed in Sect. 3.

Several other preconditioning techniques for linear systems of algebraic equa-
tions that arise in image restoration and have a square BTTB-type matrix have been
described in the literature; see, e.g., [7, 14, 17, 20, 22, 23] and references therein.
In all available preconditioning techniques, the preconditioner P is chosen before
the iterations are begun and kept fixed during the computations. This corresponds
to applying an iterative method to the preconditioned system (4). A nice recent sur-
vey is presented by Gazzola et al. [21]. However, it may be difficult to choose a
suitable preconditioner before the start of the iterations. Our approach circumvents
this complication by allowing the preconditioner to be updated during the solution
process.

This paper is organized as follows. Section2 contains a brief overview of anti-
reflective boundary conditions. A discussion on iterative methods, the construction
of our preconditioner, and an introduction of the preconditioned F-GMRES method
can be found in Sect. 3. Numerical results are presented in Sects. 4, and 5 contains
concluding remarks.

2 Anti-reflective Boundary Conditions

We review some properties of blurring matrices with ARBCs. A survey of blurring
matrices with ARBCs is given in [15], where many details are provided. Consider a
blurring matrix A determined by a discretized PSF,
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H =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

h−m,−m · · · h−m,0 · · · h−m,m

...
. . .

...
...

h−1,−1 h−1,0 h−1,1

h0,−m · · · h0,−1 h0,0 h0,1 · · · h0,m
h1,−1 h1,0 h1,1

...
...

. . .
...

hm,−m · · · hm,0 · · · hm,m

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

∈ R
(2m+1)×(2m+1), (6)

with h0,0 the central coefficient and, generally, 2m + 1 � n. The image values
f1− j,t for 1 ≤ j ≤ m and 1 ≤ t ≤ n are represented by 2 f1,t − f j+1,t . Similarly, for
1 ≤ j ≤ m and 1 ≤ s, t ≤ n, we obtain the image values

fs,1− j = 2 fs,1 − fs, j+1, fn+ j,t = 2 fn,t − fn− j,t , fs,n+ j = 2 fs,n − fs,n− j .

When both indices of f p,q are outside the range {1, 2, . . . , n}, which happens for
pixels close to the four corners of the given image, we carry out anti-reflection first
in one space-direction (in the direction of the horizontal or vertical axis) and then
in the other direction; see [13]. We describe these anti-reflections for pixels near the
corner with pixel index (1, 1) of an image; pixels near the other corners are treated
analogously. Thus, for 1 ≤ j, l ≤ m, we let

f1− j,1−l = 4 f1,1 − 2 f1,l+1 − 2 f j+1,1 + f j+1,l+1.

Here we have carried out anti-reflection along the horizontal axis followed by anti-
reflection along the vertical axis.

The strategy to anti-reflect first in one space-direction and then in an orthogonal
space-direction yields a blurring matrix A ∈ R

n2×n2 with a two-level structure; see
[13]. Specifically, A is the sum of fivematrices: A block Toeplitzmatrixwith Toeplitz
blocks, a block Toeplitz matrix with Hankel blocks, a block Hankel matrix with
Toeplitz blocks, a block Hankel matrix with Hankel blocks, and a matrix of rank at
most 4n. Despite this somewhat complicated structure, matrix-vector products with
the matrix A can be evaluated in O(n2 log(n)) arithmetic floating-point operations
(flops) by applying the FFT as follows: Let the n2-vectors x = X (:) and y = Y (:) be
defined by stacking the columns of the n × n-matrices X and Y , respectively. These
matrices represent images; their entries are pixel values. For every kind of boundary
conditions, the matrix-vector product y = Ax can be implemented by the following
procedure:

1. pad X with the chosen boundary conditions to obtain an extended 2D array X̃ ∈
R

(n+m)×(n+m);
2. compute Ỹ as the circular convolution of X̃ and H ;
3. determine Y by extracting the central inner n × n part of Ỹ .
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The anti-reflective boundary conditions require the use of an anti-symmetric pad
analogous to the symmetric pad that is available for the MATLAB function padar-
ray.1 Further details are provided in [15].

3 The Preconditioned Iterative Method

This section defines the preconditioners to be used and discusses the iterative solution
of the preconditioned linear systems of algebraic equations (5) by the F-GMRES
method.

3.1 Iterative Regularization Methods for Anti-reflective
Boundary Conditions

Introduce the correlation operator

[K ∗ f ](x) =
∫
R2

h( y − x) f ( y)d y, (7)

which is the adjoint of the convolution operator in (1). Here we have used the fact
that h is real-valued. Let the matrix A′ be obtained by discretizing (7) with the same
boundary conditions as for (3). It is proposed in [11] that, instead of solving (3), one
should compute the solution of the linear system of equations

A′A f = A′g (8)

when RBCs or ARBCs are imposed and the PSF is quite general, such as a PSF
that models motion blur. The linear system (8) is solved by a conjugate gradient
(CG) method that is formally similar to the CGLS method [2]. The latter method
computes an approximate solution of (3) by determining an approximate solution
of the associated normal equations AT A f = ATg. It is suggested in [11] that the
matrix AT in the CGLS method be replaced by A′. Attractions of the so obtained
iterative method for the approximate solution of (3) include that the matrix A′A
is not explicitly formed (only matrix vector products with the matrices A and A′
are evaluated) and that the method uses short recurrence relations. Therefore, the
method requires fairly little computer storage. The reason for using A′ instead of AT

in (8) is that the evaluation of matrix-vector products with the latter matrix is more
cumbersome and may suffer from numerical instability; see, e.g., [14] for a recent
discussion.

1A MATLAB code for the anti-symmetric pad can be downloaded at http://scienze-como.
uninsubria.it/mdonatelli/Software/software.html.

http://scienze-como.uninsubria.it/mdonatelli/Software/software.html
http://scienze-como.uninsubria.it/mdonatelli/Software/software.html
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However, the iterative solution of (8) by the CG method is not without difficul-
ties. The main problem is that the matrix A′A is not symmetric positive definite and,
therefore, the application of the CG method to the solution of (8) has no theoret-
ical justification. Moreover, the computed restorations may be of poor quality, in
particular when the PSF is strongly non-symmetric; see the analysis in [14]. These
difficulties with the CGmethod prompted the investigation in [14] of the application
of GMRES-type methods to the solution of (8).

GMRES is an iterativemethodproposed in [32] for the solutionof linear systemsof
algebraic equations with a fairly general square non-symmetric non-singular matrix;
see also [31]. Among several solution methods investigated in [14], the application
of GMRES to the system

AA′z = g (9)

performed the best. When z is an approximate solution of (9), f = A′z is an
approximate solution of (3). We may consider A′ a right preconditioner. Right-
preconditioning is convenient to use when the number of iterations is determined
with the aid of the discrepancy principle; see below. We next describe several pre-
conditioners.

To justify the definition of our preconditioner, we first discuss left-preconditioned
Landweber iteration. Following [7], where the so called “Z variant” is described, we
consider the left-preconditioned system

Z A f = Zg (10)

obtained from (3). Application of Landweber iteration to the solution of (10) yields
the iterates

f k+1 = f k + Z(g − A f k). (11)

We may determine the preconditioner Z ∈ R
n2×n2 by filtering as follows: In the case

of PBCs, A is a BCCBmatrix, which can be diagonalized by the 2D discrete Fourier
transform. The eigenvalues λi, j of A, for i, j = 0, . . . , n − 1, can be computed by
the 2D FFT applied to its first column arranged as a 2D array. The matrix Z is chosen
to be a BCCBmatrix, whose eigenvalues λ̆i, j are obtained by applying some filter to
the λi, j . For instance, we may use a slightly modified version of the Tikhonov filter

λ̆i, j = λi, j∣∣λi, j

∣∣2 + α
, i, j = 0, 1, . . . , n − 1,

where α > 0 is a regularization parameter and the bar denotes complex conjugation.
The BCCB matrix Z can be defined analogously for other boundary conditions; see
[7] for details.

When applying a stationary preconditioned iterative regularization method, we
have to face the non-trivial task of determining a suitable value of the parameter α.
A too small value of α often gives fast convergence, but may cause instability due to
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severe ill-conditioning of the preconditioner. The instability may result in large prop-
agated errors, which may reduce the quality of the computed solution and possibly
make the computed solution useless. On the other hand, a too large value of α may
result in slow convergence of the computed iterates. Hence, a proper choice of α is
important. Since iterative regularization methods are filtering methods, and the filter
changes with the iteration number, it can be difficult to determine a priori a value of
α that is suitable for all iterations. Here we also note that the number of iterations
required is typically not known before the iterative solution process is started.

To avoid the task of determining a suitable value of α before the start of the
iterations, Donatelli and Hanke [12] proposed the following non-stationary version
of the iterations (11),

f k+1 = f k + Zk
circrk, Zk

circ = CT (CCT + αk I )
−1, rk = g − A f k . (12)

Here C is the BCCB matrix associated with the PSF that defines the matrix A in (3)
and αk is determined by solving a non-linear equation by Newton’s method; see [12]
for details.

Recently, Dell’Acqua et al. [8] extended the non-stationary method (12) to be
able to take the boundary conditions of the problem into account and proposed the
following iteration scheme,

f k+1 = f k + Zk
struct rk, Zk

struct = B(CT (CCT + αk I )
−1), rk = g − A f k,

(13)
where the operator B denotes the application of boundary conditions to the circulant
matrix CT (CCT + αk I )−1. Thus, the operator B affects the structure of the matrix
Zk
struct.
The matrix Zk

struct may be considered a preconditioner. In particular, we may solve
the right-preconditioned linear system (5) with the preconditioner

Pk = B(CT (CCT + αk I )
−1) (14)

by F-GMRES. The parameter αk allows the preconditioner Pk to be varied during
the iterations.

Note that the preconditioner (14) is not explicitly formed, only matrix-vector
products with Pk are computed. Indeed, the matrixC is not explicitly formed; instead
matrix-vector products are evaluated by circular convolutions with the coefficient
mask H , i.e., with the PSF. The same can be done for Zk

circ and Zk
struct. We remark that

the structure of Zk
struct may be quite involved depending on the boundary conditions,

but, using the procedure described at the end of Sect. 2, only a 2D coefficient mask
H̆ is required to be used instead of H . The procedure for computing H̆ is described
in the next subsection.
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3.2 Construction of the Preconditioners

The generating function associated with the PSF defined by H in (6) is given by

f (x1, x2) =
m∑

j1=−m

m∑
j2=−m

h j1, j2e
ı̂( j1x1+ j2x2), ı̂ = √−1. (15)

Thus, the entries h j1, j2 of the matrix H are Fourier coefficients of the function f .
Let y(n)

k = 2πk/n, for k = 0, . . . , n − 1, be a uniform sampling on the interval
[0, 2π]. The 2D Fourier matrix of order n2 × n2 is given by

F(n,n) = Fn ⊗ Fn, where Fn = 1√
n

[
e−ı̂ j y(n)

k

]n−1

k, j=0

and⊗ denotes theKronecker product. Given the function f in (15), the BCCBmatrix
C generated by f is defined as

C = C(n,n)( f ) = F(n,n)D(n,n)(λ)FH
(n,n),

where D(n,n)(λ) = diagi, j=0,...,n−1[λi, j ] is the diagonal matrix of its eigenvalues and
FH

(n,n) is the conjugate transpose of F(n,n). The eigenvalues λi, j , 0 ≤ i, j < n, of C
are determined by a uniform sampling of the generating function f in (15) at the
grid points Γn = {(y(n)

i , y(n)
j ) : i, j = 0, 1, . . . , n − 1}, namely

λi, j = f

(
2πi

n
,
2π j

n

)
, i, j = 0, 1, . . . , n − 1. (16)

Therefore, the PSF can be interpreted as a mask of Fourier coefficients, and the
BCCB matrix C generated by f in (15) coincides with the matrix A in (3) when
PBCs are imposed.

The preconditioner is constructed by using the Tikhonov filter, but other filters
can be applied as well. The Tikhonov solution of the linear system C f = g is

f α = (CTC + αI )−1CTg = CT (CCT + αI )−1g.

The BCCB matrix CT (CCT + αI )−1 has the eigenvalues

λ̆i, j = λ̄i, j

|λi, j |2 + α
= f ( 2πin ,

2π j
n )

| f ( 2πin ,
2π j
n )|2 + α

, i, j = 0, 1, . . . , n − 1. (17)

Similarly to (16), assuming for simplicity that n is odd, the eigenvalues λ̆i, j may be
considered a sampling of the function
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g(x1, x2) =
n−1
2∑

j1, j2=− n−1
2

β j1, j2e
ı̂( j1x1+ j2x2)

at the grid points Γn for the specific choice of the coefficients β j1, j2 as now discussed.
The trigonometric polynomial g is determined by the n2 interpolation conditions

λ̆i, j := g
(
2πi
n ,

2π j
n

)
and its coefficients β j1, j2 can be computed by means of a two-

dimensional IFFT. Note that g is a regularized approximation of the inverse of f on
Γn . Let H̆ denote the mask for the Fourier coefficients β j1, j2 . It can be determined
by carrying out the following steps:

1. Compute λi, j in (16) by the FFT applied to H .
2. Compute λ̆i, j in (17).
3. Compute H̆ by the IFFT applied to λ̆i, j .

In actual computations, we modify the BCCB matrix CT (CCT + αI )−1 to cor-
respond to ARBCs. This yields a structured preconditioner P = B(CT (CCT +
αI )−1), where B is an operator that imposes the ARBCs. As already mentioned
at the end of Sect. 2, the matrix P is not explicitly formed, but only H̆ is stored
and a matrix-vector product with P is evaluated in O(n2 log(n)) flops by using the
anti-symmetric pad and convolution with H̆ .

3.3 The Flexible GMRES Method

The F-GMRES method [30] is a minimal residual iterative method that is designed
for application of a sequence of preconditioners. We will use F-GMRES with pre-
conditioners of the form (14) that are determined by a sequence of αk-values.

Given a set of � linearly independent vectors u1, u2, . . . , u� ∈ R
n2 , the F-GMRES

method determines a decomposition of the form

AU� = V�+1H�+1,�, (18)

where U� = [u1, u2, . . . , u�] ∈ R
n2×�, V�+1 = [v1, v2, . . . , v�+1] ∈ R

n2×(�+1) has
orthonormal columns with v1 = g/‖g‖, and H�+1,� = [hi, j ] ∈ R

(�+1)×� is of upper
Hessenberg type. Let e1 = [1, 0, . . . , 0]T ∈ R

�+1 denote the first axis vector. Then

min
w∈range(U�)

‖Aw − g‖ = min
y∈R�

‖AU� y − g‖ = min
y∈R�

‖H�+1,� y − e1‖g‖ ‖, (19)

where ‖ · ‖ denotes the Euclidean vector norm.
Assume that the matrix H�+1,� exists and that all its subdiagonal entries are pos-

itive. This is the generic situation. The positivity of the subdiagonal entries of the
upper Hessenberg matrix H�+1,� secures that its columns are linearly independent.
We remark that the parameter � in (18) generally is fairly small in our applications.
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The minimization problem on the right-hand side of (19) has a unique solution
y� ∈ R

�, which determines the approximate solution f � = U� y� of (3). Since � is
small, the solution y� easily can be computed by QR factorization of the matrix
H�+1,�. In our application of the decomposition (18), the vectors uk are determined
with the preconditioners Pk ; see (14) and Algorithm 1 below. A discussion on the
choice of the parameters αk in the preconditioner Pk and on the choice of � in (18)
is provided in Sect. 3.4.

Algorithm 1 The F-GMRES method
1. v1 = g/‖g‖
2. for k = 1, 2, . . . , � do
3. uk = Pkvk; v = Auk

4. for i = 1, 2, . . . , k do
5. hi,k = vT vi ; v = v − hi,kvi
6. end
7. hk+1,k = ‖v‖; vk+1 = v/hk+1,k

8. end
9. define U�=[u1, u2, . . ., u�]∈Rn2×� and H�+1,�=[hi, j ]∈R(�+1)×� upper Hessenberg
10. compute y� := argmin y∈R� ‖H�+1,� y − e1‖g‖ ‖ and f � = U� y�

We say that F-GMRES breaks down at step k if hk+1,k = 0 and h j+1, j > 0 for
1 ≤ j < k. As already mentioned, this is a rare event. Discussions on breakdown of
F-GMRES can be found in [27, 30].

Algorithm 1 requires that both the matrix V�+1 and the vectors uk = Pkvk , 1 ≤
k ≤ �, be stored. This implies that F-GMRES demands more storage space than
(standard) GMRES after the same number of steps, since GMRES only requires
storage of the matrix V�+1. However, the fact that F-GMRES allows non-stationary
preconditioning, while GMRES does not, may be worth the extra storage cost. Note
that if we let Pk = P be independent of k, then Algorithm 1 can be replaced by the
preconditioned (standard) GMRES method; see [31] for a discussion of the latter.

A difference between the F-GMRES and GMRES algorithms is that the action of
APk on a vector v generally is not in the range of V�+1 in F-GMRES. Instead, we
have the following result, which is a consequence of (19).

Proposition 1 The approximate solution f � obtained at step � of F-GMRES mini-
mizes the residual norm ‖g − A f �‖ over range(U�).

Another difference is that, while for standard GMRES with initial iterate in
span{g} breakdown is equivalent to convergence, this is not the case for F-GMRES.
Moreover, it is difficult to show convergence results for F-GMRES since, differently
from standard GMRES, there is no isomorphism between the solution subspace of
F-GMRES and the space of polynomials. For more information, we refer to [27, 30,
31].
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3.4 The Stopping Criterion and the Choice of Regularization
Parameters

This subsection discusses how to determine the number of iterations, �, with Algo-
rithm 1 and how to choose the parameters αk of the preconditioners Pk ; see (14). We
will assume that a fairly accurate bound ε for the norm of the error ν in the vector g
is available. Thus,

‖ν‖ ≤ ε.

Let f 1, f 2, f 3, . . . be a sequence of approximate solutions of (3) determined byAl-
gorithm 1 and define the associated residual vectors r� = g − A f �, � = 1, 2, 3, . . . .
The discrepancy principle prescribes that the iterations with Algorithm 1 be termi-
nated as soon as a residual vector r� that satisfies

‖r�‖ ≤ ηε (20)

has been determined, where η ≥ 1 is a user-specified constant independent of ε. We
set η = 1 in the computed examples reported in Sect. 4. This stopping criterion is
reasonable, because the desired exact solution f satisfies ‖A f − g‖ = ‖ν‖. Note
that since

‖r�‖ = ‖H�+1,� y� − e1‖g‖ ‖,

we can check whether (20) holds without explicitly forming the residual vector r�.
We use a progressive implementation of F-GMRES in the computed examples.

This implementation updates the matrix H�+1,� for � = 1, 2, 3, . . . together with its
QR factorization. The solution y� of the small least-squares problem in the right-
hand side of (19) is computed for every �. This makes it easy to determine when (20)
holds for the first time and, therefore, when the iterations should be terminated.

We turn to the determination of the parameters αk of the preconditioners Pk ,
k = 1, 2, 3, . . . . A well-established choice of the regularization parameter in the
context of iterated Tikhonov methods is the geometric sequence

αk = α0q
k−1, k = 1, 2, 3, . . . , (21)

where α0 > 0 and 0 < q < 1; see, e.g., [3, 12]. This choice also is used for Bregman
iteration [4, 26]. The value of the initial regularization parameter α0 is not critical
as long as it is not too small.

A different technique to determine the regularization parameter αk is described
in [12]: At step k the parameter αk is determined by solving the non-linear equation

‖rk − CZk
circrk‖ = qk‖rk‖ (22)

with a few steps of Newton’s method, where



Non-stationary Structure-Preserving Preconditioning for Image Restoration 63

qk = max {q, 2ρcirc + (1 + ρcirc)δ/‖rk‖} (23)

and Zk
circ is defined as in (12). The parameter q is included in (23) as a safeguard

to prevent that the qk decrease too rapidly with increasing k. We remark that the
theoretical results in [12] do not use the parameters q in (23). The parameter 0 <

ρcirc < 1/2 should be as small as possible and satisfy

‖(C − A)z‖ ≤ ρcirc ‖Az‖ , ∀ z ∈ R
n . (24)

If A is accurately approximated by its BCCB counterpart C , then this inequality can
be approximately satisfied for a small value of ρcirc. This parameter has to be set in
the algorithm described in [12]; for image deblurring problems, it is usually chosen
as 10−2 or 10−3. A too small value of ρcirc can easily be recognized by an oscillatory
behavior of the αk with increasing values of k; see [12].

In [8], the same approach is applied to the structured case. The goal is to estimate
αk by solving

‖rk − AZk
struct rk‖ = qk‖rk‖ (25)

for αk defining Zk
struct as described by (13). This is not computationally practicable

when thePSFhas a non-symmetric structure. Instead, the regularizationparameterαk

is estimated by using Eq. (22), whichmay be considered a computable approximation
of (25). Note that even though we again use Eq. (22) to estimate the parameters αk ,
we obtain a different parameter sequence α1,α2,α3, . . . , because the sequence of
residual vectors differs. Furthermore, in this case condition (24) is not meaningful.
Therefore, a new parameter ρstruct is introduced and the iterations are terminated by
the discrepancy principle (20) with

η = 1 + 2ρstruct
1 − 2ρstruct

. (26)

In the following, we refer to the sequence α1,α2,α3, . . . computed in the way
described as the DH sequence, since it is a development of an idea introduced in
[12]. We set q = 0.8 and ρstruct = 10−2 in all the computed examples.

We now describe a new technique for determining the parameters αk . Assume
that

‖rk‖ = ckα
p
k ,

where ck > 0 and αk are positive scalars, and p ≥ 1 is a fixed exponent. Requiring
that ‖rk‖ = ε yields

αk = p

√
ε

ck
.

Assuming that

ck ≈ ck−1 = ‖rk−1‖
α

p
k−1

,
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we obtain the sequence

α1 = α0,

αk = p

√
ε

‖rk−1‖ αk−1, k = 2, 3, . . . , (27)

where α0 > 0. In other words, the update from αk−1 to αk is based on the ratio of
the error bound ε and the norm of the residual relative to the previous iteration. The
heuristic motivation behind this strategy is that αk is computed in order to make the
norm of the residual ‖rk‖ move towards ε as k increases. When using (27), the key
parameter for the generation of the sequence {αk} is p. In the computed examples,
we set α0 = 1 and we illustrate that p = 2 is a good choice for all the considered
examples.

4 Numerical Results

This section reports some numerical results that show the performance of themethods
described. We consider two deblurring problems with non-symmetric PSFs and low
noise levels, and apply ARBCs. It is the purpose of the examples to illustrate the
efficacy of non-stationary structure-preserving preconditioners for F-GMRES and
Landweber iteration. The use of different techniques for computing the sequence of
regularization parameters is illustrated.

4.1 Test Problems

Figure1 displays images for our first test problem (Test 1). The left panel shows
the uncontaminated (exact) camera man image. We take a larger image and crop it
(see the white box in Fig. 1a). The image inside the box is made up of 227 × 227
pixels and is assumed not to be available. The PSF, which is three quarters of a
Gaussian blur, is shown in the middle panel of Fig. 1. It is made up of 29 × 29 pixels.
The (available) blur- and noise-contaminated image is displayed by the right panel
of Fig. 1. It is computed by applying the PSF to the larger image of the left panel,
adding 0.5% white Gaussian noise, and then using a 227 × 227 pixel subimage.

Let the vector f ∈ R
2272 represent the desired uncontaminated image, where we

order the pixels of the image column-wise. Similarly, we let the vector f restored ∈
R

2272 represent the restored image determined by one of the methods in our compar-
ison. We refer to ‖ f restored − f ‖

‖ f ‖
as the relative restoration error (RRE).
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Fig. 1 [Test 1] a True image, b PSF, c blurred and noisy image
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Fig. 2 [Test 2] a True image, b PSF, c blurred and noisy image

Figure2 shows images for our second test problem (Test 2), and is analogous to
Fig. 1. The uncontaminated unavailable (exact) boat image is made up of 227 × 227
pixels and shown inside the white box of Fig. 2a. The middle panel depicts the non-
symmetric PSF. It models motion blur and is made up of 29 × 29 pixels. The right
panel displays the available blur- and noise-contaminated image. The noise is 0.6%
white Gaussian.

4.2 Restorations, Plots, and Tables

We compare the unpreconditioned CGLS and GMRES methods to non-stationary
preconditioned F-GMRES. Throughout this section CGLS refers to the conjugate
gradient method applied to the solution of the linear system of equations (8); see
the discussion in Sect. 3.1. Also preconditioned Landweber as described in [8] is
considered. The preconditioners are determined by the regularization parameters αk

defined by (21), (22), or (27). We refer to these sequences of regularization param-
eters as the “geometric sequence”, the “DH sequence”, and the “new sequence”,
respectively. We always set α0 = 1 and let q = 0.8 for the geometric sequence,
q = 0.8 and ρstruct = 10−2 for the DH sequence, and p = 2 for the new sequence.
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Fig. 3 Plots of the αk as a function of k related to F-GMRES for the geometric sequence, the DH
sequence, and the new sequence for Test 1 (on the left) and Test 2 (on the right)

Fig. 4 [Test 1] Restorations determined with the discrepancy principle by a CGLS (RRE 0.0923,
IT 27); b F-GMRES New (RRE 0.0907, IT 8); c Zk

struct-Landweber New (RRE 0.0942, IT 12)

These three approaches to choosing the αk are used for both the Zk
struct-Landweber

and F-GMRES iterations. Figure3 shows the αk for F-GMRES. It can be seen that
these three approaches give quite different parameter sequences α1,α2,α3, . . . ; the
geometric sequence converges to zero at a rate that depends on the choice of q;
the DH sequence achieves values larger than unity in the first steps, and then the
sequence decreases rapidly. Finally, the sequence (27) decreases quickly to a small
value (close to 0) and then increases.

Figures4 and 5 show (for Test 1 and Test 2, respectively) restorations determined
by different methods when the iterations are terminated by the discrepancy principle
using (20), and when applicable (26), and the αk are determined as described in [12].
The restored images look essentially the same; also their RRE values are close. The
non-stationary preconditioners of this paper give rapid convergence and restorations
of high quality. Tables1 and 2 report (for Test 1 and Test 2, respectively) the RRE
and the number of iterations (IT) required to achieve the best restoration (i.e., the
restoration with the smallest RRE) and the restoration determined with the discrep-
ancy principle. The symbol—in the tables indicates that the discrepancy principle
cannot be satisfied, while the symbol n/a means that no meaningful best restoration
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Fig. 5 [Test 2] Restorations determined with the discrepancy principle by a CGLS (RRE 0.0948,
IT 17); b F-GMRES DH (RRE 0.0925, IT 7); c Zk

struct-Landweber DH (RRE 0.0917, IT 12)

Table 1 [Test 1] Relative restoration error (RRE) and iteration number (IT) for the best restoration
and when using the discrepancy principle for different methods

Method RRE best res. IT RRE
discrepancy

IT

CGLS 0.0895 36 0.0923 27

GMRES 0.1470 5 – –

F-GMRES Geo 0.0897 13 0.0908 12

F-GMRES DH n/a n/a 0.0905 8

F-GMRES New 0.0898 9 0.0907 8

Zk
struct-Landweber Geo 0.0889 23 0.0941 20

Zk
struct-Landweber DH n/a n/a 0.0954 13

Zk
struct-Landweber New 0.0888 18 0.0942 12

is available. This situation may arise when the method [12] is applied, because the
iterations with this method terminate with the discrepancy principle.

Figures6 and 7 show (for Test 1 and Test 2, respectively) the RRE as a function
of the iteration number. Solid curves are used for CGLS, GMRES, and F-GMRES,
while dashed curves are used for Zk

struct-Landweber. For the F-GMRES and Zk
struct-

Landweber plots, we use colors to show how the parameter values for the non-
stationary preconditioners are determined. The iteration associated with the best
restoration ismarkedby the symbol◦, while the iteration identified by the discrepancy
principle is marked by the symbol ×. Note that for the proposed F-GMRES, the
discrepancy principle works very well. The maximum number of iterations is set to
100.

Standard GMRES can be seen to perform poorly for both image restoration prob-
lems. The best restoration determined by GMRES has a larger error than the best
restoration achieved with any of the other methods in our comparison. Moreover, the
discrepancy principle fails to terminate the iterations within 100 steps. Discussions
on why GMRES may perform poorly for some restoration problems can be found in
[14, 20].
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Table 2 [Test 2] Relative restoration error (RRE) and iteration number (IT) for the best restoration
and for the iterate determined by the discrepancy principle for different methods

Method RRE best res. IT RRE
discrepancy

IT

CGLS 0.0939 15 0.0948 17

GMRES 0.1072 84 – –

F-GMRES Geo 0.0931 8 0.0935 9

F-GMRES DH n/a n/a 0.0925 7

F-GMRES New 0.0932 7 0.0932 7

Zk
struct-Landweber Geo 0.0912 17 – –

Zk
struct-Landweber DH n/a n/a 0.0917 12

Zk
struct-Landweber New 0.0912 12 0.0917 13
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Fig. 6 [Test 1] Plots of the RRE for different methods. The iterate that gives the best restoration is
marked by ◦, and the iterate determined by the discrepancy principle is marked by ×

The restorations computed by CGLS are quite accurate, in particular for Test 1.
However, CGLS requires a large number of iterations in comparison to the other
methods considered, where we recall that each iteration with CGLS demands two
matrix-vector product evaluations, one with A and one with A′.

Comparing thepreconditionedF-GMRESmethod to the Zk
struct-Landwebermethod

described in [8], we note that the latter usually achieves an insignificantly smaller
RRE, but preconditioned F-GMRES requires fewer iterations and terminates reli-
ably with the aid of the discrepancy principle. Note that in Test 2, the discrepancy
principle fails to terminate the iterations with Zk

struct-Landweber Geo.
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Fig. 7 [Test 2] Plots of RRE for different methods. The iterate that gives the best restoration is
marked by ◦, and the iterate determined by the discrepancy principle is marked by ×

In summary, the non-stationary preconditioning approach can be used effectively
with F-GMRES.Comparing the differentways to determine the parametersαk for the
preconditioners, Figs. 6 and 7 show the sequence (27) to give the fastest convergence
in both Test 1 and Test 2 for both the F-GMRES and Zk

struct-Landweber methods.

4.3 Robustness Analysis of P-GMRES

Tobetter justify the non-stationary preconditioning approach of this paper,we present
some numerical results for P-GMRES, i.e., GMRESwith the same preconditioner for
all iterations; all αk have the same value α in each step. We illustrate that differently
from F-GMRES with the different preconditioning strategies previously described,
P-GMRES is very sensitive to the choice of α.

Figure8 displays how α affects the number of iterations required to satisfy the
discrepancy principle and to determine the best restoration. We can see that more
iterations are required for larger values of α. Moreover, Fig. 8 shows that termination
of the iterations with the discrepancy principle does not work well when α is too
small. In fact, the number of iterations grows in Test 1 when α is reduced, while in
Test 2 the discrepancy principle fails to stop the iterative method for α smaller than
10−2.

Thequality of the computed restorations is depicted inFig. 9.Theblue curves show
the RRE for the best restorations determined by P-GMRES for different values of α.
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Fig. 8 Plot of the number of iterations with P-GMRES that gives the best restorations as a function
ofα (blue curve), and plot of the number of iterationswith P-GMRESdetermined by the discrepancy
principle as a function of α (red curve) for Test 1 (on the left) and for Test 2 (on the right)
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Fig. 9 Plot of the RRE for the best restoration computed by P-GMRES as a function of α (blue
curve) and plot of the RRE for the P-GMRES iterate determined by the discrepancy principle as a
function of α (red curve) for Test 1 (on the left) and for Test 2 (on the right)

The red curves show the RRE when terminating the iterations with the discrepancy
principle. When α is reduced, the quality of restorations quickly deteriorates. We
can notice again that the discrepancy principle does not work well; in Test 2 it is not
able to stop the method for α smaller than 10−2.

4.4 Robustness Analysis of the DH Sequence

The DH sequence depends on the choice of parameters q and ρstruct. The former
parameter is included as a safeguard to prevent the qk in (22) from decreasing too
rapidly. We set q = 0.8, the same as for the geometric sequence. This subsection
shows the robustness of F-GMRES with respect to the choice of ρstruct.

Figure10 displays how ρstruct affects the number of iterations required to satisfy
the discrepancy principle. As expected, we can see that fewer iterations are required
for larger values of ρstruct.
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Fig. 10 Plots of the number of iterations by F-GMRESDHdetermined by the discrepancy principle
as a function of ρstruct for Test 1 (on the left) and for Test 2 (on the right)
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Fig. 11 Plots of the RRE for iterates computed by F-GMRES DH using the discrepancy principle
as a function of ρstruct for Test 1 (on the left) and for Test 2 (on the right)

The quality of the computed restorations is depicted in Fig. 11. The curves show
the RRE when terminating the iterations with the discrepancy principle. We can
notice a stable behavior when ρstruct decreases. For Test 1, ρ ∈ [10−5, 10−2] gives
exactly the same results in terms of RRE and number of iterations. Similarly, for
Test 2 the results are not sensitive to a decease in ρ. Therefore, a careful tuning of
the parameters ρ and ρstruct is not required when using F-GMRES.

4.5 Robustness Analysis of the New Sequence

The sequence (27) depends on the choice of the parameter p. This subsection seeks
to shed light on how this choice affects the performance of F-GMRES.

Figure12 displays the parameters αk for different values of p. Note that for all
values of p, the sequenceα1,α2,α3, . . . has the desired behavior: It decreases in the
first few iterations, when little regularization is required, and increases in subsequent
iterations when more regularization is needed. It can be seen that for larger values of



72 P. Dell’Acqua et al.

5 10 15 20 25 30
iterations

0

0.2

0.4

0.6

0.8

1
p=1
p=2
p=3
p=4
p=5

5 10 15 20 25 30
iterations

0

0.2

0.4

0.6

0.8

1
p=1
p=2
p=3
p=4
p=5

Fig. 12 Plots of αk for F-GMRES New as a function of the number of iterations k for different
values of p for Test 1 (on the left) and for Test 2 (on the right)
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Fig. 13 Plot of the number of iterations required to compute the best restoration by F-GMRES
New (blue curve) and plot of the number of iterations required by F-GMRES New when using the
discrepancy principle (red curve) as a function of p for Test 1 (on the left) and for Test 2 (on the
right)

p, the sequence {αk} first decreases slower and then increases slower than for smaller
values of p. Figure13 displays how p affects the number of iterations required to
satisfy the discrepancy principle and to determine the best restoration. We can see
that more iterations are required for larger values of p. Moreover, Fig. 13 shows that
termination of the iterations with the discrepancy principle works well in the sense
that the computed restorations are close to the best restorations.

The quality of the computed restorations is depicted in Fig. 14. The blue curves
show the RRE for the best restorations determined by F-GMRES for different values
of p. These curves are quite insensitive to the choice of p. The red curves show the
RRE when terminating the iterations with the discrepancy principle.

In conclusion, the numerical experiments of this section suggest that the value
p = 2 is appropriate, because this value yields accurate restorations in a small number
of iterations.
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Fig. 14 Plot of the RRE for the best restoration determined by F-GMRESNew (blue curve) and the
restoration computed by F-GMRES New using the discrepancy principle (red curve) as a function
of p for Test 1 (on the left) and for Test 2 (on the right)

5 Conclusion

We have considered image deblurring when the point spread function is non-
symmetric and anti-reflective boundary conditions are imposed. The use of standard
Krylov subspace methods may require a substantial number of iterations. This can
make the restoration of large images expensive. This paper describes a family of
non-stationary structure-preserving preconditioners that are designed to reduce the
number of iterations. The parameters αk that define the preconditioners are deter-
mined automatically during the iterations. We have focused on the application of
these preconditioners in conjunction with the F-GMRES iterative method. Numer-
ical results indicate that this solution approach is competitive with respect to the
computational effort required and the quality of the computed restorations.
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