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Abstract—Racetrack memory is a promising new non-volatile 
memory technology, especially because of the density of its 3D 
implementation. However, for 3D racetrack to reach its potential, 
certain reliability issues must be overcome. Prior work used per-
track encoding to tolerate the shift errors that are unique to 
racetrack, but no solutions existed for tolerating both shift errors 
and bit flip errors. We introduce Foosball Coding, which combines 
per-track coding for shift errors with a novel across-track coding 
for bit flips. Moreover, our per-track coding scheme methodically 
explores the design of inter-codeword delimiters and introduces 
the novel concept of multi-purpose delimiters, in which the 
existence of multiple delimiter options can be used to provide 
additional information. 

Keywords—Racetrack memory; fault tolerance; error coding; 
endurance coding 

I. INTRODUCTION 
Racetrack memory [1, 2, 3, 4], also known as domain wall 

memory, is an exciting new memory technology that has 
recently been demonstrated in the lab. In racetrack memory, 
which we explain more fully in Section II, bits are stored on 
magnetic strips (i.e., the tracks) as the presence or absence of 
magnetic domains. The bits on a given track are shifted over one 
or more read/write ports, leading to a bit-serial access 
mechanism.  

Racetrack memory offers the potential for far greater storage 
density than other technologies. Table 1 shows how racetrack 
compares to SRAM and DRAM, in terms of the effective cell 
size F2 [2]. In particular, the density is outstanding for the 3D 
variant of racetrack memory, in which each track is in a U-shape 
with the bottom of the “U” positioned over a single read/write 
port on the substrate. Because of its vast density superiority, we 
focus here on 3D racetrack instead of the 2D variant in which 
tracks lay flat on the substrate. 

To unlock the potential of racetrack memory for use in real 
systems, we must overcome its reliability challenges. Uniquely 
among current and emerging memory technologies, racetrack 
memory is susceptible to shift errors. As bits are shifted along 
the racetrack, it is possible for under-shifting (“insertion” in 
coding terms) and over-shifting (“deletion”) to occur. As has 
been shown before, traditional error correcting codes, like 
Hamming codes, are unable to tolerate shift errors [5, 6, 7].1 

 
1  Consider a simple example. Imagine an n-bit codeword of 
alternating 0s and 1s, e.g., 010101. A single shift error would be 
equivalent to n or n-1 bit flips, which Hamming cannot tolerate. 

Prior work [5, 6, 7, 8] has addressed the shift error problem, 
including GreenFlag [7], which uses a combination of 
Varshamov-Tenegolts coding [9] and delimiters to solve the 
problem for 3D racetrack. However, none of this work is capable 
of also tolerating even a single bit flip error if the read/write head 
mis-reads a magnetic domain, either due to an error on the track 
or in the read/write head itself.  

In this paper, we introduce Foosball Coding, a coding 
scheme that simultaneously tolerates both shift errors and bit flip 
errors. 2  Foosball Coding uses GreenFlag-like coding on a 
horizontal (per-track) basis, and it uses a vertical (across-track) 
Hamming code to correct bit flips. That is, Foosball Coding adds 
tracks that hold the Hamming code bits. This use of Hamming 
codes requires innovation because the Hamming bits themselves 
must tolerate shift errors, yet Hamming codes are not inherently 
resilient to shift errors.  

Foosball Coding also introduces a new coding technique we 
call multi-purpose delimiters (MPD). GreenFlag, and other prior 
work [10, 11], uses delimiters between codewords. In the case 
of GreenFlag, the delimiters serve to detect whether a shift error 
is an insertion or deletion. We have observed that multiple 
delimiters could serve the same purpose. For example, there are 
multiple 6-bit delimiters that can detect a single insertion or 
deletion. Thus, we could choose the delimiters in a way that 
encodes additional useful information. In general, if we have D 
distinct delimiters, all of which serve the same purpose, then we 
have log2D bits of data that we can exploit. In Foosball Coding, 
we use MPD to provide an optional added degree of error 
detection.  

This work makes the following contributions: 
 We present Foosball Coding, which is the first coding 

scheme to simultaneously tolerate shift errors and bit flip errors 
in 3D (and 2D) racetrack memory. 
 We develop a systematic, constraint-based methodology for 

constructing delimiters that identify shift errors in the presence 
of a given error model.   
 We introduce multi-purpose delimiters and show how to 

exploit them to increase the error detection capability of 
Foosball Coding.  

2 A foosball player can either be shifted or flipped. 

Table 1. Effective cell size (F2) for memory technologies 

SRAM DRAM 2D-Racetrack 3D-Racetrack 

120 F2 6-12 F2 1-2 F2 0.125-0.5 F2 
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II. RACETRACK BACKGROUND 
We now provide a short background on racetrack memory, 

focusing on what is most pertinent for Foosball Coding.  

A. Physical Implementation 
The basic components of racetrack memory are the magnetic 

strip (track), and the read/write ports that sit upon a substrate as 
seen in Figure 1. The track stores information in terms of 
magnetic regions, known either as magnetic domains (MDs) [1, 
2, 3, 4] or magnetic objects called skyrmions [12, 13, 14], 
depending on the underlying technology used to create the 
memory. For the purpose of this paper, the two technologies are 
equivalent and thus we assume MDs for the rest of the paper. 

Two different geometries have been proposed; a U-shaped 
3D track (Figure 1a) and a line-shaped 2D track (Figure 1b). 
There are two main differences between 2D and 3D Racetrack 
memory. The first difference is that 2D Racetrack can have 
multiple read/write ports per track as the track is always adjacent 
to the substrate, whereas 3D Racetrack allows for only a single 
read/write port at the bottom of the U-shaped track. 3D 
Racetrack is projected to achieve significantly greater density 
because more tracks can be packed per area unit due to its 
geometry. Although this paper focuses on 3D Racetrack 
memory, Foosball can be also be applied to 2D Racetrack. For 
the rest of this paper, we assume 3D Racetrack with a single 
read/write port. However, for simplicity of illustration, our 
figures will use a 2D representation.  

B. Operation 
Regardless of the physical geometry of the Racetrack 

memory, a track can store a number of physical bit locations 
(logical 1 or 0). To read or write a bit, MDs must be shifted over 
the read/write port. By inducing current that runs parallel with 
the track, MDs can be shifted along the track. The track and the 
ports are physically fixed and cannot move. A port can access 
the bit location above it by either sensing if an MD is present 
(i.e., read) or inducing an MD (i.e., write). To read (write) 
multiple bits, consecutive read (write) and shift operations must 
be performed as shown in Figure 2a-c. 

C. Error Model 

Shift errors. Shift errors are the distinctive challenge with 
racetrack memory. Similar to prior work [5, 6, 7, 8], we model 
single shift errors with a probability of an insertion or deletion 
on every bit shift. A single shift error—caused by injecting too 
much or too little current along the track—causes the bits to be 
misaligned with respect to the read/write port by one bit position. 
Although it is theoretically possible to have a double shift error 
during a single shift operation (i.e., misalignment by two bit 
positions), prior work has shown that this is very unlikely [5] and 
thus this case is not considered. However, it is possible to have 
multiple single shift errors while performing multiple shift 
operations, resulting in a total of two (or more) shift errors while 
reading a block of data. For example, we could experience the 

(subtly tricky) situation in which an insertion and a deletion 
occur while reading a single codeword. 

Flip errors. Bit flip errors have received less attention for two 
reasons. First, the unique challenge of shift errors has 
monopolized the interest of researchers. Second, there is no 
empirical data, to our knowledge, that characterize the likelihood 
of bit flips. Nonetheless, bit flip errors can occur when data is 
transferred through a memory channel from the memory 
controller to the physical memory and back. Furthermore, an 
implementation that protects against shift errors only would 
miss-categorize bit flip errors as shift errors. Thus, attempting to 
correct detected errors would actually cause misalignment 
between the bit positions and the read/write port and data 
corruption. For these reasons, attempts to address this error 
model have been made for 2D racetrack [15]. Similarly, we 
expect bit flip errors in 3D racetrack memory—in the bits 
themselves, or in the read/write head or memory channel—and 
thus we seek to protect 3D racetrack accordingly. 
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a. 3D-Racetrack

b. 2D-Racetrack
Figure 1. (a) 3D-Racetrack (a) and (b) 2D-Racetrack. 
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a. Initial state of the track

b. State of the track after a single shift operation

c. State of the track after two shift operations
Figure 2. A system representation of 3D-Racetrack (a) in its initial state, 

(b) after a shift operation, (c) after two shift operations.  
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III. PRIOR WORK 
While there is a large body of work on racetrack memory 

itself and how to apply it to various levels of the memory and 
storage hierarchy [16, 17, 18, 19, 20], we focus here on fault 
tolerance. We divide the work into two sections, based on 
whether it targets 2D or 3D racetrack; all of the schemes for 2D 
racetrack rely on having multiple read/write ports, which is not 
feasible for 3D racetrack. Foosball Coding builds on the 3D shift 
error tolerance scheme called GreenFlag, by adding the ability 
to tolerate bit flips. 

A. Fault Tolerance for 2D Racetrack 

Chee et al. [8]. In this scheme, data is encoded using run-length 
limited codes. By reading the same data through multiple ports 
that have pre-determined distances between them, shift errors 
can be detected and corrected. Depending on the number of ports 
available, different fault tolerance levels can be achieved. No bit-
flip protection is provided. 

HiFi [5] and np-ECC [15]. HiFi adds delimiters to the edges of 
each track. Data bits are stored in the middle section of a track. 
At runtime, data bits and delimiter bits are read simultaneously 
via multiple ports. If the bit values of the delimiter bits differ 
from the expected values, a shift error is detected. HiFi can 
detect double shift errors and correct single shift errors. A 
subsequent extension of HiFi, called np-ECC, additionally 
provides single bit-flip correction for the delimiter (but not the 
data). However, it cannot provide fault tolerance guarantees in 
the case that both bit flips and shift errors are present 
simultaneously. 

B. Fault Tolerance for 3D Racetrack 
There are two prior fault tolerance schemes for 3D 

Racetrack, both of which focus on achieving shift error detection 
and correction with only a single read/write port. To our 
knowledge, no protection against bit-flips has been proposed. 

Ollivier et al. [6]. Ollivier et al. [6] present a shift protection 
scheme that combines multiple coding and physical techniques. 
They propose a new physical way to access information on the 
Racetrack, called Traverse Read (TR). With TR, one can 
calculate the number of 1s in a track without performing shift 
operations. Additionally, delimiter bits are added to the edges of 
each track. Using TR, the weight (number of 1s) of the data and 
the delimiter bits can be calculated. This weight is called the 
signature of a track. Based on the current signature of a track, 
the signature after a shift operation can be predicted. If a 
mismatch occurs between the predicted value of the signature 
and the signature calculated after a shift operation, a shift error 
is detected. To guarantee that the current signature of a track can 
always be reliably recovered, they store it in STT-RAM, a 
memory technology that does not incur shift errors. While 
clever, this scheme has significant drawbacks. First, it can only 
detect and correct a single shift error for the entire track, limiting 

 
3 We defer for now the possibility of shift errors in the delimiter.  

the practical length of each track. Furthermore, it provides no 
guarantees for bit-flip errors.  

GreenFlag [7]. GreenFlag is a combination of (a) a code that 
can correct shift errors if it knows if the error is an insertion or a 
deletion, and (b) a delimiter that detects insertions and deletions.  

The shift correction code is based on Varshamov-Tenegolts 
(VT) codes [9]. An n-bit VT codeword is constructed in two 
steps. First, the dataword bits are placed consecutively at the 
non-power-of-two positions in the codeword. Second, the 
power-of-two-positions are filled with bits that we refer to as 
“fill bits.” We denote such a codeword as VT(n, k), where n is 
the size of the codeword and k the size of the dataword in bits. 
For example, VT(64,57) uses 57 dataword bits and 7 fill bits. 
The values of the fill bits are chosen to satisfy the following 
checksum equation:  

 ෍ ݅ܿ௜ = 0, ݊) ݀݋݉ + 1)௜ୀଵ ௧௢ ௡  

 
All valid VT codewords have a checksum equal to zero, and 

thus VT codes have easily implementable algorithms for 
correcting insertions and deletions, based on trying to make the 
checksum equal to zero again. However, VT codes must know 
whether the shift error is an insertion or deletion; there is no 
algorithm for correcting a shift error of unknown type.  

Therefore, GreenFlag appends to each VT codeword a 
specific, predetermined delimiter that is chosen such that it can 
detect a desired number of insertions and deletions in the VT 
codeword.3 For example, a 6-bit delimiter of 000111 can detect 
a single insertion or deletion in the preceding VT codeword. A 
1-bit insertion will result in a delimiter of X00011, and a 1-bit 
deletion will result in a delimiter of 00111X (where X could be 
0 or 1). Neither X00011 nor 00111X can be mistaken for a 
correct delimiter or for each other. Longer delimiters can be used 
to detect more insertions and deletions. We refer to the VT 
codeword with its subsequent delimiter as an extended 
codeword, and any number of extended codewords can be stored 
one after another in a track, depending on the length of the track.  

At runtime, a read operation involves reading an entire 
extended codeword. While reading the VT codeword, the 
checksum is recalculated and compared to zero. Additionally, 
the delimiter bits are read are compared to predetermined values. 
If both the checksum and the delimiter bits are correct, then no 
shift errors have occurred. Otherwise, based on both the values 
of the delimiter and the checksum, respectively, the type of the 
shift error is decided and corrected. The correction is done in two 
steps. First, the bits are shifted accordingly to realign them with 
respect to the read/write port. Second, the correct VT codeword 
is reconstructed and the dataword bits are extracted from the 
non-power-of-2 positions. 
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GreenFlag can detect single and double shift errors, and it 
can correct single shift errors with the VT code alone; it can 
correct double shift errors by realigning the read/write port and  
re-reading.  However, GreenFlag cannot tolerate bit flip errors. 
It can be shown that a single bit flip error combined with a single 
shift error can cause a silent data corruption. This limitation 
motivates Foosball Coding.  

IV. DELIMITER CONSTRUCTION & MULTI-PURPOSE DELIMITERS 
Delimiters are a useful mechanism for detecting insertions 

and deletions—and, in fact, have been used in other contexts, 
including denoting the boundaries between codewords [10, 11]. 
Typically, a delimiter is a predetermined string of bits that is 
easily distinguishable.  

For example, GreenFlag uses a 6-bit delimiter 111000 that 
can be used to detect deletion or insertion errors in the preceding 
VT codeword. A single insertion error can be detected as a one-
position right shift in each bit with an added bit X at the 
beginning of the delimiter string, i.e., X11100. Similarly, a 
deletion error can be detected as a one-position left shift in each 
bit with an added bit X at the end of the delimiter string, i.e., 
11000X.  

However, this particular delimiter fails to distinguish shift 
errors if bit flips are introduced in the error model. For example, 
consider the case that a bit flip occurs in the 4th bit of the 
delimiter. This results in the delimiter string 111100, which is 
equivalent to the delimiter we get after a single insertion 
(X11100).  Because different errors could result in the same 
delimiter string, shifts and bit flips cannot be distinguished from 
each other with the delimiter 111000.   

In this work, we present what is, to the best of our 
knowledge, the first formal approach for construction of 
delimiters for different error models.  In addition, we introduce 
the idea of multi-purpose delimiters (MPD), in which we find a 
set of compatible delimiters for a given error model.  With MPD, 
we can choose which delimiter within the set to use, and this 
choice can convey additional information.   

A. Delimiter Construction (for a single delimiter) 
The main idea behind delimiter construction is that we can 

set certain constraints on a delimiter string to guarantee that it 
works for a given error model.  Fundamentally, these constraints 
ensure that the correct delimiter cannot be mistaken for a 
delimiter that has been modified by any error in the error model. 
While our delimiter construction methodology is general, we 
consider two error models in this section: shift errors only and 
bit flips with shift errors in the same track.  

In Table 2, we summarize how the possible errors are 
handled, based on whether they occur in the delimiter or in the 
codeword that precedes the delimiter. This summary is 
independent of Foosball Coding. 

Error Model 1: Shift Errors 
Let us assume that we want to create a delimiter d that would 

work in the case of a single shift error; for now, we assume the 
shift error is in the codeword.  Let ࢊ = ൣ݀ଵ, ݀ଶ, … ݀௤൧ be a q-bit 

delimiter. If an insertion has occurred, then we instead read ࡵࢊ૚ = ൣܺ, ݀ଵ, … ݀௤ିଵ൧. Thus, in order to be able to detect a single 
insertion, ࢊ and ࡵࢊ૚ must always be different by at least one bit, 
i.e., ࢊ  and ࡵࢊ૚  must have a Hamming distance of at least 1. 
Similarly, if a deletion error occurs, we would read ࡰࢊ૚ =ൣ݀ଶ, … ݀௤, ܺ൧.  To be able to detect a deletion we thus need ࢊ and ࡰࢊ૚ to have a Hamming distance of at least 1. Furthermore, we 
need ࡰࢊ૚ and ࡵࢊ૚ to have a Hamming distance of at least 1 in 
order to be able to distinguish an insertion from a deletion. We 
summarize these constraints here: 

,ࢊ൫݁ܿ݊ܽݐݏ݅ܦ_݃݊݅݉݉ܽܪ :1ܽ ݐ݊݅ܽݎݐݏ݊݋ܥ  ૚൯ࡵࢊ ≥ ,ࢊ൫݁ܿ݊ܽݐݏ݅ܦ_݃݊݅݉݉ܽܪ :2ܽ ݐ݊݅ܽݎݐݏ݊݋ܥ 1 ૚൯ࡰࢊ ≥ ,૚ࡰࢊ൫݁ܿ݊ܽݐݏ݅ܦ_݃݊݅݉݉ܽܪ :3ܽ ݐ݊݅ܽݎݐݏ݊݋ܥ 1 ૚൯ࡵࢊ ≥ 1 
 
If a q-bit sequence satisfies all three constraints, then it can 

be used as a delimiter. For our example, delimiter 001 satisfies 
all three constraints and thus, can be used to detect single shift 
errors.  

This process can be extended to construct a delimiter that can 
detect any number of shift errors by simply adding more 
constraints. For example, if we want to consider two shift errors, 
then we add constraints for ࡰࢊ૛ = ൣ݀ଷ, … ݀௤, ܺ, ܺ൧ and ࡵࢊ૛ =ൣܺ, ܺ, ݀ଵ, … ݀௤ିଶ൧. The more constraints we add, the larger q 
must be in order to find such a delimiter. For example, to be able 
to detect two shift errors we need a delimiter that is at least 5-
bits long (e.g., 00111). 

We have deferred until now the issue of shift errors in the 
delimiter itself. Our delimiter construction methodology 
produces delimiters that can detect most shift errors in the 
delimiters, but fundamentally they cannot detect all of them.  
Certain shift errors are easily detected. Consider a deletion 
(insertion) in the first bit of the delimiter; this is equivalent to a 
deletion (insertion) in any of the preceding codeword bits. 
However, if a shift error occurs in the last few bits of the 
delimiter, there is no delimiter that can guarantee that the error 
will be detected because we cannot control the bit values of the 
following codeword. For example, consider the delimiter 00111; 
a deletion in the last bit cannot be guaranteed to be detected, 
because it is always possible that the first bit of the subsequent 
codeword is a 1.   

In this paper, we take a conservative approach to shift errors 
in delimiters. If a shift error results in a delimiter we can 
recognize (e.g., correct delimiter, single shift delimiter, etc.), we 
identify the codeword accordingly. If not, we declare a detected 
uncorrectable error (DUE).  

Table 2. Handling errors in codeword and delimiter bits 
 error in codeword error in delimiter 
shift error Detected by delimiter. 

Correction, if any, 
varies by scheme 

May be detected or 
corrected by 
delimiter 

bit flip varies by scheme May be corrected by 
delimiter 
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Error Model 2: Shift Errors and Bit Flip Errors 
Now consider the case that we want to create a delimiter that 

can detect either one single shift error or one delimiter bit flip.  
That means that even if a bit in the delimiter d flips, we should 
still be able to distinguish it from the case of a single shift error. 
In this case, ࢊ and ࡵࢊ૚ must always differ by at least two bits. 
Similar is the case for ࢊ and ࡰࢊ૚. However, no increase in the 
Hamming distance of ࡵࢊ૚and ࡰࢊ૚is needed as we assume that 
either a shift error or a bit flip will occur, but never both. Thus, 
our constraints are now: 

,ࢊ൫݁ܿ݊ܽݐݏ݅ܦ_݃݊݅݉݉ܽܪ :1ܾ ݐ݊݅ܽݎݐݏ݊݋ܥ  ૚൯ࡵࢊ ≥ ,ࢊ൫݁ܿ݊ܽݐݏ݅ܦ_݃݊݅݉݉ܽܪ :2ܾ ݐ݊݅ܽݎݐݏ݊݋ܥ 2 ૚൯ࡰࢊ ≥ ,૚ࡰࢊ൫݁ܿ݊ܽݐݏ݅ܦ_݃݊݅݉݉ܽܪ :3ܾ ݐ݊݅ܽݎݐݏ݊݋ܥ 2 ૚൯ࡵࢊ ≥ 1 
 
Again, this process can be extended to construct a delimiter 

that can detect any number of shift errors and/or any number of 
delimiter bit flip errors, by adjusting and adding constraints. For 
example, delimiter 1001010 can detect either two shift errors or 
one delimiter bit flip error. Delimiter 00011010 can detect two 
shift errors and one delimiter bit flip error even if both shift 
errors and delimiter bit flip errors are present at the same time. 

B. Multi-Purpose Delimiters (MPD) 
Observation: For a given bit-length q, there may be multiple q-
bit delimiters that satisfy the delimiter construction constraints, 
and there is an opportunity to exploit the extra information 
carried by the choice of delimiter.  

Let us return to the example of finding a delimiter that can 
detect a single shift error. We showed that delimiter 001 suffices 
for this error model, and it is clear that 110 is an equally useful 
delimiter for this error model. Theoretically, we could use both 
delimiters in order to encode an extra bit of information. For 
example, using delimiter 001 would encode ‘0’ and using 
delimiter 110 would encode ‘1’. However, it is not immediately 
clear if 001 and 110 are compatible delimiters, i.e., if they can 
be used without being mistaken for each other in the presence of 
shift errors.  

In general, we seek a set of 2m compatible delimiters, where 
(a) all of the delimiters can detect the desired number of 
insertions or deletions, and (b) the delimiters are all compatible 
with each other, i.e., no delimiter can be mistaken for any other 
delimiter despite any error in our error model. Condition (a) is 
always satisfied by the construction constraints for a single 
delimiter. To also satisfy condition (b) we need to introduce 
additional constraints between the 2m delimiters. 

In our running example, let ࡭ࢊ = ,࡭૚ࢊൣ ,࡭૛ࢊ … , ࡮ࢊ ൧ and࡭ࢗࢊ ,࡮૚ࢊൣ= ,࡮૛ࢊ … ,  ൧ be two different delimiters that both satisfy the࡮ࢗࢊ
constraints 1a-3a. To ensure that ࡭ࢊ  and ࡮ࢊ  are compatible, 
they cannot be confused after a single bit flip. Additionally, we 
must ensure that ࡵࢊ૚࡭  cannot be confused with ࡰࢊ૚࡮ . Furthermore ࡵࢊ૚࡭  must be different from ࡮ࢊ even if a bit flip error happens in ࡮ࢊ . Similar are the cases for ࡵࢊ૚࡮ . In short, the following 
constraints must apply: 

,࡭ࢊ)݁ܿ݊ܽݐݏ݅ܦ_݃݊݅݉݉ܽܪ  :1ܿ ݐ݊݅ܽݎݐݏ݊݋ܥ  (࡮ࢊ ≥ ࡭૚ࡰࢊ൫݁ܿ݊ܽݐݏ݅ܦ_݃݊݅݉݉ܽܪ  :2ܿ ݐ݊݅ܽݎݐݏ݊݋ܥ 3 , ࡮૚ࡵࢊ ൯ ≥ ࡭૚ࡵࢊ൫݁ܿ݊ܽݐݏ݅ܦ_݃݊݅݉݉ܽܪ  :3ܿ ݐ݊݅ܽݎݐݏ݊݋ܥ 1 , ࡮૚ࡰࢊ ൯ ≥ ࡭૚ࡵࢊ൫݁ܿ݊ܽݐݏ݅ܦ_݃݊݅݉݉ܽܪ  :4ܿ ݐ݊݅ܽݎݐݏ݊݋ܥ 1 , ൯࡮ࢊ ≥ ࡭૚ࡰࢊ൫݁ܿ݊ܽݐݏ݅ܦ_݃݊݅݉݉ܽܪ  :5ܿ ݐ݊݅ܽݎݐݏ݊݋ܥ 2 , ൯࡮ࢊ ≥ ࡮૚ࡵࢊ൫݁ܿ݊ܽݐݏ݅ܦ_݃݊݅݉݉ܽܪ  :6ܿ ݐ݊݅ܽݎݐݏ݊݋ܥ 2 , ൯࡭ࢊ ≥ ࡮૚ࡰࢊ൫݁ܿ݊ܽݐݏ݅ܦ_݃݊݅݉݉ܽܪ  :7ܿ ݐ݊݅ܽݎݐݏ݊݋ܥ 2 , ൯࡭ࢊ ≥ 2 
 
By enforcing constraints 1a-3a and constraints 1c-7c, we can 

find two delimiters that can tolerate single shift errors and be 
compatible. Using this methodology, and by adding constraints 
accordingly, we can find any set of 2m compatible delimiters for 
any error model. For example, delimiters 0111101 and 1001010 
are two compatible delimiters that can detect two shift errors or 
single bit flips. In Figure 3 we present the minimum bit length q 
that delimiters must have to find 1, 2, or 4 compatible delimiters 
for different error models.  

Foosball Coding uses the delimiter construction 
methodology introduced in this section, including MPD. 

V. FOOSBALL CODING 
We have developed two variants of Foosball Coding that 

provide different trade-offs between error tolerance and cost. We 
quantify cost as is typical in information theory, using a code’s 
rate, defined as the ratio of dataword bits to codeword bits.  

When we explain these codes, we consider the tracks to run 
parallel to each other in the horizontal direction (even though the 
tracks are actually 3D). Thus, we describe per-track coding as 
horizontal (or per-row) coding and across-track coding as 
vertical (or per-column) coding. We use the term array to 
describe the logical “rectangle” of bits from some number of 
rows and columns. 

Our two variants of Foosball Coding are FC1 and FC2.  FC1 
(Section V.A) uses horizontal coding to provide error tolerance 
of either shift errors or bit flip errors (but not both at the same 
time). FC2 (Section V.B) uses horizontal and vertical coding to 
provide protection against shift errors and bit flip errors in a 
given array of bits.  
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A. FC1: One Type of Error at a Time 
FC1 is the lower cost variant of Foosball Coding. Like 

GreenFlag, FC1 is a strictly horizontal code that encodes a 
dataword into a VT codeword with a delimiter. FC1 can tolerate 
2 shift errors or 1 bit flip error per track. To achieve this, FC1 
introduces two key innovations that provide low-cost protection 
against bit flip errors.  

Innovation #1: Use MPD to encode Parity 
FC1 uses MPD to generate two compatible delimiters that 

encode additional information. Specifically, with two distinct 
compatible delimiters, we have one bit of “free” information, 
and we use it to provide parity. Using our delimiter construction 
methodology for the given error model, we find that we need 
delimiters that are 7-bits long: 1001010 and 0111101. These 
delimiters are selected so that they can always be distinguished 
from each other, even if two shift errors or a bit flip error (but 
not both) occur per track. 

Innovation #2: Use VT Checksum to Localize Bit Flip 
FC1 uses insight into VT coding that allows one parity bit to 

detect and correct a single bit flip error. Recall that every VT 
codeword must satisfy a checksum equation over the n bits of 
the codeword (with numbering starting at position 1, not 0). 
Because the checksum is computed as a sum mod (n+1), a bit 
flip in position 1 and a bit flip in position n have the same effect 
on the checksum. A flip in position 1 can either add or subtract 
1 (if 0 1 or 1 0, respectively), and a flip in position n can 
either subtract or add 1. Similarly, a flip in position 2 and 
position n-1 have the same effect of adding or subtracting 2. 
More generally, because of this symmetry, any discrepancy in 
the checksum due to a single bit flip can be localized to one of 
two bit positions.  

Therefore, we know that the error is in one of two bit 
positions, and we know that one of the positions is on the left 
half of the codeword and the other is on the right half. By 
protecting one half of the codeword with parity—using the 
parity bit obtained via MPD—we can identify whether that half 
is the culprit. If it is not, we know that the other half is. 
Whichever half of the codeword is identified now uniquely 
identifies the bit position that is in error, and we correct it. 

FC1 Encoding 
The encoding process for FC1 is the following. A dataword 

is first encoded to a VT codeword as done in GreenFlag. Then, 
the left half bits of the VT codeword are logically XORed to 
produce a parity bit. If the value of the parity is 0, the VT 
codeword is appended with the delimiter 1001010. Otherwise, it 
is appended with the delimiter 0111101.  

FC1 Decoding 
As with GreenFlag, FC1 must read a whole extended 

codeword, calculate the checksum, and identify the value of the 
delimiter. If both the delimiter and the checksum are correct, we 
simply decode the VT codeword by reading the dataword bits 
from the non-power-of-two bit positions.  

If the checksum is incorrect but the delimiter is correct, a 
single bit flip is detected. As explained earlier, we use the value 
of the checksum to isolate the bit flip error to just two bit 
positions in the VT codeword and then use the “free” parity 
given by the delimiter to correct it. 

If both the checksum and the delimiter are incorrect, then a 
single shift error is detected and corrected using the VT decoding 
process in GreenFlag. 

If the checksum is correct but the delimiter is incorrect, then 
either two shift errors or a single bit flip in the delimiter bits has 
occurred. Our delimiter construction methodology guarantees 
that both of our delimiters can detect and distinguish these 
different error cases.  The shift errors are fixed by shifting bits 
accordingly to realign them with respect to the read/write port of 
the track.  The flip error is corrected by simply re-writing the 
delimiter to its original value. 

FC1 Error Model and Limitations 
FC1 will immediately correct exactly one error—either shift 

error or bit flip error—per extended codeword. It can also detect 
2 insertions or 2 deletions, in which case FC1 will realign the bit 
positions but will not retrieve the correct codeword. In this case, 
FC1 will report a detected uncorrectable error (DUE). We 
emphasize that, similar to GreenFlag, FC1 could attempt to re-
read the codeword to retrieve the correct codeword bits. 
However, this last step is optional, and the memory controller or 
OS could decide how to handle these DUEs.  

Any extended codeword that incurs other error scenarios—
three or more shift errors, multiple bit flips, or a combination of 
shift errors and bit flips—is likely to lead to a silent data 
corruption (SDC).  

Depending on the probabilities of shift errors and bit flip 
errors, as well as on the required level of error tolerance, FC1 
may or may not suffice.  We note that FC1 could be made more 
error tolerant—with stronger, but more costly, delimiters—or 
we could instead choose to use FC2.    

B. FC2: Both Types of Errors at Once 
FC2 is the more reliable, but more costly, variant of Foosball 

Coding. FC2 combines horizontal coding that is similar to 
GreenFlag with a vertical code that must overcome a key 
challenge with shift errors. 

Horizontal Code 
FC2 borrows GreenFlag for its horizontal code, where each 

track stores VT codewords that are made out of data bits (D) and 
fill bits (F). Each VT codeword is followed by delimiter bits (d). 
FC2 however, uses a single delimiter that differs from the two 
delimiters used in FC1. FC2’s 8-bit delimiter 00011010 can 
distinguish between (a) up to two deletions or two insertions 
even in the presence of a single bit flip error in the delimiter, and 
(b) a single flip error in the delimiter bits.  

FC2’s horizontal code is used strictly to detect and correct 
shift errors in the VT codeword (and single bit flips in the 
delimiter bits). Unlike FC1, FC2 relies on a vertical code to 
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correct bit flips in the VT codeword (instead of FC1’s use of 
parity stored with MPD).  

Vertical Code   
To provide bit flip protection, FC2 uses a vertical error 

correcting code (ECC), specifically a Hamming Code. Consider 
a (portion of) racetrack memory consisting of 64 tracks, where 
each track uses the horizontal code. Let us refer to these tracks 
as data tracks. We now add 8 Hamming Code tracks at the 
bottom, such that each column is now 64+8=72 bits long and 
forms a Hamming(72,64) codeword (see Figure 4a). 
Hamming(72,64) is a well-known code that provides single error 
correction and double error detection (SECDED).  We refer to 
the added tracks as Hamming tracks, and each Hamming track 
stores Hamming parity bits (h). 

The challenge with vertical coding—and the reason that 
GreenFlag explicitly chose to use only horizontal coding—is 
that the added Hamming tracks are seemingly unprotected from 
shift errors. The bits in the Hamming tracks do not form VT 
codewords but instead are a function of the bits in their 
respective columns. This implies that a single shift error in any 
of the Hamming tracks could render our vertical Hamming Code 
useless. We illustrate such an array in Figure 4a. 

We overcome this problem by exploiting two observations.  
First, we observe that the delimiter bits in the data tracks do not 
need Hamming protection to detect and correct bit flips.  
Because our delimiter is explicitly constructed to be impervious 
to our error model, a single bit flip in the delimiter can be 
immediately detected and corrected, even if it is accompanied by 
a single shift error in the same delimiter bits. Thus, in the 
Hamming track bit positions that are in the same columns as 
delimiters in the data tracks, we can place any bit values we want 
instead of creating Hamming codewords.  Specifically, we use 
those column positions of the Hamming tracks to store 
delimiters, as is done in the data tracks.   

Thus, each data track consists of pairs of VT codewords and 
delimiters, and each Hamming track consists (for the moment) 
of pairs of “Hamming strings” (representing the Hamming Code 
bits for their respective columns) and delimiters.  This new array 
is shown in Figure 4b. 

Our second key observation is that we do not need to provide 
Hamming Code protection of the columns that correspond to fill 
bits in the data tracks.  As explained in more detail later, the FC2 
decoding process first performs horizontal decoding (using the 
fill bits) and then vertical decoding (during which the fill bits are 
irrelevant).  Because the fill bits are not used after horizontal 
decoding, there is no need to correct them during vertical 
decoding and thus no need to protect them.  Thus, in power-of-
two positions in the Hamming strings, we can choose to place 
any bit values we see fit.  Therefore, we choose fill bits that 
transform every Hamming string into a valid VT codeword, and 
we thus gain shift error protection for the Hamming tracks. 

In Figure 4c, we present an example of this final FC2 array. 
In this example, there are 64 data tracks and 8 Hamming tracks 
that are all horizontally encoded as pairs of VT(64,57) 
codewords and delimiters (i.e., extended codewords). These 
extended codewords can detect and correct shift errors, and the 
vertical Hamming(72,64) can correct single bit errors and detect 
two bit errors.  

We now describe in detail the encoding and decoding 
process of FC2.     

FC2 Encoding 
Encoding in FC2 is done at the array granularity. Before 

starting the encoding process, we arrange the input dataword bits 
in a temporary matrix with 64 rows, where each row represents 
a data track.  In Figure 4, we explained how to encode by 
performing the horizontal encoding of each dataword, adding the 
vertical Hamming code, and then making the Hamming tracks 
resilient to shift errors. This encoding process is easiest to 
explain and we could have chosen to use it here, but in practice 
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Figure 4. Transforming every track of the matrix to valid VT codewords 
through steps a, b, and c. 

a. Adding Hamming tracks with Hamming (h) bits 

b. Adding delimiters (d) to Hamming tracks 

c. Adding fill (F) bits to Hamming tracks 
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it is easier to start with vertical encoding and then perform 
horizontal encoding. 
Step 1 (Vertical Hamming Coding): We vertically encode all 64 
rows of the matrix using Hamming(72,64). For each column, 
Hamming(72,64) produces 8 parity bits that are cached in 8 
additional rows in the bottom of the temporary matrix (72 rows 
total). These additional rows correspond to the Hamming tracks.  
Step 2 (Horizontal VT Coding): We horizontally encode all 72 
rows of the matrix into VT codewords using the same encoding 
process as in GreenFlag, and the delimiter 00011010 is 
appended to each VT codeword. 

After step 2, the entire temporary matrix (72 VT codewords 
with delimiters) is written to the racetrack memory, with each 
row written to a different track, comprising an FC2 array. All 
tracks can be written in parallel.  

FC2 Decoding 
The decoding process is also done at an array granularity. 

Thus, before decoding starts, all 72 tracks of a single array are 
read in parallel. The process can be separated into two steps. 
Step 1 (Horizontal Decoding): Each track is individually, 
horizontally decoded with the VT/delimiter decoding algorithm 
described in GreenFlag. For each track, if shift errors are 
detected, the bit locations are shifted accordingly to re-align 
them with respect to the read/write port. If the error was a single 
shift error, the codeword bits are also corrected based on the VT 
decoding.   

If two shift errors were detected (i.e., either two insertions or 
two deletions), we cannot use the VT code to correct the 
codeword bits.  

If the two shift errors were one insertion and one deletion, 
then this combination is indistinguishable from a single bit flip 
error. As such, we rely on the vertical Hamming Code to 
subsequently correct any bit errors in such a row. 

If a track has both a single shift error and a single bit flip 
error, the VT decoding process will still attempt to correct the 
codeword without being aware of the bit flip. Thus, the output 
of the VT decoding will (likely) be a wrong VT codeword. 
Again, such an error case can be later corrected (or at least 
detected) by the vertical Hamming Code. Regardless, the 
important thing is that the read/write port always gets re-aligned 
with respect to the bit locations in every track at the end of the 
first decoding step. 

After we have fixed all shift errors and corrected each VT 
codeword (when possible), we simply extract the dataword bits 
from each VT codeword. For VT(64,57) we have 57 dataword 
bits. Thus, we now have 72 rows and 57 columns.  
Step 2 (Vertical Decoding): We use Hamming(72,64) to 
vertically decode each column. The result is 64 rows of 57 
columns. These are the final decoded dataword bits.    

During the decoding of an array, we always go through step 
1. However, step 2 is not always executed. If during step 1, two 
or more tracks report two shift errors, we declare a DUE and skip 
step 2. The reason we do this is that each track that has two shift 
errors is likely to extract multiple incorrect dataword bits from 
the incorrect VT codeword.  Thus, there is a high probability that 

at least one column has two incorrect bit values, and an 
additional bit flip in the same column would lead to a SDC 
during the Hamming decoding in step 2. (Hamming(72,64) can 
only detect up to 2 errors). Thus, to avoid an SDC, we 
conservatively declare a DUE. 

The ability of our vertical code to detect two errors per 
column is more powerful than it might appear at first.  Consider 
the situation in which more than one row is mis-corrected in Step 
1 (or one row is known to be uncorrectable and one or more other 
rows are mis-corrected).  While Hamming(72,64) is likely to fail 
on multiple columns, it is extremely unlikely to fail on every 
column.  If Hamming(72,64) finds a DUE on any column, FC2 
declares a DUE for the entire array and avoids an SDC. 

We emphasize that, similar to GreenFlag and FC1, when two 
shift errors are detected in a track, we could attempt to re-read 
its VT codeword (after realigning the bit positions with respect 
to the port). However, we consider this an optional step that the 
memory controller or OS could decide how to use. 

FC2 Error Model and Limitations 
For some error scenarios, FC2 guarantees no SDCs and/or 

no DUEs.  For other error scenarios, FC2’s error tolerance is a 
function of the locations of the shift and flip errors.  In Table 3, 
we present 7 error scenarios. For each scenario, we show 
whether DUEs or SDCs are possible. 

FC2 could be made more error tolerant, at additional cost, by 
choosing stronger horizontal and vertical codes. Longer 
delimiters and stronger ECC codes than Hamming(72,64) could 
tolerate more challenging error models and reduce the likelihood 
of SDCs and DUEs. 

Table 3. Different Error Scenarios for FC2 and their possible outcomes 

Error Scenario   
FC2 

Outcome # of Shift Errors  # of Flip Errors 

1 per extended codeword 1 per FC2 array no DUE 
 no SDC 

0 per FC2 array 1 per column of FC2 
array 

no DUE 
no SDC 

2 in 1 extended codeword, 
≤1 in all other extended 

codewords 

0 per FC2 array no DUE 
no SDC 

1 per extended codeword 2 in different extended 
codewords 

likely DUE 
no SDC 

1 per FC2 array 1 per column of FC2 
array 

likely DUE 
no SDC 

2 in 1 extended codeword, 
≤1 in all other extended 

codewords 

 
1 per FC2 array 

likely DUE 
no SDC 

1 per extended codeword 3 or more in different 
extended codewords 

likely DUE 
or SDC 
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VI. METHODOLOGY 
In this section, we describe how we evaluate FC1 and FC2, 

as well as compare it to GreenFlag [7]. For all three schemes, we 
use the horizontal code VT(64,57) that encodes 57 dataword bits 
to a 64-bit VT codeword.  

We set the shift error probability to ܲ(ݏ) = 10ି଺ . We 
choose this value based on estimations from prior work [5]. 
However, to our knowledge, no experimental bit flip 
probabilities for Racetrack memory have been reported. Thus, 
we investigate a range of probabilities ܲ(݂) = [10ି଺, 10ିଽ].  
A. Analysis of FC1 and GreenFlag 

For GreenFlag and FC1, we build analytical, mathematical 
models that calculate the probability of a detectable 
uncorrectable error (DUE) and a silent data corruption (SDC) 
per VT codeword. Due to the simplicity of these schemes, we 
can enumerate the different scenarios where errors will be 
corrected or lead to DUEs or SDCs, and we can calculate their 
probabilities. 

B. Simulation and Analysis of FC2 
Unlike GreenFlag or FC1, FC2’s error tolerance can depend 

on the location of the errors in the FC2 array. For example, 
consider the case of 3 bit flips and no shift errors in a single FC2 
array. If all bit flip errors are in the same column, an SDC will 
occur. Otherwise, the errors could be corrected or cause a DUE. 
Due to the vast number of possible error location combinations, 
building an analytical model is practically impossible. Thus, to 
evaluate FC2, we rely on an in-house simulation. 

Our FC2 simulator simulates the encoding and decoding 
processes in detail. Initially, for each array, it randomly 
generates 64 rows of datawords, each 57-bits long (64×57 
matrix). All 57 columns are encoded using Hamming(72,64) to 
produce a 72×57 array. Each row is then encoded with 
VT(64,57) and the delimiter 00011010 is appended to produce 
the final 72×72 FC2 array. 

Because error probabilities are quite low, naïve error 
injection would take a prohibitive amount of time.  (The vast 
majority of simulated arrays would have zero errors.)  Instead, 
we do the following.  
Step 1: We analytically derive the probabilities of all non-
negligible scenarios, including the no-error scenario. Each 
scenario is denoted with <X=x, Y=y>, where x is the number of 
shift errors and y is the number of bit flip errors in the FC2 array.  
We consider only the error scenarios with probability P(X=x, 
Y=y) ≥ 10-18 when P(s)=P(f)=10-6. If an error scenario is less 
probable than that (e.g., 10-20), considering it would not 
significantly change our results. 
Step 2: We run a very large number (105) of simulations for each 
of the scenarios identified in the previous step.  The simulator 
takes x and y as inputs.  The simulator randomly picks y bits in 
the 72×72 matrix and flips their values, and then it randomly 
picks x bits to have a shift error. Each shift error has equal 
probability of being a deletion or an insertion. After all errors are 
induced, the simulator attempts to decode the FC2 array 

following the same process described in Section V.B. At the end 
of this decoding process, the simulator compares the decoded 
datawords with the original values and reports whether the result 
was correct data, a DUE, or an SDC.  
Step 3: We weight the results from Step 2 using the probabilities 
from Step 1.  Step 2 produces the probability of DUE and SDC 
given an error scenario P(DUE | X=x, Y=y) and P(SDC | X=x, 
Y=y). We then analytically calculate the probability of each error 
scenario occurring in the FC2 matrix P(X=x, Y=y) based on the 
probabilities of P(s) and P(f). By using the formula  ܲ(ܧܷܦ) =∑ ܺ | ܧܷܦ)ܲ = ,ݔ ܻ = (ݕ × ܲ(ܺ = ,ݔ ܻ = ௫,௬(ݕ  we estimate 
the overall probability of DUE. Similar is the case for SDC. 

C. Primary Metric: DUEs and SDCs per Dataword Bit 
Because GreenFlag, FC1, and FC2 have different code rates 

and protect different numbers of dataword bits, it can be difficult 
to fairly compare them even after we have calculated P(DUE) 
and P(SDC) for each scheme. 

To make the comparison fair, we study the expected number 
of DUEs and SDCs per dataword bit read. Let us use FC2 as an 
example and let us assume that it has a probability of SDC per 
FC2 array of PFC2(SDC). The expected number of FC2 arrays we 
must read to get a single SDC is then EFC2(SDC)=1/PFC2(SDC). 
However, for each FC2 array read, we access 57×64=3648 
dataword bits. Thus, the total number of expected dataword bits 
we need to read to get a single SDC is: ܧ ൬݀ܽܥܦܵݏݐܾ݅ ݀ݎ݋ݓݐ ൰ = (ܥܦܵ)ி஼ଶܧ × 3648 = 3648ிܲ஼ଶ(ܵܥܦ) 

 
The expected SDCs per dataword bit is simply the reciprocal of 
the equation above. Similar is the case for the expected DUEs 
per dataword. The general form of the equation is: ܧ ൬ ൰ݐܾ݅ ݀ݎ݋ݓܽݐܽ݀ݏܧܷܦ =  ݀݁ݐܿ݁ݐ݋ݎ݌ ݏݐܾ݅ ݀ݎ݋ݓܽݐܽ݀ #(ܧܷܦ)ܲ

VII. RESULTS 
We now present our results for FC1 and FC2 and compare 

them to GreenFlag. We re-evaluate GreenFlag for our new error 
model that allows both bit flip and shift errors to occur. 

A. DUE and SDC Probabilities 
We start by presenting results for the probabilities of DUE 

and SDC for each code, as these results will help us better 
understand the expected number of DUEs and SDCs per 
dataword bit that we report next. In Figure 5, Figure 6, and 
Figure 7 we present the probabilities P(DUE) and P(SDC) for 
GreenFlag, FC1, and FC2 respectively. The x-axis is the value 
of P(f), and we remind the reader that P(s) is fixed to 10-6. The 
y-axis is P(DUE) and P(SDC) in logarithmic scale. The 
probabilities for GreenFlag and FC1 are calculated for a single 
extended codeword (VT codeword + delimiter), whereas for 
FC2 they are for an entire FC2 array. 

Our first observation is that P(SDC) for GreenFlag is very 
high because it can tolerate no bit flip errors, and its P(SDC) 
increases linearly with P(f). FC1 achieves 2-4 orders of 
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magnitude lower P(SDC) than GreenFlag, but P(DUE) for FC1 
is as high as GreenFlag because they both declare DUEs for the 
same error scenario (i.e., two shift errors in an extended 
codeword). 

  FC2 can achieve significantly better P(SDC), with as low 
as 10-20 for P(f)=10-9. However, P(DUE) for FC2 is higher than 
FC1 for P(f)>= 10-7. This is because FC2 will report a DUE even 
if only 2 out of the 72 tracks in the FC2 array have two shift 
errors. On the contrary, FC1 can detect two shift errors for each 
track individually.  

B. DUEs and SDCs per dataword bit 
We now present the expected number of DUEs and SDCs 

per dataword bit read. In Figure 8 we compare the number of 
DUEs per dataword bit for GreenFlag, FC1, and FC2. We 
observe that GreenFlag and FC1 have the same number of DUEs 

per dataword bit as they provide the same P(DUE) while 
protecting the same number of dataword bits. However, we see 
that FC2 can provide up to 6 orders of magnitude fewer DUEs 
per dataword bit.  Even in the cases where the P(DUE) for FC2 
was higher than the P(DUE) of FC1, FC2 can still provide the 
same or fewer DUEs per dataword bit. That is because FC2 
protects many more dataword bits than FC1 or GreenFlag. 

However, the number of DUEs per dataword bit is relatively 
high even for FC2. For P(f)=10-9, FC2 has roughly 10-16 
expected DUEs per dataword bit. For a system that constantly 
accesses dataword bits at a bandwidth of 1GB/s, around 27 
DUEs will be reported in a year. However, we note that the 
majority of these DUEs could be potentially corrected by just 
attempting to read the data again. 

In Figure 9 we present the same results but now for SDCs. 
From Figure 9, we see that FC2 achieves far fewer SDCs per 
dataword bit, achieving as low as 10-23 SDCs per dataword bit. 
That means that, even if we access dataword bits with a rate of 
1GB/s, we would only see 1 SDC every 1,000,000 years. The 
SDCs increase to 1 every 10,000 years, 10 years, and a few days 
for P(f)=10-8, P(f)=10-7, and P(f)=10-6, respectively. 

We conclude that GreenFlag and FC1 do not provide 
sufficient error tolerance when considering bit flip errors. 

C. Error Scenarios that Cause DUEs and SDCs with FC2 
We were interested to see which error scenarios cause the 

most DUEs and SDCs with FC2. This information will help us 
understand how we could increase the fault tolerance of FC2. 
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In Figure 10 we present the percentage of DUEs caused by 
different error scenarios. We include the error scenarios with the 
two highest percentages of DUEs, as well as the percentage of 
DUEs for all other error scenarios. We observe that the error 
scenario that causes the highest percentage of DUEs is always 
responsible for more than 55% of them. Moreover, for      
P(f)≥10-8 we see that the main error scenario that causes DUEs 
is multiple bit flips in the FC2 array. That indicates that, in order 
to reduce the number of DUEs, we should use a stronger ECC 
code. For example, we could use Hamming(7,4) instead of 
Hamming(72,64) to provide SECDED protection in every 7 
tracks rather than every 72. However, that would come with a 
significant reduction in the overall rate of FC2. For P(f)<10-8, we 
observe that the main error scenario that causes DUEs is multiple 
shift errors. Thus, for such a scenario we could use smaller VT 
codes, like VT(16,11), to provide shift protection every 16 bits 
rather than every 64. 

The results for SDCs are similar and are presented in Figure 
11. The main difference is that SDCs depend more on flip errors. 
Even when P(f)=10-9, the main error scenario that causes SDCs 
is 2 shifts with 2 flips, followed by no shifts and 3 flip errors. 

D. GreenFlag vs FC2 in the Absence of Bit Flip Errors 
Lastly, we compare GreenFlag against FC2 in the absence of 

bit flip errors. Although the main goal of this paper was to 
provide codes that can protect against both shift and bit flip 
errors, it is interesting to see how the two codes compare when 
we consider only shift errors. 

Thus, we evaluate both GreenFlag and FC2 once more, 
assuming that P(f)=0. In Figure 12 we present the expected 
number of DUEs and SDCs per dataword bit for both codes. As 
we observe, FC2 can provide almost 7 orders of magnitude 
fewer DUEs per dataword bit and 8 orders of magnitude fewer 
SDCs per dataword bit. For a memory system that constantly 
accesses dataword bits with a rate of 1GB/s, GreenFlag (with 
VT(64,57)) would experience 1 SDC every few days, whereas 
FC2 would experience 1 SDC every 107 years. Thus, even in the 
case that only shift errors are considered, FC2 can provide 
significantly greater error tolerance than GreenFlag.    

VIII. CONCLUSION 
In this paper, we have introduced Foosball Coding, the first 

scheme for protecting 3D racetrack memory from shift errors 
and bit flip errors.  We presented two variants, FC1 and FC2, 
that provide different trade-offs between cost and error 
tolerance.  As part of the development of Foosball Coding, we 
developed a methodology for the construction of delimiters and 
we introduced the multi-purpose delimiters that can provide 
additional information.  The experimental results show that both 
FC1 and FC2 successfully tolerate shift errors and bit flip errors.  
When racetrack memory makes the leap from the lab to 
production, Foosball Coding is poised to deal with its expected 
error models.  
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