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Abstract
We develop a geometric framework, based on the classical theory of fibre bundles, to
characterize the cohomological nature of a large class of synchronization-type prob-
lems in the context of graph inference and combinatorial optimization. We identify
each synchronization problem in topological groupG on connected graph� with a flat
principal G-bundle over �, thus establishing a classification result for synchroniza-
tion problems using the representation variety of the fundamental group of � into G.
We then develop a twisted Hodge theory on flat vector bundles associated with these
flat principal G-bundles, and provide a geometric realization of the graph connec-
tion Laplacian as the lowest-degree Hodge Laplacian in the twisted de Rham–Hodge
cochain complex. Motivated by these geometric intuitions, we propose to study the
problem of learning group actions—partitioning a collection of objects based on the
local synchronizability of pairwise correspondence relations—and provide a heuristic
synchronization-based algorithm for solving this type of problems. We demonstrate
the efficacy of this algorithm on simulated and real datasets.
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1 Introduction

Over the past century, concepts from differential geometry have had a strong impact on
probability theory, statistical inference, andmachine learning [37,48,64,107,125]. Two
central geometric concepts used in these fields have been differential operators (e.g.
the Laplace–Beltrami operator [16]) and Riemannian metrics (e.g. Fisher informa-
tion [64]). In particular, the research program of manifold learning studies dimension
reduction through the lens of differential-geometric quantities and invariants, and
designs data compression algorithms that preserve intrinsic geometric information
such as geodesic distances [144], affine connections [127], second fundamental forms
[54], and heat kernels [15,42,43]. The underlying hypothesis of these techniques is
that the data lie approximately on a smooth manifold (often embedded in an ambient
Euclidean space), a scenario facilitating inference due to smoothly controllable tran-
sitions between observed and unseen data. For practical purposes, discrete analogues
of the inherently smooth theory of differential geometry have also been explored in
fields ranging from geometry processing [18,49], finite element methods [6], to spec-
tral graph theory [38] and diffusion geometry [41,135].

Beyond the manifold assumption, geometric objects can be handled with “softer”
tools such as topology: topological data analysis techniques [33,57] have been devel-
oped to study datasets based on their persistent homology. For smooth manifolds, it is
well known that the singular cohomology and de Rham cohomology are isomorphic,
indicating that some topological information can be read off from the differential struc-
ture of geometric objects. Carrying the de Rham theory beyond the manifold setting
has attracted the interest of geometers and physicists: synthetic differential geometry
[92,93] defines group-valued differential forms on “formal manifolds” (generalized
notion of smooth spaces for which infinitesimal neighborhoods are specified axiomat-
ically), based on which an analog of the classical de Rham theory can be established
[63]; noncommutative differential geometry [45,46,105] builds upon the observation
that much of differential geometry can be formulated in terms of the algebra of smooth
functions defined on smooth manifolds, and replaces this algebra with noncommuta-
tive ones—differential forms can then be extended to “noncommutative spaces” along
with homology and cohomology ofmuchmore general objects. Discrete analogs of the
Hodge Laplacian, a second order differential operator closely related to de Rham the-
ory, have been proposed for simplicial complexes and graphs [85,101,120,121,139];
its noncommutative counterpart for 1-forms on graphs have recently been explored in
[106].

Bridging recent developments applying differential geometry and topology in
probability and statistical sciences, the problem of synchronization [13,154] arises
in a variety of fields in computer science (e.g. computer vision [10] and geom-
etry processing [91]), signal processing (e.g. sensor network localization [51]),
combinatorial optimization (e.g. noncommutative Grothendieck inequality [12]),
and natural sciences (e.g. cryo-electron microscopy [11,129,137] and geometric
morphometrics [65]). The data given in a synchronization problem include a con-
nected graph that encodes similarity relations within a collection of objects, and
pairwise correspondences—often realized as elements of a transformation group G—
characterizing the nature of the similarity between a pair of objects linked directly by
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an edge in the relation graph. The general goal of the problem is to adjust the pairwise
correspondences,which often suffer fromnoisy or incompletemeasurements, to obtain
a globally consistent characterization of the pairwise relations for the entire dataset,
in the sense that unveiling the transformation between a pair of objects far-apart in the
relation graph can be done by composing transformations along consecutive edges on
a path connecting the two objects, and the resulting composed transformation is inde-
pendent of the choice of the path. (A precise definition of a synchronization problem
will be provided below; see Sect. 1.1.) This paper stems from our attempt to gain a
deeper understanding of the geometry underlying synchronization problems.Whereas
previous works [135,136] in this direction build upon manifold assumptions, the point
of view we adopt here is synthetic and noncommutative: we will see that inference is
possible due to rigidity rather than smoothness.

The remainder of this section gives a formal definition of synchronization prob-
lems, as well as a geometric interpretation in the language of fibre bundles. The fibre
bundle interpretation is elementary but has not been presented in the literature of
synchronization problems, to our knowledge. We then state the main results, discuss
related works, and describe the organization of the paper. The major notations used
throughout this paper are summarized in Table 1 for convenience.

1.1 A Fibre Bundle Interpretation of Synchronization Problems

We begin with a standard formulation of the synchronization problem originated in
a series of works by A. Singer and collaborators [11,13,21,129,133,154]. Let � =
(V , E, w) be an undirected weighted graph with vertex set V , edge set E , and weights
wi j for each (i, j) ∈ E . Assume G is a topological group acting on a normed vector
space F . Given a map ρ : E → G from the edges of � to the group G satisfying
ρi j = ρ−1

j i , the objective of a F-synchronization problem over � with respect to ρ is
to find a map f : V → F satisfying the constraints

fi = ρi j f j ∀(i, j) ∈ E . (1)

If no such map f exists, the synchronization problem consists of finding a map f from
V to F that satisfies the constraints as much as possible, in the sense of minimizing
the frustration

η( f ) = 1

2

∑
i, j∈V wi j‖ fi − ρi j f j‖2F
∑

i∈V di‖ fi‖2F
, (2)

where ‖ · ‖F is a norm defined on F , and di =∑
j :(i, j)∈E wi j is the weighted degree

at vertex i . In the terminology of [13], ρ is an edge potential and f is a vertex poten-
tial; a vertex potential is said to satisfy a given edge potential if all equalities in (1)
hold. Varying the choice of group G and field F results in different realizations of
the synchronization problem [13,21,129,134,137,146,154], as will be elaborated in
Sect. 1.3.
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Table 1 Notations used throughout this paper

� Graph

V Vertex set of �

E Edge set of �

n or |V | Number of vertices of the graph �

m or |E | Number of edges of the graph �

wi j Weight on edge (i, j) ∈ E

di Weighted degree on vertex i ∈ V , defined as di =
∑

j :(i, j)∈E wi j

G Topological group

e Identity element of G

Gδ Group G equipped with discrete topology

K Scalar field R or C

F Vector space on K that is a representation space of G

d or dim F Dimension of the vector space F
〈·, ·〉F Inner product on F

U = {Ui | 1 ≤ i ≤ |V |} Open cover of � in which Ui is the star of vertex i ∈ V

C0(�;G) G-valued 0-cochain on �, or the set of all vertex potentials on �

C1(�;G) G-valued 1-cochain on �, or the set of all edge potentials on �

C0(�; F) F-valued 0-cochain on �

Bρ Synchronization principal bundle (a flat principal G-bundle on �)
associated with ρ ∈ C1(�;G)

Bρ [F] Flat associated F-bundle of Bρ

holρ Holonomy homomorphism on Bρ , from π1(�) to G

Holρ(�) Holonomy of the synchronization principal bundleBρ

�0
i (�;Bρ [F]) Constant twisted local 0-forms of Bρ [F] on Ui , i.e., constant local

sections ofBρ [F] on Ui

�0(�;Bρ [F]) Locally constant twisted global 0-forms of Bρ [F], i.e., locally constant
global sections ofBρ [F]

�1
i (�;Bρ [F]) Constant twisted local 1-forms of Bρ [F] on Ui

�1(�;Bρ [F]) Locally constant twisted global 1-forms of Bρ [F]
[ f ] Vector in Knd representing f ∈ C0(�; F)

dρ ρ-twisted differential where ρ ∈ C1(�;G), from C0(�; F) to
�1(�;Bρ [F])

δρ ρ-twisted codifferential where ρ ∈ C1(�;G), from �1(�;Bρ [F]) to
C0(�; F)

�
(0)
ρ ρ-twisted Hodge Laplacian of degree 0

�
(1)
ρ ρ-twisted Hodge Laplacian of degree 1

H0
ρ (�;Bρ [F]) The 0th twisted cohomology group for Bρ [F], where ρ ∈ C1(�;G)

ν(S) Frustration of the subgraph of � spanned by the vertex subset S ⊂ V
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Since we will frequently refer to the set of all edge and vertex potentials on a graph,
let us introduce the following notations to ease our exposition: letC0(�;G),C1(�;G)

denote respectively the set of all G-valued vertex and edge potentials on �, i.e.,

C0(�;G) :={ f : V → G},
C1(�;G) :={ρ : E → G | ρi j =ρ−1

j i , ∀(i, j) ∈ E}. (3)

For cohomological reasons thatwill become clear in Sect. 2, wewill also callC0(�;G)

and C1(�;G) the G-valued 0- and 1-cochains on �, respectively. Similarly, let

C0(�; F) := { f : V → F} (4)

denote the set of all F-valued vertex potentials on �. Throughout this paper, a G-
valued edge potential ρ ∈ �0(�;G) is said to be synchronizable if there exists a
G-valued vertex potential f ∈ �0(�;G) satisfying fi = ρi j f j , ∀(i, j) ∈ E , i.e., (1)
is satisfied with F = G. Generally, an F-valued vertex potential satisfying (1) will be
referred to as a solution to the F-synchronizable problem over � with respect to ρ, or
simply F-valued synchronization solution. Clearly, ρ is synchronizable if and only if
a G-valued synchronization solution exists.

When F = G, i.e.,whenweconsider the action ofG on itself, a synchronizable edge
potential can be realized geometrically as a flat1 principal bundle that is isomorphic to
a product space in its entirety, i.e., a trivial2 flat principal bundle, as will be explained
in Propositions 1.2 and 1.3 below; this observation forms the backbone of the entire
geometric framework we develop in this paper.When the fibre bundle is differentiable,
this notion of flatness is equivalent to the existence of a flat connection on the bundle,
which is essentially a special case of the Riemann–Hilbert correspondence [59]. The
main results of this paper build upon extending further and deeper the analogy between
the geometry of synchronization problems and fibre bundles.

Propositions 1.2 and 1.3 characterize the basic building block for the geometric
formulation of synchronization problems. We will develop the principal bundle in the
generality of topological spaces that includes smooth structures as particular cases.
FollowingSteenrod [140], a fibre bundle is a quintupleE = (E, M, F, π,G)where E ,
M , F are topological spaces, referred to as the total space, base space, and fibre space,
respectively; π : E → M is a continuous surjective map, called the bundle projection,
and M adopts an open cover {Ui } with homeomorphisms φi : Ui × F → π−1(Ui )

between each π−1(Ui ) ⊂ E and the product space Ui × F , such that π |π−1(Ui )
is the

composition of φi with proj1 : Ui × F → Ui , the canonical projection onto the first
factor of the product space. In other words, the following diagram is commutative:

1 Recall (see, e.g. [145, Sect. 2]) that a fibre bundle π : B → X , with total space B and base space
X , is said to be flat if it admits a system of local trivializations with locally constant bundle coordinate
transformations.
2 Note that a flat bundle is not necessarily trivial (i.e. isomorphic to a product space)—the fundamental
group of the base space plays a central role in this development (see e.g. [115, Chap. 2]).
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π−1(Ui ) Ui × F

Ui

φi

π Proj1

The open cover {Ui } and the homeomorphisms {φi } together provide a system of local
trivializations for the fibre bundle E . Moreover, G is a topological transformation
group on F encoding the compatibility of “change-of-coordinates” onM , with respect
to the provided local trivializations, in the following sense: at every x ∈ Ui ∩Uj 	= ∅,
the restriction of the composed map φ−1

i ◦φ j : Uj × F → Ui × F on {x}× F , which
necessarily gives rise to a homeomorphism from {x} × F to itself by definition, is
canonically identified with a group element gi j (x) ∈ G, and the map gi j : Ui ∩Uj →
G is continuous. The topological group G is called the structure group of the fibre
bundle E . The notation Fx is often used to denote π−1(x) for x ∈ M , and referred to
as the fibre over x ∈ M . It is straightforward to check from these definitions that

gii (x) = e ∀x ∈ Ui , (5)

gi j (x) = g−1
j i (x) ∀x ∈ Ui ∩Uj , (6)

gi j (x)g jk(x) = gik(x) ∀x ∈ Ui ∩Uj ∩Uk, (7)

where e is the identity element of the structural group G. The family of continuous
maps {gi j : Ui∩Uj → G} is called a systemof coordinate transformations for the fibre
bundle E . Interestingly, essentially all information for determining the fibre bundle E
is encoded in the coordinate transformations, as the following theorem indicates:

Theorem 1.1 (Steenrod [140, Sect. 3.2]) If G is a topological transformation group of
F,U j is an open cover of M, {gi j } is a family of continuous maps from each non-empty
intersection Ui ∩Uj to G satisfying (5), (6), (7), then there exists a fibre bundle E with
base space M, fibre F, structural group G, and coordinate transformations {gi j }. Any
two such fibre bundles are equivalent to each other.

The precise definition for two fibre bundles with the same base space, fibre space,
and structural group to be equivalent can be found in [140, Sect. 2.4], but we will
also cover it in Sect. 2.1. Notice that the conditions (5), (6), (7) are reminiscent of
the characterization for the synchronizability (1) of a G-valued edge potential on a
connected graph: if ρ satisfies (1) for a map f : V → G, then ρi j = fi f

−1
j on each

edge (i, j) ∈ E , which certainly satisfies

ρi i =e ∀i ∈V , ρi j =ρ−1
j i ∀(i, j)∈E, ρi jρ jk=ρik ∀(i, j), ( j, k), (i, k)∈E . (8)

As the following Proposition 1.2 establishes, viewing the graph � as a topological
space, an appropriate open cover of � can be found such that any synchronizable edge
potential can be realized as coordinate transformations of a fibre bundle with base
space � and the topological group G serving both as the fibre space and the struc-
ture group. A fibre bundle with its structural group as fibre type is called a principal
bundle. Moreover, any such principal bundle must also be flat, as the bundle coordi-
nate transformations take constant values on every non-empty intersection of sets in
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the open cover. The following simple concepts from combinatorial graph theory and
algebraic topology (see, e.g. [14,20]) will be needed for the statement and proof of
Proposition 1.2:

(1) The n-skeleton of a simplicial complex K is the subcomplex of K consisting of
all j-dimensional faces for 0 ≤ j ≤ n;

(2) The support of a simplicial complex K is the underlying topological space of K;
(3) The star neighborhood of a vertex v in a simplicial complex K is the union of all

closed simplices in K containing v as a vertex;
(4) A clique complex of a graph � = (V , E) is the simplicial complex with all

complete subgraphs of � as its faces.

Proposition 1.2 Let G be a topological group, � = (V , E) a connected undirected
graph, and ρ : E → G a map satisfying ρi j = ρ−1

j i for all (i, j) ∈ E. Denote X
for the 2-skeleton of the clique complex of the graph �, X the support of X, and
U = {Ui | 1 ≤ i ≤ |V |} for an open cover of X in which Ui is the interior of the star
of vertex i . Then ρ is synchronizable over G if and only if there exists a flat trivial
principal fibre bundle π : Pρ → X with structure group G and a system of local
trivializations defined on the open sets in U with constant bundle transition functions
ρi j on non-empty Ui ∩Uj .

A proof of Proposition 1.2 can be found in Appendix A. The key idea is to view �

as the 1-skeleton of its associated clique complex, and use the open cover consisting
of star neighborhoods of each vertex. A similar construction of “Cryo-EM complex”
has been used in [158] to classify data input to Cryo-EM problems, an important
application of synchronization techniques.

However, it is important to notice that the converse to Proposition 1.2 is not true in
general; more precisely, an edge potential satisfying (8), which necessarily specifies
a flat principal bundle over �, need not be synchronizable. For a simple example,
consider a square graph � consisting of a four vertices 1, 2, 3, 4 and four edges (1, 2),
(2, 3), (3, 4), (4, 1), forming a closed simple loop but without any triangles enclosed
by three edges. An edge potential satisfying ρi j = ρ−1

j i on all edges clearly satisfies
all equalities in (8) since no consistency needs to be checked on edge triplets, but
it is easy to find ρ violating the equality ρ12ρ23ρ34ρ41 = e which must be obeyed
by any synchronizable edge potential, provided that the group G is not trivial. The
lesson is that the compatibility conditions (8) are of a local nature, in the sense that the
cycle-consistency (borrowing a term from geometry processing of shape collections
[82,118] that describes a compatibility constraint analogous to the last equality in (8))
is imposed only on triangles composed of edge triplets; in contrast, synchronizability
requires a stronger notion of “global” cycle-consistency for the operation of composing
group elements along loops of arbitrary length and topology on the graph. In a certain
sense, fibre bundles are the geometricmodels realizing edge potentials that are “locally
synchronizable.”

Proposition 1.2 is our first attempt at understanding the geometric mechanism of
synchronization problems. The assumption of the synchronizability of ρ significantly
restricts the range of applicability of this geometric analogy: inmost scenarios of inter-
est, the synchronizability of an edge potential is the goal rather than the starting point
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for a synchronization problem. Fortunately, it is possible to extend the fibre bundle
analogy beyond the synchronizability assumption in Proposition 1.2, by restricting
the model base space from the 2-skeleton of the clique complex of the graph to the
1-skeleton, and adjust the open cover U accordingly: if we define an open cover U on
the graph � (which as a topological space is canonically identified with the 1-skeleton
of its clique complex) in which each open setUi covers only vertex i and the interior of
all edges adjacent to it, thenUi ∩Uj 	= ∅ if and only if (i, j) ∈ E , and any triple inter-
section of open sets in U is empty. In consequence, any system of bundle coordinate
transformations defined on U by a G-valued edge potential ρ automatically satisfies
(5), (6), (7), and specifies a flat principal G-bundle over �, denoted asBρ , regardless
of synchronizability. This is also consistent with the definition of vector bundles on
graphs in [90]. Clearly, when ρ is synchronizable,Bρ is the restriction of the principal
G-bundlePρ in Proposition 1.2 to the 1-skeleton of the base space �, therefore trivial
as well. Conversely, if Bρ is trivial, by [140, Sects. 2.10 or 4.3], there exists a map
f : � → G assigning a constant value fi for all points x ∈ Ui such that ρi j = fi f

−1
j

for allUi ∩Uj 	= ∅, which gives rise to a map f : V → G by restriction to the vertex
set V of �; this verifies all constraints in (1) and establishes the synchronizability of
the edge potential ρ. Consequently, the triviality of Bρ and Pρ implies each other,
both are equivalent to the synchronizability of ρ. We summarize these observations in
Proposition 1.3 and formally define the synchronization principal bundle Bρ , which
will be of central importance for the geometric framework we develop in the rest of
this paper.

Proposition 1.3 Let G be a topological group, � = (V , E) a connected undirected
graph, and ρ : E → G a map satisfying ρi j = ρ−1

j i for all (i, j) ∈ E. Write U =
{Ui | 1 ≤ i ≤ |V |} for an open cover of � in which Ui is the union of the single vertex
set {i} with the interior of all edges adjacent to the vertex i . Then ρ defines a flat
principal G-bundle Bρ over � with a system of local trivializations defined on the
open sets in U with constant bundle transition functions ρi j on non-empty Ui ∩ Uj .
Furthermore, ρ is synchronizable if and only if Bρ is trivial.

Definition 1.4 (Synchronization Principal Bundle) The fibre bundle Bρ associated
with the connected graph � and edge potential ρ as characterized in Proposition 1.3
is called a synchronization principal bundle of edge potential ρ over �, or a synchro-
nization principal bundle for short.

In practice, it is often more convenient to work with Bρ rather than Pρ , not
only since non-synchronizable edge potentials are much more prevalent, but also
because noisy or incomplete measurements almost always cause the observed group
elements ρi j ∈ G to be non-synchronizable. Solving for a G-valued synchronization
solution can thus be viewed as an approach to “denoising” or “filtering” those observed
transformations ρi j , as was already implicit in many applications [12,13]. In the sense
of Proposition 1.3, these problems can be interpreted as inference on the structure of
flat principal bundles.

Most synchronization problems in practice [129,134,137,146] consider vertex
potentials valued in G, the same topological group in which the prescribed edge
potential takes value, pertaining to the principal bundle picture (i.e. F = G) discussed
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in Propositions 1.2 and 1.3. Our fibre bundle interpretation naturally includes more
general synchronization problems in which the vertex potentials take values in F 	= G
as well, by relating the synchronizability of an edge potential to the existence of global
sections on an associated F-bundle Pρ ×η F or Bρ ×η F , where η : G × F → F
denotes the action of G on F . Essentially, an associated F-bundle Pρ ×η F (or
Bρ ×η F) is constructed using the same procedure as the principal bundle Pρ (or
Bρ), but with fibre F instead of G. The associated bundles Pρ ×η F , Bρ ×η F are
thus also flat (but not necessarily trivial), since their bundle coordinate transformations
are equivalent to those of their principal bundle, up to the representation induced by
the action η.

A major difference between working with an associated bundle and the principal
bundle is that the cocycle condition ρk jρ j i = ρki may still not be satisfied in the
presence of a vertex potential f : V → F satisfying (1), as elements in F cannot be
“inverted” in general; another important difference is the relation between triviality
and global sections: whereas a principal bundlePρ orBρ is trivial if and only if one
global section exists, which amounts to finding one solution to the synchronization
problem over � with respect to ρ, an associated bundle may admit one or more global
sections yet still be non-trivial. For instance, a vector bundle always admits the zero
global section, regardless of its triviality. It turns out that establishing the synchro-
nizability of an edge potential through the triviality of an associated bundle requires
finding “sufficiently many” global sections of an associated bundle, or in terms of
synchronization problems, “sufficiently many” solutions satisfying (1). This is also
reflected in the twisted Hodge theory we develop in Sect. 2.2. Even though finding
enough global sections seems to be more work, in practice it could be much easier
to find a set of global sections on the associated bundle than to find even only one
global section on the principal bundle, as the action of G on the space F introduces
additional information from both geometric and practical points of view. Since the
flat F-bundle associated with Bρ will be essential for Sect. 2.2, we introduce the
following definition:

Definition 1.5 (SynchronizationAssociatedBundle) Theflat F-bundle on� associated
with the flat principal bundle Bρ by the action of G on F is called a synchronization
associated F-bundle of edge potential ρ over �, or synchronization associated bundle
for short, denoted as Bρ[F].

We close this preliminary section drawing analogy between synchronization prob-
lems andfibre bundles by clarifying the relation among, and the geometric implications
of, some variants of the optimization formulation of synchronization problems. Given
a graph � = (V , E) and a G-valued edge potential ρ, a direct translation of the goal
of finding an F-valued vertex potential f satisfying (1) as much as possible is to solve

min
f : V→F

∑

(i, j)∈E
CostF (ρi j f j , fi ), (9)

where CostF : F × F → [0,∞) is a cost function on F (e.g., derived from a distance
or a norm). When we seek multiple solutions to an F-synchronization problem over
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� with prescribed edge potential ρ, it is natural to impose the additional constraints
that the solutions should be sufficiently different from each other; in the presence of
a Hilbert space structure on F , it is convenient to impose orthogonality constraints
between pairs of solutions to obtain linearly independence.With additional normaliza-
tion constraints to fix the issue of identifiability, this exactly translates into the spectral
relaxation algorithm in [13]. If the prescribed edge potential is synchronizable, its syn-
chronizability will be confirmed once a sufficient number of synchronization solutions
can be collected, where the actual number depends on the property of the group G
as well as its action on F ; if not, a synchronizable edge potential can be constructed
from sufficiently many F-valued “approximate solutions” that minimize the objective
function in (9) as much as possible. The case G = F corresponds to the optimization
problem

min
f : V→G

∑

(i, j)∈E
CostG(ρi j f j , fi ) (10)

which, in the case the CostG is G-invariant, is equivalent to

min
f : V→G

∑

(i, j)∈E
CostG(ρi j , fi f

−1
j ). (11)

If ρ is synchronizable, aminimizer of (10) (resp. (9)) attaining zero objective value can
be geometrically realized as a global section of the synchronization principal bundle
Bρ (resp. Pρ); such a minimizer implies the triviality of the principal bundle Bρ

(resp.Pρ), but not necessarily so in general for the associated bundleBρ ×η F (resp.
Pρ ×η F). If ρ is not synchronizable, the minimum values of (10), (11), and (9) are
all greater than zero, and minimizer of (10) or (11) can be viewed as a “denoised” or
“filtered” version of a trivial flat principal bundle underlying the dataset.

1.2 Main Contributions

In this section we give a brief overview of our main contribution. We will motivate
the two ingredients of the geometric framework developed in Sect. 2, namely, holon-
omy representation and Hodge theory, by demonstrating preliminary versions of our
formulation that lead to weaker conclusions or incomplete geometric pictures, then
sketch the full approaches adopted in Sect. 2. Finally, we draw the link between the
geometric framework and the proposal of the learning group actions (LGA) problem.

1.2.1 Holonomy of Synchronization Principal Bundles

ConsiderBρ , the synchronization principal bundle arising from a G-synchronization
problem over a connected graph � = (V , E) with respect to ρ ∈ C1(�;G). Fix an
arbitrary vertex v ∈ V , and denote the set of all v-based loops in � (loops with v

as both the starting and ending vertex) as �v; �v carries a natural group structure
by the composition of v-based loops. Now the procedure of taking the product of the
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values of ρ along the consecutive edges in the loop specifies a group homomorphism
from �v into G. Denote the image of this group homomorphism by Hv , which is
necessarily a finitely generated subgroup of G since � is a finite graph. The simple
but important observation here is that Hv is the trivial subgroup of G if and only if ρ

is synchronizable. The group Hv is the analogy of the holonomy group based at v in
differential geometry, if we view ρi j on edge (i, j) as the parallel-transport between
fibres of Bρ at i, j ∈ V .

Section 2.1 is devoted to a deeper and more systematic treatment of the group
homomorphism from loops in � to the structure group G. We will define Holρ(�),
the holonomy of the synchronization principal bundleBρ (independent of the choice
of the base vertex v), as well as an equivalence relation on C1(�;G) induced by a
right action of C0(�;G) (which is treated implicitly when solving synchronization
problems in practice), and establish a correspondence between Holρ(�) and the equiv-
alence class in C1(�;G)/C0(�;G) to which ρ ∈ C1(�;G) belongs. In particular,
trivial holonomy Holρ(�) corresponds to the orbit in C1(�;G)/C0(�;G) consisting
precisely of all synchronizable edge potentials. This correspondence will be formu-
lated in Theorem 2.6 as between C1(�;G)/C0(�;G) and Hom(π1(�),G)/G, the
representation variety of the fundamental group of � into G.

1.2.2 Twisted De Rham Cohomology of Synchronization Associated Vector Bundles

The graph connection Laplacian (GCL) for an F-synchronization problem over graph
� with respect to ρ ∈ �1(�;G) is a linear operator on �0(�; F) defined as

(L1 f )i := 1

di

∑

j :(i, j)∈E
wi j ( fi − ρi j f j ), ∀i ∈ V , ∀ f ∈ C0(�; F).

If F is a vector space and G has a matrix representation on F , GCL can be written as a
blockmatrix inwhich the (i, j)th block is thematrix representation ofρi j , if (i, j) ∈ E .
GCL essentially carries all information of a synchronization problem and is of central
importance to the spectral and SDP relaxation algorithms for synchronization. Our
motivation for Sect. 2.2 was to provide a cohomological interpretation for GCL, in the
hope of realizing it geometrically as a Hodge Laplacian in a cochain complex, inspired
by a similar geometric realization of the graph Laplacian (in the context of algebraic
and spectral graph theory) as a Hodge Laplacian on degree-zero forms in discrete
Hodge theory (see Appendix B). Note that GCL reduces to the graph Laplacian if the
group G is a scalar field.

In the literature of differential geometry, twisted differential forms on a flat vector
bundle E can be intuitively thought as bundle-valued differential forms on the base
manifold. The twisted Hodge theory we develop in Sect. 2.2 defines two discrete
differential operators that are formal adjoints of each other between constant twisted
local 0-forms and constant twisted local 1-forms on the synchronization associated
F-bundleBρ[F], namely the ρ-twisted differential dρ and the ρ-twisted codifferential
δρ , such thatGCL can bewritten as the composition δρdρ . Provisionally, by identifying
each f ∈ C0(�; F) naturally with a collection of constant twisted local 0-forms—one
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for each open set Ui ∈ U—a coarse approximation of our construction can be written
as

(dρ f )i j ∼ fi − ρi j f j , ∀ f ∈ C0(�; F),

(δρω)i ∼ 1

di

∑

j :(i, j)∈E
wi jωi j , ∀ω ∈ C1(�; F) := {ω : E → F | ωi j = −ω j i ∀(i, j) ∈ E},

fromwhich it can be easily checked that L1 = δρdρ onC0(�; F). Themain conceptual
difficulty with this natural formulation is that “dρ f ” defined as such does not possess
the skew-symmetry desired for 1-forms, since in general

f j − ρ j i f j = −ρ j i ( fi − ρi j f j ) 	= −( fi − ρi j f j ). (12)

The framework we develop in Sect. 2.2 circumvents this skew-symmetry issue
with 1-forms by defining fi − ρi j f j as the representation of dρ f , a twisted global
1-form defined over the entire graph �, in the system of local trivializations ofBρ[F]
over the open cover U. We then define the ρ-twisted codifferential δρ that is the
formal adjoint of dρ with respect to inner products naturally specified on the space
of twisted local 0- and 1-forms, and realize the graph connection Laplacian L1 as the
degree-zero Hodge Laplacian δρdρ : C0(�;G) → C0(�;G) in the twisted de Rham
cochain complex (41). These constructions lead to two different characterizations of
the synchronizability ofρ, one in Proposition 2.22with a twisted deRhamcohomology
group, and the other through a Hodge-type decomposition of C0(�; F) following
Theorem 2.25. This twisted Hodge theory also provides geometric insights for the
GCL-based spectral relaxation algorithm and Cheeger-type inequalities in [13], as we
will elaborate in Sect. 2.2.4.

1.2.3 Learning Group Actions via Synchronizability

Fibre bundles are topological spaces that are product spaces locally but not necessarily
globally. However, we can still look for maximal open subsets of the base space on
which the fibre bundle is trivializable, and seek a decomposition of the base space
into the union of such “maximal trivializable subsets.” This intuition motivated us
to consider applying synchronization techniques to partition a graph into connected
components, based on the synchronizability of a prescribed edge potential in addition
to the connectivity of the graph. In Sect. 3.1, we define the general problem of learning
group actions (LGA) for a set X , equipped with an action by group G, as searching
for a partition of X into a specified number of subsets and learning a new group action
on X that is cycle-consistent within each partition; the cycle-consistency need not
be maintained for a cycle of actions across multiple partitions. The LGA problem is
then specialized to the setting of synchronization problems (learning group actions by
synchronization, or LGAS), for which we define a quantity that measures the perfor-
mance of graph partitions based on the synchronizability of a fixed edge potential on
the entire graph �, motivated by the classical normalized graph cut algorithm. Finally,
we propose in Sect. 3.2 a heuristic algorithm for LGAS, building upon iteratively
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applying existing synchronization techniques hierarchically and performing spectral
clustering on the edge-wise frustration.

1.3 Broader Context and RelatedWork

The synchronization problem has been studied for a variety of choices of topological
groups G and spaces F . Typically these formulations fall into our principal bundle
setting and require an underlying manifold structure. We give a brief summary for
the correspondences between choices of G and F in our framework and the practical
instances in the synchronization literature: In [13] G = F = O(d) and G = O(d),
F = S

d−1 are studied; the case G = F = SO(d) is examined in [21,154]; orientation
detection or G = F = O(1) is considered in [134]; cryo-electron microscopy con-
cerns G = F = SO(2) [129,137]; globally aligning three-dimensional scans is the
case where G = F = SO(3), and so is [146].

Our formulation of the synchronization problem considers a broader class of geo-
metric structure than what has been proposed in the literature. Specifically, we do not
require a manifold assumption (as the problem is modeled on topological spaces), or
a principal bundle structure (as we can work with any associated bundle), or compact
and/or commutative structure groups. For comparison, the vector and principal bundle
framework developed in [135,136] relies on manifold assumptions for the base, fibre,
and total space, aswell as an (extrinsic) isometric embedding into an ambientEuclidean
space for locally estimating tangent spaces and parallel-transports; similarly for recent
work [66] extending this geometric framework to smooth bundles with general fibre
types. Both Vector Diffusion Maps (VDM) [135] and Horizontal Diffusion Maps
(HDM) [66] can be viewed as attempts at combining the idea of synchronization with
diffusion geometry [41–43]. The geometry underlying the synchronization problem
related to cryo-electron microscopy [129,137] can be described using the language of
SO(2)-principal bundles, as recently demonstrated in [158], with a Čech cohomology
approach through Leray’s Theorem which depends essentially on the commutativity
of the structure group SO(2), whereas most synchronization problems of practical
interest involve noncommutative structure groups. The Non-Unique Games (NUG)
and SDP relaxation framework established in [10,11] assume the compactness of the
structure group G, and resort to a compactification procedure that maps a subset of
G to another compact group for synchronization problems over non-compact groups
such as the Euclidean group in the motion estimation problem in computer vision
[78,109].

The graph twisted Hodge theory we develop in Sect. 2.2 also has ties to recent
developments in discrete Hodge theory [85,101,116,120,121,139]. In [90] Laplacians
on one- and two-dimensional vector bundles on graphs were used to understand the
relation between graphs embedded on surfaces and cycle rooted spanning forests,
generalizing the relation between spanning trees and graph Laplacians. Variants of
the graph Laplacian have been used to relate ranking problems to synchronization
problems in [50,62]; a combinatorial Laplacian based on a discrete Hodge theory on
directed graphs has been successfully applied to decompose ranking problems and
games into “gradient-like” versus “cyclic” components in [32,85], and to visualize
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directed networks in [61]. Discrete Laplacians on simplicial complexes have been pro-
posed, and spectral properties such as Cheeger inequalities and stationary distributions
of random walks have been examined in a series of papers [85,101,116,120,121,139].
The cocycle conditions (8) are also characterized in geometry processing and com-
puter vision recently for analysis of shape or image collections [82,83,118,153], where
they are also known as cycle-consistency conditions.

The geometric and topological tools we utilize in this paper, namely those involving
the topology and geometry of fibre bundles, are covered in most standard textbooks,
e.g. [20,140,143]. After Milnor’s seminal work on flat connections on a Riemannian
manifold [113], the relation between flat bundles and their holonomy homomorphisms
became widely known [47,71,87,104,148] and is still attracting interests of modern
mathematical physicists (e.g. Higgs bundles and representation of the fundamental
group [79,130]). In a completely topological setup, flat bundles can be character-
ized as fibrations with a homotopy-invariant lifting property (a topological analogue
of parallel-transport in differential geometry); essentially the same correspondence
between flat bundles and holonomy homomorphisms is already known to Steenrod
[140] and referred to as characteristic classes of flat bundles [56,59,71,104]. In a
broader context, the correspondence between flat bundles (integrable connections)
and local systems (locally constant sheaves) is a special case of the Riemann–Hilbert
correspondence, a higher-dimensional generalization ofHilbert’s twenty-first problem
[5,19]. This correspondence fostered important developments in algebraic geometry,
including D-modules [88,89,110,111] andDeligne’swork on integrable algebraic con-
nections [52]. Understanding the representation varieties of the fundamental groups
of Riemann surfaces into Lie groups has been of interest to algebraic geometers,
geometric topologists, and representation theorists in the past decades [72,98].

The rest of this paper is organized as follows. Section 2 establishes the geometric
framework for synchronization problems, relating the synchronizability of an edge
potential ρ to (a) the triviality of the holonomy of the flat principal bundle Bρ , in
Sect. 2.1; (b) the dimension of the zeroth degree twisted cohomology group of a ρ-
twisted de Rham cochain complex, as well as the dimension of the kernel of the zeroth
degree twistedHodge Laplacian, in Sect. 2.2. Section 3 defines the problem of learning
group actions, and proposes SynCut, a heuristic algorithm based on synchronization
and graph spectral techniques. Numerical simulations indicating the effectiveness of
SynCut are performed on synthetic datasets in Sect. 3.3 and on a real dataset of a
collection of anatomical surfaces in Sect. 4. A few problems of potential interest are
listed in Sect. 5 for future exploration.

2 Synchronization as a Cohomology Problem

This section concerns two geometric aspects of the synchronization problem. Sec-
tion 2.1 links the synchronizability of an edge potential to the triviality of the holonomy
group of a flat principal bundle. Section 2.2 establishes a discrete twisted Hodge the-
ory that naturally realizes the graph connection Laplacian as the lowest-order Hodge
Laplacian of a twisted deRham cochain complex. The obstruction to synchronizability
of an edge potential turns out to be a cohomology group in the twisted de Rham com-
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plex; the degeneracy of this cohomology group is reflected in the spectral information
of the twisted Hodge Laplacian, which also provides a geometric interpretation for
the relaxation techniques used in solving synchronization problems.

2.1 Holonomy and Synchronizability

The two main results in this section, Corollary 2.7 and Theorem 2.6, relate the syn-
chronizability of an edge potential ρ to the triviality of the holonomy group of the
synchronization principal bundleBρ . Ourmotivation is as follows. Recall fromPropo-
sition 1.3 that G-synchronization problems on a fixed graph � with different edge
potentials are in one-to-one correspondence with flat principal G-bundles over �, and
the synchronizability of an edge potential translates into the triviality of the bundle;
whereas the one-to-one correspondence is stated at the level of local coordinates in
Proposition 1.3, the triviality of the principal bundle is a property of the equivalence
classes of flat principal G-bundles, which suggests the same level of abstraction for
synchronizability. As will be precisely stated later in this subsection, (appropriately
defined) equivalence classes of edge potentials form themoduli space of flatG-bundles
on �, and a given edge potential is synchronizable if and only if it belongs to the same
equivalence class as the trivial edge potential that assigns each edge of � the identity
element e ∈ G. The holonomy group, or the equivalence classes of holonomy homo-
morphisms from the fundamental group of � to the structure group G, is a faithful
representation of the moduli space of flat principal G-bundles on �; we thus will be
able to detect the synchronizability of an edge potential through the triviality of the
associated holonomy group. This argument is reminiscent of classical classification
theorems of (1) principal bundles with disconnected structure groups in topology (see
e.g. [140, Sect. 13.9]); (2) flat connections in differential geometry (see e.g. [143, Sect.
13.6]); and (3) holomorphic vector bundles of fixed rank and degree (see e.g. [156,
Appendix Sect. 2.1]) in complex geometry.

For f ∈ C0(�;G), ρ ∈ C1(�;G), we say that f and ρ are compatible on edge
(i, j) ∈ E if fi = ρi j f j , and that f and ρ are compatible on graph � if they are
compatible on every edge in �. Recall from Definition 1.4 that we write Bρ for
the synchronization principal bundle associated with ρ ∈ C1(�;G), as described in
Proposition 1.3. Equivalently, it is often convenient to view Bρ as a Gδ-bundle on
�, where Gδ is the same group as G but equipped with the discrete topology. For
ρ, ρ̃ ∈ �, the Gδ-bundles Bρ , Bρ̃ are equivalent, denoted as Bρ ∼ Bρ̃ , if a bundle
map (see [140, Sect. 2.5]) exists between Bρ and Bρ̃ that induces the identity map
on the base space �. Since Bρ,Bρ̃ have the same base space, fibre, and structure
group, recall from [140, Lem. 2.10] that they are equivalent if and only if there exist
continuous functions λi : Ui → Gδ defined on each Ui ∈ U such that

ρ̃i j = λi (x)
−1ρi j λ j (x), ∀x ∈ Ui ∩Uj 	= ∅.
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Since the topology on Gδ is discrete and Ui is connected, λi is constant on Ui , and
defines a vertex potential by setting fi := λi (vi ), where vi ∈ Ui is the i th vertex of
�. This proves the following lemma:

Lemma 2.1 Two edge potentials ρ, ρ̃ ∈ C1(�;G) define equivalent flat principal
G-bundles on � if and only if there exists f ∈ C0(�;G) such that

ρ̃i j = f −1
i ρi j f j , ∀(i, j) ∈ E . (13)

In other words, equivalence classes of flat principal G-bundles on � determined
by edge potentials (through Proposition 1.3) are in one-to-one correspondence with
equivalence classes in the orbit space C1(�;G)/C0(�;G), where the right action of
C0(�;G) on C1(�;G) is defined as

[ f (ρ)]i j := f −1
i ρi j f j , ∀(i, j) ∈ E . (14)

Remark 2.2 The orbit space C1(�;G)/C0(�;G) is exactly the first cohomology set
Ȟ1((�,U),G) for the sheaf of germs of locally constant G-valued functions over
� with respect to the open cover U, where G is possibly nonabelian. It is thus not
surprising that the orbit space should identify naturally with isomorphism classes of
flat principal G-bundles over � (see e.g. [30, Prop. 4.1.2] or [112, Sect. 8.1]).

A path in � is a collection of consecutive edges in �. If all edges in path γ are
oriented consistently, we say γ is an oriented path. For any oriented path γ , define
γ−1 the reverse of γ as the path in � consisting of the same consecutive edges in γ

listed in the opposite order and with all orientations reversed. For an oriented path γ

consisting of consecutive edges {(i0, i1), (i1, i2), . . . , (iN−1, iN )} set

holρ(γ ) = (ρiN ,iN−1ρiN−1,iN−2 · · · ρi2,i1ρi1,i0)−1

= ρi0,1ρi1,i2 · · · ρiN−2,iN−1ρiN−1,iN ∈ G, (15)

then holρ maps paths in � to elements of group G. For two oriented paths γ , γ ′ such
that the ending vertex of γ coincides with the starting vertex of γ ′, define γ ◦ γ ′ as
the oriented path constructed by concatenating γ ′ with γ . It is then straightforward to
verify by definition that

holρ(γ−1) = holρ(γ )−1, holρ(γ ◦ γ ′) = holρ(γ )holρ(γ ′). (16)

If an oriented path starts and ends at the same vertex v, we call it an oriented loop based
at vertex v. Denote �v for all loops based at v ∈ V in �, including the single vertex
set {v} viewed as the identity loop based at v. Clearly, �v carries a group structure
with the loop concatenation and reversion operations. The equalities in (16) ensure
holρ({v}) = e and that holρ : �v → G is a group homomorphism. Moreover, since
graph� does not contain any 2-simplices, two oriented loops based at v are homotopic
if and only if they differ by a collection of disconnected trees in �, in which every tree
gets mapped to e ∈ G under the map holρ ; the map holρ : �v → G thus descends
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naturally to a map to G from π1(�, v), the fundamental group of � based at v. Unless
confusions arise, we shall also denote the descended map as holρ for simplicity of
notation. Lemma 2.3 below summarizes these discussions.

Lemma 2.3 The map holρ : π1(�, v) → G defined in (15) is a group homomorphism.
In particular, the image of this homomorphism is a subgroup of G.

We will refer to the group homomorphism holρ : π1(�, v) → G as the holonomy
homomorphism at v ∈ � for a G-synchronization problem with prescribed edge
potential ρ ∈ C1(�;G). Define the holonomy group at v ∈ � of edge potential ρ as
the image

Holρ(v) := holρ(π1(�, v)).

From a different point of view, Lemma 2.3 assigns an element of Hom(π1(�, v),G)

to each element of C1(�;G), where Hom(π1(�, v),G) is the set of group homomor-
phisms from π1(�, v) to G.

Lemma 2.4 If � is connected, the holonomy groups Holρ(v), Holρ(w) at v,w ∈ V
are conjugate to each other as subgroups of G.

Proof Let γ be a path in � connecting vertex v to vertex w. The fundamental groups
of � based at v,w are related by conjugation π1(�, v) = γ−1π1(�,w)γ , thus

Holρ(v) = Holρ(γ−1π1(�,w)γ ) = Holρ(γ−1)Holρ(π1(�,w)),

Holρ(γ ) = Holρ(γ )−1Holρ(w)Holρ(γ ). ��

Define the holonomy of ρ ∈ C1(�;G) on a connected graph � as the following
conjugacy class (orbit of the action by conjugation) of subgroups of G:

Holρ(�) := {g−1Holρ(v)g | for all g ∈ G,

and an arbitrarily chosen but fixed vertex v ∈ V }. (17)

By Lemma 2.4, the definition of Holρ(�) is independent of the choice of a fixed
base v ∈ V . We say that the holonomy of ρ ∈ C1(�;G) is trivial on a connected
graph � if Holρ(�) contains only the trivial subgroup {e} for all g ∈ G. Under the
connectivity assumption of �, the triviality of the global invariant Holρ(�) can be
completely determined by its seemingly “local” counterparts; see Lemma 2.5 below.
Of course, holonomy is not local in nature, as Holρ(v) encodes the information of all
oriented loops based at vertex v and in principle “touches” the entire space �.

Lemma 2.5 If � is connected, the following statements are equivalent:

(i) Holρ(�) is trivial;
(ii) Holρ(v) = {e} for some vertex v ∈ V ;
(iii) Holρ(v) = {e} for all vertices v ∈ V .
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Similarly to the definition of Holρ(�) in (17), the fundamental group π1(�) of
a connected graph � is also determined by the fundamental group π1(�, v0) at any
vertex v0 ∈ V up to conjugacy classes. Therefore, Lemmas 2.3 and 2.4 together assign
to each ρ ∈ C1(�;G) an equivalence class in Hom(π1(�),G)/G, in which G acts
on Hom(π1(�),G) by the inner automorphisms of G

φ �→ g−1φg, ∀φ ∈ Hom(π1(�),G), g ∈ G.

In other words, Lemmas 2.3 and 2.4 guarantee a well-defined map Hol : �1(�;G) →
Hom(π1(�),G)/G. Furthermore, note in (15) that Hol is invariant under the right
action (14) of C0(�;G) on C1(�;G), thus Hol naturally descends to a map from
C1(�;G)/C0(�;G) to Hom(π1(�),G)/G. The space Hom(π1(�),G)/G is known
as the representation variety of the fundamental group of � (the free product of a
finite number of copies of Z) into G. To simplify the exposition, we shall use the
same notation Hol to denote its quotient map induced by the canonical projection
C1(�;G) → C1(�;G)/C0(�;G). Theorem 2.6 below establishes the bijectivity of
the quotient map.

Theorem 2.6 If � is connected, the map Hol : C1(�;G)/C0(�;G) → Hom(π1(�),

G)/G defined as Hol([ρ]) = [holρ] is bijective. Moreover, Hom(π1(�),G)/G is in
one-to-one correspondence with equivalence classes of flat principal G-bundles Bρ

with ρ ∈ C1(�;G).

Proof We construct an inverse of Hol from Hom(π1(�),G)/G back to C1(�;G)/C0

(�;G). Fix an arbitrary vertex v0 ∈ �, and let χ : π1(�, v0) → G be a group homo-
morphism. By the connectivity of �, each vertex vi ∈ V of � is connected to v0
through an oriented path γ0i ; we orient these paths so that they all start at vertex v0,
and enforce γ00 = {v0}. Assign to each edge (i, j) ∈ E an element ρi j of the group
G defined by

ρi j := χ
(
γ0i ◦ (i, j) ◦ γ−1

0 j

)
. (18)

Clearly, ρi j = ρ−1
j i follows from the fact that χ is a group homomorphism; so does

ρi i = e for all vertices vi ∈ V . Of course, an edge potential ρ defined as in (18)
depends on the choice of the oriented paths {γ0i }; this dependence is removed after
passing to the orbit space [ρ] ∈ C1(�;G)/C0(�;G). In fact, let {γ̃0i } be an arbitrary
choice of |V | oriented paths connecting v0 to each vertex of � satisfying γ̃00 = {v0},
then

ρ̃i j = χ
(
γ̃0i ◦ (i, j) ◦ γ̃−1

0 j

)

= χ
(
γ̃0i ◦ γ−1

0i

)
χ
(
γ0i ◦ (i, j) ◦ γ−1

0 j

)
χ
(
γ0 j ◦ γ̃−1

0 j

)

= χ
(
γ0i ◦ γ̃−1

0i

)
ρi j χ

(
γ0 j ◦ γ̃−1

0 j

)
,
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i.e., as elements in C1(�;G), ρ̃ differs from ρ by an action of the vertex potential
f ∈ C0(�;G) defined as

fi := χ
(
γ0i ◦ γ̃−1

0i

)
, ∀vi ∈ V .

Therefore, (18) uniquely specifies an element [ρ] in C1(�;G)/C0(�;G) for any
χ ∈ Hom(π1(�),G).

It remains to show that Hol([ρ]) differs from χ by an inner automorphism of G. To
see this, let ω be an arbitrary oriented loop on � based at v0 consisting of consecutive
edges (v0, vi1), (vi1 , vi2), . . . , (viN , v0), where N is some nonnegative integer. Using
γ00 = {0} and γ−1

0i ◦ γ0i = {v0} for any vi ∈ V , we have

holρ(ω) = (
ρ0,iN ρiN ,iN−1 · · · ρi2,i1ρi1,0

)−1 = ρ0,i1ρi1,i2 · · · ρiN−1,iN ρiN ,0

= χ
(
γ00 ◦ (v0, vi1) ◦ γ−1

0,i1

)
χ
(
γ0,i1 ◦ (vi1 , vi2) ◦ γ−1

0,i2

)

· · ·χ(γ0,iN−1 ◦ (viN−1 , viN ) ◦ γ−1
0,iN

)
χ
(
γ0,iN ◦ (viN , v0) ◦ γ−1

00

)

= χ
({v0}

)
χ
(
(v0, vi1) ◦ (vi1 , vi2) ◦ · · · ◦ (viN , v0)

)
χ
({v0}

)−1 = χ(ω).

This calculation is clearly independent of the choices of oriented paths {γ̃0i }. Thus Hol
maps [ρ] exactly toχ , an element ofHom(π1(�, v0),G); the independenceofHol([ρ])
as an element of Hom(π1(�),G)/G with respect to the choice of the base point v0
follows from an essentially identical argument as given in the proof of Lemma 2.4.
The last statement follows from Lemma 2.1. ��

Theorem 2.6 is closely related to classification theorems of flat connections and
principal bundles with disconnected structure group (see, e.g. [143, Sect. 13.6]) and
[140, Sect. 13.9]). The synchronizability of an edge potential ρ on connected graph �,
which is equivalent to the triviality ofBρ (cf. Proposition 1.3), can now be interpreted
as the corresponding conjugacy class of Hom(π1(�),G). In fact, the conjugacy class
corresponding to trivial bundles Bρ is also trivial and reflects the triviality of the
holonomy of �. The proof of Corollary 2.7 further develops this observation.

Corollary 2.7 For a connected graph � and topological group G, an edge potential
ρ ∈ C1(�;G) is synchronizable if and only if Holρ(�) is trivial.

Proof Note that ρ ∈ C1(�;G) is synchronizable (see (1)) if and only if there exists
f ∈ C0(�;G) such that

f −1
i ρi j f j = e ∈ G ∀(i, j) ∈ E,

where e is the identify element of the structure group G. This is equivalent to saying
that

[ρ] = [e] ∈ C1(�;G)/C0(�;G), where e ∈ C1(�;G)

is defined as ei j = e ∈ G for all (i, j) ∈ E, (19)
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which by Theorem 2.6 implies

Hol([ρ]) = Hol([e]) = Ide ∈ Hom(π1(�),G)/G,

where Ide : π1(�) → G is the constant map sending all oriented loops in � to the
identity element e ∈ G. The conclusion follows immediately by noting that

Hol([ρ]) = Ide ⇔ for any v ∈ V , holρ(ω) = e for all oriented loops ω based at v

⇔ Holρ(v) = {e} for all vertices v ∈ V

⇔ Holρ(�) is trivial,

where for the last equivalence we invoked Lemma 2.5. ��
Corollary 2.7 on its own can be derived from an elementary argument. In fact,

without descending holρ from�v to π1(�, v), we can still define Holρ(v) as the image
holρ(�v), though holρ is not injective as a group homomorphism from �v to G. The
triviality of Holρ(v) still implies the existence of a vertex potential f ∈ C0(�;G)

compatible with ρ ∈ C1(�;G) (simply by setting fi = e on an arbitrarily chosen
vi ∈ V and progressively propagating values of f to neighboring vertices), and vice
versa. The exposition in this section, centered around Theorem 2.6, extends beyond
this elementary argument and strives to unveil a complete geometric picture underlying
the “correspondence between trivialities” discussed in Corollary 2.7. In future work
we intend to pursue novel synchronization algorithms based on metric and symplectic
structures on the moduli space of flat bundles (see, e.g. [7,80,155]).

2.2 A Twisted Hodge Theory for Synchronization Problems

In this section we relate synchronization to the first cohomology of a de Rham cochain
complex on � with coefficients twisted by a representation space F of the structure
group G. This can be interpreted as an instance of the standard de Rham cohomology
of flat bundles (see e.g. [70,131,132,157]). The fibre bundles considered in this section
are vector bundles (with fibre type F) associated with the principal bundle studied in
Sect. 2.1.When the vector space F is equippedwith ametric, the vector bundle inherits
a compatiblemetric, withwhich a twistedHodge Laplacian can be constructed; special
cases of this twisted Laplacian in the lowest degree include the connection Laplacian
[13,135]. In this setting, synchronizability is realized as a condition on the dimension
of the null space of the lowest degree twisted Hodge Laplacian, this is reminiscent of
the classical Riemann–Hilbert correspondence between flat connections and locally
constant sheaves. The spectral information of the twisted Hodge Laplacian serves as
a quantification of the the level of obstruction to synchronizability.

2.2.1 Flat Associated Bundles and Twisted Zero-Forms

Let Bρ be the synchronization principal bundle on � associated with ρ ∈ C1(�;G),
as in Proposition 1.3, and F be a topological space on which G acts on the left as a
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topological transformation group. Denote the action of G on F as τ : G → Aut(F).
Consider the right action of G on Bρ × F as

(p, v) �−→ (pg, τ (g−1)v).

The orbit space of this action, conventionally denoted as Bρ ×G F or Bρ[F], is
referred to as the F-bundle associated with principal bundle Bρ , or associated F-
bundle for short. We will denote the bundle projection as π : Bρ[F] → �, and denote
Bρ[F]x := π−1(x) for the fibre over x ∈ �. Strictly speaking, the graph � should be
distinguished from its underlying topological space, but we use the same notation �

for both as long as the meaning is clear from the context.
The same open cover U of � that trivializesBρ also trivializesBρ[F]. In fact, the

bundle transition function of Bρ[F] on any nonempty Ui ∩ Uj is the constant map
Ui ∩Uj → τ(ρi j ) ∈ Aut(F), where Ui ∩Uj → ρi j is the constant bundle transition
function from Ui to Uj for Bρ . Consequently, the associated bundle Bρ[F] is also
flat. Unless confusions arise, we shall refer toBρ[F] as the flat associated F-bundle
of Bρ , and denote the local trivialization of the associated bundle over Ui ∈ U using
the same notation φi : Ui × F → Bρ[F] as for the principal bundle Bρ .

In the context of synchronization problems, the most relevant associated bundles
are those with fibre F being a vector space and structure group G being the general
linear group GL(F). These types of fibre bundles are commonly referred to as vector
bundles. We will focus on flat associated vector bundles for the rest of the section,
though the definition of fibre projections and sections extend literally to general fibre
bundles. For simplicity of presentation, we will omit the notation τ and write the
bundle transition functions again as ρi j (instead of τ(ρi j )), since its action on a vector
space F is simply matrix-vector multiplication.

We now focus on sections, the analog of “functions” on smooth manifolds but with
values in fibre bundles. For a general fibre bundleE → B, a local section s : U → E|U
of E on an open set U of the base space B is a continuous map from U to E|U such
that π ◦ s is identified on U . A global section of E is a local section defined on the
entire base space B. We shall encode the data of synchronization problems into the
language of sections of flat associated bundles. The discrete nature of the problem
naturally motivates us to consider special classes of local and global sections that
are “constant” within each open set in U, in a sense to be made clear soon in local
coordinates. The followingnotion offibre projection is introduced to simplify notations
involving local coordinates.

Definition 2.8 For any i ∈ V , define the fibre projection over Ui ∈ U, denoted as

pi : Bρ[F]|Ui = π−1(Ui ) −→ F, (20)

as the composition of φ−1
i : Bρ[F]|Ui → Ui × F with the canonical projection

Ui × F → F . For any x ∈ Ui , the restriction of pi to the fibre Bρ[F]x , denoted
as pi,x : Bρ[F]x → F , is (by definition) simultaneously a homeomorphism between
topological spaces and an isomorphism between vector spaces.
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Definition 2.9 (Constant Local Sections) A constant local section s : Ui → Bρ[F]|Ui

of the bundle Bρ[F] on open set Ui ∈ U is a local section of Bρ[F] such that
pi,x (s(x)) is a constant element of F for all x ∈ Ui . We refer to the linear space of all
constant local sections onUi ∈ U as constant twisted local 0-forms on Ui , denoted as
�0

i (�;Bρ[F]).

Clearly, a constant local section s ∈ �0
i (�;Bρ[F]) is unambiguously determined

by evaluating s at vertex i , or equivalently by reading off the fibre projection image
si := pi (s(i)). We denote this characterization of s as

pi (s(x)) ≡ si , ∀x ∈ Ui , s ∈ �0
i (�;Bρ[F]). (21)

When we consider x ∈ Ui ∩ Uj where Ui ∩ Uj 	= ∅ (i.e. when (i, j) ∈ E), it
will be convenient to note that the fibre projection p j evaluates s(x) to p j (s(x)) =
p j ◦ p−1

i (pi (s(x))) ≡ ρ j i si . This can be understood as a “change-of-coordinates”
formula for constant local sections.

Let C0(�; F) := { f : V → F} denote the linear space of F-valued 0-cochains on
graph �. Every element f of C0(�; F) defines a collection of constant local sections
{ f (i) : Ui → π−1(Ui ) | Ui ∈ U}, one for each Ui ∈ U with

f (i)(x) := p−1
i,x ( fi ), ∀x ∈ Ui . (22)

We thus have the canonical identification

C0(�; F) =
∏

i∈V
�0

i (�;Bρ[F]). (23)

Of course, the constant local sections { f (i)} specified by f ∈ C0(�; F) generally do
not give rise to a global section of the bundle Bρ[F], unless they “patch together”
seamlessly on every nonempty intersection Ui ∩Uj , satisfying the condition

p−1
i,x ( fi ) = f (i)(x) = f ( j)(x) = p−1

j,x ( f j ), ∀x ∈ Ui ∩Uj

⇔ fi = pi,x ◦ p−1
j,x ( f j ) = ρi j f j , ∀x ∈ Ui ∩Uj . (24)

The right hand side of (24) is recognized as a solution to the synchronization problem
with prescribed edge potential ρ. We have thus proved the following lemma.

Lemma 2.10 The constant local sections specified by f ∈ C0(�; F) define a global
section on Bρ[F] if and only if

fi = ρi j f j , ∀(i, j) ∈ E, (25)

i.e., if and only if the vertex potential f : V → F is a solution to the F-synchronization
problem over � with respect to the edge potential ρ ∈ C1(�;G).
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When condition (25) is satisfied, the resulting global section constructed from con-
stant local sections is special among all global sections ofBρ[F] in that its restriction
to each Ui has constant image under fibre projection over Ui . This type of global
section will be of major interest in the remainder of this section.

Definition 2.11 (Locally Constant Global Section) A global section s : � → Bρ[F]
is said to be locally constant if

pi (s(x)) ≡ const. ∀x ∈ Ui . (26)

The linear space of all locally constant global sections onBρ[F]will be called locally
constant twisted global 0-forms on �, denoted as �0(�;Bρ[F]).

Naturally, �0(�;Bρ[F]) embeds into C0(�; F) by

�0(�;Bρ[F]) ↪→
∏

i∈V
�0

i (�;Bρ[F]) = C0(�; F)

s �−→ (s|U1 , . . . , s|Un )

(27)

where n = |V | stands for the total number of vertices in �. The objective of an F-
synchronization problem over � with respect to ρ ∈ C1(�;G) can be interpreted in
this geometric framework as searching for an element of�0(�;Bρ[F]) in the feasible
domain C0(�; F).

The existence of global sections is crucial information for the structure of a fibre
bundle. For principal bundlesBρ considered in Sect. 2.1, a single global section dic-
tates the triviality of the bundle. Though the triviality of a principal bundle is equivalent
to its associated vector bundle (see Proposition 2.15),Bρ[F] is trivial if and only if it
admits d = dim F global sections s1, . . . , sd that are linearly independent in the sense
that s1x , . . . , s

d
x on each fibre Fx are linearly independent as vectors in F (cf. [114,

Theorem 2.2]). A collection of linearly independent global sections are said to form a
global frame (see e.g. [100, Chap. 5]) for the vector bundle, since they define a basis
(frame) for each fibre. As will be established in Proposition 2.15, the fact that the bun-
dleBρ[F] is flat further reduces its triviality to finding d linearly independent locally
constant global sections, for which linear independence only needs to be checked at
the vertices of �. More precisely, adopting notation si := pi (s(i)),∀i ∈ V for an
arbitrary section s of Bρ[F], we define the linear independence of locally constant
global sections of Bρ[F] as follows.
Definition 2.12 A collection of k (1 ≤ k ≤ d = dim F) locally constant global
sections s1, . . . , sk ∈ �0(�;Bρ[F]) are said to be linearly independent if s1i , . . . , ski
are linearly independent as vectors in F at every vertex i ∈ V .

By the embedding (27), any s ∈ �0(�;Bρ[F]) can be equivalently encoded into
a vector of dimension nd, where d = dim F and n = |V | stands for the number
of vertices of �. In fact, just as for any vertex potential in C0(�; F), one simply
needs to vertically stack the column vectors {si = pi s(i) | i ∈ V }, the fibre projection
images of s at each vertex. We shall write [s] for such a vector of length nd that
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encodes s ∈ �0(�;Bρ[F]), and refer to the vector as the representative vector of the
section. The linear independence of locally constant global sections is easily seen to
be equivalent to the linear independence of the representative vectors of length nd, as
the following lemma clarifies.

Lemma 2.13 A collection of k (1 ≤ k ≤ d = dim F) locally constant global sections
s1, . . . , sk are linearly independent if and only if [s1], . . . , [sk] are linear independent
as vectors of length nd .

Proof Since Bρ[F] is a flat bundle and the graph � is assumed connected, the linear
independence of locally constant global sections s1, . . . , sk is equivalent to the linear
independence of vectors s1i , . . . , s

k
i at any vertex i : since ρ j i ∈ G are all invertible,

vectors s1i , . . . , s
k
i are linearly independent if and only if s1j = ρ j i s1i , . . . , s

k
j = ρ j i ski

are linearly independent. For definiteness, let us fix i = 1. Write S for the nd-by-k
matrix with [s j ] as its j th column, S1 for the d × k matrix with s j1 as its j th column,
e = [1, . . . , 1]� for the column vector of length d with all entries equal to one, and P
for the nd-by-nd block diagonal matrix with ρ j1 at its j th diagonal block (adopting
the convention ρ11 = In×n). The conclusion follows from the matrix identity

S = P(e ⊗ S1)

and

rank(S) = rank
([1, . . . , 1]�) · rank(S1) = rank(S1). ��

Remark 2.14 Note that the equivalence of two notions of linear independence only
holds if we already know that s1, . . . , sk are global sections. For general f 1, . . . , f k ∈
C0(�; F) that are linearly independent as nd-vectors, their corresponding representa-
tives in

∏
i∈V �0

i (�;Bρ[F]) do not necessarily define global sections, nor are they in
general linearly independent as constant local sections on eachUi . A simple example
is to consider a graph � consisting of two vertices V = {v1, v2} and only one edge
connecting them, F = R

2, and G is the trivial group consisting of only the 2 × 2
identity matrix: vectors [ f 1] = (1, 0, 1, 0)� and [ f 2] = (1, 0, 0, 1)� are linearly
independent as vectors in R

4 but do not define linearly independent constant local
sections on U1.

With all essential concepts presented,we are ready to establish ourmain observation
in this subsection.

Proposition 2.15 Let G be a topological transformation group acting on a (real or
complex) d-dimensional vector space F on the left, � = (V , E) be a connected undi-
rected graph, and ρ ∈ C1(�;G) a G-valued edge potential. The following statements
are equivalent:

(i) Bρ is trivial;
(ii) Bρ admits a global section;
(iii) Bρ[F] is trivial;
(iv) Bρ[F] admits d = dim F linearly independent locally constant global sections.
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Proof The equivalence of (i) and (iii) follows from [140, Thm. 4.3]. The equivalence
(i)⇔(ii) follows from standard differential geometry, see e.g. [114,140]; similarly
standard is the equivalence between (iii) and the existence of n linearly independent
global sections onBρ[F]. To show the equivalence (iv)⇔(iii), it suffices to prove that
a trivial flat vector bundle Bρ[F] admits d linearly independent global sections that
are also locally constant. To see this, recall from Proposition 1.3 and Corollary 2.7
that

Bρ[F] is trivial ⇔ Bρ is trivial ⇔ Hol([ρ]) is trivial
⇔ ∃ g ∈ �0

ρ(�;G) s.t. g−1
i ρi j g j = e ∀(i, j) ∈ E

⇔ ∃ g ∈ �0
ρ(�;G) s.t. ρi j = gi g

−1
j ∀(i, j) ∈ E .

Let {e1, . . . , ed} be a basis for F , and for each k = 1, . . . , d define sk : � → Bρ[F]
as

sk(x) = p−1
i,x (gi ek) ∀x ∈ Ui .

It is straightforward to verify by definition that sk is a well-defined global section and
is locally constant. That s1, . . . , sd are linearly independent as global sections follows
from the fact that pi,x : F → Bρ[F]x are isomorphisms between vector spaces. ��
Remark 2.16 The global section in (ii) is also “locally constant” in a sense analogous
to Definition 2.11 but for principal bundles; we do not introduce this definition here
since global sections on principal bundles will not be pursued directly in this work.

Proposition 2.15 points out an alternative approach for determining the synchroniz-
ability of an edge potential ρ ∈ C1(�;G), at least when G is a matrix group GL(F):
it suffices to check the existence of d = dim F linearly independent locally constant
global sections on the flat associated vector bundle Bρ[F]. Such existence can be
stated as a cohomological obstruction. We will pursue such a formulation in the next
section. In Sect. 2.2.3 we will utilize the inner product structure on F to reduce the
structure group of a GL(F)-bundle to O(d) or U (d), as commonly seen in synchro-
nization problems [12,13,34]. If the underlying fibre bundle is orientable, the same
procedures further reduce the structure group to SO(d) or SU(d), corresponding to
synchronization problems considered in [137,154].

2.2.2 Twisted One-Forms and De Rham Cohomology

In a smooth category, sections on a fibre bundle can be differentiated by a covariant
derivative. The resulting object is a skew-symmetric “direction-dependent” section on
the same bundle, or equivalently a section of a new fibre bundle which is the tensor
product of the original fibre bundle with the bundle of 1-forms on the base manifold.
We shall generalize this picture to the discrete/combinatorial setting for flat associated
bundles Bρ[F] that naturally arise in synchronization problems.
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Recall from discrete Hodge theory [49,53,85,86,101] that discrete 0-forms and
1-forms on a graph � are defined as

�0(�) := { f : V → K}, �1(�) := {ω : E → K | ωi j = −ω j i ∀(i, j) ∈ E},

where K = C or R, which we will assume to be the number field for the vector space
F . Let us define a local version of �1(�) by

�1
i (�) : = {ω : Ni → K | ω jk = −ωk j ∀( j, k) ∈ Ni },

where Ni := {( j, k) ∈ E | j = i or k = i}. (28)

In other words, elements of �1
i (�) are restrictions of elements of �1(�) to Ui . By a

partition of unity argument, it is straightforward to identify �1(�) with

{
(ω(1), . . . , ω(n)) ∈

∏

i∈V
�1

i (�) |ω(i)
i j = ω

( j)
i j l(= −ω

( j)
j i = −ω

(i)
j i r)

}
. (29)

Definition 2.17 (Constant Local 1-forms) A constant twisted local 1-form on open set
Ui ∈ U is a local section of �0

i (�;Bρ[F])⊗�1
i (�). Equivalently, a constant twisted

local 1-form on Ui is a map ω : Ui × Ni → Bρ[F] such that:

(i) For any ( j, k) ∈ Ni , ω jk : Ui → Bρ[F] is a constant local section on Ui , i.e.,

pi,x (ωi j (x)) ≡ const.;

(ii) For any x ∈ Ui and any Uj ∈ U such that Ui ∩Uj 	= ∅, ωi j (x) = −ω j i (x).

We denote the linear space of all constant twisted local 1-forms on Ui as
�1

i (�;Bρ[F]).
A similar notion of globally defined twisted 1-forms will also be of interest. In

the discrete setting of synchronization problems, it suffices to consider twisted global
1-forms that are locally constant under fibre projections.

Definition 2.18 (Locally Constant Global 1-forms) A locally constant twisted global
1-form is a section of the tensor product bundle �0(�;Bρ[F]) ⊗ �1(�). In other
words, a locally constant twisted global 1-form is a map

ω : {(i, ( j, k)) | i ∈ V , ( j, k) ∈ Ni } → Bρ[F]

such that:

(i) For any Ui ∈ U, ω|Ui is a constant twisted local 1-form on Ui ;
(ii) For any x ∈ Ui ∩Uj 	= ∅, pi,x (ω|Ui (x)) = ρi j p j,x (ω|Uj (x)).

We denote the linear space of all locally constant twisted global 1-forms on � as
�1(�;Bρ[F]).
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The definition of �1(�;Bρ[F]) already characterized the condition under which
a given collection of constant twisted local 1-forms {ω(i) ∈ �1

i (�;Bρ[F])}, one for
eachUi ∈ U, can be patched to form a locally constant twisted global 1-form. Similarly
to (24), it suffices to check the compatibility under “change of coordinates”.

Lemma 2.19 A collection of constant twisted local 1-forms {ω(i) ∈ �1
i (�;Bρ[F])}

defines a locally constant twisted global 1-form if and only if

pi,x
(
ω

(i)
i j (x)

) = ρi j p j,x
(
ω

( j)
i j (x)

)
, ∀(i, j) ∈ E . (30)

Since both sides of equality (30) are constants, we shall simplify (30) as

pi
(
ω

(i)
i j

) = ρi j p j
(
ω

( j)
i j

)
, ∀(i, j) ∈ E . (31)

A significant difference between�1(�;Bρ[F]) and�0(�;Bρ[F]) is that a locally
constant twisted global 1-form does not naturally arise from an F-valued 1-cochain
in C1(�; F) := {ω : E → F | ωi j = −ω j i }, and these cochains play an essential role
in the discrete Hodge theory. For instance, if we set ω(i)

i j (x) := p−1
i,x (ωi j ) =: −ω

(i)
j i (x)

for all x ∈ Ui , then {ω(i) | i ∈ V } gives rise to a twisted global 1-form if and only if

ωi j = pi,x
(
ω

(i)
i j (x)

) = ρi j p j,x
(
ω

( j)
i j (x)

) = −ρi j p j,x
(
ω

( j)
j i (x)

)

= −ρi jω j i , ∀(i, j) ∈ E,

a condition that is generally not satisfied unless ρi j ≡ e ∈ G for all (i, j) ∈ E . This
observation indicates thatC1(�; F) is not a geometric object naturally associated with
the structure of the vector bundle Bρ[F], but rather a special case of �1(�;Bρ[F])
when the vector bundleBρ[F] is trivial. In this case ρi j = gi g

−1
j , ∀(i, j)... ∈ E , for

a G-valued vertex potential g : V → G and the “gauge-transformed” constant twisted
local 1-forms {p−1

i,x (giωi j ) | i ∈ V , (i, j) ∈ E} satisfy the compatibility condition
(30). Exploring the action of the gauge group on twisted forms will be considered in
the future.

With an appropriate notion of twisted 1-forms, we are ready to define the twisted
differential operator on twisted 0-forms. This operation is a discrete analog of the
covariant derivatives for smooth fibre bundles, and in the meanwhile, a fibre bundle
analog of the discrete exterior derivative in discrete Hodge theory.

Definition 2.20 (Twisted Differential on Twisted 0-Cochains) For ρ ∈ C1(�;G) and
Ui ∈ U, the ρ-twisted differential is a linear operator taking any f ∈ C0(�; F) =∏

i∈V �0
i (�;Bρ[F]) to a collection of n constant twisted local 1-forms, one for each

Ui ∈ U

dρ :
∏

i∈V
�0

i (�;Bρ[F]) −→
∏

i∈V
�1

i (�;Bρ[F])

f �−→ (
(dρ f )(1), . . . , (dρ f )n

)
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where each (dρ f )(i) ∈ �1
i (�;Bρ[F]) is defined as

(dρ f )(i)i j (x) := p−1
i,x ( fi − ρi j f j ) =: −(dρ f )(i)j i (x), ∀Ui ∈ U,

∀x ∈ Ui ∩Uj 	= ∅, f ∈ �0
ρ(�; F). (32)

Though dρ is defined as a linear operator mapping into a collection of constant
twisted local 1-forms, a somewhat surprising fact is that these constant twisted local
1-forms do patch together to form an element of �1(�;Bρ[F]).
Proposition 2.21 The twisted differential dρ maps C0(�; F) into �1(�;Bρ[F]).

Proof It suffices to check (31) for the collection of constant twisted local 1-forms
{(dρ f )(i) | i = 1, . . . , n}. In fact,

pi ((dρ f )(i)i j ) = fi − ρi j f j = −ρi j ( f j − ρ j i fi )

= −ρi j p j
(
(dρ f )( j)j i

) = ρi j p j
(
(dρ f )( j)i j

) ∀(i, j) ∈ E . ��

Since the graph � (viewed as a simplicial complex) does not contain any 2-
simplices, dρ is the only differential needed for specifying theρ-twisted chain complex

0 −→ C0(�; F)
dρ−→ �1(�;Bρ[F]) −→ 0. (33)

The only non-trivial cohomology group in this de Rham-type chain complex is at the
0th order

H0
ρ (�;Bρ[F]) := ker dρ.

Proposition 2.22 ker dρ = �0(�;Bρ[F]).

Proof Note in the definition (32) that

f ∈ ker dρ ⇔ fi = ρi j f j , ∀(i, j) ∈ E .

The conclusion then follows from Lemma 2.10. ��

By Proposition 2.15, detecting the synchronizability of ρ ∈ C1(�;G) now reduces
to checking if dim ker dρ = dim F holds. Furthermore, in scenarios where this
dimension equality does not hold, dim ker dρ still provides a quantitative measure
for the extent to which synchronizability fails. In this sense, the cohomology group
H0

ρ (�; F) serves as the opposite of a “topological obstruction” to the synchronizability
of ρ ∈ C1(�;G).
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2.2.3 Twisted Hodge Theory and Synchronizability

In the remainder of this section, we will focus on flat associated bundlesBρ[F] with
the vector space F equipped with an inner product 〈·, ·〉F : F×F → K, whereK = C

orR depending on the vector space F . This inner product on F will be further assumed
with G-invariance, in the sense that

〈gx, gy〉F = 〈x, y〉F ∀x, y ∈ F, g ∈ G.

In the terminology of representation theory, we assume that the representation ofG on
F is unitary (cf. [25, Sect. II.1]). This inner product introduces other related concepts
into the geometric framework:

– F is equipped with a G-invariant norm ‖x‖F = 〈x, x〉F for all x ∈ F , which
further induces an operator norm on G via duality

‖g‖ := sup
m∈F‖m‖	=0

‖gm‖
‖m‖ , ∀g ∈ G.

For simplicity, we will use the same notation for the norm on F and the dual norm
on G.

– For any g ∈ G, its formal adjoint with respect to the inner product 〈·, ·〉F , denoted
as g∗, is defined as

〈gx, y〉 = 〈x, g∗y〉 ∀x, y ∈ F .

Note that ‖g∗‖ = ‖g‖ for any g ∈ G.
– The twisted 0-cochains C0(�; F) and locally constant twisted global 1-forms

�1(�;Bρ[F]) are equipped with inner products and norms induced from the
G-invariant inner product 〈·, ·〉F , as follows:

〈 f , g〉 :=
∑

i∈V
di 〈 fi , gi 〉F , ∀ f , g ∈ C0(�; F), (34)

〈ω, η〉 := 1

2

∑

i∈V

∑

j :(i, j)∈E
wi j

〈
pi
(
ω

(i)
i j

)
, pi

(
η

(i)
i j

)〉
F , ∀ω, η ∈ �1(�;Bρ[F]),

(35)

‖ f ‖ := 〈 f , f 〉 12 , ‖ω‖ := 〈ω,ω〉 12 , ∀ f ∈ C0(�; F), ω ∈ �1(�;Bρ[F]),
(36)

wherewi j is theweight on edge (i, j) ∈ E and di =∑
j :(i, j)∈E wi j is theweighted

degree of vertex vi . Note that by the G-invariance of 〈·, ·〉F the sum in (35) can be
equivalently written as (see Appendix A for a quick calculation)

〈ω, η〉 =
∑

(i, j)∈E
wi j

〈
pi
(
ω

(i)
i j

)
, pi

(
η

(i)
i j

)〉
F . (37)
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Through local trivializations, an inner product on the vector space F also induces
a bundle metric on Bρ[F], i.e., a section of the second symmetric power of the
dual bundle of Bρ[F] which restricts to each fibre as a symmetric positive definite
quadratic form. As is well known (see e.g. [143, Chap. 7]), a bundle metric can be used
to reduce the structure group of a vector bundle from GL(F) to O(d) orU (d), where
d = dim(F). It suffices to consider global sections ofBρ[F] for ρ ∈ C1(�; O(d)) or
ρ ∈ C1(�;U (d)) for many synchronization problems of practical interest [12,13,34],
instead of requiring ρ ∈ C1(�;GL(d;R)) or ρ ∈ C1(�;GL(d;C)). Other important
types of synchronization problem involving SO(d) and SU(d) can be treated in this
geometric framework as determining global sections of orientable vector bundles (see
e.g. [143, Chap. 7] or [20, Prop. 6.4]). Also note that ρ−1

i j = ρ∗
i j for edge potentials

in all these special matrix groups. Since the bundle reduction allows us to focus only
on synchronization problems with orthogonal or unitary matrices, without loss of
generality, we will always assume the edge potentials satisfy ρ j i = ρ−1

i j = ρ∗
i j for all

(i, j) ∈ E . The same is assumed in [12,13].
The inner product structures onC0(�; F) and�1(�;Bρ[F]) enable us to define the

ρ-twisted codifferential δρ : �1(�;Bρ[F]) → C0(�; F), the formal adjoint operator
of the twisted differential dρ : C0(�; F) → �1(�;Bρ[F]) in the chain complex
(33), eventually leading to a twisted Hodge theory for synchronization problems. The
definition of δρ is consistent with the discrete divergence operator in discrete Hodge
theory [85,86]:

δρ : �1(�;Bρ[F]) −→ C0(�; F)

θ �−→ (
(δρθ)|U1 , . . . , (δρθ)|Un

) (38)

where each (δρθ)|Ui ∈ is defined by

(δρθ)|Ui (x) = p−1
i,x

⎛

⎝ 1

di

∑

j :(i, j)∈E
wi j pi (θ

(i)
i j )

⎞

⎠ ∀x ∈ Ui , θ ∈ �1(�;Bρ[F])

(39)

or equivalently

(δρθ)i = pi
(
(δρθ)|Ui (i)

) = 1

di

∑

j :(i, j)∈E
wi j pi

(
θ

(i)
i j

) ∀i ∈ V , θ ∈ �1(�;Bρ[F]).

(40)

Proposition 2.23 With respect to the inner products (34) and (35), the twisted codif-
ferential δρ : �1(�;Bρ[F]) → C0(�; F) defined by (39) is the formal adjoint of the
twisted differential dρ : C0(�; F) → �1(�;Bρ[F]) defined by (32).
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Proof Note that for any f ∈ C0(�; F), θ ∈ �1(�;Bρ[F]),

〈 f , δρθ〉 =
∑

i∈V
di

〈

fi ,
1

di

∑

j :(i, j)∈E
wi j pi

(
θ

(i)
i j

)
〉

F
=
∑

i∈V

∑

j :(i, j)∈E

〈

fi , wi j pi
(
θ

(i)
i j

)
〉

F

=
∑

(i, j)∈E

[〈
fi , wi j pi

(
θ

(i)
i j

)〉
F + 〈

f j , w j i p j
(
θ

( j)
j i

)〉
F

]

=
∑

(i, j)∈E

〈
fi , wi j pi

(
θ

(i)
i j

)〉
F +

∑

(i, j)∈E

〈
f j , w j i p j

(
θ

( j)
j i

)〉
F =: (I) + (II).

We keep the term (I) intact and manipulate the term (II) using wi j = w j i and the
G-invariance of 〈·, ·〉F :

(II) =
∑

(i, j)∈E

〈
ρi j f j , w j iρi j p j

(
θ

( j)
j i

)〉
F

(∗)==
∑

(i, j)∈E

〈
ρi j f j , wi j pi

(
θ

(i)
j i

)〉
F

(∗)== −
∑

(i, j)∈E

〈
ρi j f j , wi j pi

(
θ

(i)
i j

)〉
F ,

where we used ρi j p j
(
θ

( j)
j i

) = pi
(
θ

(i)
j i

)
(the compatibility condition (31)) at (∗), and

the skew-symmetry θ
(i)
j i = −θ

(i)
i j at (∗∗). Re-combining (I) and (II), we conclude that

〈 f , δρθ〉 = (I) + (II) =
∑

(i, j)∈E

〈
fi , wi j pi (θ

(i)
i j )
〉
F −

∑

(i, j)∈E

〈
ρi j f j , wi j pi

(
θ

(i)
i j

)〉
F

=
∑

(i, j)∈E

〈
fi − ρi j f j , wi j pi

(
θ

(i)
i j

)〉
F

=
∑

(i, j)∈E
wi j

〈
pi
(
(dρ f )(i)i j

)
, pi

(
θ

(i)
i j

)〉
F = 〈dρ f , θ〉. ��

The chain complex (33) is now also equipped with formal adjoints:

0 −−→←−− C0(�; F)
dρ−−→←−−
δρ

�1(�;Bρ[F]) −−→←−− 0. (41)

Two twisted Hodge Laplacians can be constructed from this chain complex:

�(0)
ρ := δρdρ :C0(�; F) −→ C0(�; F), (42)

�(1)
ρ := dρδρ :�1(�;Bρ[F]) −→ �1(�;Bρ[F]). (43)

It is straightforward to see from these definitions that both twisted Laplacians are
positive definite. In view of Hodge theory, it would be of interest to investigate the
harmonic forms in the complex (41), the kernels of �

(0)
ρ and �

(1)
ρ .
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Lemma 2.24 ker dρ = ker�(0)
ρ and ker δρ = ker�(1)

ρ .

Proof Clearly ker dρ ⊂ ker�(0)
ρ . For the reverse inclusion, note that by adjointness

0 = 〈 f ,�(0)
ρ f 〉 = ‖dρ f ‖2 ∀ f ∈ ker�(0)

ρ ,

which implies dρ f = 0. The equality involving ker�(1)
ρ follows from a similar argu-

ment. ��

The following decomposition results follow from standard Hodge-theoretic argu-
ments.

Theorem 2.25 C0(�; F) = ker�(0)
ρ ⊕ im δρ = ker dρ ⊕ im δρ , �1(�;Bρ[F]) =

im dρ ⊕ ker�(1)
ρ = im dρ ⊕ ker δρ .

Proof We only present the proof for the decomposition of C0(�; F); the decompo-
sition for �1(�; F) is similar. First note that both C0(�; F) and �1(�;Bρ[F]) are
finite dimensional. The subspace ker dρ and im δρ are orthogonal with respect to the
inner product (34), since if f ∈ ker dρ and δρθ ∈ im δρ ,

〈 f , δρθ〉 = 〈dρ f , θ〉 = 0.

It remains to prove that each f ∈ C0(�; F) can be decomposed into a linear com-
bination of elements in ker�(0)

ρ and im δδ . If dρ f = 0, the decomposition is trivial.
Otherwise, consider the following Poisson equation:

�(1)
ρ θ = dρ f . (44)

We claim that (44) has a solution θ ∈ �1(�;Bρ[F]) as long as dρ f 	= 0. In fact, by
Fredholm alternative (see e.g. an exposition for the finite dimensional case in [101]
which suffices for our purpose), if dρ f /∈ im�

(1)
ρ , then dρ f ∈ ker�(1)

ρ = ker δρ ;
however, dρ f ⊥ ker δρ since

〈dρ f , ω〉 = 〈 f , δρω〉 = 0 ∀ω ∈ ker δρ.

This proves that (44) has a solution θ ∈ �1(�;Bρ[F]) for dρ f 	= 0. We can thus
split f ∈ C0(�; F) into

f = ( f − δρθ) + δρθ,
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in which δρθ ∈ im δρ , and f − δρθ ∈ ker dρ since

dρ( f − δρθ) = dρ f − dρδρθ = dρ f − �(1)
ρ θ = 0. ��

Remark 2.26 Proposition 2.22 and Theorem 2.25 completely characterized the embed-
ding (27): the orthogonality complement (with respect to the inner product (34)) of
the linear space of solutions to the F-synchronization problem on � with respect to
ρ ∈ �1(�;G) is exactly the image of the twisted codifferential (39). In fact, one rec-
ognizes fromC0(�; F) = ker�(0)

ρ ⊕ im δρ , ker�
(0)
ρ = ker dρ , and H0

ρ (�;Bρ[F]) =
ker dρ the well-known Hodge theorem H0

ρ (�;Bρ[F]) = ker�(0)
ρ .

2.2.4 Graph Connection Laplacian and Cheeger-Type Inequalities for Graph
Frustration

In this section, we connect our geometric framework to the computational aspects
of synchronization algorithms. As pointed out in Sect. 2.2.2, for cases where G =
O(d) or G = U (d), the synchronizability of an edge potential ρ ∈ C1(�;G) is
equivalent to whether or not the equality dim ker dρ = d holds. Lemma 2.24 reduces

the synchronizability further to the dimension of ker�(0)
ρ . With identification (23),

it can be noticed that �
(0)
ρ is exactly the graph connection Laplacian (GCL) in the

literature of synchronization problems, random matrix theory, and manifold learning
(see e.g. [13,58,97,135]). Recall from [13] that the graph connection Laplacian for
graph � and edge potential ρ ∈ C1(�;G) is defined as

L1 = D1 −W1, (45)

whereW1 ∈ K
nd×nd is an n×n block matrix withwi jρi j ∈ K

d×d at its (i, j)th block,
and D1 ∈ K

nd×nd is block diagonal with di Id×d ∈ K
d×d at its (i, i)th block. To see

that �(0)
ρ coincides with L1, notice that

〈 f ,�(0)
ρ f 〉 = ‖dρ f ‖2 =

∑

(i, j)∈E
wi j‖ fi − ρi j f j‖2

= 1

2

∑

i, j∈V
wi j‖ fi − ρi j f j‖2 = 1

2
[ f ]�L1[ f ], ∀ f ∈ C0(�; F).

Theorem 2.25 translates into this combinatorial setting as a decomposition result for
thematrix L1, as presented below in Proposition 2.27.We denote n = |V | andm = |E |
for the graph � = (V , E).

Proposition 2.27 The graph connection Laplacian L1 ∈ K
nd×nd admits a decompo-

sition

L1 = [δρ][dρ], [δρ] ∈ K
nd×md , [dρ] ∈ K

md×nd , (46)
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where [dρ] is an m-by-n block matrix in which the (i, j)th block is given by

[dρ]i j =

⎧
⎪⎨

⎪⎩

Id×d if edge i starts at vertex j,

−wk jρk j if edge i starts at vertex k and ends at vertex j,

0 otherwise,

(47)

and [δρ] is an n-by-m block matrix in which the (i, j)th block is given by

[δρ]i j =
⎧
⎨

⎩

wik

di
Id×d if edge j starts at vertex i and ends at vertex k,

0 otherwise.
(48)

Note that here each edge (i, j) appears twice in E with opposite orientations.

The Hodge decomposition (46) immediately leads to the following observation,
which reflects the geometric fact that there do not exist more than n = dim F linearly
independent global sections on the vector bundle Bρ[F].
Proposition 2.28 The dimension of the null eigenspace of L1 cannot exceed n, the
dimension of both the column space of [dρ] and the row space of [δρ].

By Lemma 2.13, if there are d linearly independent vectors in the kernel space
of L1, then they give rise to d locally constant global sections on Bρ[F] that are
also linearly independent as global sections, which indicates the triviality of the vec-
tor bundle Bρ[F] and the synchronizability of ρ ∈ C1(�;G). Note that an analogy
of this result for graphs with multiple connected components also holds, though we
assumed � is connected throughout this paper: a graph with k ≥ 1 connected com-
ponents and a prescribed O(d)-valued edge potential is synchronizable if and only if
the dimension of the null eigenspace of L1 is kd. This geometric picture is consistent
with the main spectral relaxation algorithm [13, Algorithm 2.5] when the edge poten-
tial is synchronizable. Basically, the spectral relaxation procedure works as follows:
first, extract d eigenvectors x1, . . . , xd corresponding to the smallest d eigenvalues
of L1; second, form the nd × d matrix X = [x1, . . . , xd ] and split it vertically into
n blocks X1, . . . , Xn of equal size d × d; finally, find the closest orthogonal matrix
Oi to each Xi by polar decomposition, and construct the desired synchronizing vertex
potential f ∈ C0(�; O(d)) by setting fi = Oi . Since ker�(0)

ρ = d for any syn-
chronizable edge potentialρ, the d eigenvectors x1, . . . , xd of L1 all lie in the null
eigenspace of L1, which provide exactly the d linearly independent global sections
needed to trivialize the vector bundle; all that remains for obtaining a desired synchro-
nizing vertex potential is to rescale the columns of each block Xi ∈ K

d×d to achieve
orthonormality, which is exactly what is done in the polar decomposition step when
ρ is synchronizable. The twisted cohomology framework developed in this section
suggests the following improvements when applying the spectral relaxation algorithm
for determining synchronizability of a given edge potential:

(1) Instead of checking dim ker�(0)
ρ , one can simply check dim ker dρ or dim ker δρ

(which gives dim im δρ). Both [dρ] and [δρ] matrices are much smaller in size
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compared with L1, and the dimension can be determined by QR decomposition
rather than the more expensive eigen-decomposition;

(2) Instead of performing polar decomposition for each d × d block Xi , which
involves the relatively more expensive SVD, it suffices to invoke a Gram–Schmidt
orthonormalization. If synchronizability of ρ is confirmed by the dimension test
in a previous step, the Gram–Schmidt procedure can be performed for the entire
matrix X ∈ K

nd×d in one pass (with a minor modification of keeping the columns
to have norm n instead of 1), as opposed to being carried out for each individual
block Xi .

Remark 2.29 The Hodge decomposition (46) also suggests an alternative approach to
obtaining n linearly independent locally constant global sections on Bρ[F]: instead
of directly solving for the null eigenspace of L1, we can look for the orthogonal
complement of im[δρ]. Note, however, that the domain of [δρ] should not be taken
as the entire K

md , since δρ is defined on �1(�;Bρ[F]), in which elements satisfy
the compatibility condition (31). Constructing such a basis matrix B ∈ K

md×md and
computing the orthogonal complement of the column space of [δρ]B turns out not to
be much simpler than finding the orthogonal complement of L1 (i.e. finding the null
eigenspace of L1 directly).

In the more general setting where the edge potential ρ is not assumed synchroniz-
able, the geometric picture becomes muchmore involved. Of central importance to the
relaxation algorithms and Cheeger inequalities in [13] is to minimize the frustration
of a graph � with respect to a prescribed group potential:

ν(�) = inf
g∈C0(�;O(d))

ν(g)

= inf
g∈C0(�;O(d))

1

2d

1

vol(�)

∑

i, j∈V
wi j‖gi − ρi j g j‖2F, where vol(�) =

∑

i∈V
di .

(49)

As shown in (the proof of) Proposition 2.15, an O(d)-valued edge potential ξ ∈
C1(�; O(d)) is synchronizable if and only if there exists g ∈ C0(�; O(d)) such that
ξi j = gi g

−1
j for all (i, j) ∈ E . The frustration ν(�) defined in (49) can thus be

rewritten as

ν(�) = 1

2d

1

vol(�)
inf

g∈C0(�;O(d))

∑

i, j∈V
wi j‖gi g−1

j − ρi j‖2F

= 1

2d

1

vol(�)
inf

ξ∈C1
sync(�;O(d))

∑

i, j∈V
wi j‖ξi j − ρi j‖2F,

where we define

C1
sync(�; O(d)) := {ξ ∈ C1(�; O(d)) | ξ synchronizable}

= {ξ ∈ C1(�; O(d)) |Holξ (�) is trivial}.
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Therefore, in the fibre bundle framework, a synchronization problem asks for a syn-
chronizable edge potential that is “as close as possible” to a prescribed edge potential,
or geometrically speaking, for a trivial flat bundle “as close as possible” to a given flat
bundle. One approach, from the point of view of Proposition 2.15, is to find d linearly
independent cochains in C0(�;Rd) that are “as close as possible” to being a global
frame ofBρ[Rd ] in the sense of minimizing the frustration of a Sd−1-valued cochain

η( f ) = 〈 f ,�(0)
ρ f 〉

‖ f ‖2 =
1
2

∑
i, j∈V wi j‖ fi − ρi j f j‖2
∑

i∈V di‖ fi‖2

= 1

2 vol(�)
[ f ]�L1[ f ], ∀ f ∈ C0(�;Sd−1), ‖ f ‖ 	= 0,

which equals zero if and only if f defines a global section onBρ[Rd ] (the constraint
‖ f ‖ 	= 0 is also indispensable from a geometric point of view, as any vector bundle
trivially admits the constant zero global section). This provides a geometric interpreta-
tion of the spectral relaxation algorithm in [13]. From a perturbation point of view, the
magnitudes of the smallest n eigenvalues of�(0)

ρ measure the deviation from degener-
acy of the d-dimensional eigenspace of lowest frequencies, and can thus be interpreted
as the extent to whichBρ[Rd ] deviates from admitting d linearly independent global
sections and being a trivial bundle. The Cheeger-type inequality established in [13]
quantitatively confirms this geometric intuition relating ν(�) to the magnitude of d
smallest eigenvalues of D−1

1 L1 (the random walk version of the graph connection
Laplacian):

1

d

d∑

k=1

λk(D
−1
1 L1) ≤ ν(�) ≤ Cd3

λ2(L0)

d∑

k=1

λk(D
−1
1 L1), (50)

where C > 0 is a constant, λ2(L0) is the spectral gap of � associated with the
graph Laplacian L0, and λk(D

−1
1 L1) is the kth smallest eigenvalue of D−1

1 L1. (The
actual version stated in [13] is for the smallest d eigenvalues of the normalized graph
connection Laplacian D−1/2

1 L1D
−1/2
1 , but note that D−1/2

1 L1D
−1/2
1 has the same

eigenvalues as D−1
1 L1).

Classical Cheeger inequalities [3,35,39] relate isoperimetric constants or cuts on
graphs and manifolds to the spectral gap of a graph Laplacian or Laplace–Beltrami
operator. There have been Cheeger-type inequalities for simplicial complexes with the
objective of understanding high-dimensional generalization of expander graphs [116,
120,121,139]. These results are all concerned with partitioning graphs, manifolds,
or simplicial complexes. The Cheeger-type inequality in (50) differs from standard
Cheeger inequalities in that the cochains are group- or vector-valued. In addition, the
frustration ν(�) is not related with any optimalily for graph partitioning—in the sense
of Proposition 2.15, ν(�) measures the triviality of a fibre bundle as a whole. The
algorithm we will propose in Sect. 3 is an attempt to address the graph cut problem
based on the synchronizability of the partitions resulted.
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3 Learning Group Actions by Synchronization

In this section we specify an algorithm for learning group actions from observations
based on synchronization. We also use simulations to provide some insight towards
the performance of the algorithm.

3.1 Motivation and General Formulation

We first state some basic terminology from the general theory of group actions that
will be used extensively. If G is a group and X is a set, a left group action of G on X
is a map φ : G × X → X : (g, x) �→ φ(g, x) such that

φ(e, x) = x, ∀x ∈ X if e is the identity element of G

and

φ(g, φ(h, x)) = φ(gh, x), ∀x ∈ X , ∀g, h ∈ G.

To simplify notation, we will abbreviate φ(g, x) as g.x . The orbit of any element
x ∈ X under the action of G is defined as the set G.x := {g.x | g ∈ G}. If we
introduce an equivalence relation on X by setting

x ∼ y ⇔ x = g.y for some g ∈ G,

then clearly x ∼ y if and only if G.x = G.y. The set X is naturally partitioned
into the disjoint unions of orbits, and each orbit Y is an invariant subset of X under
the action of G in the sense that G.Y ⊂ Y . If for any pair of distinct elements x, y
of X there exists g ∈ G such that g.x = y, we say that the action of G on X is
transitive. Note that the total space X is an invariant subset in its own right, and the
action of G on each orbit is obviously transitive. If the set X is finite and there exists
a constant time procedure to verify whether any two elements are equivalent under
transformations, the problem of partitioning X into disjoint subsets of orbits can be
solved in polynomial time complexity with respect to the size of X .

In practice we are often interested in classification or clustering tasks which can
be framed as follows: given a dataset X = {x1, . . . , xn} of n objects, find a corre-
spondence or transformation between each pair of distinct objects. We will see these
pairwise correspondences often play the role of nuisance variables and one needs to
“quotient out” the influence of these variables in downstream analysis (e.g. for most
practical applications of synchronization problems [10,137,146] and alignment prob-
lems in statistical shape analysis [24]). The intuition as to why some of these pairwise
correspondences are nuisance variables one can often with greater fidelity transform
one object into another via intermediary transformations to other objects rather than
a direct transformation between objects. Sometimes, for instance in the analysis of
a collection of shapes in computer graphics [36,82,84,91,108,118] and group-wise
registration in automated geometric morphometrics [2,23,94,102,103], the pairwise
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transformations contain crucial information and are important on their own right.
A common challenge in both of the above problems is that the fidelity of pairwise
comparisons can be extremely variable over the data. We illustrate this challenge
using the example of computing continuous Procrustes distances between disk-type
shapes [2] in automated geometric morphometrics. The core of the algorithm is an
efficient strategy for searching the Möbius transformation group of the unit disk to
obtain a diffeomorphism between the shapes that minimizes an energy functional. It
has been observed that for similar shapes (in the sense of having a small pairwise
distance), the resulting diffeomorphism is often of high quality and can reflect the
correspondence of biological traits. If the shape pair is highly dissimilar, the diffeomor-
phism tends to suffer from various structural errors (see e.g. [69] and [65, Chap. 5]).
Similar issues have also been observed in the field of non-rigid shape registration
in geometric processing—successful feature extraction and matching techniques for
near-isometric shapes abound [8,27,95,99,126,142], whereas registering shape pairs
with large deformation is still considered a difficult open problem [1,26,96]. Recently,
a series of works [36,82,84,91,108,118] proposed to jointly compute all pairwise cor-
respondences within a collection subject to “consistency constraints” that require the
composition of resulted maps along any cycle within the collection be approximately
the identity map. The idea in this approach is that pairwise correspondences between
dissimilar shapes are implicitly approximated by concatenatingmany correspondences
between similar shapes with the individual correpondences have high fidelity, thus
avoiding directly solving non-convex optimization problems with large numbers of
local minimizers. Similar ideas can also be found in recent progress in automated
geometric morphometrics where aMinimum Spanning Tree (MST) provides the con-
catenating of correspondences [24,69,151]. It has been observed bymorphologists that
cycle-consistent constraints are more often satisfied for a collection of samples within
a species versus samples across a variety of species, suggesting that inconsistencymay
be used for species clustering.

Motivated by the above algorithms and approaches, we propose to study the fol-
lowing general problem of Learning Group Actions (LGA):

Problem 3.1 (Learning Group Actions) Given a group G acting on a set X , simul-
taneously learn a new action of G on X and a partition of X into disjoint subsets
X1, . . . , XK , such that the new action is as close as possible to the given action and
cycle-consistent on each Xi (1 ≤ i ≤ K ).

The LGA problem can also be understood as a variant of the classical clustering prob-
lem, in which the coarse-graining is based on the cycle-consistency of group actions
rather than pairwise similarity or spatial configuration of elements in the dataset. A
solution of the LGA problem provides not only a partition of the input dataset but
also cycle-consistent group actions within each cluster. It is useful to notice that all
group elements implemented as pairwise actions within the same partition Xi form a
subgroup of G; the LGA problem can thus also be considered as “learning” subgroups
of a prescribed “ambient group” that optimally fit a given dataset X . In other words, by
solving an LGA problem we identify the “correct” transformation group for a dataset,
which in most practical situations are much more tightly adapted to the given data
than the potentially massive group of all possible transformations G.
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Example 3.2 If the set X is a vector space and we seek a direct sum decomposition
X =⊕K

i=1 Xi instead of a partition X = ⋃K
i=1 Xi , the LGA problem reduces to the

search for all irreducible G-subrepresentations of X .

Example 3.3 Consider a point set X = {x1, . . . , xn} equipped with a labeling map
S : X → {±1} that assigns to each xi either value +1 or −1. We say xi has positive
spin if S(xi ) = 1 and has negative spin if S(xi ) = −1. Let G = {±1} act on X
transitively as (g ji , xi ) �→ x j , g ji = S(x j )S(xi ). Suppose the spin of each point in
X (i.e. the label map S) is unknown, but we have full access to the group actions {gi j },
we can reconstruct S—up to flipping labels ±1—by spectral clustering the dataset
X , viewed as vertices of a complete graph � with weight wi j = gi j on the edge
connecting xi and x j . Under circumstanceswhere somegroup actions g ji are subject to
a sign-flip error (noisy measurements), or/and the graph� is not complete (incomplete
measurements), spectral or semi-definite programming relaxation techniques can still
be used to recover S up to permuting labels±1 (see e.g. [34]). With X and (potentially
noisy and incomplete) {g ji } as input, this spectral clustering example can be considered
as an instance of LGA: the output consists of a partition of X into positive/negative spin
subsets, as well as the trivial subgroup {+1} of G = {±1} acting in a cycle-consistent
manner on both partitions.

Example 3.3 provides furthermotivation to consider a version of LGA in the context
of synchronization problems. We are given a graph � = (V , E) and the data X , where
the vertex set V is identified with observations in X and the edges in E representing
pairwise relations between elements of X . It is natural to consider a partition of the
graph � in this setup decomposition of � into connected subgraphs such that the
vertices of the subgraphs form a partition of the set of vertices of �.

Problem 3.4 (Learning Group Actions by Synchronization) Let � = (V , E) be an
undirected weighted graph, G a topological group, and ρ ∈ C1(�;G) a given edge
potential on �. Furthermore, assume the vertex set V is equipped with a cost function
CostG : G × G → [0,∞). Denote XK for all partitions of � into K nonempty
connected subgroups (K ≤ n) and

ν(Si ) = inf
f ∈C0(�;G)

∑

j,k∈Si
w jkCostG( f j , ρ jk fk), vol(Si ) =

∑

j∈Si
d j , 1 ≤ i ≤ K .

Solve the optimization problem

min
{S1,...,SK }∈XK

max1≤i≤K ν(Si )

min1≤i≤K vol(Si )
(51)

and output an optimal partition {S1, . . . , SK } together with the minimizing f ∈
C0(�;G).

In the following, we shall refer to Problem 3.4 as Learning Group Actions by Syn-
chronization (LGAS). When G = O(d) or U (d) and CostG is the squared Frobenius
norm on d× d matrices, ν(Si ) is clearly the frustration (49) of the subgraph of � with
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vertices in Si , up to a multiplicative constant depending only on � and dimension d.
The minimizing vertex potential defines a synchronizable edge potential on the entire
graph�, thus also gives rise to a cycle-consistent action on each partition. Note that the
objective function (51) does not account for the discrepancy between the realized syn-
chronizable edge potential and the original ρ on edges across partitions—intuitively,
solving Problem 3.4 amounts to forming partitions by economically “dropping out”
appropriate edges in � to minimize the total frustration.

3.2 SynCut: A Heuristic Algorithm for Learning Group Actions by Synchronization

In this subsection, we will investigate Problem 3.4 (LGAS) in the context of O(d)-
synchronization problems, focusing on the simpler setting where K = 2. In this case,
(51) simplifies to

min
S⊂V

max{ν(S), ν(Sc)}
min{vol(S), vol(Sc)} .

Note that

max{ν(S), ν(Sc)} ≤ ν(S) + ν(Sc) ≤ 2max{ν(S), ν(Sc)},

we can thus consider—drawing an analogy with the standard approach of study-
ing Cheeger numbers through normalized cuts—the following optimization problem
closely related with (51):

ξ� := min
S⊂V

ξ(S)

:= min
S⊂V

[ν(S) + ν(Sc)]
( 1

vol(S)
+ 1

vol(Sc)

)
.

(52)

Recall from (49) that ξ� further simplifies into

ξ� = min
S⊂V

inf
g∈C0(�;O(d))

1

2d

1

vol(�)

∑

i, j∈V
(i, j)/∈∂S

wi j‖gi − ρi j g j‖2F ·
vol(�)

vol(S)vol(Sc)

= min
S⊂V

inf
g∈C0(�;O(d))

1

2d

1

vol(S)vol(Sc)

∑

i, j∈V
(i, j)/∈∂S

wi j‖gi − ρi j g j‖2F,
(53)

where

∂S := {(u, v) ∈ E | u ∈ S, v ∈ Sc or u ∈ Sc, v ∈ S}.

In other words, the goal of solving the optimization problem (53) is to lower the total
frustration of the graph� by dropping out a minimum set of edges under the constraint
that the residual graph consists of two connected components; this is equivalent to
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say that we seek a most economic graph cut in terms of reducing total frustration.
To simplify statements, we shall refer to ‖gi − ρi j g j‖2F as the frustration on edge
(i, j) ∈ E of vertex potential g with respect to the edge potential ρ, and call the
collection of frustrations on all edges the edge-wise frustrations. The sum of all edge-
wise frustrations will be referred to as the total frustration.

Formulation (53) motivates a greedy algorithm that alternates between minimizing
graph cuts and vertex potentials. We shall refer to this algorithm as Synchronization
Cut, or SynCut for short; see Algorithm 1. We describe the main steps in SynCut
below:

Step 1 Initialization: Input data include the weighted graph � = (V , E, w), edge
potential ρ ∈ C1(�;G), and parameters required for the spectral clustering
subroutine plus termination conditions for the main loop. Initialize iteration
counter t = 0, and dynamic graph weights ε to be the input graph weights w;

Step 2 Global Synchronization: Synchronize the edge potential ρ on the entire graph
� with respect to edge weights. Any synchronization algorithm can be used in
this step, e.g. spectral relaxation [13,34] or SDP relaxation [10,12,34,117,133].
Note that in this step the synchronization is performed on � with dynamic
weights ε instead of the original weights w. Denote f (t) as the edge potential
on � at the edge potential at the t th iteration;

Step 3 Spectral Clustering (First Pass): Update dynamic weights ε based on the frus-
tration of f (t) on each edge by

εi j = wi j exp

(

− 1

σ
‖ f (t)

i − ρi j f
(t)
j ‖2F

)

,

whereσ > 0 is the average of all non-zero edge-wise frustrations then partition
the vertex set V of graph� into K clusters S1, . . . , SK using spectral clustering
based on the updated dynamic weights ε. The goal is to cut the graph � into
more synchronizable clusters; edges causing large frustration are assigned
relatively smaller weights εi j to increase the chance of being cut. To simplify
notation, we will also use S� (1 ≤ � ≤ K ) to denote the subgraph of� spanned
by the vertices in S�;

Step 4 Local Synchronization: Synchronize the edge potential ρ within each partition
S�, 1 ≤ � ≤ K . If we denote ρ|S�

, ε|S�
for the restrictions of ρ, ε to S�,

respectively, then this step solves the synchronization problem on weighted
graph (S�, ε|S�

) for prescribed edge potential ρ|S�
. Again, any synchronization

algorithm can be used in this step. Denote g(�) for the resulting vertex potential
on S�;

Step 5 Collage:After obtaining g(�) for each local synchronization on S�, we make a
“collage” from these local solutions to form a global vertex potential defined on
the entire graph �. Since each g(�) is obtained from synchronizing within S�,
the collected local solutions {g(�)}K�=1 generally incur large incompatibility
(frustration) on edges across partitions. Our strategy is to find K elements
h1, . . . , hK ∈ G, where each h� acts on g(�) by g(�)

u �→ g(�)
u h�, ∀u ∈ S�, so

that the total cross-partition frustration
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C
(
h1, . . . , hK | {S�}1≤�≤K , {g(�)}1≤�≤K

)

:=
∑

1≤p 	=q≤K

∑

(u,v)∈E
u∈Sp,v∈Sq

wuv‖g(p)
u h p − ρuvg

(q)
v hq‖2F (54)

is minimized. Note that this is essentially synchronizing an edge potential

ρ̃pq =

⎧
⎪⎪⎨

⎪⎪⎩

∑

(u,v)∈E
u∈Sp,v∈Sq

wuv

(
g(p)
u
)−1

ρuvg
(q)
v if partitions Sp, Sq are connected,

0 otherwise

(55)

on a reduced complete graph �̃K consisting of K vertices where each vertex
represents one of the K partitions S1, . . . , SK . It thus simply requires calling
the synchronization routine again to obtain h1, . . . , hK , but this time the scale
of the synchronization problem is often much smaller than the previous global
and local synchronization steps. Also note that for the binary cut case K = 2
and G = O(d) this collage step is even simpler: it suffices to perform a single
SVD on the d × d matrix

∑

(u,v)∈E
u∈S1,v∈S2

wuv

(
g(p)
u
)−1

ρuvg
(q)
v = U�V�

and set h1 = UV�, h2 = Id×d .
Step 6 Spectral Clustering (Second Pass): Update dynamic weights ε based on the

frustration of f ∗ on each edge by

εi j = wi j exp

(

− 1

σ
‖ f ∗i − ρi j f

∗
j ‖2F

)

,

whereσ > 0 is the average of all non-zero edge-wise frustrations then partition
� into K clusters S1, . . . , SK using spectral clustering for a second time, based
on the updated dynamic weights ε.

Step 7 Repeat Step 2–Step 6 Until Convergence. The termination condition can be
specified either by a maximum number of iterations or monitoring the change
of the quantity

ξ({S1, . . . , SK }) :=
(

K∑

�=1

ν(S�)

)(
K∑

k=1

1

vol(Sk)

)

. (56)

At the end of the procedure, return the partitions {S1, . . . , SK } and the final
edge potential f ∗ from the most recent updates. The cycle-consistent edge
potential on partition S� is encoded in the restriction of f ∗ to S�.
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Algorithm 1 Synchronization Cut: Learning Group Actions by Synchronization

1: procedure SynCut(�, ρ, K ) weighted graph � = (V , E, w), ρ ∈ C1(�;G), number of partitions K
2: t = 0
3: ε = w

4: while not converge do
5: f (t) ∈ C0(�;G) ← Synchronize(�, ρ, ε)

6: σ ← average non-zero edge-wise frustrations of f (t)

7: for (i, j) ∈ E do  calculate weights ε on graph � for spectral clustering

8: εi j ← wi j exp
(
− 1

σ

∥
∥ f (t)

i − ρi j f
(t)
j

∥
∥2
F

)

9: end for
10: {S1, . . . , SK } ← SpectralClustering(�, ε)

11: for � = 1, . . . , K do
12: g(�) ∈ �0(S�;G) ← Synchronize(S�, ρ|S� , ε|S� )
13: end for
14: f ∗ ∈ �0(�;G) ← Collage

(
{S�}K�=1, {g(�)}K

�=1

)

15: σ ← average non-zero edge-wise frustrations of f ∗
16: for (i, j) ∈ E do  update weights ε on graph � for next iteration

17: εi j ← wi j exp
(
− 1

σ

∥
∥ f ∗i − ρi j f

∗
j

∥
∥2
F

)

18: end for
19: {S1, . . . , SK } ← SpectralClustering(�, ε)

20: t ← t + 1
21: end while
22: return {S1, . . . , SK }, f ∗  f ∗ defines a cycle-consistent edge potential on each partition
23: end procedure

3.3 Results on Simulated Random Synchronization Networks

In this subsection, we use simulations to provide some intuition for the behavior of
SynCut under the setting K = 2 (two partitions). We first specify a random procedure
to simulate input data—a connected random graph with a prescribed edge potential—
for synchronization problems. In addition, the random graph generation procedure
will be controlled by a parameter that allows us to adjust the level of obstruction to the
synchronizability of the prescribed edge potential over the generated graph. We then
specify the metrics used for performance measure. We conclude by demonstrating
that the partition generated from SynCut recovers the two synchronizable connected
components with high accuracy and within relatively few numbers of iterations. For
the simplicity of statements, we refer to each pair of generated graph and edge potential
an instance of a random synchronization network.

3.3.1 Random Synchronization Network Simulation

We first specify the procedure to generate the random graphs. Our intention is to
sample random graphs with sufficiently variable spectral gaps, based on the intuition
that a large spectral gap of the underlying graph results in greater obstruction to the
synchronizability of the edge potential constructed by the procedures that will soon
be described in this subsection. We first generate two partitions S1, S2 with an equal
number of vertices. Each partition is a connected component built from a vertex degree
sequence of random integers uniformly distributed in an interval (say 5 to 8), adapting
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Fig. 1 Ascatter plot displaying the correlation between the number of inter-component links and the spectral
gap in our random graph model, with N = 100 vertices and the (integer) number of inter-component links
uniformly distributed between 100 and 250

an algorithm first proposed in [17]; when the interval is a single integer, the connected
component is a regular graph. Random edges are than added to link the two partitions
S1, S2. The number of inter-component random edges positively correlates with the
spectral gap, as shown in Fig. 1, suggesting that this number can be used as a parameter
to adjust the level of obstruction to cutting the graph into two connected components
S1 and S2.

A subtlety in this random network generation procedure is that a uniform distribu-
tion on the number of inter-component links does not induce a uniform distribution
on the spectral gaps of the generated random graphs, due to concentration effects.
A precise characterization of the distribution of spectral gaps in our random graph
model is interesting on its own right but beyond the scope of this paper. We refer
interested readers to the existing literature on the spectral gaps of random graphs such
as [40,44,81]. In practice, we simply use a large number of random trials to gener-
ate sufficiently many sample graphs with spectral gaps within desirable ranges; see
Fig. 2a.

After drawing an instance of the random graph, we randomly construct an edge
potential that is synchronizable within S1 and S2, but not necessarily synchronizable
on the inter-component links. The procedure to generate the random edge potentials
proceeds as follows:

(1) Randomly generate a vertex potential g ∈ C0(�;G) for the entire graph �;
(2) Set the value of ρ on edge (i, j) according to

ρi j =
{
gi g

−1
j if both i, j ∈ S1 or i, j ∈ S2,

a random matrix in O(d) otherwise.
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Fig. 2 (a) Histogram of the spectral gap of the 10, 000 random graphs drawn from ourmodel. (b) Histogram
of the error ratios of the SynCut clustering results. (c) Histogram of the error ratios of the baseline NCut
clustering results. (d) Histogram of the number of iterations for SynCut. (e) Scatter plots of the error ratios
of SynCut and NCut versus spectral gap

The vertex potential g ∈ C0(�;G) will no longer attain the minimum frustration for
the entire graph with respect to the prescribed edge potential ρ, due to the edges added
between the partitions that are much less likely synchronizable.

We consider each run of SynCut as successful if both output partitions are synchro-
nizable connected components, i.e., if SynCut recovers the original partitions S1, S2.
The performance of SynCut is measured using the error ratio computed by dividing
the number of erroneously clustered vertices by the total number of vertices. If SynCut
successfully recovers S1, S2, this error ratio is 0; if the output partition is close to a
random guess, or if the algorithm fails to separate the vertices into distinct clusters, the
error ratio is 0.5. The error ratios of the partitions output from SynCut are then com-
pared with a baseline graph cutting algorithm using normalized graph cut (NCut) that
does not utilize any information in the prescribed edge potential; see e.g. [128,152].
We refer interested readers to [9] for an initial attempt at analyzing this phenomenon
for the scenario where the group G is a symmetric group (group of permutations) and
the underlying graph is generated from a stochastic block model.

3.3.2 Simulation Results

In this simulation study,we set the number of vertices in each of the two synchronizable
components to N = 100, and the entries of the vertex degree sequence of random
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Fig. 3 (a) A random graph consisting of two synchronizable connected components, each with 100 vertices
and 250 edges (in blue), and 100 non-synchronizable inter-component edges (in red). The edge potential
takes value in the orthogonal group O(5). All vertex degrees in each synchronizable component are set
to 5. (b) Edge-wise frustration for the vertex potential g used to generate the prescribed edge potential
ρ. As expected, frustration is small within each connected component but large between components. (c)
Edge-wise frustration for the vertex potential obtained from spectral relaxation [13]. The total frustration is
lower than that in the top right figure, but the inter-component edges carries relatively lower frustration since
the relaxation procedure tends to “spread” the non-synchronizability across the entire graph. (d) Edge-wise
frustration for the vertex potential obtained from SyncCut. The total frustration is higher than that for the
spectral relaxation solution, but the distribution of frustrations on the edges is closer to that of vertex g and
can thus be used to recover the synchronizable connected components

integers are independently uniformly distributed between 4 and 8. The number of inter-
component links between the two synchronizable components is drawn uniformly
between 100 and 250. The edge potentials are valued in the orthogonal group O(d)

with d = 5. We terminate SynCut either after 10 iterations or if the change in the
value of the objective function ξ [see (56)] between consecutive iterations falls below
a preset tolerance of 10−8. We plot in Fig. 2a the spectral gaps of 10, 000 realizations
of our random network model. In Fig. 2b, c we observed that the error ratios in these
10, 000 runs of SynCut tend to be much smaller than NCut, suggesting that SynCut
outputs more accurate partitions with respect to synchronizability. In Fig. 2e, we again
see that SynCut outperforms NCut and the amount of improvement increases with the
magnitude of the spectral gap. Fig. 2d shows that SynCut converges quickly.

We now focus on a particular instance of a random synchronization network to
better understand SynCut in comparison with the spectral relaxation algorithm pro-
posed in [13]. Each synchronizable component in the random synchronization network
shown in Fig. 3a is a regular graph containing N = 100 vertices and 250 edges, gen-
erated with a constant vertex degree sequence of 5. We color the edges within and
between synchronizable components in blue and red, respectively. In Fig. 3b we plot
the edge-wise frustration for the vertex potential g used to generate the edge potential
ρ prescribed to the network. As expected, the frustration is zero within each synchro-
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nizable component but large on the edges across components. Figure 3c, d show the
edge-wise frustrations for two vertex potentials obtained from the spectral relaxation
algorithm [13] and SynCut, respectively. Though the total frustration is larger for Syn-
Cut than spectral relaxation, the SynCut solution concentrates most of the frustration
on the non-synchronizable inter-component edges, with a distribution of edge-wise
frustrations closer to the distribution for the initial vertex potential g. This suggests
that applying a spectral graph cut algorithm using the edge-wise frustration of the Syn-
Cut solution as a dissimilarity measure is advantageous, as the distribution in Fig. 3d
identifies the obstructions to synchronizability in the synchronization network more
accurately.

4 Application to Automated Geometric Morphometrics

In this sectionwe formulate a problem in automated geometricmorphometrics in terms
ofLGAS, then apply theSynCut algorithm toprovide a solution. InSect. 4.1weprovide
some background in geometric morphometrics and its relation to synchronization
problems. In Sect. 4.2 we apply SynCut to a collection of second mandibular molars
of prosimian primates and non-primate close relatives. The morphological hypothesis
is that the geometric traits of secondmandibularmolars cluster into 3 dietary regimens:
folivorous (herbivores that eat leaves), frugivorous (herbivores or omnivores that prefer
fruit), and insectivorous (a carnivore that eats insects).Wewill show the SynCut result,
which is based on the synchronizability of pairwise correspondences, and compare it
with a distance-based clustering result using diffusion maps [41].

4.1 Geometric Morphometrics and Synchronization

The classic tool in geometricmorphometrics isProcrustes analysis. The basic assump-
tion underlying this analysis framework is that most of the geometric information on
each shape can be efficiently encoded in a set of landmark points carefully picked to
highlight themorphometrical phenotypes (variation in the geometric shapeof anorgan-
ism). The Procrustes distance between two shapes is the average Euclidean distance
between corresponding landmarks, after applying a rigidmotion (rotations, reflections,
translations, and their compositions) to optimally align the two sets of landmarks. If
all the shapes are marked with an equal number of landmarks but the landmark cor-
respondence is not known a priori, a combinatorial search can be performed over
all permutations of one-to-one landmark correspondences, and the minimum average
Euclidean distance between corresponding landmarks can be taken as a dissimilar
measure between the two shapes. Comparing a pair of shapes in this framework thus
yields abundant pairwise information, including a scalar dissimilarity score, a rigid
motion, and a permutation matrix encoding the one-to-one landmark correspondence.

In automated geometric morphometrics, landmark points are not used to represent
the shapes, and algorithms search for an “optimal” transformation between a pair of
whole shapes directly byminimizing energy functionals over a set of admissible trans-
formations. Depending on the specific class of transformations and energy functional,
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Fig. 4 The meshes of four lemur molars from an anatomical surface dataset first published in [23]. The
colored dots on the molars are landmark points where identical colors indicate corresponding landmarks

the pairwise comparisons produce different types of correspondences between sur-
faces, such as conformal/quasiconformal transformations, isometries, area-preserving
diffeomorphisms, or even transport-plans between surface area measures in a Wasser-
stein framework. Regardless of the type of admissible transformations, the algorithm
can output a rigid motion for the optimal alignment between two shapes, as well as a
dissimilarity or similarity score for such an alignment. See Fig. 4 for an example of
representing a collection of shapes using landmarks versus triangular meshes.

When the analysis is extended from comparing a single pair to a large collection of
shapes, a crucial premise for downstream statistical analysis (e.g. General Procrustes
Analysis (GPA) [55,74,75]) is that the pairwise correspondences be cycle-consistent,
meaning that propagating any landmark on any shape by consecutive correspondences
along a close cycle of shapes should land exactly at the original landmark. Traditional
landmark-based Procrustes analysis begins with consistently picking an equal number
of landmarks on each shape, resulting in a large amount of pairwise correspondence
relations that are cycle-consistent by construction. This is, however, not the situation
with automated geometric morphometrics, where the correspondence transformations
produced by automated algorithms are rarely cycle-consistent, even when one local-
izes the transformations within relatively “stable” regions where landmarks are affixed
with the knowledge of an experienced geometric morphometrician. The necessity of
cycle-consistent correspondences links automated geometric morphometrics to syn-
chronization problems. An automated geometric morphometric algorithm will output
for each pair of shapes a triplet consisting of a dissimilarity score, a rigid motion, and
a pairwise transformation. We can use the dissimilarity scores to define a weighted
graph � that captures the similarities within the collection, both qualitatively and
quantitatively, by adjusting the number of nearest neighbors of each vertex and the
weights on each edge. The rigid motions and pairwise transformations define two
edge potentials on �, taking values in different groups. We list below some interesting
synchronization problems arising from this formulation:

Three-Dimensional Euclidean Group. The rigid motions Ri j between shapes Si and
S j that share an edge in � define an edge potential R ∈ C1(�; E(3)), where E(3)
is the three-dimensional Euclidean group. Solving an E(3)-synchronization problem
over � with respect to R results in a globally consistent alignment for a collection
of shapes, which is often crucial for initializing geometric morphometrical analysis
algorithms such as Dirichlet Normal Energy [31], Orientation Patch Analysis [60],
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and Relief Index [22]. Algorithms that automatically align a collection of anatomical
shapes in a globally consistent manner can also be viewed as primitive approaches for
solving E(3)-synchronization problems; see e.g. [24,73,119,123].

Orthogonal Group and Orientability Detection. If the shapes are preprocessed to
superimpose the centers of mass at the same point, the translation component of each
Ri j output fromapairwise landmark-basedProcrustes analysis vanishes.3 This reduces
the global alignment problem to standard synchronization problems over the compact
Lie group O(3). Spectral and semidefinite programming (SDP) relaxation methods
can then be applied directly to solve the global alignment problem. If we consider the
edge potential ρ ∈ C1(�;Z2) defined by ρi j = det Ri j , aZ2-synchronization solution
can be used to either partition the dataset into “left-handed” and “right-handed” subsets
or conclude that such an orientation-based partition does not exist. We stated a similar
situation in Example 3.3; other examples in this setting can be found in applications
of Orientable Diffusion Maps [134].

Automorphism Groups. Certain classes of transformations Ci j between each pair of
shapes Si , S j give rise to an edge potential on the graph � valued in an automorphism
group of a canonical domain. For instance, algorithms such asMöbius Voting and the
Continuous Procrustes Distance [2] between disk-type surfaces rely on the computa-
tion of conformal maps between two shapes, based on uniformization parametrization
techniques [4,122] that map each surface conformally to a canonical unit disk on
the plane. By intertwining Ci j with the parametrizations of the source and the target
shape, the correspondence between Siand S j can be equivalently considered as an
element of the conformal automorphism group Aut(D) of the planar unit diskD. The
group Aut(D) is isomorphic to the projective special linear group PSL(2,R), a non-
compact simple real Lie group that is equivalent to the quotient of the special linear
group SL(2,R) by {±I2}, where I2 denotes the 2×2 identity matrix. Synchronization
problems over PSL(2,R) or SL(2,R) require non-trivial extensions of the non-unique
games (NUG) framework [11] over compact Lie groups.

Groupoids. Other types of transformations Ci j between each pair of shapes Si , S j

require further generalizations of the synchronization framework to edge potentials
taking values in a groupoid rather than in a group. As an example, consider surface
registration techniques based on area-preserving maps [2,141,159,160]. These tech-
niques use conformal or area-preserving parametrizations to push forward surface
area measures on Si , S j to measures μi , μ j on the planar unit disk D, respectively,
then solve for a transport map on D that pulls back μ j to μi (or equivalently μi to
μ j ). To formulate such “transport-map-valued” edge potentials in a synchronization
framework, an edge potential should be allowed to take values in different classes
of maps on different edges, with the only constraint that maps on consecutive edges
can be composed; these ingredients have much in common in spirit with fundamental
groupoids [28,29] and Haefliger’s complexes of groups [76,77]. Such a generalized
framework for synchronization problems can also be used to analyze correspondences
{Ci j } that are soft maps [124,138] or transport plans [99,102,103], where one replaces
3 Note this is not the case for jointly analyzing a collection of shapes in a landmark-based Procrustes
analysis framework; see e.g. [34].
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Fig. 5 Consistent alignment of 50 lemur teeth based on applying SynCut to all pairwise alignments from
the continuous Procrustes analysis [2]. Each row corresponds to teeth from a genus, from top to bottom:
Alouatta, Ateles, Brachyteles, Callicebus, Saimiri

the set of transport maps between μi and μ j with (probabilistic) couplings �(μi , μ j )

as in Kantorovich’s relaxation to theMonge optimal transport problem [149,150]. The
Horizontal Diffusion Maps (HDM) framework [66] and the application in automated
geometric morphometrics [65] are among the initial attempts in this direction.

4.2 Clustering Lemurs by Dietary Regimens using Synchronizability of Molar
Surfaces

We focus on a real anatomical surface mesh dataset of second mandibular molars
from 5 genera of prosimian primates and nonprimate close relatives. There are a
total of 50 molars with 10 specimens from each genus; see Fig. 5. The five genera
divide into three dietary regimens: the Alouatta and Brachyteles are folivorous, the
Ateles and Callicebus are frugivorous, and the Saimiri are insectivorous. In Fig. 4
we display four lemur molars from an anatomical surface dataset first published in
[23], together with landmarks on each molar placed by evolutionary anthropologists.
Similar datasets have been studied in a series of papers developing algorithms for
automatic geometric morphometrics [2,23,67,68,94,102,103]. The chewing surface
of each molar is digitized as a two-dimensional triangular mesh in R

3 of disk-type
topology (i.e. conformally equivalent with a planar disk). We will apply SynCut to
these 50 molars and examine if the clustering is consistent with dietary regimens.

Method We first pre-process the dataset by translating and scaling each shape so
that all surface meshes center at the origin and enclose unit surface area. We then
apply the continuous Procrustes distance algorithm for each pair of teeth, generating
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Fig. 6 Embeddings of the 50 lemur teeth dataset into R
2, obtained by applying diffusion maps (left)

and SynCut (right) to the 7-nearest-neighbor graph. Both plots are post-processed using t-SNE [147]. (a)
Diffusion maps applied to the weighted graph (�,w) successfully distinguishes three diet groups, but the
genera are less distinguishable. (b) SynCut produces an edge-wise frustration matrix after the final iteration
that can be used by diffusion maps to generate a low-dimensional embedding, in which both dietary groups
and genera are more distinguishable

a a distance score di j , a diffeomorphism Ci j , and an orthogonal matrix Ri j ∈ O(3)
that optimally aligns S j to Si with respect to the diffeomorphism Ci j . We use the
distance scores to construct a weighted K -nearest-neighbor graph �. The weights are
defined as wi j = exp(−d2i j/σ

2) with the bandwidth parameter σ > 0 set to be of the
order of the average smallest non-zero distances.We applySynCut to the edge potential
ρ ∈ C1(�; O(3)) defined by the alignments Ri j on theweighted graph (�,w). Finally,
we compare the clustering performance of SynCut with applying diffusion maps and
spectral clustering directly to the weighted graph without the alignment information.

Results SynCut and diffusion maps both require the choice of a parameter K deter-
mining the number of nearest neighbors in the construction of the graph �. When
6 ≤ K ≤ 10 both procedures accurately cluster the 50 molars in the dataset into the
three distinct dietary regimens, see Fig. 6 for the two-dimensional embedding plots
for K = 7. SynCut produces slightly tighter and more distinguishable species clus-
ters. Not surprisingly, for K > 10—when the number of nearest neighbors exceeds the
number of specimens in each genus—both algorithms are less accurate as K increases,
with the accuracy of SynCut dropping faster than diffusionmaps. This empirical obser-
vation is consistent with our intuition that the performance of SynCut is more sensitive
to increased spectral gaps than diffusion maps.

5 Conclusion and Discussion

We provided in this paper a geometric framework for synchronization problems. We
first related the synchronizability of an edge potential on a connected graph to the
triviality of a flat principal bundle over the topological space underlying the graph,
then characterized synchronizability from two aspects: the holonomy of the principal
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bundle, and the twisted cohomology of an associated vector bundle. On the holonomy
side, we established a correspondence between two seemingly distant objects on a
connected graph �, namely, the orbit space of the action of G-valued vertex potentials
on G-valued edge potentials, and the representation variety of the fundamental group
of � into G; on the cohomology side, we built a twisted de Rham cochain complex
on an associated vector bundle Bρ[F] of the synchronization principal bundle Bρ ,
of which the zeroth degree cohomology group characterizes the obstruction to the
synchronizability of the prescribed edge potential.

With the presence of a metric on the associated vector bundle Bρ[F], we also
developed a twisted Hodge theory on graphs. Independent of the contribution to syn-
chronization problems, this theory is both a discrete version of the Hodge theory of
elliptic complexes and a fibre bundle analogue of the discrete Hodge theory on graphs.
Specifically for synchronization problems, this twistedHodge theory realizes the graph
connection Laplacian operator as the zeroth degree Hodge Laplacian in the twisted
de Rham cochain complex. A Hodge-type decomposition theorem is also proven,
stating that the image of the twisted codifferential is the orthogonal complement of
the linear space of F-valued synchronization solutions, with respect to the bundle
metric.

Motivated by the geometric intuitions gained from these theoretical results, we
coined the problem of learning group actions (LGA), and proposed a heuristic
algorithm, which we referred to as SynCut, based on iteratively applying syn-
chronization and spectral graph techniques. Numerical simulations on synthetic
and real datasets indicated that SynCut has the potential to cluster a collection of
objects according to the synchronizability of a subset of partially observed pairwise
transformations.

We conclude this paper by listing several problems of interest for future exploration.
These are only a subset of a vast collection of potential directions concerning the
mathematical, statistical, and algorithmic aspects of synchronization problems:

(1) The Representation Variety of Synchronization Problems.When a prescribed edge
potential ρ is not synchronizable over graph �, the goal of the synchronization
problem is to find a synchronizable edge potential ρ̃ that is as close as possible to
ρ in a sense that has been made clear in this paper. The point of view adopted in
Sect. 2.1 is that the synchronization problem essentially concerns the orbits of ρ

and ρ̃ under the action of all vertex potentials. It is natural to conceive a synchro-
nization algorithm based on the geometry of the orbit space C1(�;G)/C0(�;G)

that enables efficiently “moving across” the orbits. Since the fundamental group
of any connected graph is simply a free product of copies of Z, we expect the
representation variety Hom(π1(�),G)/G to possess relatively simple structures
that could be used for guiding the design of novel synchronization algorithmswith
provable guarantees.

(2) Higher-order Synchronization Problems. As a simplicial complex, the graph �

only has 0- and 1-simplices, which results in only one cohomology group of inter-
est in the de Rham cochain complex (41). By extending the twisted de Rham and
Hodge theory developed in Sect. 2.2 to simplicial complexes of higher dimen-
sions, we expect higher-order synchronization problems can be formulated and
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studied using tools and insights from high-dimensional expanders and the Hodge
theory of elliptic complexes. Generalizing the current regime of synchronization
problems, inwhich only pairwise transformations are considered, the higher-order
analogies would enable the study of relations and interactions amongmultiple ver-
tices in the graph�, which potentially opens doors towards higher-order graphical
models and related statistical inference questions as well.

(3) Hierarchical Partial Synchronization Algorithms with Provable Guarantees. The
SynCut algorithm we proposed in this paper can be understood as an iterative
hierarchical partial synchronization algorithm, based on the assumption that edge-
wise synchronization is an indicator of the synchronizability of a prescribed edge
potential over a proper subgraph. The numerical experiments on synthetic and real
datasets suggested the validity of this intuition under our random graph model,
but no provable guarantees exist either for the convergence or the effectiveness of
algorithms similar or related to SynCut, to the best of our knowledge. Building
a Cheeger-type inequality as the performance guarantee for SynCut attracted our
attention, but even the analogy of Cheeger number (or graph conductance) in the
setting of SynCut or LGA is not clear—whereas theCheeger number depends only
on the graph weights, which are fixed numbers on each edge independent of the
graph cut, the notion of edge-wise frustration is highly non-local as the frustration
depends on the behavior of the synchronization solution on the entire graph. We
conjecture that a Cheeger-type inequality for SynCut, if exists, will reflect the
global geometry information encoded by geometric quantities associated with the
fibre bundle.

(4) Statistical Framework for Learning Group Actions. The LGA problem presented
in this paper is not formulated with a natural generative model for the dataset of
objects with pairwise transformations; nor is assumed any concrete noise models.
It would be of interest to provide a systematic, statistical framework under which
the problem of LGA and LGAS can be quantitatively analyzed and understood;
we believe such a framework also has the potential to bridge statistical inference
with synchronization problems.

Appendix A: Proofs of Proposition 1.2 and Formula (37)

Proof of Proposition 1.2 The construction of U using the stars of the vertices of �

ensures that

(1) Ui ∩Uj 	= ∅ if and only if (i, j) ∈ E ;
(2) Ui ∩Uj ∩Uk 	= ∅ if and only if the 2-simplex (i, j, k) is in X .

For such pair (i, j), define constant map gi j : Ui ∩Uj → G as

gi j (x) = ρi j ∀x ∈ Ui ∩Uj .

Set gii = e for all 1 ≤ i ≤ |V |, and note that gi j (x) = g−1
j i (x) for all x ∈ Ui ∩ Uj

by our assumption on ρ. If ρ is synchronizable over G, let f : V → G be a vertex
potential satisfying ρ, then ρi j = fi f

−1
j for all (i, j) ∈ E from (1). Thus ρk jρ j i = ρki
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for any triangle (i, j, k) in �, or equivalently that gkj (x)g ji (x) = gki (x) for all
x ∈ Ui ∩ Uj ∩ Uk . Therefore, {gi j | 1 ≤ i, j ≤ |V |} defines a system of coordinate
transformations [140, Sect. 2] with values inG. These data determine a principal fibre
bundle Pρ with base space X and structure group G—by a standard construction in
the theory of fibre bundles (see e.g. [140, Sect. 3.2])—of which local trivializations are
definedon the open sets inUwith constant transition functions gi j ; this principal bundle
is thus flat by definition. Furthermore, the vertex potential f and the compatibility
constraints (1) ensure that the following global section s : X → Pρ is well-defined
on this bundle:

s(x) = φi (x, fi ), x ∈ Ui

where φi : Ui × G → Pρ is the local trivialization of Pρ over Ui . The triviality of
this principal bundle then follows from the existence of such a global section; see e.g.
[140, Sect. 8.3]. The other direction of the proposition follows immediately from this
triviality criterion for principal bundles. ��

Proof of Formula (37)

〈ω, η〉 = 1

2

∑

(i, j)∈E

[
wi j

〈
pi
(
ω

(i)
i j

)
, pi

(
η

(i)
i j

)〉
F + w j i

〈
p j
(
ω

( j)
j i

)
, p j

(
η

( j)
j i

)〉
F

]

= 1

2

∑

(i, j)∈E

[
wi j

〈
pi
(
ω

(i)
i j

)
, pi

(
η

(i)
i j

)〉
F + wi j

〈
ρi j p j

(
ω

( j)
j i

)
, ρi j p j

(
η

( j)
j i

)〉
F

]

= 1

2

∑

(i, j)∈E

[
wi j

〈
pi
(
ω

(i)
i j

)
, pi

(
η

(i)
i j

)〉
F + wi j

〈
pi
(
ω

(i)
j i

)
, ρi j pi

(
η

(i)
j i

)〉
F

]

(see compatibility condition (31))

= 1

2

∑

(i, j)∈E

[
wi j

〈
pi
(
ω

(i)
i j

)
, pi

(
η

(i)
i j

)〉
F + wi j

〈
pi
(
ω

(i)
i j

)
, ρi j pi

(
η

(i)
i j

)〉
F

]

(skew-symmetry)

=
∑

(i, j)∈E
wi j

〈
pi
(
ω

(i)
i j

)
, pi

(
η

(i)
i j

)〉
F . ��

Appendix B: Graph Laplacian in Discrete Hodge Theory

Define K-valued 0- and 1-forms on weighted graph � = (V , E, w) as

�0(�) := { f : V → K}, �1(�) := {ω : E → K | ωi j = −ω j i ∀(i, j) ∈ E},
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equipped with natural inner products

〈 f , g〉 :=
∑

i

di 〈 fi , gi 〉K, ∀ f , g ∈ �0(�),

〈ω, η〉 :=
∑

(i, j)∈E
wi j 〈ωi j , ηi j 〉K, ∀ω, η ∈ �1(�),

where 〈·, ·〉K is an inner product onK, and di =∑
j :(i, j)∈E wi j is the weighted degree

at vertex i ∈ V . Analogous to the study of differential forms on a smoothmanifold, one
can define the differential d : �0(�) → �1(�) and codifferential δ : �1(�) → �0(�)

operators that are formal adjoints of each other:

(d f )i j = fi − f j , ∀ f ∈ �0(�), (δω)i := 1

di

∑

j :(i, j)∈E
wi jωi j , ∀ω ∈ �1(�).

These constructions can be encoded into a de Rham cochain complex

0 −−→←−− �0(�)
d−−→←−−
δ

�1(�) −−→←−− 0,

which realizes L rw
0 , the graph random walk Laplacian, as the Hodge Laplacian of

degree zero:

(
�(0) f

)
i :=(δd f )i = 1

di

∑

j :(i, j)∈E
wi j ( fi − f j )=(L rw

0 f )i , ∀i ∈ V , ∀ f ∈ �0(�).

It is well known that L rw
0 differs from the normalized graph Laplacian L0 by a sim-

ilarity transform L0 = D−1/2L rw
0 D1/2, where D is a diagonal matrix with weighted

degrees of each vertex on its diagonal.

Software MATLAB code implementing SynCut for the numerical simulations and
application in automated geometric morphometrics is publicly available at https://
github.com/trgao10/GOS-SynCut.
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