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Abstract

We develop a geometric framework, based on the classical theory of fibre bundles, to
characterize the cohomological nature of a large class of synchronization-type prob-
lems in the context of graph inference and combinatorial optimization. We identify
each synchronization problem in topological group G on connected graph I" with a flat
principal G-bundle over I', thus establishing a classification result for synchroniza-
tion problems using the representation variety of the fundamental group of I" into G.
We then develop a twisted Hodge theory on flat vector bundles associated with these
flat principal G-bundles, and provide a geometric realization of the graph connec-
tion Laplacian as the lowest-degree Hodge Laplacian in the twisted de Rham—Hodge
cochain complex. Motivated by these geometric intuitions, we propose to study the
problem of learning group actions—partitioning a collection of objects based on the
local synchronizability of pairwise correspondence relations—and provide a heuristic
synchronization-based algorithm for solving this type of problems. We demonstrate
the efficacy of this algorithm on simulated and real datasets.

Keywords Synchronization problem - Fibre bundle - Holonomy - Hodge theory -
Graph connection Laplacian

Mathematics Subject Classification 05C50 - 62-07 - 57R22 - 58A14

Editor in Charge: Kenneth Clarkson

T. Gao gratefully acknowledges partial support from Simons Math+X Investigators Award 400837,
DARPA D15AP00109, NSF IIS 1546413, and an AMS-Simons Travel Grant; J. Brodzki would like to
acknowledge the support for this work by the EPSRC grants EP/1016945/1 and EP/N014189/1; S.
Mukherjee would like to acknowledge support from NSF DMS 16-13261, NSF IIS 1546331, NSF
DMS-1418261, NSF I1S-1320357, NSF DMS-1045153, and HFSP RGP0051/2017.

Extended author information available on the last page of the article

Published online: 28 May 2019 @ Springer


http://crossmark.crossref.org/dialog/?doi=10.1007/s00454-019-00100-2&domain=pdf
http://orcid.org/0000-0002-0436-689X

Discrete & Computational Geometry

1 Introduction

Over the past century, concepts from differential geometry have had a strong impact on
probability theory, statistical inference, and machine learning [37,48,64,107,125]. Two
central geometric concepts used in these fields have been differential operators (e.g.
the Laplace—Beltrami operator [16]) and Riemannian metrics (e.g. Fisher informa-
tion [64]). In particular, the research program of manifold learning studies dimension
reduction through the lens of differential-geometric quantities and invariants, and
designs data compression algorithms that preserve intrinsic geometric information
such as geodesic distances [144], affine connections [127], second fundamental forms
[54], and heat kernels [15,42,43]. The underlying hypothesis of these techniques is
that the data lie approximately on a smooth manifold (often embedded in an ambient
Euclidean space), a scenario facilitating inference due to smoothly controllable tran-
sitions between observed and unseen data. For practical purposes, discrete analogues
of the inherently smooth theory of differential geometry have also been explored in
fields ranging from geometry processing [18,49], finite element methods [6], to spec-
tral graph theory [38] and diffusion geometry [41,135].

Beyond the manifold assumption, geometric objects can be handled with “softer”
tools such as topology: topological data analysis techniques [33,57] have been devel-
oped to study datasets based on their persistent homology. For smooth manifolds, it is
well known that the singular cohomology and de Rham cohomology are isomorphic,
indicating that some topological information can be read off from the differential struc-
ture of geometric objects. Carrying the de Rham theory beyond the manifold setting
has attracted the interest of geometers and physicists: synthetic differential geometry
[92,93] defines group-valued differential forms on “formal manifolds” (generalized
notion of smooth spaces for which infinitesimal neighborhoods are specified axiomat-
ically), based on which an analog of the classical de Rham theory can be established
[63]; noncommutative differential geometry [45,46,105] builds upon the observation
that much of differential geometry can be formulated in terms of the algebra of smooth
functions defined on smooth manifolds, and replaces this algebra with noncommuta-
tive ones—differential forms can then be extended to “noncommutative spaces” along
with homology and cohomology of much more general objects. Discrete analogs of the
Hodge Laplacian, a second order differential operator closely related to de Rham the-
ory, have been proposed for simplicial complexes and graphs [85,101,120,121,139];
its noncommutative counterpart for 1-forms on graphs have recently been explored in
[106].

Bridging recent developments applying differential geometry and topology in
probability and statistical sciences, the problem of synchronization [13,154] arises
in a variety of fields in computer science (e.g. computer vision [10] and geom-
etry processing [91]), signal processing (e.g. sensor network localization [51]),
combinatorial optimization (e.g. noncommutative Grothendieck inequality [12]),
and natural sciences (e.g. cryo-electron microscopy [11,129,137] and geometric
morphometrics [65]). The data given in a synchronization problem include a con-
nected graph that encodes similarity relations within a collection of objects, and
pairwise correspondences—often realized as elements of a transformation group G—
characterizing the nature of the similarity between a pair of objects linked directly by
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an edge in the relation graph. The general goal of the problem is to adjust the pairwise
correspondences, which often suffer from noisy or incomplete measurements, to obtain
a globally consistent characterization of the pairwise relations for the entire dataset,
in the sense that unveiling the transformation between a pair of objects far-apart in the
relation graph can be done by composing transformations along consecutive edges on
a path connecting the two objects, and the resulting composed transformation is inde-
pendent of the choice of the path. (A precise definition of a synchronization problem
will be provided below; see Sect. 1.1.) This paper stems from our attempt to gain a
deeper understanding of the geometry underlying synchronization problems. Whereas
previous works [135,136] in this direction build upon manifold assumptions, the point
of view we adopt here is synthetic and noncommutative: we will see that inference is
possible due to rigidity rather than smoothness.

The remainder of this section gives a formal definition of synchronization prob-
lems, as well as a geometric interpretation in the language of fibre bundles. The fibre
bundle interpretation is elementary but has not been presented in the literature of
synchronization problems, to our knowledge. We then state the main results, discuss
related works, and describe the organization of the paper. The major notations used
throughout this paper are summarized in Table 1 for convenience.

1.1 A Fibre Bundle Interpretation of Synchronization Problems

We begin with a standard formulation of the synchronization problem originated in
a series of works by A. Singer and collaborators [11,13,21,129,133,154]. Let "' =
(V, E, w) be an undirected weighted graph with vertex set V, edge set E, and weights
w;; for each (i, j) € E. Assume G is a topological group acting on a normed vector
space F. Given a map p: E — G from the edges of I" to the group G satisfying
pij = ,oj_l.l, the objective of a F-synchronization problem over T with respect to p is
to find amap f: V — F satisfying the constraints

fi=pijfj VG, j)€E. (1)

If no such map f exists, the synchronization problem consists of finding a map f from
V to F that satisfies the constraints as much as possible, in the sense of minimizing
the frustration

1 20 jev wijll fi = pij fill%
2 Sicv dill fill%

n(f) = @)

where || - || r is a norm defined on F, and d; = Zj:(i’j)eE w;; is the weighted degree
at vertex i. In the terminology of [13], p is an edge potential and f is a vertex poten-
tial; a vertex potential is said to satisfy a given edge potential if all equalities in (1)
hold. Varying the choice of group G and field F results in different realizations of
the synchronization problem [13,21,129,134,137,146,154], as will be elaborated in
Sect. 1.3.

@ Springer



Discrete & Computational Geometry

Table 1 Notations used throughout this paper

r Graph

\%4 Vertex set of I'

E Edge set of T’

nor|V| Number of vertices of the graph I"

mor |E| Number of edges of the graph I

wj;j Weight on edge (i, j) € E

d; Weighted degree on vertex i € V, defined as d; = Zj:(i,j)eE wjj

Topological group

e Identity element of G

Gs Group G equipped with discrete topology

K Scalar field R or C

F Vector space on K that is a representation space of G

d or dim F Dimension of the vector space F

(-, ) F Inner product on F

U={U; |1 <i <|V|} Open cover of I" in which Uj is the star of vertex i € V

CO(I‘; G) G-valued 0-cochain on T', or the set of all vertex potentials on I"

c! T; G) G-valued 1-cochain on T', or the set of all edge potentials on I"

CO(I‘; F) F-valued 0-cochain on I"

B Synchronization principal bundle (a flat principal G-bundle on I'")
associated with p € CI(F; G)

BpF] Flat associated F-bundle of %,

hol, Holonomy homomorphism on %), from 71 (T") to G

Hol, (T) Holonomy of the synchronization principal bundle %,

Q?(l"; BoF1) Constant twisted local O-forms of %, [F] on Uj, i.e., constant local
sections of %,[F] on U;

QO(F; %,;[F]) Locally constant twisted global O-forms of %D[F], i.e., locally constant
global sections of Z,[F]

Qil (T; B,[F)) Constant twisted local 1-forms of %, [F] on U;

Q! T BolFD Locally constant twisted global 1-forms of %, [F]

[f] Vector in K4 representing f € cOr; F)

dp p-twisted differential where p € c! (T'; G), from ol (T'; F) to
QL (r; B,[F1)

8p p-twisted codifferential where p € c! (T"; G), from Q! I BplF) to
co(r; F)

AEJO) p-twisted Hodge Laplacian of degree 0

Af)l) p-twisted Hodge Laplacian of degree 1

HS(F; BoF1) The Oth twisted cohomology group for %, [F], where p € c! T; G)

v(S) Frustration of the subgraph of I" spanned by the vertex subset S C V
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Since we will frequently refer to the set of all edge and vertex potentials on a graph,
let us introduce the following notations to ease our exposition: let CcY(T: G),Ccl(T; G)
denote respectively the set of all G-valued vertex and edge potentials on ', i.e.,

cT; G):={f: V > G},

C'I:G)={p: E— G | pij=p; . Y. ) € E}. 3)

For cohomological reasons that will become clear in Sect. 2, we will also call C 0 T; G)
and C 1(1"; G) the G-valued 0- and 1-cochains on T, respectively. Similarly, let

CO; F):={f:V — F) “4)

denote the set of all F-valued vertex potentials on I'. Throughout this paper, a G-
valued edge potential p € QO(I'; G) is said to be synchronizable if there exists a
G-valued vertex potential f € QUT; G) satisfying f; = p;; fj, Y(, j) € E,ie., (1)
is satisfied with F = G. Generally, an F-valued vertex potential satisfying (1) will be
referred to as a solution to the F-synchronizable problem over I" with respect to p, or
simply F-valued synchronization solution. Clearly, p is synchronizable if and only if
a G-valued synchronization solution exists.

When F' = G,i.e., when we consider the action of G on itself, a synchronizable edge
potential can be realized geometrically as a flar' principal bundle that is isomorphic to
a product space in its entirety, i.e., a trivial® flat principal bundle, as will be explained
in Propositions 1.2 and 1.3 below; this observation forms the backbone of the entire
geometric framework we develop in this paper. When the fibre bundle is differentiable,
this notion of flatness is equivalent to the existence of a flat connection on the bundle,
which is essentially a special case of the Riemann—Hilbert correspondence [59]. The
main results of this paper build upon extending further and deeper the analogy between
the geometry of synchronization problems and fibre bundles.

Propositions 1.2 and 1.3 characterize the basic building block for the geometric
formulation of synchronization problems. We will develop the principal bundle in the
generality of topological spaces that includes smooth structures as particular cases.
Following Steenrod [140], a fibre bundle is aquintuple & = (E, M, F, 7w, G) where E,
M, F are topological spaces, referred to as the fotal space, base space, and fibre space,
respectively; 7 : E — M is a continuous surjective map, called the bundle projection,
and M adopts an open cover {U;} with homeomorphisms ¢;: U; x F — 7~ N U
between each 7 ~1(U;) C E and the product space U; x F, such that 7|, -1y, is the
composition of ¢; with proj;: U; x F — U;, the canonical projection onto the first
factor of the product space. In other words, the following diagram is commutative:

I Recall (see, e.g. [145, Sect. 2]) that a fibre bundle 7: 8 — X, with total space 8 and base space
X, is said to be flat if it admits a system of local trivializations with locally constant bundle coordinate
transformations.

2 Note that a flat bundle is not necessarily trivial (i.e. isomorphic to a product space)—the fundamental
group of the base space plays a central role in this development (see e.g. [115, Chap. 2]).
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7T_1(Ui) L) U x F

NU Ajl
i

The open cover {U;} and the homeomorphisms {¢; } together provide a system of local
trivializations for the fibre bundle &. Moreover, G is a topological transformation
group on F encoding the compatibility of “change-of-coordinates” on M, with respect
to the provided local trivializations, in the following sense: atevery x € U; NU; # 0,
the restriction of the composed map ¢i_] o¢j: Uj x F — U; x Fon{x}x F,which
necessarily gives rise to a homeomorphism from {x} x F to itself by definition, is
canonically identified with a group element g;;(x) € G,and themap g;;: U; NU; —
G is continuous. The topological group G is called the structure group of the fibre
bundle &. The notation F, is often used to denote 7~ (x) for x € M, and referred to
as the fibre over x € M. It is straightforward to check from these definitions that

gix)y=e VxeU,, (5)
gij(X) — gj_l.l(x) Vxe U NU;, (6)
8ij(0)gjk(x) = gir(x) Vx € Ui NU; N Uk, 7)

where e is the identity element of the structural group G. The family of continuous
maps {g;;j : U;NU; — G}is called asystem of coordinate transformations for the fibre
bundle & . Interestingly, essentially all information for determining the fibre bundle &
is encoded in the coordinate transformations, as the following theorem indicates:

Theorem 1.1 (Steenrod [140, Sect. 3.2]) If G is a topological transformation group of
F, Ujisanopencover of M, {g;;} is a family of continuous maps from each non-empty
intersection U; NU to G satisfying (5), (6), (7), then there exists a fibre bundle & with
base space M, fibre F, structural group G, and coordinate transformations {g;;}. Any
two such fibre bundles are equivalent to each other.

The precise definition for two fibre bundles with the same base space, fibre space,
and structural group to be equivalent can be found in [140, Sect. 2.4], but we will
also cover it in Sect. 2.1. Notice that the conditions (5), (6), (7) are reminiscent of
the characterization for the synchronizability (1) of a G-valued edge potential on a
connected graph: if p satisfies (1) foramap f: V — G, then p;; = f,-fj_1 on each
edge (i, j) € E, which certainly satisfies

pii=eVieV, Pij=Pj_,-1 V@i, EE, pijpjk=pit Y, J), (j, k), (,k)eE. (8)

As the following Proposition 1.2 establishes, viewing the graph I' as a topological
space, an appropriate open cover of I' can be found such that any synchronizable edge
potential can be realized as coordinate transformations of a fibre bundle with base
space I' and the topological group G serving both as the fibre space and the struc-
ture group. A fibre bundle with its structural group as fibre type is called a principal
bundle. Moreover, any such principal bundle must also be flat, as the bundle coordi-
nate transformations take constant values on every non-empty intersection of sets in
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the open cover. The following simple concepts from combinatorial graph theory and
algebraic topology (see, e.g. [14,20]) will be needed for the statement and proof of
Proposition 1.2:

(1) The n-skeleton of a simplicial complex K is the subcomplex of K consisting of
all j-dimensional faces for 0 < j < n;

(2) The support of a simplicial complex K is the underlying topological space of K;

(3) The star neighborhood of a vertex v in a simplicial complex K is the union of all
closed simplices in KC containing v as a vertex;

(4) A clique complex of a graph I' = (V, E) is the simplicial complex with all
complete subgraphs of I as its faces.

Proposition 1.2 Let G be a topological group, I' = (V, E) a connected undirected
graph, and p: E — G a map satisfying p;j = ,oj_l.1 for all (i, j) € E. Denote X
for the 2-skeleton of the clique complex of the graph T', X the support of X, and
U =A{U; |1 <i <|V|}foran open cover of X in which U; is the interior of the star
of vertex i. Then p is synchronizable over G if and only if there exists a flat trivial
principal fibre bundle w: &, — X with structure group G and a system of local
trivializations defined on the open sets in A with constant bundle transition functions
pij on non-empty U; N U ;.

A proof of Proposition 1.2 can be found in Appendix A. The key idea is to view I'
as the 1-skeleton of its associated clique complex, and use the open cover consisting
of star neighborhoods of each vertex. A similar construction of “Cryo-EM complex”
has been used in [158] to classify data input to Cryo-EM problems, an important
application of synchronization techniques.

However, it is important to notice that the converse to Proposition 1.2 is not true in
general; more precisely, an edge potential satisfying (8), which necessarily specifies
a flat principal bundle over I', need not be synchronizable. For a simple example,
consider a square graph I" consisting of a four vertices 1, 2, 3, 4 and four edges (1, 2),
(2,3),(3,4), (4, 1), forming a closed simple loop but without any triangles enclosed
by three edges. An edge potential satisfying p;; = ,oj_i1 on all edges clearly satisfies
all equalities in (8) since no consistency needs to be checked on edge triplets, but
it is easy to find p violating the equality p12023034041 = e which must be obeyed
by any synchronizable edge potential, provided that the group G is not trivial. The
lesson is that the compatibility conditions (8) are of a local nature, in the sense that the
cycle-consistency (borrowing a term from geometry processing of shape collections
[82,118] that describes a compatibility constraint analogous to the last equality in (8))
is imposed only on triangles composed of edge triplets; in contrast, synchronizability
requires a stronger notion of “global” cycle-consistency for the operation of composing
group elements along loops of arbitrary length and topology on the graph. In a certain
sense, fibre bundles are the geometric models realizing edge potentials that are “locally
synchronizable.”

Proposition 1.2 is our first attempt at understanding the geometric mechanism of
synchronization problems. The assumption of the synchronizability of p significantly
restricts the range of applicability of this geometric analogy: in most scenarios of inter-
est, the synchronizability of an edge potential is the goal rather than the starting point
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for a synchronization problem. Fortunately, it is possible to extend the fibre bundle
analogy beyond the synchronizability assumption in Proposition 1.2, by restricting
the model base space from the 2-skeleton of the clique complex of the graph to the
1-skeleton, and adjust the open cover 4l accordingly: if we define an open cover 4l on
the graph I (which as a topological space is canonically identified with the 1-skeleton
of its clique complex) in which each open set U; covers only vertex i and the interior of
all edges adjacent toit, then U; NU; # @if and only if (i, j) € E, and any triple inter-
section of open sets in 4l is empty. In consequence, any system of bundle coordinate
transformations defined on 4 by a G-valued edge potential p automatically satisfies
(5), (6), (7), and specifies a flat principal G-bundle over I', denoted as %, regardless
of synchronizability. This is also consistent with the definition of vector bundles on
graphs in [90]. Clearly, when p is synchronizable, %, is the restriction of the principal
G-bundle &, in Proposition 1.2 to the 1-skeleton of the base space I', therefore trivial
as well. Conversely, if %, is trivial, by [140, Sects. 2.10 or 4.3], there exists a map
f: T — G assigning a constant value f; for all points x € U; such that p;; = fiff]
forall U; NU; # @, which gives rise toamap f: V — G by restriction to the vertex
set V of T'; this verifies all constraints in (1) and establishes the synchronizability of
the edge potential p. Consequently, the triviality of %, and &7, implies each other,
both are equivalent to the synchronizability of p. We summarize these observations in
Proposition 1.3 and formally define the synchronization principal bundle 9, which
will be of central importance for the geometric framework we develop in the rest of
this paper.

Proposition 1.3 Let G be a topological group, I' = (V, E) a connected undirected
graph, and p: E — G a map satisfying p;j = ,Oj_il forall (i, j) € E. Write l =
{Ui |1 <i <|V|}foran open cover of I in which U; is the union of the single vertex
set {i} with the interior of all edges adjacent to the vertex i. Then p defines a flat
principal G-bundle 2B, over I' with a system of local trivializations defined on the
open sets in U with constant bundle transition functions p;; on non-empty U; N U;.
Furthermore, p is synchronizable if and only if B, is trivial.

Definition 1.4 (Synchronization Principal Bundle) The fibre bundle 28, associated
with the connected graph I and edge potential p as characterized in Proposition 1.3
is called a synchronization principal bundle of edge potential p over T', or a synchro-
nization principal bundle for short.

In practice, it is often more convenient to work with %, rather than &, not
only since non-synchronizable edge potentials are much more prevalent, but also
because noisy or incomplete measurements almost always cause the observed group
elements p;; € G to be non-synchronizable. Solving for a G-valued synchronization
solution can thus be viewed as an approach to “denoising” or “filtering” those observed
transformations p;;, as was already implicit in many applications [12,13]. In the sense
of Proposition 1.3, these problems can be interpreted as inference on the structure of
flat principal bundles.

Most synchronization problems in practice [129,134,137,146] consider vertex
potentials valued in G, the same topological group in which the prescribed edge
potential takes value, pertaining to the principal bundle picture (i.e. F = G) discussed
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in Propositions 1.2 and 1.3. Our fibre bundle interpretation naturally includes more
general synchronization problems in which the vertex potentials take valuesin F # G
as well, by relating the synchronizability of an edge potential to the existence of global
sections on an associated F-bundle ¥, x, F or %, x,, F,where n: G x F — F
denotes the action of G on F. Essentially, an associated F-bundle ﬂp xy F (or
B, xy F) is constructed using the same procedure as the principal bundle &, (or
%,), but with fibre F instead of G. The associated bundles &2, x, F, %, x, F are
thus also flat (but not necessarily trivial), since their bundle coordinate transformations
are equivalent to those of their principal bundle, up to the representation induced by
the action 7.

A major difference between working with an associated bundle and the principal
bundle is that the cocycle condition pxjpj; = pi; may still not be satisfied in the
presence of a vertex potential f: V — F satisfying (1), as elements in F' cannot be
“inverted” in general; another important difference is the relation between triviality
and global sections: whereas a principal bundle &2, or %, is trivial if and only if one
global section exists, which amounts to finding one solution to the synchronization
problem over I" with respect to p, an associated bundle may admit one or more global
sections yet still be non-trivial. For instance, a vector bundle always admits the zero
global section, regardless of its triviality. It turns out that establishing the synchro-
nizability of an edge potential through the triviality of an associated bundle requires
finding “sufficiently many” global sections of an associated bundle, or in terms of
synchronization problems, “sufficiently many” solutions satisfying (1). This is also
reflected in the twisted Hodge theory we develop in Sect. 2.2. Even though finding
enough global sections seems to be more work, in practice it could be much easier
to find a set of global sections on the associated bundle than to find even only one
global section on the principal bundle, as the action of G on the space F introduces
additional information from both geometric and practical points of view. Since the
flat F-bundle associated with %, will be essential for Sect. 2.2, we introduce the
following definition:

Definition 1.5 (Synchronization Associated Bundle) The flat F-bundle on I" associated
with the flat principal bundle %, by the action of G on F is called a synchronization
associated F-bundle of edge potential p over ', or synchronization associated bundle
for short, denoted as %[ F].

We close this preliminary section drawing analogy between synchronization prob-
lems and fibre bundles by clarifying the relation among, and the geometric implications
of, some variants of the optimization formulation of synchronization problems. Given
agraph I = (V, E) and a G-valued edge potential p, a direct translation of the goal
of finding an F-valued vertex potential f satisfying (1) as much as possible is to solve

f:n‘l/igF Z Costr(0ij fjs fi)s C))
(i,j)eE

where Costp: F x F — [0, 00) is a cost function on F (e.g., derived from a distance
or a norm). When we seek multiple solutions to an F-synchronization problem over
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I' with prescribed edge potential p, it is natural to impose the additional constraints
that the solutions should be sufficiently different from each other; in the presence of
a Hilbert space structure on F, it is convenient to impose orthogonality constraints
between pairs of solutions to obtain linearly independence. With additional normaliza-
tion constraints to fix the issue of identifiability, this exactly translates into the spectral
relaxation algorithm in [13]. If the prescribed edge potential is synchronizable, its syn-
chronizability will be confirmed once a sufficient number of synchronization solutions
can be collected, where the actual number depends on the property of the group G
as well as its action on F; if not, a synchronizable edge potential can be constructed
from sufficiently many F-valued “approximate solutions” that minimize the objective
function in (9) as much as possible. The case G = F corresponds to the optimization
problem

,min Z Costg (pij [, 1i) (10)
(i,j)eE

which, in the case the Costg is G-invariant, is equivalent to

. -1
min ) Costpij. fif;H. (11)
(i,j)eE

If p is synchronizable, a minimizer of (10) (resp. (9)) attaining zero objective value can
be geometrically realized as a global section of the synchronization principal bundle
B, (resp. &,); such a minimizer implies the triviality of the principal bundle %,
(resp. &,), but not necessarily so in general for the associated bundle %, x,, F (resp.
P, xy F).If p is not synchronizable, the minimum values of (10), (11), and (9) are
all greater than zero, and minimizer of (10) or (11) can be viewed as a “denoised” or
“filtered” version of a trivial flat principal bundle underlying the dataset.

1.2 Main Contributions

In this section we give a brief overview of our main contribution. We will motivate
the two ingredients of the geometric framework developed in Sect. 2, namely, holon-
omy representation and Hodge theory, by demonstrating preliminary versions of our
formulation that lead to weaker conclusions or incomplete geometric pictures, then
sketch the full approaches adopted in Sect. 2. Finally, we draw the link between the
geometric framework and the proposal of the learning group actions (LGA) problem.

1.2.1 Holonomy of Synchronization Principal Bundles

Consider %, the synchronization principal bundle arising from a G-synchronization
problem over a connected graph I' = (V, E) with respect to p € C'(I'"; G). Fix an
arbitrary vertex v € V, and denote the set of all v-based loops in I' (loops with v
as both the starting and ending vertex) as 2,; €2, carries a natural group structure
by the composition of v-based loops. Now the procedure of taking the product of the
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values of p along the consecutive edges in the loop specifies a group homomorphism
from €2, into G. Denote the image of this group homomorphism by H,, which is
necessarily a finitely generated subgroup of G since I' is a finite graph. The simple
but important observation here is that H, is the trivial subgroup of G if and only if p
is synchronizable. The group H, is the analogy of the holonomy group based at v in
differential geometry, if we view p;; on edge (i, j) as the parallel-transport between
fibres of 8, ati, j € V.

Section 2.1 is devoted to a deeper and more systematic treatment of the group
homomorphism from loops in I" to the structure group G. We will define Hol,(I"),
the holonomy of the synchronization principal bundle %, (independent of the choice
of the base vertex v), as well as an equivalence relation on C I(T'; G) induced by a
right action of CO(I"; G) (which is treated implicitly when solving synchronization
problems in practice), and establish a correspondence between Hol , (I") and the equiv-
alence class in C1(T; G)/CO(F; G) to which p € cir; G) belongs. In particular,
trivial holonomy Hol, (I") corresponds to the orbit in C T: G) /C O(F; G) consisting
precisely of all synchronizable edge potentials. This correspondence will be formu-
lated in Theorem 2.6 as between C!(I'; G)/C°(I'; G) and Hom(r1(I'), G)/G, the
representation variety of the fundamental group of I' into G.

1.2.2 Twisted De Rham Cohomology of Synchronization Associated Vector Bundles

The graph connection Laplacian (GCL) for an F-synchronization problem over graph
I" with respectto p € QU G) is a linear operator on QO(F; F) defined as

1
Lifi=— Y, wilfi=pifp), VieV, VfeCUT;F).

i, )EE

If F is a vector space and G has a matrix representation on F', GCL can be written as a
block matrix in which the (i, j)thblock is the matrix representation of p;;,if (i, j) € E.
GCL essentially carries all information of a synchronization problem and is of central
importance to the spectral and SDP relaxation algorithms for synchronization. Our
motivation for Sect. 2.2 was to provide a cohomological interpretation for GCL, in the
hope of realizing it geometrically as a Hodge Laplacian in a cochain complex, inspired
by a similar geometric realization of the graph Laplacian (in the context of algebraic
and spectral graph theory) as a Hodge Laplacian on degree-zero forms in discrete
Hodge theory (see Appendix B). Note that GCL reduces to the graph Laplacian if the
group G is a scalar field.

In the literature of differential geometry, twisted differential forms on a flat vector
bundle & can be intuitively thought as bundle-valued differential forms on the base
manifold. The twisted Hodge theory we develop in Sect. 2.2 defines two discrete
differential operators that are formal adjoints of each other between constant twisted
local O-forms and constant twisted local 1-forms on the synchronization associated
F-bundle %, F], namely the p-twisted differential d,, and the p-twisted codifferential
8,, such that GCL can be written as the composition é,,d,. Provisionally, by identifying
each f € CO(I'; F) naturally with a collection of constant twisted local 0-forms—one
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for each open set U; € {l—a coarse approximation of our construction can be written
as

o f)ij ~ fi = pij fi. Vf e COT: F),

1 Z .
(Bpa)),- ~ di Wjjwij, Yw € CI(F; F) = {a): E—> F | Wjj = —Wjj V(l,]) € E},
I
Jii, ek

from whichit can be easily checked that L = §,d,, on CY(T; F).The main conceptual
difficulty with this natural formulation is that “d, f defined as such does not possess
the skew-symmetry desired for 1-forms, since in general

fi—pjifi =—pjilfi — pij i) #—(fi — pij f})- (12)

The framework we develop in Sect. 2.2 circumvents this skew-symmetry issue
with 1-forms by defining f; — p;; f; as the representation of d,, f, a twisted global
1-form defined over the entire graph I', in the system of local trivializations of %, [ F]
over the open cover . We then define the p-twisted codifferential §, that is the
formal adjoint of d, with respect to inner products naturally specified on the space
of twisted local 0- and 1-forms, and realize the graph connection Laplacian L as the
degree-zero Hodge Laplacian §,d,, : CYU(T; G) - CYT; G) in the twisted de Rham
cochain complex (41). These constructions lead to two different characterizations of
the synchronizability of p, one in Proposition 2.22 with a twisted de Rham cohomology
group, and the other through a Hodge-type decomposition of CO(I'; F) following
Theorem 2.25. This twisted Hodge theory also provides geometric insights for the
GCL-based spectral relaxation algorithm and Cheeger-type inequalities in [13], as we
will elaborate in Sect. 2.2.4.

1.2.3 Learning Group Actions via Synchronizability

Fibre bundles are topological spaces that are product spaces locally but not necessarily
globally. However, we can still look for maximal open subsets of the base space on
which the fibre bundle is trivializable, and seek a decomposition of the base space
into the union of such “maximal trivializable subsets.” This intuition motivated us
to consider applying synchronization techniques to partition a graph into connected
components, based on the synchronizability of a prescribed edge potential in addition
to the connectivity of the graph. In Sect. 3.1, we define the general problem of learning
group actions (LGA) for a set X, equipped with an action by group G, as searching
for a partition of X into a specified number of subsets and learning a new group action
on X that is cycle-consistent within each partition; the cycle-consistency need not
be maintained for a cycle of actions across multiple partitions. The LGA problem is
then specialized to the setting of synchronization problems (learning group actions by
synchronization, or LGAS), for which we define a quantity that measures the perfor-
mance of graph partitions based on the synchronizability of a fixed edge potential on
the entire graph I", motivated by the classical normalized graph cut algorithm. Finally,
we propose in Sect. 3.2 a heuristic algorithm for LGAS, building upon iteratively
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applying existing synchronization techniques hierarchically and performing spectral
clustering on the edge-wise frustration.

1.3 Broader Context and Related Work

The synchronization problem has been studied for a variety of choices of topological
groups G and spaces F. Typically these formulations fall into our principal bundle
setting and require an underlying manifold structure. We give a brief summary for
the correspondences between choices of G and F in our framework and the practical
instances in the synchronization literature: In [13] G = F = O(d) and G = 0(d),
F = S9! are studied; the case G = F = SO(d) is examined in [21,154]; orientation
detection or G = F = O(1) is considered in [134]; cryo-electron microscopy con-
cerns G = F = SO(2) [129,137]; globally aligning three-dimensional scans is the
case where G = F = SO(3), and so is [146].

Our formulation of the synchronization problem considers a broader class of geo-
metric structure than what has been proposed in the literature. Specifically, we do not
require a manifold assumption (as the problem is modeled on topological spaces), or
a principal bundle structure (as we can work with any associated bundle), or compact
and/or commutative structure groups. For comparison, the vector and principal bundle
framework developed in [135,136] relies on manifold assumptions for the base, fibre,
and total space, as well as an (extrinsic) isometric embedding into an ambient Euclidean
space for locally estimating tangent spaces and parallel-transports; similarly for recent
work [66] extending this geometric framework to smooth bundles with general fibre
types. Both Vector Diffusion Maps (VDM) [135] and Horizontal Diffusion Maps
(HDM) [66] can be viewed as attempts at combining the idea of synchronization with
diffusion geometry [41-43]. The geometry underlying the synchronization problem
related to cryo-electron microscopy [129,137] can be described using the language of
SO(2)-principal bundles, as recently demonstrated in [158], with a Cech cohomology
approach through Leray’s Theorem which depends essentially on the commutativity
of the structure group SO(2), whereas most synchronization problems of practical
interest involve noncommutative structure groups. The Non-Unique Games (NUG)
and SDP relaxation framework established in [10,11] assume the compactness of the
structure group G, and resort to a compactification procedure that maps a subset of
G to another compact group for synchronization problems over non-compact groups
such as the Euclidean group in the motion estimation problem in computer vision
[78,109].

The graph twisted Hodge theory we develop in Sect. 2.2 also has ties to recent
developments in discrete Hodge theory [85,101,116,120,121,139]. In [90] Laplacians
on one- and two-dimensional vector bundles on graphs were used to understand the
relation between graphs embedded on surfaces and cycle rooted spanning forests,
generalizing the relation between spanning trees and graph Laplacians. Variants of
the graph Laplacian have been used to relate ranking problems to synchronization
problems in [50,62]; a combinatorial Laplacian based on a discrete Hodge theory on
directed graphs has been successfully applied to decompose ranking problems and
games into “gradient-like” versus “cyclic” components in [32,85], and to visualize
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directed networks in [61]. Discrete Laplacians on simplicial complexes have been pro-
posed, and spectral properties such as Cheeger inequalities and stationary distributions
of random walks have been examined in a series of papers [85,101,116,120,121,139].
The cocycle conditions (8) are also characterized in geometry processing and com-
puter vision recently for analysis of shape or image collections [82,83,118,153], where
they are also known as cycle-consistency conditions.

The geometric and topological tools we utilize in this paper, namely those involving
the topology and geometry of fibre bundles, are covered in most standard textbooks,
e.g. [20,140,143]. After Milnor’s seminal work on flat connections on a Riemannian
manifold [113], the relation between flat bundles and their holonomy homomorphisms
became widely known [47,71,87,104,148] and is still attracting interests of modern
mathematical physicists (e.g. Higgs bundles and representation of the fundamental
group [79,130]). In a completely topological setup, flat bundles can be character-
ized as fibrations with a homotopy-invariant lifting property (a topological analogue
of parallel-transport in differential geometry); essentially the same correspondence
between flat bundles and holonomy homomorphisms is already known to Steenrod
[140] and referred to as characteristic classes of flat bundles [56,59,71,104]. In a
broader context, the correspondence between flat bundles (integrable connections)
and local systems (locally constant sheaves) is a special case of the Riemann—Hilbert
correspondence, ahigher-dimensional generalization of Hilbert’s twenty-first problem
[5,19]. This correspondence fostered important developments in algebraic geometry,
including D-modules [88,89,110,111] and Deligne’s work on integrable algebraic con-
nections [52]. Understanding the representation varieties of the fundamental groups
of Riemann surfaces into Lie groups has been of interest to algebraic geometers,
geometric topologists, and representation theorists in the past decades [72,98].

The rest of this paper is organized as follows. Section 2 establishes the geometric
framework for synchronization problems, relating the synchronizability of an edge
potential p to (a) the triviality of the holonomy of the flat principal bundle %,, in
Sect. 2.1; (b) the dimension of the zeroth degree twisted cohomology group of a p-
twisted de Rham cochain complex, as well as the dimension of the kernel of the zeroth
degree twisted Hodge Laplacian, in Sect. 2.2. Section 3 defines the problem of learning
group actions, and proposes SynCut, a heuristic algorithm based on synchronization
and graph spectral techniques. Numerical simulations indicating the effectiveness of
SynCut are performed on synthetic datasets in Sect. 3.3 and on a real dataset of a
collection of anatomical surfaces in Sect. 4. A few problems of potential interest are
listed in Sect. 5 for future exploration.

2 Synchronization as a Cohomology Problem

This section concerns two geometric aspects of the synchronization problem. Sec-
tion 2.1 links the synchronizability of an edge potential to the triviality of the holonomy
group of a flat principal bundle. Section 2.2 establishes a discrete twisted Hodge the-
ory that naturally realizes the graph connection Laplacian as the lowest-order Hodge
Laplacian of a twisted de Rham cochain complex. The obstruction to synchronizability
of an edge potential turns out to be a cohomology group in the twisted de Rham com-
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plex; the degeneracy of this cohomology group is reflected in the spectral information
of the twisted Hodge Laplacian, which also provides a geometric interpretation for
the relaxation techniques used in solving synchronization problems.

2.1 Holonomy and Synchronizability

The two main results in this section, Corollary 2.7 and Theorem 2.6, relate the syn-
chronizability of an edge potential p to the triviality of the holonomy group of the
synchronization principal bundle %,. Our motivation is as follows. Recall from Propo-
sition 1.3 that G-synchronization problems on a fixed graph I with different edge
potentials are in one-to-one correspondence with flat principal G-bundles over I', and
the synchronizability of an edge potential translates into the triviality of the bundle;
whereas the one-to-one correspondence is stated at the level of local coordinates in
Proposition 1.3, the triviality of the principal bundle is a property of the equivalence
classes of flat principal G-bundles, which suggests the same level of abstraction for
synchronizability. As will be precisely stated later in this subsection, (appropriately
defined) equivalence classes of edge potentials form the moduli space of flat G-bundles
on I', and a given edge potential is synchronizable if and only if it belongs to the same
equivalence class as the trivial edge potential that assigns each edge of I the identity
element e € G. The holonomy group, or the equivalence classes of holonomy homo-
morphisms from the fundamental group of I' to the structure group G, is a faithful
representation of the moduli space of flat principal G-bundles on I'; we thus will be
able to detect the synchronizability of an edge potential through the triviality of the
associated holonomy group. This argument is reminiscent of classical classification
theorems of (1) principal bundles with disconnected structure groups in topology (see
e.g. [140, Sect. 13.9]); (2) flat connections in differential geometry (see e.g. [143, Sect.
13.6]); and (3) holomorphic vector bundles of fixed rank and degree (see e.g. [156,
Appendix Sect. 2.1]) in complex geometry.

For f € CO(I'; G), p € C(T"; G), we say that f and p are compatible on edge
(i,j) € Eif f; = p;j fj, and that f and p are compatible on graph I' if they are
compatible on every edge in I'. Recall from Definition 1.4 that we write %, for
the synchronization principal bundle associated with p € C!(I"; G), as described in
Proposition 1.3. Equivalently, it is often convenient to view %, as a Gs-bundle on
I', where Gy is the same group as G but equipped with the discrete topology. For
p, p € I', the Gs-bundles #,,, #; are equivalent, denoted as B, ~ %, if a bundle
map (see [140, Sect. 2.5]) exists between %, and %; that induces the identity map
on the base space I'. Since %p, %ﬁ have the same base space, fibre, and structure
group, recall from [140, Lem. 2.10] that they are equivalent if and only if there exist
continuous functions A; : U; — Gs defined on each U; € U such that

pij =2 oA (x), YxeUnU; #0.
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Since the topology on G is discrete and U; is connected, A; is constant on U;, and
defines a vertex potential by setting f; := A; (v;), where v; € U; is the ith vertex of
I'. This proves the following lemma:

Lemma 2.1 Two edge potentials p, p € C'(I'; G) define equivalent flat principal
G-bundles on T if and only if there exists f € CO(I'; G) such that

pij = fiilpij fi» V(@,j)€E. (13)

In other words, equivalence classes of flat principal G-bundles on I" determined
by edge potentials (through Proposition 1.3) are in one-to-one correspondence with
equivalence classes in the orbit space C1(I'; G)/CO(T; G), where the right action of
C%UT; G) on CY(T'; G) is defined as

[f(o)lij == £ ' pij fj. Y0, j) € E. (14)

Remark 2.2 The orbit space C!(I"; G)/C°(I"; G) is exactly the first cohomology set
H! (T, L), G) for the sheaf of germs of locally constant G-valued functions over
I" with respect to the open cover 4, where G is possibly nonabelian. It is thus not
surprising that the orbit space should identify naturally with isomorphism classes of
flat principal G-bundles over I" (see e.g. [30, Prop. 4.1.2] or [112, Sect. 8.1]).

A path in T is a collection of consecutive edges in I'. If all edges in path y are
oriented consistently, we say y is an oriented path. For any oriented path y, define
y ! the reverse of y as the path in I" consisting of the same consecutive edges in y
listed in the opposite order and with all orientations reversed. For an oriented path y
consisting of consecutive edges {(ig, i1), (i1, i2), ..., (in—1,in)} set

—1
hOIp(y) = (piN,iNflpiNfl,iNfz e )Oiz,ilpil,i())
= Pig,1Pi1,iz " " Pin_o,in_1Piy_1,iy € G, (15)

then hol, maps paths in I" to elements of group G. For two oriented paths y, y’ such
that the ending vertex of y coincides with the starting vertex of y’, define y o ¥’ as
the oriented path constructed by concatenating ¢’ with y. It is then straightforward to
verify by definition that

hol,(y ') = hol,(y)~!, hol,(y oy’) = hol,(y)hol,(y). (16)

If an oriented path starts and ends at the same vertex v, we call it an oriented loop based
at vertex v. Denote 2, for all loops based at v € V in I', including the single vertex
set {v} viewed as the identity loop based at v. Clearly, €2, carries a group structure
with the loop concatenation and reversion operations. The equalities in (16) ensure
hol,({v}) = e and that hol,: €, — G is a group homomorphism. Moreover, since
graph I does not contain any 2-simplices, two oriented loops based at v are homotopic
if and only if they differ by a collection of disconnected trees in I', in which every tree
gets mapped to e € G under the map hol,; the map hol,: 2, — G thus descends
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naturally to a map to G from 1 (', v), the fundamental group of T based at v. Unless
confusions arise, we shall also denote the descended map as hol, for simplicity of
notation. Lemma 2.3 below summarizes these discussions.

Lemma 2.3 The map hol,: w1 (I', v) — G defined in (15) is a group homomorphism.
In particular, the image of this homomorphism is a subgroup of G.

We will refer to the group homomorphism hol, : 71(I', v) — G as the holonomy
homomorphism at v € T' for a G-synchronization problem with prescribed edge
potential p € C'(I"; G). Define the holonomy group at v € T of edge potential p as
the image

Hol, (v) := hol, (71 (T, v)).

From a different point of view, Lemma 2.3 assigns an element of Hom (r ([, v), G)
to each element of C (T'; G), where Hom (77 (T, v), G) is the set of group homomor-
phisms from 71 (T", v) to G.

Lemma 2.4 If T is connected, the holonomy groups Hol,(v), Hol,(w) at v,w € V
are conjugate to each other as subgroups of G.

Proof Let y be a path in " connecting vertex v to vertex w. The fundamental groups
of I" based at v, w are related by conjugation 71 (I", v) = y_lm (', w)y, thus

Hol, (v) = Hol,(y ~'71 (I, w)y) = Hol,(y ~")Hol, (771 (T, w)),
Hol, (y) = Hol,(y)~'Hol,(w)Hol ,(y). O

Define the holonomy of p € C'(I'; G) on a connected graph I' as the following
conjugacy class (orbit of the action by conjugation) of subgroups of G:

Hol,(I') := {g_lHolp(v)g | forall g € G,
and an arbitrarily chosen but fixed vertex v € V}. (17)

By Lemma 2.4, the definition of Hol,(I") is independent of the choice of a fixed
base v € V. We say that the holonomy of p € C Y(I"; G) is trivial on a connected
graph I' if Hol,(I") contains only the trivial subgroup {e} for all g € G. Under the
connectivity assumption of I', the triviality of the global invariant Hol,(I") can be
completely determined by its seemingly “local” counterparts; see Lemma 2.5 below.
Of course, holonomy is not local in nature, as Hol, (v) encodes the information of all
oriented loops based at vertex v and in principle “touches” the entire space I'.

Lemma 2.5 If T is connected, the following statements are equivalent:

(i) Hol,(I") is trivial;
(ii) Hol,(v) = {e} for some vertexv € V;
(iii) Hol, (v) = {e} for all vertices v € V.
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Similarly to the definition of Hol,(I") in (17), the fundamental group 7{(I") of
a connected graph I' is also determined by the fundamental group 7 (T, vp) at any
vertex vo € V up to conjugacy classes. Therefore, Lemmas 2.3 and 2.4 together assign
to each p € CY(T'; G) an equivalence class in Hom(wr1(I'), G)/G, in which G acts
on Hom(sr( ('), G) by the inner automorphisms of G

¢ — g '¢g, V¢ €e Hom(m(T),G), g€ G

In other words, Lemmas 2.3 and 2.4 guarantee a well-defined map Hol : Q! T; G) —>
Hom(sr; ("), G)/G. Furthermore, note in (15) that Hol is invariant under the right
action (14) of C%(I'"; G) on C1(I"; G), thus Hol naturally descends to a map from
cur; G)/CO(F; G) to Hom(m(I'), G)/G. The space Hom(r1 (I"), G)/G is known
as the representation variety of the fundamental group of I' (the free product of a
finite number of copies of Z) into G. To simplify the exposition, we shall use the
same notation Hol to denote its quotient map induced by the canonical projection
Ccl(I; G) - CI'; G)/CO(T; G). Theorem 2.6 below establishes the bijectivity of
the quotient map.

Theorem 2.6 If T is connected, the map Hol: cl(r: G)/CO(F; G) — Hom(mzr((I'),
G)/G defined as Hol([p]) = [hol,] is bijective. Moreover, Hom(m1(I'), G)/G is in
one-to-one correspondence with equivalence classes of flat principal G-bundles %,
with p € CI(T"; G).

Proof We construct an inverse of Hol from Hom (71 (T"), G)/G back to clr; G)/C0
(I'; G). Fix an arbitrary vertex vg € I', and let x : 71 (I", v9) — G be a group homo-
morphism. By the connectivity of I', each vertex v; € V of I' is connected to vg
through an oriented path yy,;; we orient these paths so that they all start at vertex vy,
and enforce ygo = {vo}. Assign to each edge (i, j) € E an element p;; of the group
G defined by

pij = x(voi o (i, ) o ¥g;')- (18)

Clearly, p;; = ,oj_l.1 follows from the fact that x is a group homomorphism; so does
pii = e for all vertices v; € V. Of course, an edge potential p defined as in (18)
depends on the choice of the oriented paths {yy; }; this dependence is removed after
passing to the orbit space [p] € CH(I; G)/CO(T; G). In fact, let {7;} be an arbitrary
choice of |V| oriented paths connecting vg to each vertex of I" satisfying yoo = {vo},
then
pij = x(7i o G, j)o 170_,-1)

= x (7o 0 vo; ") x (voi 0 G, ) o vg; ) x (voj © ;')
= X (voi o 7; ") pij x (voj 0 ;')
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i.e., as elements in C1(I"; G), p differs from p by an action of the vertex potential
f e CO(F; G) defined as

fir=x(voio7y'), VuieV.

Therefore, (18) uniquely specifies an element [p] in C Lr; ) /CO(F; G) for any
x € Hom(m(T), G).

It remains to show that Hol([ p]) differs from x by an inner automorphism of G. To
see this, let w be an arbitrary oriented loop on I" based at vy consisting of consecutive
edges (vo, vi;), (Vij, Viy), - .., (Viy, Vo), Where N is some nonnegative integer. Using
o0 = {0} and yojl o yoi = {vo} for any v; € V, we have

~1

hOlp(w) = (pO,iNIOiN,iN_| e piz,ilpil,O) = 00,i1Pi1,ir """ Piy_1,in Piy,0
= x (00 o (vo, vj;) © VOTiII)X(VO,il o (viy, Vjy) © Vo_,ilz)

o X (Yo,iy_y © (Wiy_ys Viy) 0 Vo_,,»lN)X()/o,iN o (Viy, Vo) © 7/061)

= x({v0}) x (o, vi,) 0 iy, vix) 0+ © Wiy, v0)) x ({vo}) ™' = x(@).

This calculation is clearly independent of the choices of oriented paths {3y; }. Thus Hol
maps [p] exactly to x, anelement of Hom (;r1 (I, vg), G); the independence of Hol ([ p])
as an element of Hom(z;(I"), G)/G with respect to the choice of the base point vg
follows from an essentially identical argument as given in the proof of Lemma 2.4.
The last statement follows from Lemma 2.1. O

Theorem 2.6 is closely related to classification theorems of flat connections and
principal bundles with disconnected structure group (see, e.g. [143, Sect. 13.6]) and
[140, Sect. 13.9]). The synchronizability of an edge potential p on connected graph T",
which is equivalent to the triviality of %, (cf. Proposition 1.3), can now be interpreted
as the corresponding conjugacy class of Hom (1 (I'), G). In fact, the conjugacy class
corresponding to trivial bundles %, is also trivial and reflects the triviality of the
holonomy of I'. The proof of Corollary 2.7 further develops this observation.

Corollary 2.7 For a connected graph T and topological group G, an edge potential
o € CN(T'; G) is synchronizable if and only if Hol, (I") is trivial.

Proof Note that p € CY(I"; G) is synchronizable (see (1)) if and only if there exists
f € C%T; G) such that

f,'_]loijfj =eecG V(,j) €E,

where e is the identify element of the structure group G. This is equivalent to saying
that

[p] = [e] € C(T; G)/CO(F; G), wheree e CI(T"; G)
isdefinedase;; =e € Gforall (i, j) € E, (19)
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which by Theorem 2.6 implies
Hol([p]) = Hol([¢]) = Id, € Hom(7r1(T'), G)/G,

where Id,: 71(I') — G is the constant map sending all oriented loops in I" to the
identity element ¢ € G. The conclusion follows immediately by noting that

Hol([p]) = 1d, < forany v € V, hol,(w) = e for all oriented loops w based at v
4 Hol, (v) = {e} for all vertices v € V
4 Hol, (I') is trivial,

where for the last equivalence we invoked Lemma 2.5. O

Corollary 2.7 on its own can be derived from an elementary argument. In fact,
without descending hol, from €2, to 771 (I", v), we can still define Hol, (v) as the image
hol, (£2,), though hol, is not injective as a group homomorphism from 2, to G. The
triviality of Hol,(v) still implies the existence of a vertex potential f € cO(T'; G)
compatible with p € C!(I'; G) (simply by setting f; = ¢ on an arbitrarily chosen
v; € V and progressively propagating values of f to neighboring vertices), and vice
versa. The exposition in this section, centered around Theorem 2.6, extends beyond
this elementary argument and strives to unveil a complete geometric picture underlying
the “correspondence between trivialities” discussed in Corollary 2.7. In future work
we intend to pursue novel synchronization algorithms based on metric and symplectic
structures on the moduli space of flat bundles (see, e.g. [7,80,155]).

2.2 ATwisted Hodge Theory for Synchronization Problems

In this section we relate synchronization to the first cohomology of a de Rham cochain
complex on I with coefficients twisted by a representation space F of the structure
group G. This can be interpreted as an instance of the standard de Rham cohomology
of flat bundles (see e.g. [70,131,132,157]). The fibre bundles considered in this section
are vector bundles (with fibre type F') associated with the principal bundle studied in
Sect. 2.1. When the vector space F is equipped with a metric, the vector bundle inherits
acompatible metric, with which a twisted Hodge Laplacian can be constructed; special
cases of this twisted Laplacian in the lowest degree include the connection Laplacian
[13,135]. In this setting, synchronizability is realized as a condition on the dimension
of the null space of the lowest degree twisted Hodge Laplacian, this is reminiscent of
the classical Riemann—Hilbert correspondence between flat connections and locally
constant sheaves. The spectral information of the twisted Hodge Laplacian serves as
a quantification of the the level of obstruction to synchronizability.

2.2.1 Flat Associated Bundles and Twisted Zero-Forms

Let %, be the synchronization principal bundle on I" associated with p € C r; G,
as in Proposition 1.3, and F be a topological space on which G acts on the left as a
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topological transformation group. Denote the action of G on F as t: G — Aut(F).
Consider the right action of G on %, x F as

(p,v) —> (pg, T(g"Hv).

The orbit space of this action, conventionally denoted as %, xg F or %,[F], is
referred to as the F-bundle associated with principal bundle %,, or associated F -
bundle for short. We will denote the bundle projection as 7 : %,[F] — T, and denote
BolFly = 7~ (x) for the fibre over x € T. Strictly speaking, the graph I" should be
distinguished from its underlying topological space, but we use the same notation I"
for both as long as the meaning is clear from the context.

The same open cover 4 of I" that trivializes 8, also trivializes %[ F]. In fact, the
bundle transition function of %,[F] on any nonempty U; N U, is the constant map
UiNUj — t(pij) € Aut(F), where U; NU; — p;; is the constant bundle transition
function from U; to U; for %,. Consequently, the associated bundle %,[F] is also
flat. Unless confusions arise, we shall refer to %, [ F] as the flat associated F-bundle
of %,, and denote the local trivialization of the associated bundle over U; € il using
the same notation ¢; : U; x F' — 9,[F] as for the principal bundle %,,.

In the context of synchronization problems, the most relevant associated bundles
are those with fibre F' being a vector space and structure group G being the general
linear group GL(F). These types of fibre bundles are commonly referred to as vector
bundles. We will focus on flat associated vector bundles for the rest of the section,
though the definition of fibre projections and sections extend literally to general fibre
bundles. For simplicity of presentation, we will omit the notation T and write the
bundle transition functions again as p;; (instead of 7 (p;;)), since its action on a vector
space F' is simply matrix-vector multiplication.

We now focus on sections, the analog of “functions” on smooth manifolds but with
values in fibre bundles. For a general fibre bundle € — B, alocal sections: U — €|y
of € on an open set U of the base space B is a continuous map from U to €|y such
that 7w o s is identified on U. A global section of € is a local section defined on the
entire base space 8. We shall encode the data of synchronization problems into the
language of sections of flat associated bundles. The discrete nature of the problem
naturally motivates us to consider special classes of local and global sections that
are “constant” within each open set in i, in a sense to be made clear soon in local
coordinates. The following notion of fibre projection is introduced to simplify notations
involving local coordinates.

Definition 2.8 For any i € V, define the fibre projection over U; € i, denoted as

pi + BplFlly, =~ (Up) — F, (20)
as the composition of ¢, L BolFlly; — U; x F with the canonical projection
Ui x F — F.Forany x € Uj, the restriction of p; to the fibre %,[F],, denoted

as p; x: Byl Flx — F,is (by definition) simultaneously a homeomorphism between
topological spaces and an isomorphism between vector spaces.
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Definition 2.9 (Constant Local Sections) A constant local section s : U; — %, Fl|u,
of the bundle %,[F] on open set U; € 4 is a local section of %,[F] such that
Pi.x(s(x)) is a constant element of F for all x € U;. We refer to the linear space of all
constant local sections on U; € i as constant twisted local O-forms on U;, denoted as
QYT; B,[F)).

Clearly, a constant local section s € Q?(F; A, F1) is unambiguously determined
by evaluating s at vertex i, or equivalently by reading off the fibre projection image
s; := pi(s(i)). We denote this characterization of s as

pi(s(x) =si, Vx €U, s € QUT; B,[F)). 1)

When we consider x € U; N U; where U; NU; # ¥ (i.e. when (i, j) € E), it
will be convenient to note that the fibre projection p; evaluates s(x) to p;(s(x)) =
pjo pi_l( pi(s(x))) = pjis;. This can be understood as a “change-of-coordinates”
formula for constant local sections.

Let CO(I'; F) := {f: V — F} denote the linear space of F-valued 0-cochains on
graph I, Every element f of CO(T"; F) defines a collection of constant local sections
(f9: U - 7~ (U;) | U; € 4}, one for each U; € { with

fO@) = p [ (f), Vx €U (22)
We thus have the canonical identification

cOr; Fy = [ @) B,0F). (23)
ieV

Of course, the constant local sections { f )} specified by f € CO(I'; F) generally do

not give rise to a global section of the bundle %,[F], unless they “patch together”
seamlessly on every nonempty intersection U; N U, satisfying the condition

pin(f) = fO0) = fP%) = p;i(f), YxeUinU,
ZN fl = Dpix op;l(f]) = pl]f]’ Vx € Ui N U] (24)

The right hand side of (24) is recognized as a solution to the synchronization problem
with prescribed edge potential p. We have thus proved the following lemma.

Lemma 2.10 The constant local sections specified by f € CO(I'; F) define a global
section on B, F] if and only if

fi=pijfj. V. J)€E, (25)

i.e., ifand only if the vertex potential f: V — F is a solution to the F-synchronization
problem over T with respect to the edge potential p € C'(T'; G).
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When condition (25) is satisfied, the resulting global section constructed from con-
stant local sections is special among all global sections of %, [ F] in that its restriction
to each U; has constant image under fibre projection over U;. This type of global
section will be of major interest in the remainder of this section.

Definition 2.11 (Locally Constant Global Section) A global section s: I' — %,[F]
is said to be locally constant if

pi(s(x)) = const. Vx € U;. (26)

The linear space of all locally constant global sections on %, [ F'] will be called locally
constant twisted global O-forms on T, denoted as Qo(r; BolF)).

Naturally, QO(T"; B, F) embeds into CO(T; F) by

QUT; B,[F)) — [ VT B,[F]) = (T F)
iev (27)

s — Slyy, -5 8lu,)

where n = |V/| stands for the total number of vertices in I". The objective of an F-
synchronization problem over I' with respect to p € C!(I"; G) can be interpreted in
this geometric framework as searching for an element of Qo(r; 2%, F]) in the feasible
domain CO(T"; F).

The existence of global sections is crucial information for the structure of a fibre
bundle. For principal bundles %, considered in Sect. 2.1, a single global section dic-
tates the triviality of the bundle. Though the triviality of a principal bundle is equivalent
to its associated vector bundle (see Proposition 2.15), %,[ F] is trivial if and only if it
admits d = dim F global sections st ..., s%thatare linearly independent in the sense
that s;, e, sff on each fibre F, are linearly independent as vectors in F (cf. [114,
Theorem 2.2]). A collection of linearly independent global sections are said to form a
global frame (see e.g. [100, Chap. 5]) for the vector bundle, since they define a basis
(frame) for each fibre. As will be established in Proposition 2.15, the fact that the bun-
dle %,[ F]is flat further reduces its triviality to finding d linearly independent locally
constant global sections, for which linear independence only needs to be checked at
the vertices of I". More precisely, adopting notation s; := p;(s(i)), Vi € V for an
arbitrary section s of %,[F], we define the linear independence of locally constant
global sections of %,[ F] as follows.

Definition 2.12 A collection of kK (1 < k < d = dim F) locally constant global
sections s!, ..., sk € QO(T; B, | F]) are said to be linearly independent if sil, sk

1
are linearly independent as vectors in F at every vertexi € V.

By the embedding (27), any s € Q°(T; 2, F1) can be equivalently encoded into
a vector of dimension nd, where d = dim F and n = |V/| stands for the number
of vertices of T'. In fact, just as for any vertex potential in CO(I"; F), one simply
needs to vertically stack the column vectors {s; = p;s(i) |i € V}, the fibre projection
images of s at each vertex. We shall write [s] for such a vector of length nd that
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encodes s € QO(F; P, F1), and refer to the vector as the representative vector of the
section. The linear independence of locally constant global sections is easily seen to
be equivalent to the linear independence of the representative vectors of length nd, as
the following lemma clarifies.

Lemma 2.13 A collection of k (1 < k < d = dim F) locally constant global sections
st sk are linearly independent if and only if[sl], e, [sk] are linear independent

as vectors of length nd.

Proof Since %,[F]is a flat bundle and the graph I" is assumed connected, the linear
independence of locally constant global sections s', .. ., s* is equivalent to the linear
independence of vectors sl.l, R sf‘ at any vertex i: since p;; € G are all invertible,
vectors sl.l, R s{‘ are linearly independent if and only if S.} = ,ojisl.l, el sf = ,oj,-s;‘
are linearly independent. For definiteness, let us fix i = 1. Write S for the nd-by-k
matrix with [s/] as its Jjth column, S for the d x k matrix with s{ as its jth column,
e=1]1,..., 1]T for the column vector of length d with all entries equal to one, and P
for the nd-by-nd block diagonal matrix with p;; at its jth diagonal block (adopting

the convention p1; = I,x,). The conclusion follows from the matrix identity
S=Pe®S))
and

rank(S) = rank([l, R 1]T) -rank(S;) = rank(S). O

Remark 2.14 Note that the equivalence of two notions of linear independence only
holds if we already know thats!, ..., sk are global sections. For general f 1., f ke
C%(T; F) that are linearly independent as nd-vectors, their corresponding representa-
tivesin [[;cy Q?(F; A, F1) do not necessarily define global sections, nor are they in
general linearly independent as constant local sections on each U;. A simple example
is to consider a graph I" consisting of two vertices V = {vy, vz} and only one edge
connecting them, F = R?, and G is the trivial group consisting of only the 2 x 2
identity matrix: vectors [fl] = (1,0,1, 0)—r and [f2] = (1,0,0, 1)T are linearly
independent as vectors in R* but do not define linearly independent constant local
sections on Uj.

With all essential concepts presented, we are ready to establish our main observation
in this subsection.

Proposition 2.15 Let G be a topological transformation group acting on a (real or
complex) d-dimensional vector space F on the left, I = (V, E) be a connected undi-
rected graph, and p € C'(I'; G) a G-valued edge potential. The following statements
are equivalent:

(i) B, is trivial;

(ii) B, admits a global section;
(iii) B, F] is trivial;

(iv) %,[F]admitsd = dim F linearly independent locally constant global sections.
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Proof The equivalence of (i) and (iii) follows from [140, Thm. 4.3]. The equivalence
(i)<(ii) follows from standard differential geometry, see e.g. [114,140]; similarly
standard is the equivalence between (iii) and the existence of n linearly independent
global sections on %, [ F']. To show the equivalence (iv)<>(iii), it suffices to prove that
a trivial flat vector bundle %8, [ F] admits d linearly independent global sections that
are also locally constant. To see this, recall from Proposition 1.3 and Corollary 2.7
that

By Flis trivial & 2B, is trivial < Hol([p]) is trivial
©3ge Q0T G) st g 'pijgj=eVi.j) € E
&35 e Q)T G) st pij = gigj._l Y(i, j) € E.

Let {e, ..., ey} be abasis for F, and for each k = 1,...,d define s*: I' — Byl F]
as

sK(x) = p; i (giex) Vx € U;.

It is straightforward to verify by definition that s is a well-defined global section and
is locally constant. That s', ..., s¢ are linearly independent as global sections follows
from the fact that p; 1 F — Z,[F], are isomorphisms between vector spaces. 0O

Remark 2.16 The global section in (ii) is also “locally constant” in a sense analogous
to Definition 2.11 but for principal bundles; we do not introduce this definition here
since global sections on principal bundles will not be pursued directly in this work.

Proposition 2.15 points out an alternative approach for determining the synchroniz-
ability of an edge potential p € C'(I'"; G), at least when G is a matrix group GL(F):
it suffices to check the existence of d = dim F' linearly independent locally constant
global sections on the flat associated vector bundle %,[F]. Such existence can be
stated as a cohomological obstruction. We will pursue such a formulation in the next
section. In Sect. 2.2.3 we will utilize the inner product structure on F to reduce the
structure group of a GL(F)-bundle to O(d) or U (d), as commonly seen in synchro-
nization problems [12,13,34]. If the underlying fibre bundle is orientable, the same
procedures further reduce the structure group to SO(d) or SU(d), corresponding to
synchronization problems considered in [137,154].

2.2.2 Twisted One-Forms and De Rham Cohomology

In a smooth category, sections on a fibre bundle can be differentiated by a covariant
derivative. The resulting object is a skew-symmetric “direction-dependent” section on
the same bundle, or equivalently a section of a new fibre bundle which is the tensor
product of the original fibre bundle with the bundle of 1-forms on the base manifold.
We shall generalize this picture to the discrete/combinatorial setting for flat associated
bundles %, [ F] that naturally arise in synchronization problems.
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Recall from discrete Hodge theory [49,53,85,86,101] that discrete O-forms and
1-forms on a graph I' are defined as

Q) :={f:V->K}, Q') :={w: E—>K|wj=—wjVi,Jj) <E},

where K = C or R, which we will assume to be the number field for the vector space
F. Let us define a local version of Q1(I") by

QD) : ={w: Ni = K| wj = —ay; Y, k) € Ni},
where N; :={(j,k) e E| j=iork =i}. (28)

In other words, elements of Qll (I") are restrictions of elements of Q!(I") to U;. By a
partition of unity argument, it is straightforward to identify Q!(I") with

[V, o™ e[[alDof) =ofi= -0 =—aiin}. @9
ieV

Definition 2.17 (Constant Local 1-forms) A constant twisted local 1-form on open set
U; € Y is alocal section of Q?(F; BoF) ® Qll (I"). Equivalently, a constant twisted
local 1-form on U; is amap w: U; x N; — %B,[F] such that:

(i) Forany (j, k) € N;, wji: Ui — %B,[F]is a constant local section on Uj, i.e.,
pi x(wij(x)) = const.;

(ii) Forany x € U; andany U; € Usuchthat U; NU; # 0, w;j(x) = —wj; (x).
We denote the linear space of all constant twisted local 1-forms on U; as

QNI B,[F)).

A similar notion of globally defined twisted 1-forms will also be of interest. In
the discrete setting of synchronization problems, it suffices to consider twisted global
1-forms that are locally constant under fibre projections.

Definition 2.18 (Locally Constant Global 1-forms) A locally constant twisted global
1-form is a section of the tensor product bundle QT BylF]) ® Q). In other
words, a locally constant twisted global 1-form is a map

w:{G, (j. k) i€V, (j.k) € Ni} > Bp[F]

such that:

(i) For any U; € U, w|y, is a constant twisted local 1-form on U;;
(ii) Forany x € Ui NU; # ¥, pi x(wly; (x)) = pijpjx(@|y; (x)).

We denote the linear space of all locally constant twisted global 1-forms on I' as
QUT; B,[F)).
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The definition of Q(I"; P, F1) already characterized the condition under which
a given collection of constant twisted local 1-forms {w® € Ql.l (I'; B, F1)}, one for
each U; € 4, can be patched to form alocally constant twisted global 1-form. Similarly
to (24), it suffices to check the compatibility under “change of coordinates”.

Lemma 2.19 A collection of constant twisted local 1-forms {w(i) € Qll T B,IFD}
defines a locally constant twisted global 1-form if and only if

pi(0 () = pijpjx (0 (), ¥, j)eE. (30)
Since both sides of equality (30) are constants, we shall simplify (30) as
(O o () .
Pz(w,-j)—,oz‘/l?/(w,-j )v V(,j) € E. (3D

A significant difference between Qlr; B, F1)and QT B[ F])is thatalocally
constant twisted global 1-form does not naturally arise from an F-valued 1-cochain
inCYr; F) := {w: E — F | wjj = —wj;}, and these cochains play an essential role

@) (@

in the discrete Hodge theory. For instance, if we set ;" (x) := pf; (wij) =: —wj,.) (x)

for all x € U;, then {0 |i € V} gives rise to a twisted global 1-form if and only if

wij = Pi,x(a)i(;)(x)) = ,Oijpj,x(wff)(x)) = _Pijpj,x(w%)(x))
= —pjjwji, Y({,j)€E,

a condition that is generally not satisfied unless p;; = e € G for all (i, j) € E. This
observation indicates that C' (I"; F) is not a geometric object naturally associated with
the structure of the vector bundle %, [ F], but rather a special case of Ql(r: By F])
when the vector bundle %, [ F'] is trivial. In this case p;; = gig;], v, j)... € E, for
a G-valued vertex potential g: V — G and the “gauge-transformed” constant twisted
local 1-forms { pi_’ ; (giwij) | i € V, (i, j) € E} satisfy the compatibility condition
(30). Exploring the action of the gauge group on twisted forms will be considered in
the future.

With an appropriate notion of twisted 1-forms, we are ready to define the twisted
differential operator on twisted O-forms. This operation is a discrete analog of the
covariant derivatives for smooth fibre bundles, and in the meanwhile, a fibre bundle
analog of the discrete exterior derivative in discrete Hodge theory.

Definition 2.20 (Twisted Differential on Twisted 0-Cochains) For p € CciT; G) and
U; € 4, the p-twisted differential is a linear operator taking any f € CO(I'; F) =
]_[i cv Q?(F; 2B, F) to a collection of n constant twisted local 1-forms, one for each
U,' e

dy: ]_[ QUT; B, F)) — ]"[ QN(T; B,[F])
ieV ieV

fr—= (@ HV, o @ ))
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where each (d, ) € Q!(T; 2,[F1) is defined as

(Ao )i () = pi ) (fi = pij ) = —dp )] (), VUi €44,
VxeUiNU; #0, feQ)T;F). (32)

Though d,, is defined as a linear operator mapping into a collection of constant
twisted local 1-forms, a somewhat surprising fact is that these constant twisted local
1-forms do patch together to form an element of Ql(r; BolF)).

Proposition 2.21 The twisted differential d,, maps C%T; F) into QNT; Bl F).

Proof 1t suffices to check (31) for the collection of constant twisted local 1-forms
{(dpf)(l) [i =1,...,n}. Infact,

pildp ) = fi = pij fi = —pij(fj = pji f1)
= —pijpj ([, P) = pijpj ([, ))) VG, j)eE. O

Since the graph I'" (viewed as a simplicial complex) does not contain any 2-
simplices, d,, is the only differential needed for specifying the p-twisted chain complex

0 —> T F) 2 Q\(r; B, F]) — 0. (33)

The only non-trivial cohomology group in this de Rham-type chain complex is at the
Oth order

HY(T; B,[F)) = kerd,.

Proposition 2.22 kerd, = QU(I'; %,[F]).

Proof Note in the definition (32) that
fekerd, & fi=pijfj, Vi, j)€E.
The conclusion then follows from Lemma 2.10. O

By Proposition 2.15, detecting the synchronizability of p € C!'(I'; G) now reduces
to checking if dimkerd, = dim F holds. Furthermore, in scenarios where this
dimension equality does not hold, dimkerd,, still provides a quantitative measure
for the extent to which synchronizability fails. In this sense, the cohomology group
HB (I'; F) serves as the opposite of a “topological obstruction” to the synchronizability

of p e CHT; G).
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2.2.3 Twisted Hodge Theory and Synchronizability

In the remainder of this section, we will focus on flat associated bundles %, [ F] with
the vector space F equipped with an inner product (-, -)p: F x F — K, where K = C
or R depending on the vector space F'. This inner product on F will be further assumed
with G-invariance, in the sense that

(gx, gy)F =(x,y)F Vx,y€eF, geG.

In the terminology of representation theory, we assume that the representation of G on
F is unitary (cf. [25, Sect. II.1]). This inner product introduces other related concepts
into the geometric framework:

— F is equipped with a G-invariant norm ||x||F = (x, x)F for all x € F, which
further induces an operator norm on G via duality

llgml|
llgll:= sup ——=, VgeG.

mer |ml] '
[lm ]| 70

For simplicity, we will use the same notation for the norm on F and the dual norm
on G.

— Forany g € G, its formal adjoint with respect to the inner product (-, -) r, denoted
as g%, is defined as

(gx,y) = (x,8%y) Vx,y€eF.

Note that ||g*|| = ||g|| forany g € G.

— The twisted 0-cochains C%(I"; F) and locally constant twisted global 1-forms
Ql(r; B, F)) are equipped with inner products and norms induced from the
G-invariant inner product (-, -) , as follows:

(f.8) =) dilfi.gi)r. Vf.geCT;F), (34)
eV
1 i i
W) =230 > wilpi(@). pi(n))p. Vo.n e QT B, .
i€V j:(i,j)eE
(35)
1A= (f, )2, lloll = (@, @), VfeCUT;F), eQ (T B,F)),
(36)

where w;; is the weightonedge (i, j) € Eandd; = Zj:(i,j)eE w;j is the weighted
degree of vertex v;. Note that by the G-invariance of (-, -)  the sum in (35) can be
equivalently written as (see Appendix A for a quick calculation)

(w,m) = Z wij(pi (wf;-))7 Pi (”f?))p' (37
@i,j)eE
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Through local trivializations, an inner product on the vector space F also induces
a bundle metric on %B,[F], i.e., a section of the second symmetric power of the
dual bundle of %,[F] which restricts to each fibre as a symmetric positive definite
quadratic form. As is well known (see e.g. [143, Chap. 7]), a bundle metric can be used
to reduce the structure group of a vector bundle from GL(F') to O(d) or U(d), where
d = dim(F). It suffices to consider global sections of %[ F]for p € Ccl(I"; 0(d)) or
p € CY(T"; U(d)) for many synchronization problems of practical interest [12,13,34],
instead of requiring p € CH(T; GLWd; R)) or pE CY(T"; GL(d; ©)). Other important
types of synchronization problem involving SO(d) and SU(d) can be treated in this
geometric framework as determining global sections of orientable vector bundles (see
e.g. [143, Chap. 7] or [20, Prop. 6.4]). Also note that pi;l = p;“j for edge potentials
in all these special matrix groups. Since the bundle reduction allows us to focus only
on synchronization problems with orthogonal or unitary matrices, without loss of
generality, we will always assume the edge potentials satisfy p;; = Pij I = ,ol?*j for all
(i, j) € E. The same is assumed in [12,13].

The inner product structures on C Or; F)andQN(T; & o[ F]) enable us to define the
p-twisted codifferential 5, : - QNI BolF1) — coT; F), the formal adjoint operator
of the twisted differential d,: CO(F; F) — QNI'; #,[F]) in the chain complex
(33), eventually leading to a twisted Hodge theory for synchronization problems. The
definition of §, is consistent with the discrete divergence operator in discrete Hodge
theory [85,86]:

8, : QUT; B,[F]) — CO(I'; F)

(38)
0 — ((8p9)|U1, e, (5p9)|U,,)
where each (§,0)|y; € is defined by
— 1 i) 4 L.
By, (x) = Dix Z wszt(g,, ) Vx eU;, 0e€Q (I B,[F])
P jii ek

(39)

or equivalently

G0 = (GOl ) = 7= 3 wipi(0)]') Vi€V, 6. QT BLFD.

Jii,)eE

(40)

Proposition 2.23 With respect to the inner products (34) and (35), the twisted codif-
ferential 5, Ql(r; Byl F]) — CUT; F) defined by (39) is the formal adjoint of the
twisted differential d,: CO(T'; F) — QY(T'; 8,[F)) defined by (32).
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Proof Note that for any f € CO(T'; F), 6 € Q!(T'; B,[F)),

(f73p9>=zdi<fu— Z w,,p, > Z Z <_fl7wljpl 9(1))>F

ieV jii,j)eE ieV j:(i,j)eE

= > [(fiowijpi (0))p + (52 win; (057)) ]

(i,j)eE
= 3 (fwipi@D)) e+ D0 (fiwiipi (0))p = @+ ab.
@i,j)eE @i,))eE

We keep the term (I) intact and manipulate the term (II) using w;; = w;; and the
G-invariance of (-, ) p:

M = Y {pipfy wiiriipi (6;]))y
(i,j)eE

3 (o fiowipi(0),

(i,j)eE

W Z (Pufj’wul’l(e(l)))F’

(i,j)eE

where we used p;;p; (0 ( )) = pi (9](2)) (the compatibility condition (31)) at (x), and
the skew-symmetry 0(1) —9(’) at (sx). Re-combining (I) and (II), we conclude that

(f.8:0) =M+ = Y (frowipi @) — D {pij i wispi ()5

(i,j)eE @i,j)eE
= Y {fi—pijfi wiipi(6));
(i,j)eE
= 2= wiilpi(d)i}). pi(6])) = (dof . 6). 0

(i,j)€E
The chain complex (33) is now also equipped with formal adjoints:

0= CcT; F) Q\(I; B,IF) = 1)

3p

Two twisted Hodge Laplacians can be constructed from this chain complex:

AD = §,d, : CO(T; F) — CO(T; F), (42)
ALY = dpsy Q' (T Byl F]) —> Q' (T B[ F). (43)

It is straightforward to see from these definitions that both twisted Laplacians are
positive definite. In view of Hodge theory, it would be of interest to investigate the

harmonic forms in the complex (41), the kernels of Aﬁ,o) and A;,l).
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Lemma 2.24 kerd, = ker A;,O) and ker §, = ker Ag).

Proof Clearly kerd, C ker AE,O). For the reverse inclusion, note that by adjointness
0=(f. AV f)=ld, fI* Vf €ker AD,

which implies d,, f = 0. The equality involving ker Ag) follows from a similar argu-
ment. O

The following decomposition results follow from standard Hodge-theoretic argu-
ments.

Theorem2.25 CO(T; F) = ker AY) @ im§, = kerd, @ ims,, Q!(I'; B,[F]) =
imd, @ ker AY =imd, & kers,,.

Proof We only present the proof for the decomposition of CO(I"; F); the decompo-
sition for Q(I"; F) is similar. First note that both C%(I"; F) and Q'(I"; By F]) are

finite dimensional. The subspace ker d,, and im §,, are orthogonal with respect to the
inner product (34), since if f € kerd, and §,0 € im§,,

(f,8,0) =(dpf,0) =0.

It remains to prove that each f € C(I'; F) can be decomposed into a linear com-

bination of elements in ker A,E)O) and im és. If d,, f = 0, the decomposition is trivial.
Otherwise, consider the following Poisson equation:

AVO =d,f. 44)

We claim that (44) has a solution 6 € Ql(r: PBoF1) aslongasd, f # 0. In fact, by
Fredholm alternative (see e.g. an exposition for the finite dimensional case in [101]
which suffices for our purpose), if d, f ¢ im AS), then d, f € ker Aﬁ)l) = kerd;
however, d,, f L ker §, since

(dof,w) =(f,8p0) =0 Yo €keré,.

This proves that (44) has a solution 6 € Ql(r: Byl F]) for d, f # 0. We can thus
split f € CO(T"; F) into

J=(f =8,0) +5,0,
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in which 6,6 € imd,, and f — 8,0 € kerd,, since

do(f —8p0) =dpf —dp8pt =d, f — A6 =0. o

Remark 2.26 Proposition 2.22 and Theorem 2.25 completely characterized the embed-
ding (27): the orthogonality complement (with respect to the inner product (34)) of
the linear space of solutions to the F-synchronization problem on I with respect to
p e QNI G)is exactly the image of the twisted codifferential (39). In fact, one rec-
ognizes from Co%(T; F) = ker Aﬁ;o) @®imd,, ker AE;O) = kerd,, and H[?(F; BylF]) =

ker d, the well-known Hodge theorem Hg(l"; BoF1) = ker A,(OO).

2.2.4 Graph Connection Laplacian and Cheeger-Type Inequalities for Graph
Frustration

In this section, we connect our geometric framework to the computational aspects
of synchronization algorithms. As pointed out in Sect. 2.2.2, for cases where G =
O(d) or G = U(d), the synchronizability of an edge potential p € C T; G) is
equivalent to whether or not the equality dim ker d,, = d holds. Lemma 2.24 reduces
the synchronizability further to the dimension of ker AE;O). With identification (23),
it can be noticed that AEJO) is exactly the graph connection Laplacian (GCL) in the
literature of synchronization problems, random matrix theory, and manifold learning
(see e.g. [13,58,97,135]). Recall from [13] that the graph connection Laplacian for
graph I and edge potential p € C!(T"; G) is defined as

Ly =Dy — Wi, (45)

where W, € K"*"d ig an n x n block matrix with w; iPij € K94 atits (i, j)th block,
and D € K"*"d js block diagonal with d; ;.4 € K?*? at its (i, i)th block. To see
that A(po) coincides with L, notice that

(. AV =ldpfI1P = > wijllfi — pij fill?
(i,))eEE

1 1
5 2 wiillfi = pij fil = SLATLILSL VS € COTs F).

i,jeVv

Theorem 2.25 translates into this combinatorial setting as a decomposition result for
the matrix L1, as presented below in Proposition 2.27. Wedenoten = |V |andm = |E|
for the graph I' = (V, E).

Proposition 2.27 The graph connection Laplacian Ly € K" admits a decompo-
sition

Ly = [8,1d,], [8,] € K">md [d,] e K"nd, (46)
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where [d,] is an m-by-n block matrix in which the (i, j)th block is given by

Lixa if edge i starts at vertex j,
[dplij = | —wijpk; ifedge i starts at vertex k and ends at vertex j, @7
0 otherwise,

and [8,] is an n-by-m block matrix in which the (i, j)th block is given by

ik . . .
— laxq if edge j starts at vertex i and ends at vertex k,
8ol =1{ di " (48)
0 otherwise.

Note that here each edge (i, j) appears twice in E with opposite orientations.

The Hodge decomposition (46) immediately leads to the following observation,
which reflects the geometric fact that there do not exist more than n = dim F linearly
independent global sections on the vector bundle %, F].

Proposition 2.28 The dimension of the null eigenspace of Ly cannot exceed n, the
dimension of both the column space of [d,] and the row space of [,].

By Lemma 2.13, if there are d linearly independent vectors in the kernel space
of Ly, then they give rise to d locally constant global sections on %,[F] that are
also linearly independent as global sections, which indicates the triviality of the vec-
tor bundle %,[F] and the synchronizability of p € C 1(I'; G). Note that an analogy
of this result for graphs with multiple connected components also holds, though we
assumed I" is connected throughout this paper: a graph with k > 1 connected com-
ponents and a prescribed O (d)-valued edge potential is synchronizable if and only if
the dimension of the null eigenspace of L is kd. This geometric picture is consistent
with the main spectral relaxation algorithm [13, Algorithm 2.5] when the edge poten-
tial is synchronizable. Basically, the spectral relaxation procedure works as follows:
first, extract d eigenvectors x!, ..., x? corresponding to the smallest d eigenvalues
of L;; second, form the nd x d matrix X = [x!,..., x9] and split it vertically into
n blocks X1, ..., X, of equal size d x d; finally, find the closest orthogonal matrix
O; to each X; by polar decomposition, and construct the desired synchronizing vertex
potential f € CO%T'; O(d)) by setting f; = O;. Since ker AE)O) = d for any syn-
chronizable edge potentialp, the d eigenvectors x!, ..., x4 of Ly all lie in the null
eigenspace of L, which provide exactly the d linearly independent global sections
needed to trivialize the vector bundle; all that remains for obtaining a desired synchro-
nizing vertex potential is to rescale the columns of each block X; € K?*¢ to achieve
orthonormality, which is exactly what is done in the polar decomposition step when
p is synchronizable. The twisted cohomology framework developed in this section
suggests the following improvements when applying the spectral relaxation algorithm
for determining synchronizability of a given edge potential:

(1) Instead of checking dim ker AE,O), one can simply check dim ker d,, or dimker 6,
(which gives dimimd,). Both [d,] and [§,] matrices are much smaller in size
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compared with L, and the dimension can be determined by QR decomposition
rather than the more expensive eigen-decomposition;

(2) Instead of performing polar decomposition for each d x d block X;, which
involves the relatively more expensive SVD, it suffices to invoke a Gram—Schmidt
orthonormalization. If synchronizability of p is confirmed by the dimension test
in a previous step, the Gram—Schmidt procedure can be performed for the entire
matrix X € K"?*4 in one pass (with a minor modification of keeping the columns
to have norm n instead of 1), as opposed to being carried out for each individual
block X i

Remark 2.29 The Hodge decomposition (46) also suggests an alternative approach to
obtaining 7 linearly independent locally constant global sections on %,[F]: instead
of directly solving for the null eigenspace of L, we can look for the orthogonal
complement of im[§,]. Note, however, that the domain of [§,] should not be taken
as the entire K9, since 8, is defined on Ql (I'; ,[F1), in which elements satisfy
the compatibility condition (31). Constructing such a basis matrix B € K”4*™"¢ and
computing the orthogonal complement of the column space of [§,]B turns out not to
be much simpler than finding the orthogonal complement of L (i.e. finding the null
eigenspace of L directly).

In the more general setting where the edge potential p is not assumed synchroniz-
able, the geometric picture becomes much more involved. Of central importance to the
relaxation algorithms and Cheeger inequalities in [13] is to minimize the frustration
of a graph I with respect to a prescribed group potential:

v(l) = inf v(g)
geCO(I;0(d))
1 1 2
= in —_— w;illgi — piigillsg, where vol(I') = d;.
ot dV°1<F>,~,Z€V iillgi = pijgjlE (r) ZV
(49)

As shown in (the proof of) Proposition 2.15, an O(d)-valued edge potential § €
ClT; 0()) is synchronizable if and only if there exists g € C 9(I'; O(d)) such that
&ij = & gj_1 for all (i, j) € E. The frustration v(I") defined in (49) can thus be
rewritten as

1 1 . » )
V() = >~ inf wiilleie™l — o::
i,jev
T inf Y wijllg = il
=55 n w;i & — oiill3
2d vol(T") £€CLeT:0W)) ~, ijlI§ij = Pijllp

where we define

Ciyne(T: 0()) = {£ € C'(I'; O(d)) | & synchronizable)
= {£€ € C!(I"; O(d)) | Holg (I") is trivial}.
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Therefore, in the fibre bundle framework, a synchronization problem asks for a syn-
chronizable edge potential that is “as close as possible” to a prescribed edge potential,
or geometrically speaking, for a trivial flat bundle “as close as possible” to a given flat
bundle. One approach, from the point of view of Proposition 2.15, is to find d linearly
independent cochains in CO(I"; R¥) that are “as close as possible” to being a global
frame of %, [R?] in the sense of minimizing the frustration of a S*~'-valued cochain

1
oAV fy 5 ey wiillfi = o f P

n(f) =

IFz Yievdill fill?
1 T 0. qd—1
_—ZVOI(F)[f] Li[f], YfeC IS, Ifll #0,

which equals zero if and only if f defines a global section on %, [R?] (the constraint
I f1I # 0 is also indispensable from a geometric point of view, as any vector bundle
trivially admits the constant zero global section). This provides a geometric interpreta-
tion of the spectral relaxation algorithm in [13]. From a perturbation point of view, the
magnitudes of the smallest n eigenvalues of A,(OO) measure the deviation from degener-
acy of the d-dimensional eigenspace of lowest frequencies, and can thus be interpreted
as the extent to which %, [R?] deviates from admitting d linearly independent global
sections and being a trivial bundle. The Cheeger-type inequality established in [13]
quantitatively confirms this geometric intuition relating v(I") to the magnitude of d
smallest eigenvalues of Dl_lLl (the random walk version of the graph connection
Laplacian):

3 d

Y m(Dy'Ly), (50)

k=1

d

1 -1

- M(Dy L) =v) <
dk; k(D L) = v( )_kz(Lo)

where C > 0 is a constant, A2(Lg) is the spectral gap of I'" associated with the
graph Laplacian Lg, and Ak(DflLl) is the kth smallest eigenvalue of Dl_lLl. (The
actual version stated in [13] is for the smallest d eigenvalues of the normalized graph
connection Laplacian Dfl/leDf1/2, but note that D;l/leDf]/z has the same
eigenvalues as Dfl Ly).

Classical Cheeger inequalities [3,35,39] relate isoperimetric constants or cuts on
graphs and manifolds to the spectral gap of a graph Laplacian or Laplace—Beltrami
operator. There have been Cheeger-type inequalities for simplicial complexes with the
objective of understanding high-dimensional generalization of expander graphs [116,
120,121,139]. These results are all concerned with partitioning graphs, manifolds,
or simplicial complexes. The Cheeger-type inequality in (50) differs from standard
Cheeger inequalities in that the cochains are group- or vector-valued. In addition, the
frustration v(I") is not related with any optimalily for graph partitioning—in the sense
of Proposition 2.15, v(I") measures the triviality of a fibre bundle as a whole. The
algorithm we will propose in Sect. 3 is an attempt to address the graph cut problem
based on the synchronizability of the partitions resulted.
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3 Learning Group Actions by Synchronization

In this section we specify an algorithm for learning group actions from observations
based on synchronization. We also use simulations to provide some insight towards
the performance of the algorithm.

3.1 Motivation and General Formulation

We first state some basic terminology from the general theory of group actions that
will be used extensively. If G is a group and X is a set, a left group action of G on X
isamap¢: G x X - X: (g,x) — ¢(g, x) such that

¢(e,x) = x, Vx € X if e is the identity element of G
and

¢(g, o(h,x)) =¢(gh,x), VxeX, Vg,hegG.

To simplify notation, we will abbreviate ¢ (g, x) as g.x. The orbit of any element
x € X under the action of G is defined as the set G.x := {g.x|g € G}. If we
introduce an equivalence relation on X by setting

x~y <& x=g.yforsomeg e G,

then clearly x ~ y if and only if G.x = G.y. The set X is naturally partitioned
into the disjoint unions of orbits, and each orbit Y is an invariant subset of X under
the action of G in the sense that G.Y C Y. If for any pair of distinct elements x, y
of X there exists g € G such that g.x = y, we say that the action of G on X is
transitive. Note that the total space X is an invariant subset in its own right, and the
action of G on each orbit is obviously transitive. If the set X is finite and there exists
a constant time procedure to verify whether any two elements are equivalent under
transformations, the problem of partitioning X into disjoint subsets of orbits can be
solved in polynomial time complexity with respect to the size of X.

In practice we are often interested in classification or clustering tasks which can
be framed as follows: given a dataset X = {xi, ..., x,} of n objects, find a corre-
spondence or transformation between each pair of distinct objects. We will see these
pairwise correspondences often play the role of nuisance variables and one needs to
“quotient out” the influence of these variables in downstream analysis (e.g. for most
practical applications of synchronization problems [10,137,146] and alignment prob-
lems in statistical shape analysis [24]). The intuition as to why some of these pairwise
correspondences are nuisance variables one can often with greater fidelity transform
one object into another via intermediary transformations to other objects rather than
a direct transformation between objects. Sometimes, for instance in the analysis of
a collection of shapes in computer graphics [36,82,84,91,108,118] and group-wise
registration in automated geometric morphometrics [2,23,94,102,103], the pairwise
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transformations contain crucial information and are important on their own right.
A common challenge in both of the above problems is that the fidelity of pairwise
comparisons can be extremely variable over the data. We illustrate this challenge
using the example of computing continuous Procrustes distances between disk-type
shapes [2] in automated geometric morphometrics. The core of the algorithm is an
efficient strategy for searching the Mobius transformation group of the unit disk to
obtain a diffeomorphism between the shapes that minimizes an energy functional. It
has been observed that for similar shapes (in the sense of having a small pairwise
distance), the resulting diffeomorphism is often of high quality and can reflect the
correspondence of biological traits. If the shape pair is highly dissimilar, the diffeomor-
phism tends to suffer from various structural errors (see e.g. [69] and [65, Chap. 5]).
Similar issues have also been observed in the field of non-rigid shape registration
in geometric processing—successful feature extraction and matching techniques for
near-isometric shapes abound [8,27,95,99,126,142], whereas registering shape pairs
with large deformation is still considered a difficult open problem [1,26,96]. Recently,
a series of works [36,82,84,91,108,118] proposed to jointly compute all pairwise cor-
respondences within a collection subject to “consistency constraints” that require the
composition of resulted maps along any cycle within the collection be approximately
the identity map. The idea in this approach is that pairwise correspondences between
dissimilar shapes are implicitly approximated by concatenating many correspondences
between similar shapes with the individual correpondences have high fidelity, thus
avoiding directly solving non-convex optimization problems with large numbers of
local minimizers. Similar ideas can also be found in recent progress in automated
geometric morphometrics where a Minimum Spanning Tree (MST) provides the con-
catenating of correspondences [24,69,151]. It has been observed by morphologists that
cycle-consistent constraints are more often satisfied for a collection of samples within
a species versus samples across a variety of species, suggesting that inconsistency may
be used for species clustering.

Motivated by the above algorithms and approaches, we propose to study the fol-
lowing general problem of Learning Group Actions (LGA):

Problem 3.1 (Learning Group Actions) Given a group G acting on a set X, simul-
taneously learn a new action of G on X and a partition of X into disjoint subsets
X1, ..., Xk, such that the new action is as close as possible to the given action and
cycle-consistent on each X; (1 <i < K).

The LGA problem can also be understood as a variant of the classical clustering prob-
lem, in which the coarse-graining is based on the cycle-consistency of group actions
rather than pairwise similarity or spatial configuration of elements in the dataset. A
solution of the LGA problem provides not only a partition of the input dataset but
also cycle-consistent group actions within each cluster. It is useful to notice that all
group elements implemented as pairwise actions within the same partition X; form a
subgroup of G; the LGA problem can thus also be considered as “learning” subgroups
of a prescribed “ambient group” that optimally fit a given dataset X . In other words, by
solving an LGA problem we identify the “correct” transformation group for a dataset,
which in most practical situations are much more tightly adapted to the given data
than the potentially massive group of all possible transformations G.
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Example 3.2 1f the set X is a vector space and we seek a direct sum decomposition
X = @lkz | X; instead of a partition X = UlK: 1 Xi, the LGA problem reduces to the
search for all irreducible G-subrepresentations of X.

Example 3.3 Consider a point set X = {xg, ..., x,} equipped with a labeling map
S: X — {Z£1]} that assigns to each x; either value +1 or —1. We say x; has positive
spin if S(x;) = 1 and has negative spin if S(x;) = —1. Let G = {£1} act on X
transitively as (g;, x;) = xj, gji = S(x;)S(x;). Suppose the spin of each point in
X (i.e. the label map S) is unknown, but we have full access to the group actions {g;;},
we can reconstruct S—up to flipping labels + 1—by spectral clustering the dataset
X, viewed as vertices of a complete graph I' with weight w;; = g;; on the edge
connecting x; and x ;. Under circumstances where some group actions g j; are subject to
a sign-flip error (noisy measurements), or/and the graph I is not complete (incomplete
measurements), spectral or semi-definite programming relaxation techniques can still
be used to recover S up to permuting labels £1 (see e.g. [34]). With X and (potentially
noisy and incomplete) {g ; } as input, this spectral clustering example can be considered
as an instance of LGA: the output consists of a partition of X into positive/negative spin
subsets, as well as the trivial subgroup {41} of G = {%1} acting in a cycle-consistent
manner on both partitions.

Example 3.3 provides further motivation to consider a version of LGA in the context
of synchronization problems. We are given a graph I' = (V, E) and the data X, where
the vertex set V is identified with observations in X and the edges in E representing
pairwise relations between elements of X. It is natural to consider a partition of the
graph T in this setup decomposition of I' into connected subgraphs such that the
vertices of the subgraphs form a partition of the set of vertices of I.

Problem 3.4 (Learning Group Actions by Synchronization) Let ' = (V, E) be an
undirected weighted graph, G a topological group, and p € C!'(I"; G) a given edge
potential on I'. Furthermore, assume the vertex set V is equipped with a cost function
Costg: G x G — [0, 00). Denote Z for all partitions of I" into K nonempty
connected subgroups (K < n) and

v(S$) = inf > wpCostg(fj. pjxfi), vol(S) = > d;, 1<i<K.
feCOU6) jes:

Solve the optimization problem

maxi<j<k V(S;)

min _ (51)
{S1,....Sk}e Zx minj<;<k vol(S;)
and output an optimal partition {Si, ..., S} together with the minimizing f €

c(r; G).

In the following, we shall refer to Problem 3.4 as Learning Group Actions by Syn-
chronization (LGAS). When G = O(d) or U (d) and Costg is the squared Frobenius
norm on d X d matrices, v(S;) is clearly the frustration (49) of the subgraph of I with
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vertices in S;, up to a multiplicative constant depending only on I"' and dimension d.
The minimizing vertex potential defines a synchronizable edge potential on the entire
graph I', thus also gives rise to a cycle-consistent action on each partition. Note that the
objective function (51) does not account for the discrepancy between the realized syn-
chronizable edge potential and the original p on edges across partitions—intuitively,
solving Problem 3.4 amounts to forming partitions by economically “dropping out”
appropriate edges in I to minimize the total frustration.

3.2 SynCut: A Heuristic Algorithm for Learning Group Actions by Synchronization

In this subsection, we will investigate Problem 3.4 (LGAS) in the context of O(d)-
synchronization problems, focusing on the simpler setting where K = 2. In this case,
(51) simplifies to

max{v(S), v(S°)}
min .
scv min{vol(S), vol(S¢)}

Note that

max{v(S), v(§)} < v(S) +v(59) < 2max{v(S), v(S)},
we can thus consider—drawing an analogy with the standard approach of study-
ing Cheeger numbers through normalized cuts—the following optimization problem

closely related with (51):

€ = grlcigé(S)

in [1(S) + v(S)](—— + —— 2
= min v(S) + v )]<v01(5) + vol(SC))'
Recall from (49) that &r further simplifies into
. . I 1 vol(T")
— f _ Meoi — piioill® .
=8 ot 0wy 2d vol(T) ,»]Zev R T I
i.))¢0S
(i, )¢ (53)
n it 1 > wil I3
= min in ——— wijllgi — pij&illE,
SCV gecO(T;0(d)) 2d vol(S)vol(S¢) o il = Pij&jlF
(i,))¢oS

where
08 :={(u,v) e EluecS,veSoruecsS,ves).
In other words, the goal of solving the optimization problem (53) is to lower the total

frustration of the graph I" by dropping out a minimum set of edges under the constraint
that the residual graph consists of two connected components; this is equivalent to
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say that we seek a most economic graph cut in terms of reducing total frustration.
To simplify statements, we shall refer to ||g; — pijg; ||12: as the frustration on edge
(i, j) € E of vertex potential g with respect to the edge potential p, and call the
collection of frustrations on all edges the edge-wise frustrations. The sum of all edge-
wise frustrations will be referred to as the total frustration.

Formulation (53) motivates a greedy algorithm that alternates between minimizing
graph cuts and vertex potentials. We shall refer to this algorithm as Synchronization
Cut, or SynCut for short; see Algorithm 1. We describe the main steps in SynCut

below:

Step 1

Step 2

Step 3

Step 4

Step 5

Initialization: Input data include the weighted graph I' = (V, E, w), edge
potential p € C!(I"; G), and parameters required for the spectral clustering
subroutine plus termination conditions for the main loop. Initialize iteration
counter ¢ = 0, and dynamic graph weights € to be the input graph weights w;
Global Synchronization: Synchronize the edge potential p on the entire graph
I with respect to edge weights. Any synchronization algorithm can be used in
this step, e.g. spectral relaxation [13,34] or SDP relaxation [10,12,34,117,133].
Note that in this step the synchronization is performed on I' with dynamic
weights e instead of the original weights w. Denote f® as the edge potential
on I at the edge potential at the ¢th iteration;

Spectral Clustering (First Pass): Update dynamic weights € based on the frus-
tration of £ on each edge by

1
€ij = Wi exp ( - I - pijf}”n%),

where o > (is the average of all non-zero edge-wise frustrations then partition
the vertex set V of graph I' into K clusters Sy, . .., Sk using spectral clustering
based on the updated dynamic weights €. The goal is to cut the graph I" into
more synchronizable clusters; edges causing large frustration are assigned
relatively smaller weights €;; to increase the chance of being cut. To simplify
notation, we will alsouse Sy (1 < £ < K) to denote the subgraph of I" spanned
by the vertices in Sy;

Local Synchronization: Synchronize the edge potential p within each partition
Se, 1 < € < K. If we denote pls,, €|s, for the restrictions of p, € to Sg,
respectively, then this step solves the synchronization problem on weighted
graph (S¢, €|s,) for prescribed edge potential p|s,. Again, any synchronization
algorithm can be used in this step. Denote g(© for the resulting vertex potential
on Sy;

Collage: After obtaining g for each local synchronization on Sy, we make a
“collage” from these local solutions to form a global vertex potential defined on
the entire graph I'. Since each g'® is obtained from synchronizing within Sy,
the collected local solutions { g(z)}fz | generally incur large incompatibility
(frustration) on edges across partitions. Our strategy is to find K elements
hi,...,hg € G, where each hy acts on g(e) by gb(,e) — g,ﬂe)hg, Yu € Sy, so
that the fotal cross-partition frustration
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C(h1. ... hx | {Se}i=e=k. (8} 1=e=k)

= Y > walehy — pug@hglE (54)
I<p#q<K (u,v)eE
UES),vES,

is minimized. Note that this is essentially synchronizing an edge potential

Z wuv(gf,” ))_1 Puvg?  if partitions S, S, are connected,
qu — (u,v)eE (55)

UeS),veS,

0 otherwise

on a reduced complete graph T'x consisting of K vertices where each vertex
represents one of the K partitions Sy, ..., Sk. It thus simply requires calling
the synchronization routine again to obtain 1, .. ., hg, but this time the scale
of the synchronization problem is often much smaller than the previous global
and local synchronization steps. Also note that for the binary cut case K = 2
and G = O(d) this collage step is even simpler: it suffices to perform a single
SVD on the d x d matrix

Z wuv(glgp))_lpuvgl()q) =Uzv'

(u,v)eE
uesSi,vesy

andseth; = UV, hy = Ijxa.
Step 6 Spectral Clustering (Second Pass): Update dynamic weights € based on the
frustration of f* on each edge by

1
€ij = Wjj eXp ( - ;llfi* - Pijffll%),

where o > (is the average of all non-zero edge-wise frustrations then partition
I into K clusters S1, . .., Sk using spectral clustering for a second time, based
on the updated dynamic weights €.

Step 7 Repeat Step 2—Step 6 Until Convergence. The termination condition can be
specified either by a maximum number of iterations or monitoring the change
of the quantity

K K |
E({S1,..., 8k} = ( V(Sz)> ( —) . (56)
; 1; vol(Sk)

At the end of the procedure, return the partitions {Si, ..., Sk} and the final
edge potential f* from the most recent updates. The cycle-consistent edge
potential on partition S, is encoded in the restriction of f* to Sy.
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Algorithm 1 SYNCHRONIZATION CUT: Learning Group Actions by Synchronization

1: procedure SYNCUT(T', p, K)> weighted graph I" = (V, E, w), p € c! (T'; G), number of partitions K
20 t=0

3 e=w

4:  while not converge do

5: F© e CO(T; G) < SYNCHRONIZE(T, p, €)

6 o < average non-zero edge-wise frustrations of f ®

7 for (i, j) € E do | > calculate weights € on graph I" for spectral clustering
8 €ij < wjjexp ( - [ f,-(t) - pijfj(t) ||§>

9: end for

10: {S1,..., Sk} < SPECTRALCLUSTERING(T", €)

11: forte=1,..., K do

12: 8® € QO(Sp: G) < SYNCHRONIZE(Sy. pls, . €ls5,)

13: end for '

14 f*er:6) « Couace((S . (g 01K )

15: o < average non-zero edge-wise frustrations of f*

16: for (i, j) € E do . > update weights € on graph I" for next iteration
17: ey <wizexp (=~ £ = o £ 1)

18: end for

19: {S1,..., Sk} < SPECTRALCLUSTERING(T', €)

20: t<—t+1

21:  end while

22:  return {Sq,..., Skl f* > f* defines a cycle-consistent edge potential on each partition

23: end procedure

3.3 Results on Simulated Random Synchronization Networks

In this subsection, we use simulations to provide some intuition for the behavior of
SynCut under the setting K = 2 (two partitions). We first specify a random procedure
to simulate input data—a connected random graph with a prescribed edge potential—
for synchronization problems. In addition, the random graph generation procedure
will be controlled by a parameter that allows us to adjust the level of obstruction to the
synchronizability of the prescribed edge potential over the generated graph. We then
specify the metrics used for performance measure. We conclude by demonstrating
that the partition generated from SynCut recovers the two synchronizable connected
components with high accuracy and within relatively few numbers of iterations. For
the simplicity of statements, we refer to each pair of generated graph and edge potential
an instance of a random synchronization network.

3.3.1 Random Synchronization Network Simulation

We first specify the procedure to generate the random graphs. Our intention is to
sample random graphs with sufficiently variable spectral gaps, based on the intuition
that a large spectral gap of the underlying graph results in greater obstruction to the
synchronizability of the edge potential constructed by the procedures that will soon
be described in this subsection. We first generate two partitions S, S» with an equal
number of vertices. Each partition is a connected component built from a vertex degree
sequence of random integers uniformly distributed in an interval (say 5 to 8), adapting
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100 150 200 250
number of inter-component links

Fig.1 A scatter plot displaying the correlation between the number of inter-component links and the spectral
gap in our random graph model, with N = 100 vertices and the (integer) number of inter-component links
uniformly distributed between 100 and 250

an algorithm first proposed in [17]; when the interval is a single integer, the connected
component is a regular graph. Random edges are than added to link the two partitions
S1, S2. The number of inter-component random edges positively correlates with the
spectral gap, as shown in Fig. 1, suggesting that this number can be used as a parameter
to adjust the level of obstruction to cutting the graph into two connected components
S 1 and 52.

A subtlety in this random network generation procedure is that a uniform distribu-
tion on the number of inter-component links does not induce a uniform distribution
on the spectral gaps of the generated random graphs, due to concentration effects.
A precise characterization of the distribution of spectral gaps in our random graph
model is interesting on its own right but beyond the scope of this paper. We refer
interested readers to the existing literature on the spectral gaps of random graphs such
as [40,44,81]. In practice, we simply use a large number of random trials to gener-
ate sufficiently many sample graphs with spectral gaps within desirable ranges; see
Fig. 2a.

After drawing an instance of the random graph, we randomly construct an edge
potential that is synchronizable within S and S>, but not necessarily synchronizable
on the inter-component links. The procedure to generate the random edge potentials
proceeds as follows:

(1) Randomly generate a vertex potential g € CO(I'; G) for the entire graph I';

(2) Set the value of p on edge (i, j) according to

e ifbothi, j € Sy ori,j €Sy,
Pij = a random matrix in O(d) otherwise.

@ Springer



Discrete & Computational Geometry

(a) Spectral Gaps (b) SynCut Error Ratios (¢) NCut Error Ratios (d) Number of
T I T T T T 10000 T T T T 5000 T T

1000 T T 10000,

03 04 05 00 0.1

05 (e) Error Ratios vs. Spectral Gaps
- T L T L n ] e o sr L R
0.45 + o +; %o

e
=

0.35

Error Ratio
o3 e
[

=3
S o
= G

0.3 . . 045
Spectral Gap

Fig.2 (a)Histogram of the spectral gap of the 10, 000 random graphs drawn from our model. (b) Histogram
of the error ratios of the SynCut clustering results. (¢) Histogram of the error ratios of the baseline NCut
clustering results. (d) Histogram of the number of iterations for SynCut. (e) Scatter plots of the error ratios
of SynCut and NCut versus spectral gap

The vertex potential g € C°(I'; G) will no longer attain the minimum frustration for
the entire graph with respect to the prescribed edge potential p, due to the edges added
between the partitions that are much less likely synchronizable.

We consider each run of SynCut as successful if both output partitions are synchro-
nizable connected components, i.e., if SynCut recovers the original partitions Sy, S>.
The performance of SynCut is measured using the error ratio computed by dividing
the number of erroneously clustered vertices by the total number of vertices. If SynCut
successfully recovers Sp, S», this error ratio is 0; if the output partition is close to a
random guess, or if the algorithm fails to separate the vertices into distinct clusters, the
error ratio is 0.5. The error ratios of the partitions output from SynCut are then com-
pared with a baseline graph cutting algorithm using normalized graph cut (NCut) that
does not utilize any information in the prescribed edge potential; see e.g. [128,152].
We refer interested readers to [9] for an initial attempt at analyzing this phenomenon
for the scenario where the group G is a symmetric group (group of permutations) and
the underlying graph is generated from a stochastic block model.

3.3.2 Simulation Results

In this simulation study, we set the number of vertices in each of the two synchronizable
components to N = 100, and the entries of the vertex degree sequence of random
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Fig.3 (a) A random graph consisting of two synchronizable connected components, each with 100 vertices
and 250 edges (in blue), and 100 non-synchronizable inter-component edges (in red). The edge potential
takes value in the orthogonal group O(5). All vertex degrees in each synchronizable component are set
to 5. (b) Edge-wise frustration for the vertex potential g used to generate the prescribed edge potential
p. As expected, frustration is small within each connected component but large between components. (c)
Edge-wise frustration for the vertex potential obtained from spectral relaxation [13]. The total frustration is
lower than that in the top right figure, but the inter-component edges carries relatively lower frustration since
the relaxation procedure tends to “spread” the non-synchronizability across the entire graph. (d) Edge-wise
frustration for the vertex potential obtained from SyncCut. The total frustration is higher than that for the
spectral relaxation solution, but the distribution of frustrations on the edges is closer to that of vertex g and
can thus be used to recover the synchronizable connected components

integers are independently uniformly distributed between 4 and 8. The number of inter-
component links between the two synchronizable components is drawn uniformly
between 100 and 250. The edge potentials are valued in the orthogonal group O (d)
with d = 5. We terminate SynCut either after 10 iterations or if the change in the
value of the objective function & [see (56)] between consecutive iterations falls below
a preset tolerance of 10~8. We plot in Fig. 2a the spectral gaps of 10, 000 realizations
of our random network model. In Fig. 2b, ¢ we observed that the error ratios in these
10, 000 runs of SynCut tend to be much smaller than NCut, suggesting that SynCut
outputs more accurate partitions with respect to synchronizability. In Fig. 2e, we again
see that SynCut outperforms NCut and the amount of improvement increases with the
magnitude of the spectral gap. Fig. 2d shows that SynCut converges quickly.

We now focus on a particular instance of a random synchronization network to
better understand SynCut in comparison with the spectral relaxation algorithm pro-
posedin [13]. Each synchronizable component in the random synchronization network
shown in Fig. 3a is a regular graph containing N = 100 vertices and 250 edges, gen-
erated with a constant vertex degree sequence of 5. We color the edges within and
between synchronizable components in blue and red, respectively. In Fig. 3b we plot
the edge-wise frustration for the vertex potential g used to generate the edge potential
p prescribed to the network. As expected, the frustration is zero within each synchro-
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nizable component but large on the edges across components. Figure 3¢, d show the
edge-wise frustrations for two vertex potentials obtained from the spectral relaxation
algorithm [13] and SynCut, respectively. Though the total frustration is larger for Syn-
Cut than spectral relaxation, the SynCut solution concentrates most of the frustration
on the non-synchronizable inter-component edges, with a distribution of edge-wise
frustrations closer to the distribution for the initial vertex potential g. This suggests
that applying a spectral graph cut algorithm using the edge-wise frustration of the Syn-
Cut solution as a dissimilarity measure is advantageous, as the distribution in Fig. 3d
identifies the obstructions to synchronizability in the synchronization network more
accurately.

4 Application to Automated Geometric Morphometrics

In this section we formulate a problem in automated geometric morphometrics in terms
of LGAS, then apply the SynCut algorithm to provide a solution. In Sect. 4.1 we provide
some background in geometric morphometrics and its relation to synchronization
problems. In Sect. 4.2 we apply SynCut to a collection of second mandibular molars
of prosimian primates and non-primate close relatives. The morphological hypothesis
is that the geometric traits of second mandibular molars cluster into 3 dietary regimens:
folivorous (herbivores that eat leaves), frugivorous (herbivores or omnivores that prefer
fruit), and insectivorous (a carnivore that eats insects). We will show the SynCut result,
which is based on the synchronizability of pairwise correspondences, and compare it
with a distance-based clustering result using diffusion maps [41].

4.1 Geometric Morphometrics and Synchronization

The classic tool in geometric morphometrics is Procrustes analysis. The basic assump-
tion underlying this analysis framework is that most of the geometric information on
each shape can be efficiently encoded in a set of landmark points carefully picked to
highlight the morphometrical phenotypes (variation in the geometric shape of an organ-
ism). The Procrustes distance between two shapes is the average Euclidean distance
between corresponding landmarks, after applying a rigid motion (rotations, reflections,
translations, and their compositions) to optimally align the two sets of landmarks. If
all the shapes are marked with an equal number of landmarks but the landmark cor-
respondence is not known a priori, a combinatorial search can be performed over
all permutations of one-to-one landmark correspondences, and the minimum average
Euclidean distance between corresponding landmarks can be taken as a dissimilar
measure between the two shapes. Comparing a pair of shapes in this framework thus
yields abundant pairwise information, including a scalar dissimilarity score, a rigid
motion, and a permutation matrix encoding the one-to-one landmark correspondence.

In automated geometric morphometrics, landmark points are not used to represent
the shapes, and algorithms search for an “optimal” transformation between a pair of
whole shapes directly by minimizing energy functionals over a set of admissible trans-
formations. Depending on the specific class of transformations and energy functional,
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Fig. 4 The meshes of four lemur molars from an anatomical surface dataset first published in [23]. The
colored dots on the molars are landmark points where identical colors indicate corresponding landmarks

the pairwise comparisons produce different types of correspondences between sur-
faces, such as conformal/quasiconformal transformations, isometries, area-preserving
diffeomorphisms, or even transport-plans between surface area measures in a Wasser-
stein framework. Regardless of the type of admissible transformations, the algorithm
can output a rigid motion for the optimal alignment between two shapes, as well as a
dissimilarity or similarity score for such an alignment. See Fig. 4 for an example of
representing a collection of shapes using landmarks versus triangular meshes.

When the analysis is extended from comparing a single pair to a large collection of
shapes, a crucial premise for downstream statistical analysis (e.g. General Procrustes
Analysis (GPA) [55,74,75]) is that the pairwise correspondences be cycle-consistent,
meaning that propagating any landmark on any shape by consecutive correspondences
along a close cycle of shapes should land exactly at the original landmark. Traditional
landmark-based Procrustes analysis begins with consistently picking an equal number
of landmarks on each shape, resulting in a large amount of pairwise correspondence
relations that are cycle-consistent by construction. This is, however, not the situation
with automated geometric morphometrics, where the correspondence transformations
produced by automated algorithms are rarely cycle-consistent, even when one local-
izes the transformations within relatively “stable” regions where landmarks are affixed
with the knowledge of an experienced geometric morphometrician. The necessity of
cycle-consistent correspondences links automated geometric morphometrics to syn-
chronization problems. An automated geometric morphometric algorithm will output
for each pair of shapes a triplet consisting of a dissimilarity score, a rigid motion, and
a pairwise transformation. We can use the dissimilarity scores to define a weighted
graph I' that captures the similarities within the collection, both qualitatively and
quantitatively, by adjusting the number of nearest neighbors of each vertex and the
weights on each edge. The rigid motions and pairwise transformations define two
edge potentials on I, taking values in different groups. We list below some interesting
synchronization problems arising from this formulation:

Three-Dimensional Euclidean Group. The rigid motions R;; between shapes S; and
S; that share an edge in I' define an edge potential R € CY(I'; E(3)), where E(3)
is the three-dimensional Euclidean group. Solving an E(3)-synchronization problem
over I' with respect to R results in a globally consistent alignment for a collection
of shapes, which is often crucial for initializing geometric morphometrical analysis
algorithms such as Dirichlet Normal Energy [31], Orientation Patch Analysis [60],
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and Relief Index [22]. Algorithms that automatically align a collection of anatomical
shapes in a globally consistent manner can also be viewed as primitive approaches for
solving E(3)-synchronization problems; see e.g. [24,73,119,123].

Orthogonal Group and Orientability Detection. If the shapes are preprocessed to
superimpose the centers of mass at the same point, the translation component of each
R;;j output from a pairwise landmark-based Procrustes analysis vanishes.? This reduces
the global alignment problem to standard synchronization problems over the compact
Lie group O(3). Spectral and semidefinite programming (SDP) relaxation methods
can then be applied directly to solve the global alignment problem. If we consider the
edge potential p € C!(I'"; Z,) defined by p; j = det R;;, aZp-synchronization solution
can be used to either partition the dataset into “left-handed” and “right-handed” subsets
or conclude that such an orientation-based partition does not exist. We stated a similar
situation in Example 3.3; other examples in this setting can be found in applications
of Orientable Diffusion Maps [134].

Automorphism Groups. Certain classes of transformations C;; between each pair of
shapes S;, S; give rise to an edge potential on the graph I' valued in an automorphism
group of a canonical domain. For instance, algorithms such as Mobius Voting and the
Continuous Procrustes Distance [2] between disk-type surfaces rely on the computa-
tion of conformal maps between two shapes, based on uniformization parametrization
techniques [4,122] that map each surface conformally to a canonical unit disk on
the plane. By intertwining C;; with the parametrizations of the source and the target
shape, the correspondence between S;and S; can be equivalently considered as an
element of the conformal automorphism group Aut(D) of the planar unit disk D. The
group Aut(D) is isomorphic to the projective special linear group PSL(2, R), a non-
compact simple real Lie group that is equivalent to the quotient of the special linear
group SL(2, R) by {£1,}, where I, denotes the 2 x 2 identity matrix. Synchronization
problems over PSL(2, R) or SL(2, R) require non-trivial extensions of the non-unique
games (NUG) framework [11] over compact Lie groups.

Groupoids. Other types of transformations C;; between each pair of shapes §;, S;
require further generalizations of the synchronization framework to edge potentials
taking values in a groupoid rather than in a group. As an example, consider surface
registration techniques based on area-preserving maps [2,141,159,160]. These tech-
niques use conformal or area-preserving parametrizations to push forward surface
area measures on S;, §; to measures ;, u; on the planar unit disk D, respectively,
then solve for a transport map on D that pulls back ; to w; (or equivalently u; to
;). To formulate such “transport-map-valued” edge potentials in a synchronization
framework, an edge potential should be allowed to take values in different classes
of maps on different edges, with the only constraint that maps on consecutive edges
can be composed; these ingredients have much in common in spirit with fundamental
groupoids [28,29] and Haefliger’s complexes of groups [76,77]. Such a generalized
framework for synchronization problems can also be used to analyze correspondences
{Ci;} that are soft maps [124,138] or transport plans [99,102,103], where one replaces

3 Note this is not the case for jointly analyzing a collection of shapes in a landmark-based Procrustes
analysis framework; see e.g. [34].
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Fig. 5 Consistent alignment of 50 lemur teeth based on applying SynCut to all pairwise alignments from
the continuous Procrustes analysis [2]. Each row corresponds to teeth from a genus, from top to bottom:
Alouatta, Ateles, Brachyteles, Callicebus, Saimiri

the set of transport maps between w; and p ; with (probabilistic) couplings TT(14;, 1 ;)
as in Kantorovich’s relaxation to the Monge optimal transport problem [149,150]. The
Horizontal Diffusion Maps (HDM) framework [66] and the application in automated
geometric morphometrics [65] are among the initial attempts in this direction.

4.2 Clustering Lemurs by Dietary Regimens using Synchronizability of Molar
Surfaces

We focus on a real anatomical surface mesh dataset of second mandibular molars
from 5 genera of prosimian primates and nonprimate close relatives. There are a
total of 50 molars with 10 specimens from each genus; see Fig. 5. The five genera
divide into three dietary regimens: the Alouatta and Brachyteles are folivorous, the
Ateles and Callicebus are frugivorous, and the Saimiri are insectivorous. In Fig. 4
we display four lemur molars from an anatomical surface dataset first published in
[23], together with landmarks on each molar placed by evolutionary anthropologists.
Similar datasets have been studied in a series of papers developing algorithms for
automatic geometric morphometrics [2,23,67,68,94,102,103]. The chewing surface
of each molar is digitized as a two-dimensional triangular mesh in R3 of disk-type
topology (i.e. conformally equivalent with a planar disk). We will apply SynCut to
these 50 molars and examine if the clustering is consistent with dietary regimens.

Method We first pre-process the dataset by translating and scaling each shape so
that all surface meshes center at the origin and enclose unit surface area. We then
apply the continuous Procrustes distance algorithm for each pair of teeth, generating
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Fig. 6 Embeddings of the 50 lemur teeth dataset into RR2, obtained by applying diffusion maps (left)
and SynCut (right) to the 7-nearest-neighbor graph. Both plots are post-processed using t-SNE [147]. (a)
Diffusion maps applied to the weighted graph (I', w) successfully distinguishes three diet groups, but the
genera are less distinguishable. (b) SynCut produces an edge-wise frustration matrix after the final iteration
that can be used by diffusion maps to generate a low-dimensional embedding, in which both dietary groups
and genera are more distinguishable

a a distance score d;;, a diffeomorphism C;;, and an orthogonal matrix R;; € O(3)
that optimally aligns S; to S; with respect to the diffeomorphism C;;. We use the
distance scores to construct a weighted K -nearest-neighbor graph I'. The weights are
defined as w;; = exp(—dl.zl. /o?) with the bandwidth parameter o > 0 set to be of the
order of the average smallest non-zero distances. We apply SynCut to the edge potential
pecC I(I'; 0(3)) defined by the alignments R;; on the weighted graph (I', w). Finally,
we compare the clustering performance of SynCut with applying diffusion maps and
spectral clustering directly to the weighted graph without the alignment information.

Results SynCut and diffusion maps both require the choice of a parameter K deter-
mining the number of nearest neighbors in the construction of the graph I"'. When
6 < K < 10 both procedures accurately cluster the 50 molars in the dataset into the
three distinct dietary regimens, see Fig. 6 for the two-dimensional embedding plots
for K = 7. SynCut produces slightly tighter and more distinguishable species clus-
ters. Not surprisingly, for K > 10—when the number of nearest neighbors exceeds the
number of specimens in each genus—both algorithms are less accurate as K increases,
with the accuracy of SynCut dropping faster than diffusion maps. This empirical obser-
vation is consistent with our intuition that the performance of SynCut is more sensitive
to increased spectral gaps than diffusion maps.

5 Conclusion and Discussion

We provided in this paper a geometric framework for synchronization problems. We
first related the synchronizability of an edge potential on a connected graph to the
triviality of a flat principal bundle over the topological space underlying the graph,
then characterized synchronizability from two aspects: the holonomy of the principal
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bundle, and the twisted cohomology of an associated vector bundle. On the holonomy
side, we established a correspondence between two seemingly distant objects on a
connected graph I', namely, the orbit space of the action of G-valued vertex potentials
on G-valued edge potentials, and the representation variety of the fundamental group
of I' into G; on the cohomology side, we built a twisted de Rham cochain complex
on an associated vector bundle %8,[F] of the synchronization principal bundle %,,,
of which the zeroth degree cohomology group characterizes the obstruction to the
synchronizability of the prescribed edge potential.

With the presence of a metric on the associated vector bundle %,[F], we also
developed a twisted Hodge theory on graphs. Independent of the contribution to syn-
chronization problems, this theory is both a discrete version of the Hodge theory of
elliptic complexes and a fibre bundle analogue of the discrete Hodge theory on graphs.
Specifically for synchronization problems, this twisted Hodge theory realizes the graph
connection Laplacian operator as the zeroth degree Hodge Laplacian in the twisted
de Rham cochain complex. A Hodge-type decomposition theorem is also proven,
stating that the image of the twisted codifferential is the orthogonal complement of
the linear space of F-valued synchronization solutions, with respect to the bundle
metric.

Motivated by the geometric intuitions gained from these theoretical results, we
coined the problem of learning group actions (LGA), and proposed a heuristic
algorithm, which we referred to as SynCut, based on iteratively applying syn-
chronization and spectral graph techniques. Numerical simulations on synthetic
and real datasets indicated that SynCut has the potential to cluster a collection of
objects according to the synchronizability of a subset of partially observed pairwise
transformations.

We conclude this paper by listing several problems of interest for future exploration.
These are only a subset of a vast collection of potential directions concerning the
mathematical, statistical, and algorithmic aspects of synchronization problems:

(1) The Representation Variety of Synchronization Problems. When a prescribed edge
potential p is not synchronizable over graph I', the goal of the synchronization
problem is to find a synchronizable edge potential p that is as close as possible to
p in a sense that has been made clear in this paper. The point of view adopted in
Sect. 2.1 is that the synchronization problem essentially concerns the orbits of p
and p under the action of all vertex potentials. It is natural to conceive a synchro-
nization algorithm based on the geometry of the orbit space C!(I'; G)/C°(I"; G)
that enables efficiently “moving across” the orbits. Since the fundamental group
of any connected graph is simply a free product of copies of Z, we expect the
representation variety Hom (1 (I'), G)/G to possess relatively simple structures
that could be used for guiding the design of novel synchronization algorithms with
provable guarantees.

(2) Higher-order Synchronization Problems. As a simplicial complex, the graph I
only has 0- and 1-simplices, which results in only one cohomology group of inter-
est in the de Rham cochain complex (41). By extending the twisted de Rham and
Hodge theory developed in Sect. 2.2 to simplicial complexes of higher dimen-
sions, we expect higher-order synchronization problems can be formulated and
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studied using tools and insights from high-dimensional expanders and the Hodge
theory of elliptic complexes. Generalizing the current regime of synchronization
problems, in which only pairwise transformations are considered, the higher-order
analogies would enable the study of relations and interactions among multiple ver-
tices in the graph I', which potentially opens doors towards higher-order graphical
models and related statistical inference questions as well.

Hierarchical Partial Synchronization Algorithms with Provable Guarantees. The
SynCut algorithm we proposed in this paper can be understood as an iterative
hierarchical partial synchronization algorithm, based on the assumption that edge-
wise synchronization is an indicator of the synchronizability of a prescribed edge
potential over a proper subgraph. The numerical experiments on synthetic and real
datasets suggested the validity of this intuition under our random graph model,
but no provable guarantees exist either for the convergence or the effectiveness of
algorithms similar or related to SynCut, to the best of our knowledge. Building
a Cheeger-type inequality as the performance guarantee for SynCut attracted our
attention, but even the analogy of Cheeger number (or graph conductance) in the
setting of SynCut or LGA is not clear—whereas the Cheeger number depends only
on the graph weights, which are fixed numbers on each edge independent of the
graph cut, the notion of edge-wise frustration is highly non-local as the frustration
depends on the behavior of the synchronization solution on the entire graph. We
conjecture that a Cheeger-type inequality for SynCut, if exists, will reflect the
global geometry information encoded by geometric quantities associated with the
fibre bundle.

Statistical Framework for Learning Group Actions. The LGA problem presented
in this paper is not formulated with a natural generative model for the dataset of
objects with pairwise transformations; nor is assumed any concrete noise models.
It would be of interest to provide a systematic, statistical framework under which
the problem of LGA and LGAS can be quantitatively analyzed and understood;
we believe such a framework also has the potential to bridge statistical inference
with synchronization problems.

Appendix A: Proofs of Proposition 1.2 and Formula (37)

Proof of Proposition 1.2 The construction of 4 using the stars of the vertices of T’
ensures that

ey
@)

UNU; #¥ifand only if (i, j) € E;
Ui NU; NUy # @ if and only if the 2-simplex (i, j, k) isin X.

For such pair (i, j), define constant map g;;: U; NU; — G as

gij(x) =pij Yx eU; NU;.

Set gj; = eforall 1 <i < |V|, and note that g;; (x) = gj_l.l(x) forall x € U; N U;
by our assumption on p. If p is synchronizable over G, let f: V — G be a vertex

potential satisfying p, then p;; = ﬁf;l forall (i, j) € E from (1). Thus pgj0ji = pri
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for any triangle (7, j, k) in I', or equivalently that gi;(x)g;i(x) = gki(x) for all
x € Ui NU; N Uy. Therefore, {g;j |1 < i, j < |V]} defines a system of coordinate
transformations [ 140, Sect. 2] with values in G. These data determine a principal fibre
bundle &, with base space X" and structure group G—by a standard construction in
the theory of fibre bundles (see e.g. [ 140, Sect. 3.2])—of which local trivializations are
defined on the open sets in 4 with constant transition functions g;; ; this principal bundle
is thus flat by definition. Furthermore, the vertex potential f and the compatibility
constraints (1) ensure that the following global section s: X — &, is well-defined
on this bundle:

s(x) =¢i(x, fi), xe€U;

where ¢;: U; x G — &2, is the local trivialization of &, over U;. The triviality of
this principal bundle then follows from the existence of such a global section; see e.g.
[140, Sect. 8.3]. The other direction of the proposition follows immediately from this
triviality criterion for principal bundles. O

Proof of Formula (37)

(w,n) =

S [wislei @), 0+ wsilps @), ps(n) ]

(,))eE

| =

[wiglpi(@). pi (1)) + wislos i (@), pii s (1)) ]

l\.)l>—‘

Z
Z wl](Pl( ()) 1’1('7;(]))) +wij(pi( ()) ,011171(775,)» :|
JJEE

NI*—‘

(see compatibility condition (31))
Z Lwiilpi(@f)). pi (e + wiglpi(f)). o1 i (n)))
JEE

(skew-symmetry)

C Y unln ). m2) °

(i,j)eE

Appendix B: Graph Laplacian in Discrete Hodge Theory

Define K-valued 0- and 1-forms on weighted graph I' = (V, E, w) as

QM) ={f:V->K}, Q) :i={0:E—>K|wj=—o0jV,j) e E},
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equipped with natural inner products
(f.g) =Y dilfi.g)x. Yf.geQD),
i

(w,n) = Z wij{wij, i)k, VYo, n e QUD),
@i, ))EE

where (-, -) is an inner producton K, and d; = Zj:(i)j)eE w;; is the weighted degree
atvertexi € V. Analogous to the study of differential forms on a smooth manifold, one
can define the differential d: Q°(I') — QU(I") and codifferential § : Q1 (') — QO(I")
operators that are formal adjoints of each other:

1
@fyj=fi=fj, Vfe@D), Goyi=— 3 wjoj Yo D).
Y jii.j)€E

These constructions can be encoded into a de Rham cochain complex
d
0= QN = o' =0,
)

which realizes L{", the graph random walk Laplacian, as the Hodge Laplacian of
degree zero:

1
(A0 f)=@di=— Y wilfi = f=W§ i, VieV, VfeD).

L i )EE

It is well known that L{* differs from the normalized graph Laplacian Lg by a sim-
ilarity transform Lo = D~/ 2L6WD1/ 2 where D is a diagonal matrix with weighted
degrees of each vertex on its diagonal.

Software MATLAB code implementing SynCut for the numerical simulations and
application in automated geometric morphometrics is publicly available at https://
github.com/trgao10/GOS-SynCut.
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