2020 50th Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN)

Foosball Coding: Correcting Shift Errors and Bit Flip Errors in 3D Racetrack Memory

Samantha Archer, Georgios Mappouras, Robert Calderbank, Daniel J. Sorin
Department of Electrical and Computer Engineering
Duke University
{samanta.archer, georgios.mappouras, robert.calderbank, sorin}@duke.edu

Abstract—Racetrack memory is a promising new non-volatile

memory technology, especially because of the density of its 3D SRAM | DRAM 2D-Racetrack 3D-Racetrack
implementation. However, for 3D racetrack to reach its potential, > >
certain reliability issues must be overcome. Prior work used per- 120 F2 | 6-12 F 1-2F 0.125-0.5 F

track encoding to tolerate the shift errors that are unique to
racetrack, but no solutions existed for tolerating both shift errors
and bit flip errors. We introduce Foosball Coding, which combines
per-track coding for shift errors with a novel across-track coding
for bit flips. Moreover, our per-track coding scheme methodically
explores the design of inter-codeword delimiters and introduces
the novel concept of multi-purpose delimiters, in which the
existence of multiple delimiter options can be used to provide
additional information.

Keywords—Racetrack memory; fault tolerance; error coding;
endurance coding

1. INTRODUCTION

Racetrack memory [1, 2, 3, 4], also known as domain wall
memory, iS an exciting new memory technology that has
recently been demonstrated in the lab. In racetrack memory,
which we explain more fully in Section II, bits are stored on
magnetic strips (i.e., the tracks) as the presence or absence of
magnetic domains. The bits on a given track are shifted over one
or more read/write ports, leading to a bit-serial access
mechanism.

Racetrack memory offers the potential for far greater storage
density than other technologies. Table 1 shows how racetrack
compares to SRAM and DRAM, in terms of the effective cell
size F? [2]. In particular, the density is outstanding for the 3D
variant of racetrack memory, in which each track is in a U-shape
with the bottom of the “U” positioned over a single read/write
port on the substrate. Because of its vast density superiority, we
focus here on 3D racetrack instead of the 2D variant in which
tracks lay flat on the substrate.

To unlock the potential of racetrack memory for use in real
systems, we must overcome its reliability challenges. Uniquely
among current and emerging memory technologies, racetrack
memory is susceptible to shift errors. As bits are shifted along
the racetrack, it is possible for under-shifting (“insertion” in
coding terms) and over-shifting (“deletion”) to occur. As has
been shown before, traditional error correcting codes, like
Hamming codes, are unable to tolerate shift errors [5, 6, 7].!

Table 1. Effective cell size (F2) for memory technologies

Prior work [5, 6, 7, 8] has addressed the shift error problem,
including GreenFlag [7], which uses a combination of
Varshamov-Tenegolts coding [9] and delimiters to solve the
problem for 3D racetrack. However, none of this work is capable
of also tolerating even a single bit flip error if the read/write head
mis-reads a magnetic domain, either due to an error on the track
or in the read/write head itself.

In this paper, we introduce Foosball Coding, a coding
scheme that simultaneously tolerates both shift errors and bit flip
errors. > Foosball Coding uses GreenFlag-like coding on a
horizontal (per-track) basis, and it uses a vertical (across-track)
Hamming code to correct bit flips. That is, Foosball Coding adds
tracks that hold the Hamming code bits. This use of Hamming
codes requires innovation because the Hamming bits themselves
must tolerate shift errors, yet Hamming codes are not inherently
resilient to shift errors.

Foosball Coding also introduces a new coding technique we
call multi-purpose delimiters (MPD). GreenFlag, and other prior
work [10, 11], uses delimiters between codewords. In the case
of GreenFlag, the delimiters serve to detect whether a shift error
is an insertion or deletion. We have observed that multiple
delimiters could serve the same purpose. For example, there are
multiple 6-bit delimiters that can detect a single insertion or
deletion. Thus, we could choose the delimiters in a way that
encodes additional useful information. In general, if we have D
distinct delimiters, all of which serve the same purpose, then we
have log:D bits of data that we can exploit. In Foosball Coding,
we use MPD to provide an optional added degree of error
detection.

This work makes the following contributions:

We present Foosball Coding, which is the first coding
scheme to simultaneously tolerate shift errors and bit flip errors
in 3D (and 2D) racetrack memory.

We develop a systematic, constraint-based methodology for
constructing delimiters that identify shift errors in the presence
of a given error model.

We introduce multi-purpose delimiters and show how to
exploit them to increase the error detection capability of
Foosball Coding.

! Consider a simple example. Imagine an n-bit codeword of
alternating Os and 1s, e.g., 010101. A single shift error would be
equivalent to n or n-1 bit flips, which Hamming cannot tolerate.

2 A foosball player can either be shifted or flipped.

978-1-7281-5809-9/20/$31.00 ©2020 IEEE
DOI 10.1109/DSN48063.2020.00049

331

Authorized licensed use limited to: Duke University. Downloaded on September 10,2020 at 22:09:39 UTC from IEEE Xplore. Restrictions apply.

II. RACETRACK BACKGROUND

We now provide a short background on racetrack memory,
focusing on what is most pertinent for Foosball Coding.

A. Physical Implementation

The basic components of racetrack memory are the magnetic
strip (track), and the read/write ports that sit upon a substrate as
seen in Figure 1. The track stores information in terms of
magnetic regions, known either as magnetic domains (MDs) [1,
2, 3, 4] or magnetic objects called skyrmions [12, 13, 14],
depending on the underlying technology used to create the
memory. For the purpose of this paper, the two technologies are
equivalent and thus we assume MDs for the rest of the paper.

Two different geometries have been proposed; a U-shaped
3D track (Figure la) and a line-shaped 2D track (Figure 1b).
There are two main differences between 2D and 3D Racetrack
memory. The first difference is that 2D Racetrack can have
multiple read/write ports per track as the track is always adjacent
to the substrate, whereas 3D Racetrack allows for only a single
read/write port at the bottom of the U-shaped track. 3D
Racetrack is projected to achieve significantly greater density
because more tracks can be packed per area unit due to its
geometry. Although this paper focuses on 3D Racetrack
memory, Foosball can be also be applied to 2D Racetrack. For
the rest of this paper, we assume 3D Racetrack with a single
read/write port. However, for simplicity of illustration, our
figures will use a 2D representation.

B. Operation

Regardless of the physical geometry of the Racetrack
memory, a track can store a number of physical bit locations
(logical 1 or 0). To read or write a bit, MDs must be shifted over
the read/write port. By inducing current that runs parallel with
the track, MDs can be shifted along the track. The track and the
ports are physically fixed and cannot move. A port can access
the bit location above it by either sensing if an MD is present
(i.e., read) or inducing an MD (i.e., write). To read (write)
multiple bits, consecutive read (write) and shift operations must
be performed as shown in Figure 2a-c.

C. Error Model

Shift errors. Shift errors are the distinctive challenge with
racetrack memory. Similar to prior work [5, 6, 7, 8], we model
single shift errors with a probability of an insertion or deletion
on every bit shift. A single shift error—caused by injecting too
much or too little current along the track—causes the bits to be
misaligned with respect to the read/write port by one bit position.
Although it is theoretically possible to have a double shift error
during a single shift operation (i.e., misalignment by two bit
positions), prior work has shown that this is very unlikely [5] and
thus this case is not considered. However, it is possible to have
multiple single shift errors while performing multiple shift
operations, resulting in a total of two (or more) shift errors while
reading a block of data. For example, we could experience the

(subtly tricky) situation in which an insertion and a deletion
occur while reading a single codeword.

Flip errors. Bit flip errors have received less attention for two
reasons. First, the unique challenge of shift errors has
monopolized the interest of researchers. Second, there is no
empirical data, to our knowledge, that characterize the likelihood
of bit flips. Nonetheless, bit flip errors can occur when data is
transferred through a memory channel from the memory
controller to the physical memory and back. Furthermore, an
implementation that protects against shift errors only would
miss-categorize bit flip errors as shift errors. Thus, attempting to
correct detected errors would actually cause misalignment
between the bit positions and the read/write port and data
corruption. For these reasons, attempts to address this error
model have been made for 2D racetrack [15]. Similarly, we
expect bit flip errors in 3D racetrack memory—in the bits
themselves, or in the read/write head or memory channel—and
thus we seek to protect 3D racetrack accordingly.

p N
2 by

g 1 [

N il

= b

2 Il I .

2 — |bs

:%D el —

£ -

2 b

g :

3 L Lb1] bo

= read/write port
A substrate

a. 3D-Racetrack

Lbol bel e bal ba| B B[bo] | | [| [| |

b. 2D-Racetrack
Figure 1. (a) 3D-Racetrack (a) and (b) 2D-Racetrack.

L[1[5y be| bs| ba] bs| ba] b1 bo|

I>

a. Initial state of the track

| bs| be| bs| ba| bs| ba| ba[o] [|

F

b. State of the track after a single shift operation

LI [[[[bs|be|bs|babafbalbs[bo] |

F

c. State of the track after two shift operations

Figure 2. A system representation of 3D-Racetrack (a) in its initial state,
(b) after a shift operation, (c) after two shift operations.

Authorized licensed use limited to: Duke University. Downloaded on September 10,2020 at 22:09:39 UTC from IEEE Xplore. Restrictions apply.

III. PRIOR WORK

While there is a large body of work on racetrack memory
itself and how to apply it to various levels of the memory and
storage hierarchy [16, 17, 18, 19, 20], we focus here on fault
tolerance. We divide the work into two sections, based on
whether it targets 2D or 3D racetrack; all of the schemes for 2D
racetrack rely on having multiple read/write ports, which is not
feasible for 3D racetrack. Foosball Coding builds on the 3D shift
error tolerance scheme called GreenFlag, by adding the ability
to tolerate bit flips.

A. Fault Tolerance for 2D Racetrack

Chee et al. [8]. In this scheme, data is encoded using run-length
limited codes. By reading the same data through multiple ports
that have pre-determined distances between them, shift errors
can be detected and corrected. Depending on the number of ports
available, different fault tolerance levels can be achieved. No bit-
flip protection is provided.

HiFi [5] and np-ECC [15]. HiFi adds delimiters to the edges of
each track. Data bits are stored in the middle section of a track.
At runtime, data bits and delimiter bits are read simultaneously
via multiple ports. If the bit values of the delimiter bits differ
from the expected values, a shift error is detected. HiFi can
detect double shift errors and correct single shift errors. A
subsequent extension of HiFi, called np-ECC, additionally
provides single bit-flip correction for the delimiter (but not the
data). However, it cannot provide fault tolerance guarantees in
the case that both bit flips and shift errors are present
simultaneously.

B. Fault Tolerance for 3D Racetrack

There are two prior fault tolerance schemes for 3D
Racetrack, both of which focus on achieving shift error detection
and correction with only a single read/write port. To our
knowledge, no protection against bit-flips has been proposed.

Ollivier et al. [6]. Ollivier et al. [6] present a shift protection
scheme that combines multiple coding and physical techniques.
They propose a new physical way to access information on the
Racetrack, called Traverse Read (TR). With TR, one can
calculate the number of 1s in a track without performing shift
operations. Additionally, delimiter bits are added to the edges of
each track. Using TR, the weight (number of 1s) of the data and
the delimiter bits can be calculated. This weight is called the
signature of a track. Based on the current signature of a track,
the signature after a shift operation can be predicted. If a
mismatch occurs between the predicted value of the signature
and the signature calculated after a shift operation, a shift error
is detected. To guarantee that the current signature of a track can
always be reliably recovered, they store it in STT-RAM, a
memory technology that does not incur shift errors. While
clever, this scheme has significant drawbacks. First, it can only
detect and correct a single shift error for the entire track, limiting

the practical length of each track. Furthermore, it provides no
guarantees for bit-flip errors.

GreenFlag [7]. GreenFlag is a combination of (a) a code that
can correct shift errors if it knows if the error is an insertion or a
deletion, and (b) a delimiter that detects insertions and deletions.

The shift correction code is based on Varshamov-Tenegolts
(VT) codes [9]. An n-bit VT codeword is constructed in two
steps. First, the dataword bits are placed consecutively at the
non-power-of-two positions in the codeword. Second, the
power-of-two-positions are filled with bits that we refer to as
“fill bits.” We denote such a codeword as VT(n, k), where n is
the size of the codeword and k the size of the dataword in bits.
For example, VT(64,57) uses 57 dataword bits and 7 fill bits.
The values of the fill bits are chosen to satisfy the following
checksum equation:

Z ic;=0,mod (n+1)

i=1ton

All valid VT codewords have a checksum equal to zero, and
thus VT codes have easily implementable algorithms for
correcting insertions and deletions, based on trying to make the
checksum equal to zero again. However, VT codes must know
whether the shift error is an insertion or deletion; there is no
algorithm for correcting a shift error of unknown type.

Therefore, GreenFlag appends to each VT codeword a
specific, predetermined delimiter that is chosen such that it can
detect a desired number of insertions and deletions in the VT
codeword.? For example, a 6-bit delimiter of 000111 can detect
a single insertion or deletion in the preceding VT codeword. A
1-bit insertion will result in a delimiter of X00011, and a 1-bit
deletion will result in a delimiter of 00111X (where X could be
0 or 1). Neither X00011 nor 00111X can be mistaken for a
correct delimiter or for each other. Longer delimiters can be used
to detect more insertions and deletions. We refer to the VT
codeword with its subsequent delimiter as an extended
codeword, and any number of extended codewords can be stored
one after another in a track, depending on the length of the track.

At runtime, a read operation involves reading an entire
extended codeword. While reading the VT codeword, the
checksum is recalculated and compared to zero. Additionally,
the delimiter bits are read are compared to predetermined values.
If both the checksum and the delimiter bits are correct, then no
shift errors have occurred. Otherwise, based on both the values
of the delimiter and the checksum, respectively, the type of the
shift error is decided and corrected. The correction is done in two
steps. First, the bits are shifted accordingly to realign them with
respect to the read/write port. Second, the correct VT codeword
is reconstructed and the dataword bits are extracted from the
non-power-of-2 positions.

3 We defer for now the possibility of shift errors in the delimiter.

333

Authorized licensed use limited to: Duke University. Downloaded on September 10,2020 at 22:09:39 UTC from IEEE Xplore. Restrictions apply.

GreenFlag can detect single and double shift errors, and it
can correct single shift errors with the VT code alone; it can
correct double shift errors by realigning the read/write port and
re-reading. However, GreenFlag cannot tolerate bit flip errors.
It can be shown that a single bit flip error combined with a single
shift error can cause a silent data corruption. This limitation
motivates Foosball Coding.

IV. DELIMITER CONSTRUCTION & MULTI-PURPOSE DELIMITERS

Delimiters are a useful mechanism for detecting insertions
and deletions—and, in fact, have been used in other contexts,
including denoting the boundaries between codewords [10, 11].
Typically, a delimiter is a predetermined string of bits that is
easily distinguishable.

For example, GreenFlag uses a 6-bit delimiter 111000 that
can be used to detect deletion or insertion errors in the preceding
VT codeword. A single insertion error can be detected as a one-
position right shift in each bit with an added bit X at the
beginning of the delimiter string, i.e., X11100. Similarly, a
deletion error can be detected as a one-position left shift in each
bit with an added bit X at the end of the delimiter string, i.e.,
11000X.

However, this particular delimiter fails to distinguish shift
errors if bit flips are introduced in the error model. For example,
consider the case that a bit flip occurs in the 4th bit of the
delimiter. This results in the delimiter string 111100, which is
equivalent to the delimiter we get after a single insertion
(X11100). Because different errors could result in the same
delimiter string, shifts and bit flips cannot be distinguished from
each other with the delimiter 111000.

In this work, we present what is, to the best of our
knowledge, the first formal approach for construction of
delimiters for different error models. In addition, we introduce
the idea of multi-purpose delimiters (MPD), in which we find a
set of compatible delimiters for a given error model. With MPD,
we can choose which delimiter within the set to use, and this
choice can convey additional information.

A. Delimiter Construction (for a single delimiter)

The main idea behind delimiter construction is that we can
set certain constraints on a delimiter string to guarantee that it
works for a given error model. Fundamentally, these constraints
ensure that the correct delimiter cannot be mistaken for a
delimiter that has been modified by any error in the error model.
While our delimiter construction methodology is general, we
consider two error models in this section: shift errors only and
bit flips with shift errors in the same track.

In Table 2, we summarize how the possible errors are
handled, based on whether they occur in the delimiter or in the
codeword that precedes the delimiter. This summary is
independent of Foosball Coding.

Error Model 1: Shift Errors

Let us assume that we want to create a delimiter d that would
work in the case of a single shift error; for now, we assume the
shift error is in the codeword. Letd = [dl, dy, ... dq] be a g-bit

334

Table 2. Handling errors in codeword and delimiter bits

error in codeword error in delimiter
shift error | Detected by delimiter. | May be detected or
Correction, if any, | corrected by
varies by scheme delimiter
bit flip varies by scheme May be corrected by
delimiter

delimiter. If an insertion has occurred, then we instead read
d, = [X, dy, ... dq_l]. Thus, in order to be able to detect a single
insertion, d and d;, must always be different by at least one bit,
ie., d and dj, must have a Hamming distance of at least 1.
Similarly, if a deletion error occurs, we would read dp,
[dz, o dg, X]. To be able to detect a deletion we thus need d and
dp, to have a Hamming distance of at least 1. Furthermore, we
need dp, and d;,to have a Hamming distance of at least 1 in
order to be able to distinguish an insertion from a deletion. We
summarize these constraints here:

Constraint 1a: Hamming_Distance (d, dl1) >1
Constraint 2a: Hamming_Distance(d, le) >1
Constraint 3a: Hamming_Distance (le, dl1) =1

If a g-bit sequence satisfies all three constraints, then it can
be used as a delimiter. For our example, delimiter 001 satisfies
all three constraints and thus, can be used to detect single shift
errors.

This process can be extended to construct a delimiter that can
detect any number of shift errors by simply adding more
constraints. For example, if we want to consider two shift errors,
then we add constraints for dDz = [d3, wdg, X, X] and d,z =
[X, X,dq, .. dq_z]. The more constraints we add, the larger ¢
must be in order to find such a delimiter. For example, to be able
to detect two shift errors we need a delimiter that is at least 5-
bits long (e.g., 00111).

We have deferred until now the issue of shift errors in the
delimiter itself. Our delimiter construction methodology
produces delimiters that can detect most shift errors in the
delimiters, but fundamentally they cannot detect all of them.
Certain shift errors are easily detected. Consider a deletion
(insertion) in the first bit of the delimiter; this is equivalent to a
deletion (insertion) in any of the preceding codeword bits.
However, if a shift error occurs in the last few bits of the
delimiter, there is no delimiter that can guarantee that the error
will be detected because we cannot control the bit values of the
following codeword. For example, consider the delimiter 00111;
a deletion in the last bit cannot be guaranteed to be detected,
because it is always possible that the first bit of the subsequent
codewordisa 1.

In this paper, we take a conservative approach to shift errors
in delimiters. If a shift error results in a delimiter we can
recognize (e.g., correct delimiter, single shift delimiter, etc.), we
identify the codeword accordingly. If not, we declare a detected
uncorrectable error (DUE).

Authorized licensed use limited to: Duke University. Downloaded on September 10,2020 at 22:09:39 UTC from IEEE Xplore. Restrictions apply.

Error Model 2: Shift Errors and Bit Flip Errors

Now consider the case that we want to create a delimiter that
can detect either one single shift error or one delimiter bit flip.
That means that even if a bit in the delimiter d flips, we should
still be able to distinguish it from the case of a single shift error.
In this case, d and d;, must always differ by at least two bits.
Similar is the case for d and dj,. However, no increase in the
Hamming distance of d;,and dp,is needed as we assume that
either a shift error or a bit flip will occur, but never both. Thus,
our constraints are now:

Constraint 1b: Hamming_Distance(d, d;,) > 2
Constraint 2b: Hamming_Distance(d, le) > 2
Constraint 3b: Hamming_Distance(le, d,1) =1

Again, this process can be extended to construct a delimiter
that can detect any number of shift errors and/or any number of
delimiter bit flip errors, by adjusting and adding constraints. For
example, delimiter 1001010 can detect either two shift errors or
one delimiter bit flip error. Delimiter 00011010 can detect two
shift errors and one delimiter bit flip error even if both shift
errors and delimiter bit flip errors are present at the same time.

B. Multi-Purpose Delimiters (MPD)

Observation: For a given bit-length q, there may be multiple q-
bit delimiters that satisfy the delimiter construction constraints,
and there is an opportunity to exploit the extra information
carried by the choice of delimiter.

Let us return to the example of finding a delimiter that can
detect a single shift error. We showed that delimiter 001 suffices
for this error model, and it is clear that 110 is an equally useful
delimiter for this error model. Theoretically, we could use both
delimiters in order to encode an extra bit of information. For
example, using delimiter 001 would encode ‘0’ and using
delimiter 110 would encode ‘1°. However, it is not immediately
clear if 001 and 110 are compatible delimiters, i.e., if they can
be used without being mistaken for each other in the presence of
shift errors.

In general, we seek a set of 2” compatible delimiters, where
(a) all of the delimiters can detect the desired number of
insertions or deletions, and (b) the delimiters are all compatible
with each other, i.e., no delimiter can be mistaken for any other
delimiter despite any error in our error model. Condition (a) is
always satisfied by the construction constraints for a single
delimiter. To also satisfy condition (b) we need to introduce
additional constraints between the 2" delimiters.

In our running example, let di = [dA, d4, .., d‘,‘;] and df =
[df,d5, ..., dB] be two different delimiters that both satisfy the
constraints la-3a. To ensure that d4 and d® are compatible,
they cannot be confused after a single bit flip. Additionally, we
must ensure that df, cannot be confused with dj . Furthermore

d‘;‘l must be different from d® even if a bit flip error happens in
d® . Similar are the cases for df . In short, the following
constraints must apply:

335

B Single Shift Only iSingle Shift or Single Bit Flip
[] Two Shifts Only B Two Shifts or Single Bit Flip

I Single Shift and Single Bit Flip CJTwo Shifts and Single Bit Flip
a 12

p—
N o <o

S N A

Minimum delimiter bit len

Number of compatible delimiters

Figure 3. Minimum delimiter bit length (¢) for different error models and
different set size of compatible delimiters.

Hamming_Distance(d4,d?) > 3
Hamming_Distance(dp ,df) > 1
Hamming _Distance(df,,df) =1
Hamming_Distance(df,, d?) > 2
Hamming_Distance(dAl, df) >2
Hamming_Distance(dfl, da*) =2
Hamming_Distance (dBI, d4) =2

Constraint 1c:
Constraint 2c:

Constraint 3c:
Constraint 4c:
Constraint 5c:
Constraint 6c:
Constraint 7c:

By enforcing constraints 1a-3a and constraints 1c-7c¢, we can
find two delimiters that can tolerate single shift errors and be
compatible. Using this methodology, and by adding constraints
accordingly, we can find any set of 2" compatible delimiters for
any error model. For example, delimiters 0111101 and 1001010
are two compatible delimiters that can detect two shift errors or
single bit flips. In Figure 3 we present the minimum bit length ¢
that delimiters must have to find 1, 2, or 4 compatible delimiters
for different error models.

Foosball Coding wuses the delimiter construction
methodology introduced in this section, including MPD.

V. FOOSBALL CODING

We have developed two variants of Foosball Coding that
provide different trade-offs between error tolerance and cost. We
quantify cost as is typical in information theory, using a code’s
rate, defined as the ratio of dataword bits to codeword bits.

When we explain these codes, we consider the tracks to run
parallel to each other in the horizontal direction (even though the
tracks are actually 3D). Thus, we describe per-track coding as
horizontal (or per-row) coding and across-track coding as
vertical (or per-column) coding. We use the term array to
describe the logical “rectangle” of bits from some number of
rows and columns.

Our two variants of Foosball Coding are FC1 and FC2. FC1
(Section V.A) uses horizontal coding to provide error tolerance
of either shift errors or bit flip errors (but not both at the same
time). FC2 (Section V.B) uses horizontal and vertical coding to
provide protection against shift errors and bit flip errors in a
given array of bits.

Authorized licensed use limited to: Duke University. Downloaded on September 10,2020 at 22:09:39 UTC from IEEE Xplore. Restrictions apply.

A. FCI: One Type of Error at a Time

FCl is the lower cost variant of Foosball Coding. Like
GreenFlag, FCI1 is a strictly horizontal code that encodes a
dataword into a VT codeword with a delimiter. FC1 can tolerate
2 shift errors or 1 bit flip error per track. To achieve this, FC1
introduces two key innovations that provide low-cost protection
against bit flip errors.

Innovation #1: Use MPD to encode Parity

FC1 uses MPD to generate two compatible delimiters that
encode additional information. Specifically, with two distinct
compatible delimiters, we have one bit of “free” information,
and we use it to provide parity. Using our delimiter construction
methodology for the given error model, we find that we need
delimiters that are 7-bits long: 1001010 and 0111101. These
delimiters are selected so that they can always be distinguished
from each other, even if two shift errors or a bit flip error (but
not both) occur per track.

Innovation #2: Use VT Checksum to Localize Bit Flip

FCI1 uses insight into VT coding that allows one parity bit to
detect and correct a single bit flip error. Recall that every VT
codeword must satisfy a checksum equation over the » bits of
the codeword (with numbering starting at position 1, not 0).
Because the checksum is computed as a sum mod (n+1), a bit
flip in position 1 and a bit flip in position » have the same effect
on the checksum. A flip in position 1 can either add or subtract
1 (if 0>1 or 120, respectively), and a flip in position n can
either subtract or add 1. Similarly, a flip in position 2 and
position n-1 have the same effect of adding or subtracting 2.
More generally, because of this symmetry, any discrepancy in
the checksum due to a single bit flip can be localized to one of
two bit positions.

Therefore, we know that the error is in one of two bit
positions, and we know that one of the positions is on the left
half of the codeword and the other is on the right half. By
protecting one half of the codeword with parity—using the
parity bit obtained via MPD—we can identify whether that half
is the culprit. If it is not, we know that the other half is.
Whichever half of the codeword is identified now uniquely
identifies the bit position that is in error, and we correct it.

FC1 Encoding

The encoding process for FC1 is the following. A dataword
is first encoded to a VT codeword as done in GreenFlag. Then,
the left half bits of the VT codeword are logically XORed to
produce a parity bit. If the value of the parity is 0, the VT
codeword is appended with the delimiter 1001010. Otherwise, it
is appended with the delimiter 0111101.

FC1 Decoding

As with GreenFlag, FC1 must read a whole extended
codeword, calculate the checksum, and identify the value of the
delimiter. If both the delimiter and the checksum are correct, we
simply decode the VT codeword by reading the dataword bits
from the non-power-of-two bit positions.

336

If the checksum is incorrect but the delimiter is correct, a
single bit flip is detected. As explained earlier, we use the value
of the checksum to isolate the bit flip error to just two bit
positions in the VT codeword and then use the “free” parity
given by the delimiter to correct it.

If both the checksum and the delimiter are incorrect, then a
single shift error is detected and corrected using the VT decoding
process in GreenFlag.

If the checksum is correct but the delimiter is incorrect, then
either two shift errors or a single bit flip in the delimiter bits has
occurred. Our delimiter construction methodology guarantees
that both of our delimiters can detect and distinguish these
different error cases. The shift errors are fixed by shifting bits
accordingly to realign them with respect to the read/write port of
the track. The flip error is corrected by simply re-writing the
delimiter to its original value.

FC1 Error Model and Limitations

FC1 will immediately correct exactly one error—either shift
error or bit flip error—per extended codeword. It can also detect
2 insertions or 2 deletions, in which case FC1 will realign the bit
positions but will not retrieve the correct codeword. In this case,
FC1 will report a detected uncorrectable error (DUE). We
emphasize that, similar to GreenFlag, FC1 could attempt to re-
read the codeword to retrieve the correct codeword bits.
However, this last step is optional, and the memory controller or
OS could decide how to handle these DUEs.

Any extended codeword that incurs other error scenarios—
three or more shift errors, multiple bit flips, or a combination of
shift errors and bit flips—is likely to lead to a silent data
corruption (SDC).

Depending on the probabilities of shift errors and bit flip
errors, as well as on the required level of error tolerance, FC1
may or may not suffice. We note that FC1 could be made more
error tolerant—with stronger, but more costly, delimiters—or
we could instead choose to use FC2.

B. FC2: Both Types of Errors at Once

FC2 is the more reliable, but more costly, variant of Foosball
Coding. FC2 combines horizontal coding that is similar to
GreenFlag with a vertical code that must overcome a key
challenge with shift errors.

Horizontal Code

FC2 borrows GreenFlag for its horizontal code, where each
track stores VT codewords that are made out of data bits (D) and
fill bits (F). Each VT codeword is followed by delimiter bits (d).
FC2 however, uses a single delimiter that differs from the two
delimiters used in FC1. FC2’s 8-bit delimiter 00011010 can
distinguish between (a) up to two deletions or two insertions
even in the presence of a single bit flip error in the delimiter, and
(b) a single flip error in the delimiter bits.

FC2’s horizontal code is used strictly to detect and correct
shift errors in the VT codeword (and single bit flips in the
delimiter bits). Unlike FC1, FC2 relies on a vertical code to

Authorized licensed use limited to: Duke University. Downloaded on September 10,2020 at 22:09:39 UTC from IEEE Xplore. Restrictions apply.

VT codeword

delimiter

s 2
*a 2]
=
%ﬂ wn
.él %
£ £
< =
==
Hamming(72,64) NOT a VT codeword NOT a delimiter
a. Adding Hamming tracks with Hamming (h) bits
VT codeword delimiter
1.2 3 4 5 6 64 65 .| 72
—— c— e —_—
1|F:F|D:F D D Fld .. d)
o« |2lF!FID!F D D F d d
2 —_——t————— —_———
£ 1T F 7o o Fo]d d
SE) kA
[
64, F F D F D D F d d
w0 ll__l_4_l _________
gz (s h |l hphl|lh h h h | d d
= 2 pL e e B e |
£% .
= 72[hJ|h|hJ|h h h hl_d . d,
~~——
Hamming(72,64) NOT a VT codeword delimiter
b. Adding delimiters (d) to Hamming tracks
VT codeword delimiter
12 3 4 5 6 64 65 .| 72
1 F F|iplr b D F | d d)
s |2 F FI|D l'r b b F d d
83 [————[—'I' ————— .}
sg< 3 F FlD F D D F |d d
Q ; __—_I——| —————————
[
64 F F D F D D F d d
I e -0 S R
Eg (65 F F h|F F | d d
E} VY T
= 72 F F[thF h Fl d . d,
Hamming(72,64) VT codeword delimiter
c. Adding fill (F) bits to Hamming tracks

Figure 4. Transforming every track of the matrix to valid VT codewords
through steps a, b, and c.

correct bit flips in the VT codeword (instead of FC1’s use of
parity stored with MPD).

Vertical Code

To provide bit flip protection, FC2 uses a vertical error
correcting code (ECC), specifically a Hamming Code. Consider
a (portion of) racetrack memory consisting of 64 tracks, where
each track uses the horizontal code. Let us refer to these tracks
as data tracks. We now add 8 Hamming Code tracks at the
bottom, such that each column is now 64+8=72 bits long and
forms a Hamming(72,64) codeword (see Figure 4a).
Hamming(72,64) is a well-known code that provides single error
correction and double error detection (SECDED). We refer to
the added tracks as Hamming tracks, and each Hamming track
stores Hamming parity bits (h).

337

The challenge with vertical coding—and the reason that
GreenFlag explicitly chose to use only horizontal coding—is
that the added Hamming tracks are seemingly unprotected from
shift errors. The bits in the Hamming tracks do not form VT
codewords but instead are a function of the bits in their
respective columns. This implies that a single shift error in any
of the Hamming tracks could render our vertical Hamming Code
useless. We illustrate such an array in Figure 4a.

We overcome this problem by exploiting two observations.
First, we observe that the delimiter bits in the data tracks do not
need Hamming protection to detect and correct bit flips.
Because our delimiter is explicitly constructed to be impervious
to our error model, a single bit flip in the delimiter can be
immediately detected and corrected, even if it is accompanied by
a single shift error in the same delimiter bits. Thus, in the
Hamming track bit positions that are in the same columns as
delimiters in the data tracks, we can place any bit values we want
instead of creating Hamming codewords. Specifically, we use
those column positions of the Hamming tracks to store
delimiters, as is done in the data tracks.

Thus, each data track consists of pairs of VT codewords and
delimiters, and each Hamming track consists (for the moment)
of pairs of “Hamming strings” (representing the Hamming Code
bits for their respective columns) and delimiters. This new array
is shown in Figure 4b.

Our second key observation is that we do not need to provide
Hamming Code protection of the columns that correspond to fill
bits in the data tracks. As explained in more detail later, the FC2
decoding process first performs horizontal decoding (using the
fill bits) and then vertical decoding (during which the fill bits are
irrelevant). Because the fill bits are not used after horizontal
decoding, there is no need to correct them during vertical
decoding and thus no need to protect them. Thus, in power-of-
two positions in the Hamming strings, we can choose to place
any bit values we see fit. Therefore, we choose fill bits that
transform every Hamming string into a valid VT codeword, and
we thus gain shift error protection for the Hamming tracks.

In Figure 4c, we present an example of this final FC2 array.
In this example, there are 64 data tracks and 8 Hamming tracks
that are all horizontally encoded as pairs of VT(64,57)
codewords and delimiters (i.e., extended codewords). These
extended codewords can detect and correct shift errors, and the
vertical Hamming(72,64) can correct single bit errors and detect
two bit errors.

We now describe in detail the encoding and decoding
process of FC2.

FC2 Encoding

Encoding in FC2 is done at the array granularity. Before
starting the encoding process, we arrange the input dataword bits
in a temporary matrix with 64 rows, where each row represents
a data track. In Figure 4, we explained how to encode by
performing the horizontal encoding of each dataword, adding the
vertical Hamming code, and then making the Hamming tracks
resilient to shift errors. This encoding process is easiest to
explain and we could have chosen to use it here, but in practice

Authorized licensed use limited to: Duke University. Downloaded on September 10,2020 at 22:09:39 UTC from IEEE Xplore. Restrictions apply.

it is easier to start with vertical encoding and then perform
horizontal encoding.

Step 1 (Vertical Hamming Coding): We vertically encode all 64
rows of the matrix using Hamming(72,64). For each column,
Hamming(72,64) produces 8 parity bits that are cached in 8
additional rows in the bottom of the temporary matrix (72 rows
total). These additional rows correspond to the Hamming tracks.
Step 2 (Horizontal VT Coding): We horizontally encode all 72
rows of the matrix into VT codewords using the same encoding
process as in GreenFlag, and the delimiter 00011010 is
appended to each VT codeword.

After step 2, the entire temporary matrix (72 VT codewords
with delimiters) is written to the racetrack memory, with each
row written to a different track, comprising an FC2 array. All
tracks can be written in parallel.

FC2 Decoding

The decoding process is also done at an array granularity.
Thus, before decoding starts, all 72 tracks of a single array are
read in parallel. The process can be separated into two steps.
Step 1 (Horizontal Decoding): Each track is individually,
horizontally decoded with the VT/delimiter decoding algorithm
described in GreenFlag. For each track, if shift errors are
detected, the bit locations are shifted accordingly to re-align
them with respect to the read/write port. If the error was a single
shift error, the codeword bits are also corrected based on the VT
decoding.

If two shift errors were detected (i.e., either two insertions or
two deletions), we cannot use the VT code to correct the
codeword bits.

If the two shift errors were one insertion and one deletion,
then this combination is indistinguishable from a single bit flip
error. As such, we rely on the vertical Hamming Code to
subsequently correct any bit errors in such a row.

If a track has both a single shift error and a single bit flip
error, the VT decoding process will still attempt to correct the
codeword without being aware of the bit flip. Thus, the output
of the VT decoding will (likely) be a wrong VT codeword.
Again, such an error case can be later corrected (or at least
detected) by the vertical Hamming Code. Regardless, the
important thing is that the read/write port always gets re-aligned
with respect to the bit locations in every track at the end of the
first decoding step.

After we have fixed all shift errors and corrected each VT
codeword (when possible), we simply extract the dataword bits
from each VT codeword. For VT(64,57) we have 57 dataword
bits. Thus, we now have 72 rows and 57 columns.

Step 2 (Vertical Decoding): We use Hamming(72,64) to
vertically decode each column. The result is 64 rows of 57
columns. These are the final decoded dataword bits.

During the decoding of an array, we always go through step
1. However, step 2 is not always executed. If during step 1, two
or more tracks report two shift errors, we declare a DUE and skip
step 2. The reason we do this is that each track that has two shift
errors is likely to extract multiple incorrect dataword bits from
the incorrect VT codeword. Thus, there is a high probability that

338

at least one column has two incorrect bit values, and an
additional bit flip in the same column would lead to a SDC
during the Hamming decoding in step 2. (Hamming(72,64) can
only detect up to 2 errors). Thus, to avoid an SDC, we
conservatively declare a DUE.

The ability of our vertical code to detect two errors per
column is more powerful than it might appear at first. Consider
the situation in which more than one row is mis-corrected in Step
1 (or one row is known to be uncorrectable and one or more other
rows are mis-corrected). While Hamming(72,64) is likely to fail
on multiple columns, it is extremely unlikely to fail on every
column. If Hamming(72,64) finds a DUE on any column, FC2
declares a DUE for the entire array and avoids an SDC.

We emphasize that, similar to GreenFlag and FC1, when two
shift errors are detected in a track, we could attempt to re-read
its VT codeword (after realigning the bit positions with respect
to the port). However, we consider this an optional step that the
memory controller or OS could decide how to use.

FC2 Error Model and Limitations

For some error scenarios, FC2 guarantees no SDCs and/or
no DUEs. For other error scenarios, FC2’s error tolerance is a
function of the locations of the shift and flip errors. In Table 3,
we present 7 error scenarios. For each scenario, we show
whether DUEs or SDCs are possible.

FC2 could be made more error tolerant, at additional cost, by
choosing stronger horizontal and vertical codes. Longer
delimiters and stronger ECC codes than Hamming(72,64) could
tolerate more challenging error models and reduce the likelihood
of SDCs and DUE:s.

Table 3. Different Error Scenarios for FC2 and their possible outcomes

Error Scenario
: : FC2
of Shift Errors # of Flip Errors Outcome
1 per extended codeword 1 per FC2 array no DUE
no SDC
0 per FC2 array 1 per column of FC2 no DUE
array no SDC
2 in 1 extended codeword, 0 per FC2 array no DUE
<l in all other extended no SDC
codewords
1 per extended codeword | 2 in different extended | likely DUE
codewords no SDC
1 per FC2 array 1 per column of FC2 | likely DUE
array no SDC
2 in 1 extended codeword, likely DUE
<1 in all other extended 1 per FC2 array no SDC
codewords
1 per extended codeword 3 or more in different | likely DUE
extended codewords or SDC

Authorized licensed use limited to: Duke University. Downloaded on September 10,2020 at 22:09:39 UTC from IEEE Xplore. Restrictions apply.

VI. METHODOLOGY

In this section, we describe how we evaluate FC1 and FC2,
as well as compare it to GreenFlag [7]. For all three schemes, we
use the horizontal code VT(64,57) that encodes 57 dataword bits
to a 64-bit VT codeword.

We set the shift error probability to P(s) = 107¢. We
choose this value based on estimations from prior work [5].
However, to our knowledge, no experimental bit flip
probabilities for Racetrack memory have been reported. Thus,
we investigate a range of probabilities P(f) = [107%,107°].

A. Analysis of FCI1 and GreenFlag

For GreenFlag and FCI1, we build analytical, mathematical
models that calculate the probability of a detectable
uncorrectable error (DUE) and a silent data corruption (SDC)
per VT codeword. Due to the simplicity of these schemes, we
can enumerate the different scenarios where errors will be
corrected or lead to DUEs or SDCs, and we can calculate their
probabilities.

B. Simulation and Analysis of FC2

Unlike GreenFlag or FC1, FC2’s error tolerance can depend
on the location of the errors in the FC2 array. For example,
consider the case of 3 bit flips and no shift errors in a single FC2
array. If all bit flip errors are in the same column, an SDC will
occur. Otherwise, the errors could be corrected or cause a DUE.
Due to the vast number of possible error location combinations,
building an analytical model is practically impossible. Thus, to
evaluate FC2, we rely on an in-house simulation.

Our FC2 simulator simulates the encoding and decoding
processes in detail. Initially, for each array, it randomly
generates 64 rows of datawords, each 57-bits long (64x57
matrix). All 57 columns are encoded using Hamming(72,64) to
produce a 72x57 array. Each row is then encoded with
VT(64,57) and the delimiter 00011010 is appended to produce
the final 72x72 FC2 array.

Because error probabilities are quite low, naive error
injection would take a prohibitive amount of time. (The vast
majority of simulated arrays would have zero errors.) Instead,
we do the following.

Step 1: We analytically derive the probabilities of all non-
negligible scenarios, including the no-error scenario. Each
scenario is denoted with <X=x, Y=y>, where x is the number of
shift errors and y is the number of bit flip errors in the FC2 array.
We consider only the error scenarios with probability P(X=x,
Y=y) > 10"'® when P(s)=P()=10. If an error scenario is less
probable than that (e.g., 102%), considering it would not
significantly change our results.

Step 2: We run a very large number (103) of simulations for each
of the scenarios identified in the previous step. The simulator
takes x and y as inputs. The simulator randomly picks y bits in
the 72x72 matrix and flips their values, and then it randomly
picks x bits to have a shift error. Each shift error has equal
probability of being a deletion or an insertion. After all errors are
induced, the simulator attempts to decode the FC2 array

339

following the same process described in Section V.B. At the end
of this decoding process, the simulator compares the decoded
datawords with the original values and reports whether the result
was correct data, a DUE, or an SDC.

Step 3: We weight the results from Step 2 using the probabilities
from Step 1. Step 2 produces the probability of DUE and SDC
given an error scenario P(DUE | X=x, Y=y) and P(SDC | X=x,
Y=y). We then analytically calculate the probability of each error
scenario occurring in the FC2 matrix P(X=x, Y=y) based on the
probabilities of P(s) and P(f). By using the formula P(DUE) =
YxyP(DUE | X =x,Y =y)x P(X =x,Y =y) we estimate
the overall probability of DUE. Similar is the case for SDC.

C. Primary Metric: DUEs and SDCs per Dataword Bit

Because GreenFlag, FC1, and FC2 have different code rates
and protect different numbers of dataword bits, it can be difficult
to fairly compare them even after we have calculated P(DUE)
and P(SDC) for each scheme.

To make the comparison fair, we study the expected number
of DUEs and SDCs per dataword bit read. Let us use FC2 as an
example and let us assume that it has a probability of SDC per
FC2 array of Prc2(SDC). The expected number of FC2 arrays we
must read to get a single SDC is then Erc2(SDC)=1/Prc2(SDC).
However, for each FC2 array read, we access 57x64=3648
dataword bits. Thus, the total number of expected dataword bits
we need to read to get a single SDC is:

datword bits

3648
Prc2(SDC)

The expected SDCs per dataword bit is simply the reciprocal of
the equation above. Similar is the case for the expected DUEs
per dataword. The general form of the equation is:

DUEs P(DUE)

E (dataword bit) ~ % dataword bits protected

VII. RESULTS

We now present our results for FC1 and FC2 and compare
them to GreenFlag. We re-evaluate GreenFlag for our new error
model that allows both bit flip and shift errors to occur.

A. DUE and SDC Probabilities

We start by presenting results for the probabilities of DUE
and SDC for each code, as these results will help us better
understand the expected number of DUEs and SDCs per
dataword bit that we report next. In Figure 5, Figure 6, and
Figure 7 we present the probabilities P(DUE) and P(SDC) for
GreenFlag, FC1, and FC2 respectively. The x-axis is the value
of P(f), and we remind the reader that P(s) is fixed to 10°°. The
y-axis is P(DUE) and P(SDC) in logarithmic scale. The
probabilities for GreenFlag and FC1 are calculated for a single
extended codeword (VT codeword + delimiter), whereas for
FC2 they are for an entire FC2 array.

Our first observation is that P(SDC) for GreenFlag is very
high because it can tolerate no bit flip errors, and its P(SDC)
increases linearly with P(f). FC1 achieves 2-4 orders of

Authorized licensed use limited to: Duke University. Downloaded on September 10,2020 at 22:09:39 UTC from IEEE Xplore. Restrictions apply.

magnitude lower P(SDC) than GreenFlag, but P(DUE) for FC1
is as high as GreenFlag because they both declare DUEs for the
same error scenario (i.e., two shift errors in an extended
codeword).

FC2 can achieve significantly better P(SDC), with as low
as 102 for P(f)=10"°. However, P(DUE) for FC2 is higher than
FCI1 for P(f)>=107". This is because FC2 will report a DUE even
if only 2 out of the 72 tracks in the FC2 array have two shift
errors. On the contrary, FC1 can detect two shift errors for each
track individually.

B. DUEs and SDCs per dataword bit

We now present the expected number of DUEs and SDCs
per dataword bit read. In Figure 8 we compare the number of
DUEs per dataword bit for GreenFlag, FC1, and FC2. We
observe that GreenFlag and FC1 have the same number of DUEs

P(DUE) for GreenFlag =@=P(SDC) for GreenFlag

1.E-04
1.E-06
1.E-08
1.E-10
1.E-12
1.E-14
1.E-16
1.E-18
1.E-20

Probability

1.E-09 1.E-08 1.E-07
Bit flip error probability P(f)

Figure 5. Probability of DUE and SDC for GreenFlag

1.E-06

P(DUE) for FC1 —e—P(SDC) for FC1

1.E-04

1.E-06
1.E-08
1.E-10
1.E-12
1.E-14
1.E-16
1.E-18
1.E-20

Probability

1.E-04
1.E-06
1.E-08
1.E-10
1.E-12
1.E-14
1.E-16
1.E-18
1.E-20
1.E-22

Probability

1.E-09 1.E-08 1.E-07

Bit flip error probability P(f)
Figure 6. Probability of DUE and SDC for FC1

1.E-06

P(DUE) for FC2 —e—P(SDC) for FC2

1.E-09 1.E-08 1.E-07
Bit flip error probability P(f)

Figure 7. Probability of DUE and SDC for FC2

1.E-06

340

per dataword bit as they provide the same P(DUE) while
protecting the same number of dataword bits. However, we see
that FC2 can provide up to 6 orders of magnitude fewer DUEs
per dataword bit. Even in the cases where the P(DUE) for FC2
was higher than the P(DUE) of FCI1, FC2 can still provide the
same or fewer DUEs per dataword bit. That is because FC2
protects many more dataword bits than FC1 or GreenFlag.

However, the number of DUESs per dataword bit is relatively
high even for FC2. For P(f)=10°, FC2 has roughly 107
expected DUEs per dataword bit. For a system that constantly
accesses dataword bits at a bandwidth of 1GB/s, around 27
DUEs will be reported in a year. However, we note that the
majority of these DUEs could be potentially corrected by just
attempting to read the data again.

In Figure 9 we present the same results but now for SDCs.
From Figure 9, we see that FC2 achieves far fewer SDCs per
dataword bit, achieving as low as 10->* SDCs per dataword bit.
That means that, even if we access dataword bits with a rate of
1GB/s, we would only see 1 SDC every 1,000,000 years. The
SDCs increase to 1 every 10,000 years, 10 years, and a few days
for P()=10%, P(f)=107, and P()=107, respectively.

We conclude that GreenFlag and FC1 do not provide
sufficient error tolerance when considering bit flip errors.

C. Error Scenarios that Cause DUEs and SDCs with FC2

We were interested to see which error scenarios cause the
most DUEs and SDCs with FC2. This information will help us
understand how we could increase the fault tolerance of FC2.

Expected DUEs per dataword bit - GreenFlag
Expected DUEs per dataword bit - FC1

1.E-04
1.E-07
1.E-10
1.E-13
1.E-16
1.E-19
1.E-22
1.E-25

t

1

Expected number
er dataword b

="

Expected DUEs per dataword bit - FC2

1.E-09 1.E-08 1.E-07

Bit flip error probability P(f)

1.E-06

Figure 8. E(DUE) per dataword bit for GreenFlag, FC1, and FC2

Expected number
per dataword bit
leisietaiaieiaietale
Clololololololololol ol

--A--Expected SDCs per dataword bit - GreenFlag
=+ -Expected SDCs per dataword bit - FC1
=eo—Expected SDCs per dataword bit - FC2

1.E-09 1.E-08 1.E-07

Bit flip error probability P(f)

1.E-06

Figure 9. E(SDC) per dataword bit for GreenFlag, FC1, and FC2

Authorized licensed use limited to: Duke University. Downloaded on September 10,2020 at 22:09:39 UTC from IEEE Xplore. Restrictions apply.

In Figure 10 we present the percentage of DUEs caused by
different error scenarios. We include the error scenarios with the
two highest percentages of DUEs, as well as the percentage of
DUEs for all other error scenarios. We observe that the error
scenario that causes the highest percentage of DUEs is always
responsible for more than 55% of them. Moreover, for
P(£)>10"® we see that the main error scenario that causes DUEs
is multiple bit flips in the FC2 array. That indicates that, in order
to reduce the number of DUEs, we should use a stronger ECC
code. For example, we could use Hamming(7,4) instead of
Hamming(72,64) to provide SECDED protection in every 7
tracks rather than every 72. However, that would come with a
significant reduction in the overall rate of FC2. For P(f)<10%, we
observe that the main error scenario that causes DUEs is multiple
shift errors. Thus, for such a scenario we could use smaller VT
codes, like VT(16,11), to provide shift protection every 16 bits
rather than every 64.

The results for SDCs are similar and are presented in Figure
11. The main difference is that SDCs depend more on flip errors.
Even when P(f)=10", the main error scenario that causes SDCs
is 2 shifts with 2 flips, followed by no shifts and 3 flip errors.

D. GreenFlag vs FC2 in the Absence of Bit Flip Errors

Lastly, we compare GreenFlag against FC2 in the absence of
bit flip errors. Although the main goal of this paper was to
provide codes that can protect against both shift and bit flip
errors, it is interesting to see how the two codes compare when
we consider only shift errors.

Thus, we evaluate both GreenFlag and FC2 once more,
assuming that P(f)=0. In Figure 12 we present the expected
number of DUEs and SDCs per dataword bit for both codes. As
we observe, FC2 can provide almost 7 orders of magnitude
fewer DUEs per dataword bit and 8 orders of magnitude fewer
SDCs per dataword bit. For a memory system that constantly
accesses dataword bits with a rate of 1GB/s, GreenFlag (with
VT(64,57)) would experience 1 SDC every few days, whereas
FC2 would experience 1 SDC every 107 years. Thus, even in the
case that only shift errors are considered, FC2 can provide
significantly greater error tolerance than GreenFlag.

VIII. CONCLUSION

In this paper, we have introduced Foosball Coding, the first
scheme for protecting 3D racetrack memory from shift errors
and bit flip errors. We presented two variants, FC1 and FC2,
that provide different trade-offs between cost and error
tolerance. As part of the development of Foosball Coding, we
developed a methodology for the construction of delimiters and
we introduced the multi-purpose delimiters that can provide
additional information. The experimental results show that both
FC1 and FC2 successfully tolerate shift errors and bit flip errors.
When racetrack memory makes the leap from the lab to
production, Foosball Coding is poised to deal with its expected
error models.

100%
90% [——————————gai—————— N ————— . —————
80% [-——————- —— - ———
70% |——————— —— -
60% —— -
50% —— .
40% ks Eimlhaiabe
30% —— -
20% |, — —— -
10% - |~ T ., ———— |
0% % |2 2 2 2 2 2|
B & R =) Ry B &
= [0 158 I == == |5
— | SN A=l B — & S (oW 5}
S| 4 sa]s = 5|5 |=
b=l = L=l b=l [e) h=l e L=l h=N IS
% |5 Z iz 7 Z Iz
ol F=X =N R fal S|
P(f) = 1.E-09 | P(f) = 1.LE-08 | P(f) = 1.E-07 | P(f) = 1.E-06
Figure 10. Error scenarios that cause the highest percentage
of DUEs in FC2
100%
0% [——————————e—————— i —————— - ————-
80% [—————————— - ————— . ————— ., ———— |
0% [——————————| - ————— - ————— ., ——— |
60% [—————————— -~ ————— ., ———— |
50% |-, —— |
40% am———— - -————— - ————-
30% -4l --— -
20% |-
10% - ——— B -,
0% =
=3
[= =
D) 5] 5]
73 = =
& S S
Z =, =
all
P(f) = 1.LE-09 | P(f) = 1.E-08 | P(f) = 1.E-07 | P(f) = 1.E-06
Figure 11. Error scenarios that cause the highest percentage
of SDCs in FC2
(DUEs) SDCs
dataword bit E dataword bit)
1E-08
1E-10 |-—— -l gl |—————— - ——
8L 1E-12 —————{ g —— — — = ——
&S 2
§ TR o g = ——-
< ,E; 1E-16 —————f Jg————————— ——
§] 1E-18 ———————————— — — — — — ——
S5 1E20 (—F——————————————— — ——
SIR-%
1E-22 GreenFlag Mrc2
1E-24

341

Figure 12. E(DUE) and E(SDC) per dataword bit
for GreenFlag and FC2 when P(f)=0

ACKNOWLEDGMENTS

This material is based on work supported by the National
Science Foundation under grants CCF-142-1177 and CCF171-
7602.

Authorized licensed use limited to: Duke University. Downloaded on September 10,2020 at 22:09:39 UTC from IEEE Xplore. Restrictions apply.

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

[9]

[10]

(1]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

REFERENCES

S.Parkin and S.-H. Yang, “Memory on the Racetrack,” Nature
Nanotechnology, vol. 10, no. 3, p. 195, 2015.

S. S. Parkin, M. Hayashi, and L. Thomas, “Magnetic Domain-Wall
Racetrack Memory,” Science, vol. 320, no. 5873, pp. 190-194, 2008.

W. Zhao, Y. Zhang, H. Trinh, J.Klein, C. Chappert, R.Mantovan,
A. Lamperti, R. Cowburn, T. Trypiniotis, M. Klaui et al., “Magnetic
Domain-Wall Racetrack Memory for High Density and Fast Data
Storage,” in International Conference on Solid-State and Integrated
Circuit Technology. IEEE, 2012, pp. 1-4.

Y. P. Ivanov, A. Chuvilin, S. Lopatin, and J. Kosel, “Modulated Magnetic
Nanowires for Controlling Domain Wall Motion: Toward 3D Magnetic
Memories,” ACS nano, vol. 10, no. 5, pp. 5326-5332, 2016.

C. Zhang, G. Sun, X. Zhang, W. Zhang, W. Zhao, T. Wang, Y. Liang,
Y. Liu, Y. Wang, and J. Shu, “Hi-fi Playback: Tolerating Position Errors
in Shift Operations of Racetrack Memory,” in SIGARCH Computer
Architecture News, vol. 43, no. 3. ACM, 2015, pp. 694-706.

S. Ollivier, D. Kline, R. Kawsher, R. Melhem, S. Banja, and A. K. Jones,
“Leveraging Transverse Reads to Correct Alignment Faults in Domain
Wall Memories,” in International Conference on Dependable Systems
and Networks (DSN). IEEE, 2019, pp. 375-387.

G. Mappouras, A. Vahid, R. Calderbank, and D. J. Sorin, “GreenFlag:
Protecting 3D-Racetrack Memory From Shift Errors,” in International
Conference on Dependable Systems and Networks (DSN). IEEE, 2019, pp.
1-12.

Y. M. Chee, H. M. Kiah, A.Vardy, E. Yaakobi etal., “Coding for
Racetrack Memories,” Transactions on Information Theory, vol. 64,
no. 11, pp. 7094-7112, 2018.

R. Varshamov and G. Tenengolts, “Codes Which Correct Single
Asymmetric Errors ,” Automatika i Telemkhanika, vol. 161, no. 3, pp.
288-292, 1965.

G. Tenengolts, “Nonbinary Codes, Correcting Single Deletion or
Insertion (Corresp.),” Transactions on Information Theory, vol. 30, no. 5,
pp. 766-769, 1984.

F. Paluncic, K. A. Abdel-Ghaffar, and H. C. Ferreira, “Insertion/Deletion
Detecting Codes and the Boundary Problem,” Transactions on
Information Theory, vol. 59, no. 9, pp. 5935-5943,2013.

R. Tomasello, E.Martinez, R. Zivieri, L. Torres, M. Carpentieri, and
G. Finocchio, “A Strategy For The Design Of Skyrmion Racetrack
Memories,” Scientific reports, vol. 4, p. 6784, 2014.

A. Fert, V. Cros, and J. Sampaio, “Skyrmions On The Track,” Nature
nanotechnology, vol. 8, no. 3, p. 152, 2013.

Y. Huang, W.Kang, X.Zhang, Y.Zhou, and W.Zhao, “Magnetic
Skyrmion-Based Synaptic Devices,” Nanotechnology, vol. 28, no. 8, p.
08LTO02, 2017.

X. Wang, C.Zhang, X.Zhang, and G. Sun, “np-ECC: Nonadjacent
Position Error Correction Code for Racetrack Memory,” in International
Symposium on Nanoscale Architectures. IEEE, 2016, pp. 23-24.

R. Venkatesan, S. G. Ramasubramanian, S. Venkataramani, K. Roy, and
A. Raghunathan, “Stag: Spintronic-Tape Architecture For GPGPU Cache
Hierarchies,” in ACM SIGARCH Computer Architecture News, vol. 42,
no. 3. IEEE Press, 2014, pp. 253-264.

R. Venkatesan, V. Kozhikkottu, C. Augustine, A. Raychowdhury,
K. Roy, and A. Raghunathan, “TapeCache: A High Density, Energy
Efficient Cache Based On Domain Wall Memory,” in Proceedings of the
2012 ACM/IEEE international symposium on Low power electronics and
design. ACM, 2012, pp. 185-190.

C. Zhang, G. Sun, W. Zhang, F. Mi, H. Li, and W. Zhao, “Quantitative
Modeling of Racetrack Memory, a Rradeoff Among Area, Performance,
and Power,” in The 20th Asia and South Pacific Design Automation
Conference. IEEE, 2015, pp. 100-105.

342

[20] S. Mittal,

[19] Z. Sun, W. Wu, and H. Li, “Cross-Layer Racetrack Memory Design for

Ultra High Density and Low Power Consumption,” in Design Automation
Conference. IEEE, 2013, pp. 1-6.

“A Survey of Techniques for Architecting Processor
Components Using Domain-Wall Memory,” Journal on Emerging
Technologies in Computing Systems, vol. 13, no. 2, p. 29, 2017.

Authorized licensed use limited to: Duke University. Downloaded on September 10,2020 at 22:09:39 UTC from IEEE Xplore. Restrictions apply.

