
Hierarchical Coding to Enable Scalability and
Flexibility in Heterogeneous Cloud Storage

Siyi Yang1, Ahmed Hareedy2, Robert Calderbank2, and Lara Dolecek1
1 Electrical and Computer Engineering Department, University of California, Los Angeles, Los Angeles, CA 90095 USA

2 Electrical and Computer Engineering Department, Duke University, Durham, NC 27705 USA
siyiyang@ucla.edu, ahmed.hareedy@duke.edu, robert.calderbank@duke.edu, and dolecek@ee.ucla.edu

Abstract—In order to accommodate the ever-growing data
from various, possibly independent, sources and the dynamic
nature of data usage rates in practical applications, modern
cloud data storage systems are required to be scalable, flexible,
and heterogeneous. Codes with hierarchical locality have been
intensively studied due to their effectiveness in reducing the
average reading time in cloud storage. In this paper, we present
the first codes with hierarchical locality that achieve scalability
and flexibility in heterogeneous cloud storage using small field
size. We propose a double-level construction utilizing so-called
Cauchy Reed-Solomon codes. We then develop a triple-level
construction based on this double-level code; this construction
can be easily generalized into any hierarchical structure with a
greater number of layers since it naturally achieves scalability in
the cloud storage systems.

I. INTRODUCTION

Codes offering hierarchical locality have been intensely
studied because of their ability to reduce the average read-
ing time in various erasure-resilient data storage applications
including Flash storage, redundant array of independent disks
(RAID) storage, cloud storage, etc. [1]. Codes with shorter
block lengths offer lower latency, but they provide limited
erasure-correction capability in a cloud storage system. To deal
with more erasures, longer codes can be employed. However,
since a simultaneous occurrence of a large number of erasures
is a rare event, longer codes result in unnecessary extra reading
cost, and are on average inefficient. Therefore, maintaining
low latency while simultaneously recovering from a potentially
large number of erasures is one of the major challenges in
cloud storage. Codes with hierarchical locality have been
shown to address this issue by providing multi-level access
in cloud storage, which enables the data to be read through
a chain of network components with increasing data lengths
from top to bottom; this architecture is exploited to increase
the overall erasure-correction capability [2].

In the literature, codes offering double-level access have
been intensely studied [1]–[6]; these codes are applicable in
double-level cloud storage. In this configuration, p consecutive
local messages are jointly encoded into p correlated local
codewords. Each local codeword is stored at the neighbor-
ing servers of the corresponding local cloud. The codes are
designed such that each local message can be successfully
decoded from the corresponding local codeword when there
are fewer than d1 local erasures, and the global codeword
provides extra protection against (d2 − d1) unexpected errors
in a local codeword, for some d2 > d1. An example having
p = 4 is in Fig. 1. Suppose d1 = 2 and d2 = 3. When there
is at most 1 server failure, accessing the servers connected to
cloud 1 is sufficient to successfully decode the data stored in
cloud 1. If the number of server failures in cloud 1 is 2, the

Fig. 1. Double-level cloud storage. Servers connected to local clouds store
the local codewords; the local clouds are connected to a central cloud.

data can still be obtained through accessing all the servers.
Codes with hierarchical locality are a generalized extension of
double-level accessible codes, in which more than two levels of
access are allowed and are naturally suitable for cloud storage
with multiple layers. An application in which these codes are
needed is hybrid cloud storage [7].

Along with hierarchical locality discussed previously, it is
also important for the coding schemes to support scalable, het-
erogeneous, and flexible cloud storage [8]. Scalability enables
expanding the backbone network to accommodate additional
workload, i.e., additional clouds, without rebuilding the entire
infrastructure. Heterogeneity refers to the property of allowing
nonidentical local data lengths and providing unequal local
protection, which is important for cloud storage with heteroge-
neous structures. A heterogeneous structure arises in networks
consisting of geographically separated components, and they
often store data from different sources. Flexibility has been
firstly investigated for dynamic data storage systems in [6], and
it refers to the property that the local cloud can be split into
two smaller local clouds without worsening the global erasure-
correction capability nor changing the remaining components.
This splitting, for example, is applied when cold data stored
at a local cloud become hot unexpectedly.

Various codes offering hierarchical locality have been stud-
ied. Cassuto et al. [1] presented so-called multi-block in-
terleaved codes that provide double-level access; this work
introduced the concept of multi-level access. The family of
integrated-interleaved (I-I) codes, including generalized inte-
grated interleaved (GII) codes and extended integrated inter-
leaved (EII) codes, has been a major prototype for codes with
multi-level access [2]–[5]. GII codes have the advantage of cor-
recting a large set of error patterns, but the distribution of the
data symbols is highly restricted, and all the local codewords

978-1-7281-0962-6/19/$31.00 ©2019 IEEE
Authorized licensed use limited to: Duke University. Downloaded on September 10,2020 at 22:01:52 UTC from IEEE Xplore. Restrictions apply.

are equally protected. EII codes are extensions of GII codes
with double-level access, where specific arrangements of data
symbols have been investigated, mitigating the aforementioned
restriction. However, no similar study has been proposed for
GII codes with hierarchical locality. Therefore, I-I codes are
more suitable for applications where heterogeneity and flexi-
bility are less important. Sum-rank codes are another family
of codes that is proposed for dynamic distributed storage
offering double-level access [6]. These codes are maximally
recoverable, flexible, and allow unequal protection for local
data. However, sum-rank codes require a finite field size that
grows exponentially with the maximum local block length,
which is a major obstacle to being implemented in real world
applications.

In this paper, we introduce code constructions with hier-
archical locality and a small field size that achieve scala-
bility, heterogeneity, and flexibility. The paper is organized
as follows. In Section II, we introduce the notation and
preliminaries. In Section III, we present a new construction
of codes offering hierarchical locality that is based on Cauchy
Reed Solomon (CRS) codes. This construction requires a field
size that grows linearly with the maximum local codelength. In
Section IV, we then show that our coding scheme is scalable,
heterogeneous, and flexible. Finally, we summarize our results
in Section V.

II. NOTATION AND PRELIMINARIES

Throughout the rest of this paper, [N] refers to
{1, 2, . . . , N}, and [a : b] refers to {a, a+1, . . . , b}. Denote the
all zero vector of length s by 0s. Similarly, the all zero matrix
of size s × t is denoted by 0s×t. The alphabet field, denoted
by GF(q), is a Galois field of size q, where q is a power of a
prime. For a vector v of length n, vi, 1 ≤ i ≤ n, represents the
i-th component of v, and v [a : b] = (va, . . . , vb). For a matrix
M of size a× b, M [i1 : i2, j1 : j2] represents the sub-matrix
M′ of M such that (M′)i−i1+1,j−j1+1 = (M)i,j , i ∈ [i1 : i2],
j ∈ [j1 : j2]. All indices start from 1.

A. Notation and Definitions

Let m and c represent messages and codewords, respec-
tively. A set C is called an (n, k, d)q-code if C ⊂ GF(q)n,
dim(C) = k, and min

c1,c2∈C,c1 ̸=c2

dH(c1, c2) = d, where dH

refers to the Hamming distance. We next define a family of
codes with double-level access. Note that our discussion is
restricted to linear block codes.

Definition 1. Let p, q ∈ N. Let n = (n1, n2, . . . , np) ∈ Np,
k = (k1, k2, . . . , kp) ∈ Np, D ∈ N2×p, (D)x,y = dx,y , where
d1,x < d2,x, kx < nx, for all x, y ∈ [p].
Let n = n1+n2+ · · ·+np. Let s0 = 0 and sx = n1+n2+

· · ·+ nx, x ∈ [p]. Let cx denote c [sx−1 + 1 : sx] and let mx

denote the message corresponding to cx, for x ∈ [p]. A set
C ⊂ GF(q)n is called an (n,k,D, p)q-code if the following
conditions are satisfied:
1) Let Cx = {c [sx−1 + 1 : sx] : c ∈ C}, x ∈ [p]. Each Cx is

an (nx, kx, d1,x)q-code.
2) Let Ax = {c [sx−1 + 1 : sx] : c ∈ C, c [sy−1 + 1 : sy] =

0ny
, ∀y ∈ [p] \ {x}}, x ∈ [p]. Each Ax is an

(nx, kx, d2,x)q-code.

Any (n,k,D, p)q-code specified according to Definition 1
corrects (d1,x−1) erasures in the i-th local codeword via local
access, and corrects additional (d2,x − d1,x) erasures through
global access when other local codewords are all correctable
via local access. Following this notation, Definition 2 extends
Definition 1 into the triple-level case.

Definition 2. Let q, p0 ∈ N, p = (p1, p2, . . . , pp0
) ∈ Np0 ,

p = p1 + p2 + · · · + pp0
. Let n = (n1,n2, . . . ,np0

) ∈
Np0 , k = (k1,k2, . . . ,kp0

) ∈ Np0 , where nx =
(nx,1, nx,2, . . . , nx,px

) ∈ Npx , kx = (kx,1, kx,2, . . . , kx,px
) ∈

Npx , for all x ∈ [p0].
Let t0 = 0, tx = p1 + p2 + · · · + px, x ∈ [p0]. Suppose

D ∈ N3×p. Let dl,x,i = (D)l,tx−1+i, l ∈ [3] so that
d1,x,i < d2,x,i < d3,x,i, for x ∈ [p0] and i ∈ [px]. Let
Dx = D [1 : 2, tx−1 + 1 : tx], x ∈ [p0]. Let nx = nx,1+nx,2+
· · ·+ nx,px for all x ∈ [p0]. Let n = n1 + n2 + · · ·+ np0 . Let
s0 = 0, sx = n1 + n2 + · · · + nx, x ∈ [p0]. Let sx,0 = sx,
sx,i = sx+nx,1+nx,2+· · ·+nx,i, for all x ∈ [p0] and i ∈ [px].
Let cx,i denote c [sx,i−1 + 1 : sx,i] and let mx,i denote the
message corresponding to cx,i, for x ∈ [p0], i ∈ [px]. A set
C ⊂ GF(q)n is called an (n,k,D, p0,p)q-code if the following
conditions are satisfied:
1) Let Cx = {c [sx−1 + 1 : sx] : c ∈ C}, x ∈ [p0]. Each Cx

is an (nx,kx,Dx, px)q-code.
2) Let Ax,i = {c [sx,i−1 + 1 : sx,i] : c ∈

C, c [sy,j−1 + 1 : sy,j] = 0ny,j , ∀y ∈ [p0] , j ∈
[py] , (x, i) ̸= (y, j)}. Each Ax is an (nx,i, kx,i, d3,x,i)q-
code.

This definition can be easily generalized into codes with
more than three levels of access. For simplicity, we constrain
our discussion to the triple-level case.

B. Cauchy Matrices

Cauchy matrices are the key component in the construction
that we will introduce shortly.

Definition 3. (Cauchy matrix) Let s, t ∈ N and GF(q) be
a finite field of size q. Suppose a1, . . . , ax, b1, . . . , by are
pairwise distinct elements in GF(q). The following matrix is
known as a Cauchy matrix,

1
a1−b1

1
a1−b2

. . . 1
a1−bt

1
a2−b1

1
a2−b2

. . . 1
a2−bt

...
...

. . .
...

1
as−b1

1
as−b2

. . . 1
as−bt

 .

We denote this matrix by Y(a1, . . . , as; b1, . . . , bt).

Cauchy matrices are totally invertible, i.e., every square sub-
matrix of a Cauchy matrix is invertible. The inverse of a given
Cauchy matrix can be explicitly computed using algorithms
of lower complexity than those for inverting Vandermonde
matrices. Lemma 1 presents a useful result about Cauchy
matrices that will be used repeatedly in this paper.

Lemma 1. Let s, t, r ∈ N such that t − s < r ≤ t, A ∈
GF(q)s×t. If A is a Cauchy matrix, then the following matrix
M is a parity-check matrix of an (s+r, s+r− t, t+1)q-code.

Authorized licensed use limited to: Duke University. Downloaded on September 10,2020 at 22:01:52 UTC from IEEE Xplore. Restrictions apply.

M =

[
A

−Ir 0r×(t−r)

]T
.

Proof. The proof is in [9], the long version of the paper. �

III. CODES FOR MULTI-LEVEL ACCESS

Following the definitions and notation introduced in Sec-
tion II, we present a CRS-based code with double-level access
in Section III-A. Then, we extend our construction into a triple-
level case in Section III-B.

A. Codes with Double-Level Access

In this subsection, we provide a construction of codes
offering double-level access based on the CRS codes. Note
that the generator matrix of any systematic code with double-
level access has the following structure:

G =


Ik1

A1,1 0 A1,2 . . . 0 A1,p

0 A2,1 Ik2
A2,2 . . . 0 A2,p

...
...

...
...

. . .
...

...
0 Ap,1 0 Ap,2 . . . Ikp Ap,p

 . (1)

Construction 1. (CRS-based code) Let p ∈ N,
k1, k2, . . . , kp ∈ N, n1, n2, . . . , np ∈ N, δ1, δ2, . . . , δp ∈ N
and δ = δ1 + δ2 + · · · + δp, with rx = nx − kx > 0
for all x ∈ [p]. Let GF (q) be a finite field such that
q ≥ maxx∈[p]{nx}+ δ.
For each x ∈ [p], let ax,i, bx,j , i ∈ [kx + δx], j ∈

[rx − δx + δ], be distinct elements of GF(q). Consider the
Cauchy matrix Tx ∈ GF(q)(kx+δx)×(rx−δx+δ) such that
Tx = Y(ax,1, . . . , ax,kx+δx ; bx,1, . . . , bx,rx−δx+δ). For each
x ∈ [p], we obtain {Bx,i}i∈[p]\{x}, Ux, Ax,x, according to
the following partition of Tx,

Tx =

[
Ax,x Bx,1 . . . Bx,p

Ux Zx

]
, (2)

where Ax,x ∈ GF(q)kx×rx , Bx,i ∈ GF(q)kx×δi , Ux ∈
GF(q)δx×rx . Moreover, Ax,y = Bx,yUy , for x ̸= y.

Matrices Ax,x and Ax,y are substituted in G specified in
(1), for all x, y ∈ [p], x ̸= y. Let C1 represent the code with
generator matrix G.

Lemma 2. Following the notation in Definition 1, let d1,x =
rx − δx + 1, d2,x = rx − δx + δ + 1, for x ∈ [p]. Then, code
C1 specified in Construction 1 is an (n,k,D, p)q-code.

Sketch of the proof. For each x ∈ [p], define yx =∑
y∈[p],y ̸=x myBy,x. It follows from mG = c and (1) that

for x ∈ [p], cx = [mx,mxAx,x + yxUx]. Define the local
parity-check matrix HL

x and the global parity-check matrix
HG

x , for each x ∈ [p], as follows:

HG
x =

[
Ax,x Bx,1 . . . Bx,p

−Irx 0rx×δ−δx

]T
,HL

x =

 Ax,x

−Irx
Ux

T

.

We next prove the equations of the local distance d1,x = rx−
δx + 1 and the global distance d2,x = rx − δx + δ + 1 using
HL

x and HG
x , x ∈ [p].

To prove the equation of the local distance, let c̃x = [cx,yx].
Then, one can show that c̃x belongs to a code CL

x with the

TABLE I
POLYNOMIAL AND NORMAL FORMS OF GF(24)

0 0000 β4 1100 β8 1010 β12 1111
β 0100 β5 0110 β9 0101 β13 1011
β2 0010 β6 0011 β10 1110 β14 1001
β3 0001 β7 1101 β11 0111 β15 = 1 1000

local parity-check matrix HL
x . From Lemma 1, CL

x is an (nx+
δx, kx, rx + 1)q-code. Therefore, any rx erasures in c̃x are
correctable. Provided that yx has length δx, we can consider
the entries of yx as erasures and thus any (rx−δx) erasures in
the remaining part of c̃x, i.e., cx, can be corrected. Therefore,
d1,x = rx − δx + 1.

To prove the equation of the global distance, assume
all the local codewords except for cx are successfully de-
codable locally. Then, for each x ∈ [p], yx and sx =
[mxBx,1, . . . ,mxBx,p] are computable. Let c̄x = cx −
[0kx ,yxUx], then one can show that HG

x c̄
T
x = [0rx , sx]

T.
From Lemma 1 and from the construction of HG

x , any (rx −
δx+δ) erasures in c̄x are correctable, thus (rx−δx+δ) erasures
in cx are also correctable. Therefore, d2,x = rx−δx+δ+1. �
We next provide a working example for codes in Construc-

tion 1. For simplicity, we let all the local codeword lengths and
local data lengths be equal. However, the construction itself
allows them to be unequal.

Example 1. Let q = 24, p = 2, r = r1 = r2 = 3, δ′ = δ1 =
δ2 = 1, k = k1 = k2 = 3, n = n1 = n2 = k + r = 6,
δ = δ1 + δ2 = 2. Then, d1 = r − δ′ + 1 = 3 − 1 + 1 = 3,
d2 = r − δ′ + δ + 1 = 3− 1 + 2 + 1 = 5. Choose a primitive
polynomial over GF(2): g(X) = X4 + X + 1. Let β be a
root of g(X), then β is a primitive element of GF(24). The
binary representation of all the symbols in GF(24) is specified
in Table I.

Let A1,1 = A2,2, B1,2 = B2,1, U1 = U2, and T1 = T2

as specified in (3). Therefore,

A1,2 = A2,1 = B2,1U1 =

 β13 β9 β3

β10 β6 1
β14 β10 β4

 .

Then, the generator matrix G is specified as follows,
1 0 0 β5 β12 β7 0 0 0 β13 β9 β3

0 1 0 1 β4 β11 0 0 0 β10 β6 1
0 0 1 β2 β14 β3 0 0 0 β14 β10 β4

0 0 0 β13 β9 β3 1 0 0 β5 β12 β7

0 0 0 β10 β6 1 0 1 0 1 β4 β11

0 0 0 β14 β10 β4 0 0 1 β2 β14 β3

 .

Suppose m1 = (1, β, β2), m2 = (β, 1, 0), then c1 =
(1, β, β2, β14, 0, 0) and c2 = (β, 1, 0, β6, 0, β13). Moreover,
HL

1 and HG
1 are specified as follows,

HG
1 =


β5 β12 β7 β9

1 β4 β11 β6

β2 β14 β3 β10

1 0 0 0
0 1 0 0
0 0 1 0


T

,HL
1 =



β5 β12 β7

1 β4 β11

β2 β14 β3

1 0 0
0 1 0
0 0 1
β4 1 β9



T

.

According to Construction 1, G is the generator matrix of a
double-level accessible code that corrects 2 local erasures by

Authorized licensed use limited to: Duke University. Downloaded on September 10,2020 at 22:01:52 UTC from IEEE Xplore. Restrictions apply.

T1 = T2 =

[
A1,1 B1,2

U1 Z1

]
=

[
A2,2 B2,1

U2 Z2

]
=


1

β−β8
1

β−β9
1

β−β10
1

β−β11

1
β2−β8

1
β2−β9

1
β2−β10

1
β2−β11

1
β3−β8

1
β3−β9

1
β3−β10

1
β3−β11

1
β7−β8

1
β7−β9

1
β7−β10

1
β7−β11

 =


β5 β12 β7 β9

1 β4 β11 β6

β2 β14 β3 β10

β4 1 β9 β7

 . (3)

local access and corrects 2 extra erasures within a single local
cloud by global access. In the following, we denote the erased
version of c1 by c′1, and erased symbols by ei, i ∈ N.
As an example of decoding by local access, suppose

c′1 = (1, e1, β
2, e2, 0, 0). Then, the erased elements of c̃1 =

(1, e1, β
2, e2, 0, 0, e3) can be retrieved using HL

1 as the parity-
check matrix. In particular, we solve HL

1 c̃
T
1 = (0, 0, 0)T for

e1, e2, e3 and obtain (e1, e2, e3) = (β, β14, β7). We have
decoded c1 successfully.

As an example of decoding by global access, suppose
c′1 = (e1, e2, β

2, e3, e4, 0), and c2 has been locally decoded
successfully. Then, c2 = (β, 1, 0, β6, 0, β13) implies that
m1B1,2U2 = (β6, 0, β13)−β ·(β5, β12, β7)−1·(1, β4, β11) =
(1, β11, β5). Since U2 = (β4, 1, β9), we obtain m1B1,2 =
β11. Moreover, we compute m2B2,1U1 = (β11, β7, β). Let
c̄1 = c′1 − (0, 0, 0, β11, β7, β) = (e′1, e

′
2, β

2, e′3, e
′
4, β). Then,

we solve HG
1 c̄

T
1 = (0, 0, 0, β11)T and obtain (e′1, e

′
2, e

′
3, e

′
4) =

(1, β, β10, β7). Therefore, e1 = e′1 = 1, e2 = e′2 = β,
e3 = e′3 + β11 = β14, e4 = e′4 + β7 = 0, and we have
decoded c1 successfully.

B. Codes with Hierarchical Locality

Based on the double-level accessible codes presented in
Section III-A, we present a class of codes with hierarchical
locality in Construction 2. For simplicity, we just present
a construction with triple-level access. Note that the coding
scheme itself can be naturally extended to have more than
three levels. A detailed explanation of the subscripts used in
the following discussion is provided in [9].

A generator matrix of such a code is as follows:

G =


F1,1 F1,2 . . . F1,p0

F2,1 F2,2 . . . F2,p0

...
...

. . .
...

Fp0,1 Fp0,2 . . . Fp0,p0

 , (4)

where for any x ∈ [p0],

Fx,x =

 Ikx,1 Ax,x;1,1 . . . 0 Ax,x;1,px

...
.

...
...

0 Ax,x;px,1 . . . Ikx,px
Ax,x;px,px

 ,

(5)
is a generator matrix of a code offering double-level access,
and

Fx,y =

 0 Ax,y;1,1 . . . 0 Ax,y;1,py

...
.

...
...

0 Ax,y;px,1 . . . 0 Ax,y;px,py

 . (6)

Properties of Fx,x,Fx,y are to be discussed later.

Construction 2. Let p0 ∈ N, p = (p1, . . . , pp0) ∈ Np0 . Let
kx,i, nx,i, δx,i, γx ∈ N, for x ∈ [p0] and i ∈ [px], such that
rx,i = nx,i − kx,i > 0 and 2γx < mini∈[px]{rx,i − δx,i}. Let

δx = δx,1 + · · · + δx,px , γ =
∑

x∈[p0]
pxγx, for all x ∈ [p0].

Let GF (q) be a finite field such that q ≥ max
x∈[p0],i∈[px]

{nx,i +

δx − (px − 2)γx + γ}.
Let ux,i = kx,i + δx,i + 2γx, vx,i = rx,i − δx,i + δx −

pxγx + γ, for x ∈ [p0], i ∈ [px]. For each x ∈ [p0], i ∈ [px],
let ax,i,s, bx,i,t, s ∈ [ux,i], t ∈ [vx,i], be distinct elements of
GF(q).
Consider the Cauchy matrix Tx,i on GF(q)ux,i×vx,i such

that Tx,i = Y(ax,i,1, . . . , ax,i,ux,i
; bx,i,1, . . . , bx,i,vx,i

), for
x ∈ [p0], i ∈ [px]. Then, we obtain Ax,x;i,i, Bx,x;i,i′ , Ex,y;i;j ,
Ux,i, Vx,i, x ∈ [p0], i′ ∈ [px] \ {i}, y ∈ [p0] \ {x}, j ∈ [py],
according to the following partition of Tx,i,

Tx,i =

 Ax,x;i,i Bx,x;i Ex,1;i . . . Ex,p0;i

Ux,i

Vx,i
Zx,i

 , (7)

where Bx,x;i =
[
Bx,x;i,1 . . . Bx,x;i,px

]
(8)

and Ex,y;i =
[
Ex,y;i;1 . . . Ex,y;i;py

]
, (9)

such that Ax,x;i,i ∈ GF(q)kx,i×rx,i , Bx,x;i,i′ ∈
GF(q)kx,i×δx,i′ , Ex,y;i;j ∈ GF(q)kx,i×γy , Ux,i ∈
GF(q)δx,i×rx,i , Vx,i ∈ GF(q)2γx×rx,i . Moreover,
Ax,x;i,i′ = Bx,x;i,i′Ux,i′ . Suppose Ex,y;i;py+1 = Ex,y;i;1; let
Ax,y;i,j = [Ex,y;i;j ,Ex,y;i;j+1]Vy,j .
Matrices Ax,x;i,i and Ax,y;i,j are substituted in Fx,x and

Fx,y to construct G as specified in (4), (5), and (6). Let C2
represent the code with generator matrix G.

Theorem 1. Following the notation in Definition 2, let d1,x,i =
rx,i − δx,i − 2γx + 1, d2,x,i = rx,i − δx,i + δx + 1, d3,x,i =
rx,i−δx,i+δx−pxγx+γ+1, for x ∈ [p0], i ∈ [px]. Then, the
code C2 defined in Construction 2 is an (n,k,D, p0,p)q-code.

Sketch of the proof. For each x ∈ [p0] and i ∈ [px], define the
local cross parity yx,i =

∑
i′∈[px]\{i} mx,i′Bx,x;i,i′ , and the

global cross parities zx,i =
∑

y∈[p0]\{x},j∈[py]
my,jEy,x;j;i.

Let zx,px+1 = zx,px . Then, it follows from mG = c that
cx,i = [mx,i,wx,i] for some wx,i = mx,iAx,x;i,i+yx,iUx,i+
[zx,i, zx,i+1]Vx,i.
The local erasure-correction capability d1,x,i = rx,i−δx,i−

2γx + 1 and the global erasure-correction capability d3,x,i =
rx,i−δx,i+δx−pxγx+γ+1 can be easily derived by following
the same logic used in the proof of Lemma 2. Therefore, we
only need to prove that d2,x,i = rx,i − δx,i + δx + 1.

To prove this statement, suppose all the local codewords
in the x-th group except for cx,i are successfully decodable
locally, for some x ∈ [p0], i ∈ [px]. In other words, for
all i′ ∈ [px] \ {i}, there are at most d1,x,i′ − 1 erasures in
the corrupted version cx,i′ of the local codeword. From the
construction, we know that the row spaces of any two matrices
from Ax,x;i,i, Ux,i, and Vx,i have no common elements
except for the all zero vector. Therefore, for all i′ ∈ [px]\{i},

Authorized licensed use limited to: Duke University. Downloaded on September 10,2020 at 22:01:52 UTC from IEEE Xplore. Restrictions apply.

mx,i′ , yx,i′ , [zx,i′ , zx,i′+1], can all be derived from cx,i. This
implies that [zx,i, zx,i+1] is known and thus, the entire con-
tribution of global cross parities can be removed. Namely, let
c̃x,i′ = cx,i′ −

[
0kx,i′ , [zx,i′ , zx,i′+1]Vx,i′

]
, for all i′ ∈ [px],

then the message mxFx,x = c̃x, where c̃x = [c̃x,1, . . . , c̃x,px
].

Thus, from Lemma 2, (rx,i − δx,i + δx) erasures in c̃x,i are
correctable. Therefore, d2,x,i = rx,i − δx,i + δx + 1. �
Remark 1. Note that the constraint of γy ∈ N in Con-
struction 1 can be relaxed to 2γy ∈ N if py is even.
In this case, we have Ex,y;i;j ∈ GF(q)kx,i×2γy . Moreover,
we need to modify the equation of Ex,y;i to be Ex,y;i =[
Ex,y;i;1, . . . ,Ex,y;i;py/2

]
, and Ax,y;i,j = Ex,y;i;⌈j/2⌉Vy,j .

The following is a working example of Construction 2. For
simplicity, we let the middle code be the code presented in
Example 1. However, the construction itself doesn’t impose
any constraints on rx,i, δx,i, and γx, except for 2γx <
miny∈[px]{rx,y − δx,y}.

Example 2. Here, we build on Example 1 using the same
GF (q). Let p0 = 2, p = (p1, p2) = (2, 2), γ′ = γ1 = γ2 =
1/2, γ = p1γ1+p2γ2 = 2. Let F1,1 = F2,2 = G of Example 1.
Then, n = 6, r = 3, δ′ = 1, δ = 2 as in Example 1. Therefore,
d1 = r − δ′ − 2γ′ + 1 = 3 − 1 − 2 · (1/2) + 1 = 2, d2 =
r − δ′ + δ + 1 = 5, d3 = r − δ′ + δ − 2γ′ + γ + 1 = 6.
We assume Tx,i, x, i ∈ [2], are all identical, then so are Vx,i

and Ex,y;i;1, x ̸= y, i ∈ [2]. Let these matrices be defined as
follows:
Vx,i =

[1
β6−β8

1
β6−β9

1
β6−β10

]
=

[
β β10 β8

]
and Ex,y;i;1 =

 1
β−β12

1
β2−β12

1
β3−β12

 =

 β2

β8

β5

 .

For simplicity, we abbreviate Ex,y;i;1 as E. Note that here p1,
p2 are even; thus, the construction follows the modification
described in Remark 1. The components Ax,y;i,j are therefore
all identical for x, y, i, j ∈ [2], x ̸= y, and are described as
follows:

Ax,y;i,j = EVy,j =

 β3 β12 β10

β9 β3 β
β6 1 β13

 .

Then, the generator matrix is given in (10).
Note that the decoding process based on local access and

global access have already been introduced in Example 1.
Thus, we only focus on decoding based on the middle-
level access in this example. Suppose m1,1 = (1, β, β2),
m1,2 = (β, 1, 0), m2,1 = (β2, 0, β), m2,2 = (0, β, 1). Then,
c1,1 = (1, β, β2, β12, β14, β12), c1,2 = (β, 1, 0, β9, β14, β).

Suppose there are 3 erasures in c1,1 so that c′1,1 =
(e1, β, β

2, e2, e3, β
12), where e1, e2, e3 represent the three

erased symbols. Suppose c1,2 is successfully corrected by local
access. Then, codeword c1,1 is correctable through middle-
level access, i.e., by operating on c′1,1 and c1,2.
First, from c1,2 = (β, 1, 0, β9, β14, β), we know thatm1,2 =

(β, 1, 0). Following the proof of Theorem 1, we know that
(β9, β14, β) = m1,2A1,1;1,2 + y1,2U1,2 + z1,2V1,2. Here,
y1,1 = m1,1B1,1;1,2, z1,2 = (m2,1 + m2,2)E = z1,1.
Then, y1,2 and z1,2 can be computed as y1,2 = (β11),

z1,2 = (β4). Therefore, z1,1V1,1+m1,2A1,1;2,1 = z1,2V1,1+
m1,2A1,1;2,1 = (β5, β14, β12) + (β11, β7, β) = (β3, β, β13).
Let c̃1,1 = c′1,1−(0, 0, 0, β3, β, β13) = (e′1, β, β

2, e′2, e
′
3, β).

We obtain (e′1, e
′
2, e

′
3) = (1, β10, β7) by solving HG

1 c̃
T
1,1 =

(0, 0, 0, e11)T, where HG
1 is specified in Example 1. Therefore,

e1 = e′1 = 1, e2 = e′2 + β3 = β12, e3 = e′3 + β = β14. We
have successfully decoded c1,1.

IV. SCALABILITY, HETEROGENEITY, AND FLEXIBILITY

In Section III, we have presented a construction of codes
with hierarchical locality for cloud storage, which enables
the system to offer multi-level access. However, multi-level
accessibility is not the only property that is considered in
practical cloud storage applications. In this section, we there-
fore discuss scalability, heterogeneity, and flexibility of our
construction, which are pivotal particularly in dynamic cloud
storage. Although our discussion is restricted to cloud storage,
the properties of heterogeneity and flexibility are also of
practical importance in non-volatile memories.

A. Scalability

As discussed in Section I, scalability refers to the capability
of expanding the backbone network to accommodate addi-
tional workload without rebuilding the entire infrastructure.
More specifically, when a new local cloud is added to the
existing configuration, computing a completely different gen-
erator matrix resulting in changing all the encoding-decoding
components in the system is very costly. The ideal scenario is
that adding a new local cloud does not change the encoding-
decoding components of the already-existing, local clouds.

We show that our construction naturally achieves this goal.
Observe that in Construction 1, the components Ax,x, Ux,
Bx,i, i ∈ [p]\{x} are built locally. Suppose cloud p+1 is added
into a double-level configuration adopting Construction 1. The
following steps will only result in adding some columns and
rows to the original G without changing the existing ones:
1) Parameter Selection: Local cloud p+ 1 chooses its local

parameters Ap+1,p+1, Up+1, Bp+1,i, i ∈ [p], and local
cloud i chooses the additional local parameters Bi,p+1;

2) Information Exchange: Local cloud p + 1 sends
mp+1Bp+1,i to the central cloud, and local cloud i sends
miBi,p+1 to the central cloud;

3) Information Exchange: The central cloud forwards
mp+1Bp+1,i to local cloud i, and sends yp+1 =∑

i∈[p] miBi,p+1 to local cloud p+ 1;
4) Update: Local cloud p+ 1 computes its finalized parity-

check symbols mp+1Ap+1,p+1 + yp+1Up+1, and local
cloud i adds mp+1Bp+1,i to its current parity symbols.

Note that although the local erasure-correction capability of
a local cloud does not change, the global erasure-correction
capability of each local cloud increases by δp+1 after adding
the new local cloud p+ 1 into the system.

B. Heterogeneity

While codes with identical data length and locality have
been intensively studied, heterogeneity has become increas-
ingly important in real world applications, especially in cloud
storage. There are typically two forms of heterogeneity: the
heterogeneity of the network structure, and unequal usage rates

Authorized licensed use limited to: Duke University. Downloaded on September 10,2020 at 22:01:52 UTC from IEEE Xplore. Restrictions apply.



1 0 0 β5 β12 β7 0 0 0 β13 β9 β3 0 0 0 β3 β12 β10 0 0 0 β3 β12 β10

0 1 0 1 β4 β11 0 0 0 β10 β6 1 0 0 0 β9 β3 β 0 0 0 β9 β3 β
0 0 1 β2 β14 β3 0 0 0 β14 β10 β4 0 0 0 β6 1 β13 0 0 0 β6 1 β13

0 0 0 β13 β9 β3 1 0 0 β5 β12 β7 0 0 0 β3 β12 β10 0 0 0 β3 β12 β10

0 0 0 β10 β6 1 0 1 0 1 β4 β11 0 0 0 β9 β3 β 0 0 0 β9 β3 β
0 0 0 β14 β10 β4 0 0 1 β2 β14 β3 0 0 0 β6 1 β13 0 0 0 β6 1 β13

0 0 0 β3 β12 β10 0 0 0 β3 β12 β10 1 0 0 β5 β12 β7 0 0 0 β13 β9 β3

0 0 0 β9 β3 β 0 0 0 β9 β3 β 0 1 0 1 β4 β11 0 0 0 β10 β6 1
0 0 0 β6 1 β13 0 0 0 β6 1 β13 0 0 1 β2 β14 β3 0 0 0 β14 β10 β4

0 0 0 β3 β12 β10 0 0 0 β3 β12 β10 0 0 0 β13 β9 β3 1 0 0 β5 β12 β7

0 0 0 β9 β3 β 0 0 0 β9 β3 β 0 0 0 β10 β6 1 0 1 0 1 β4 β11

0 0 0 β6 1 β13 0 0 0 β6 1 β13 0 0 0 β14 β10 β4 0 0 1 β2 β14 β3



. (10)

(according to how hot the data stored are) of local components.
It is reasonable to assume a heterogeneous structure since
components connected to a larger network are typically geo-
graphically separated and they often store data from unrelated
sources. Heterogeneous networks naturally require codes with
different local code lengths and nonidentical data lengths,
corresponding to flexible nx and kx in our construction,
respectively. Unequal protection of data, corresponding to
flexible rx and δx, also has received increasing attention in
recent years. This observation is reasonable since the usage
rate of the data is not necessarily identical. Clouds storing
hot data (data with higher usage rate and more time urgency)
should receive more local protection than those store cold data.

Although the examples we presented in Section III have
identical local parameters among all the clouds for simplic-
ity, Construction 1 and Construction 2 do not impose such
restrictions, and they are actually suitable for heterogeneous
configuration.

C. Flexibility

The concept of flexibility has been originally proposed and
investigated for dynamic cloud storage in [6]. In a dynamic
cloud storage system, the usage rate of a piece of data is
not likely to remain unchanged. When the data stored in a
local cloud become hot, splitting the local cloud into two
smaller clouds effectively reduces the latency. However, this
action should be done without reducing the erasure-correction
capability of the rest of the system or changing the remaining
components.

Take Construction 1 as an example, if the data stored in
local cloud 1 becomes unexpectedly hot, then the following
procedure splits it into two separate clouds 1a and 1b:
1) Select the desired local parameters (ka1, r

a
1, δ

a
1) and

(kb1 , r
b
1 , δ

b
1) for clouds 1a and 1b, respectively, such that

ka1 + kb1 = k1, ra1 + rb1 = r1, δa1 + δb1 = δ1, and

A1a,1a = A1,1 [1 : ka1, 1 : ra1] ,

B1b,1a = A1,1 [k
a
1 + 1 : k1, 1 : δa1] ,

A1b,1b = A1,1 [k
a
1 + 1 : k1, , r

a
1 + 1 : r1] ,

B1a,1b = A1,1

[
1 : ka1, r

a
1 + 1 : ra1 + δb1

]
,

Ua
1 = U1 [1 : δa1 , 1 : ra1] ,

Ub
1 = U1

[
δa1 + 1 : δ1, r

a
1 + 1 : rb1

]
;

2) Compute y1 by solving the equation y1U1 = c1 −
m1A1,1, where yi, i ∈ [p], are described in the proof

of Lemma 2. Find ya
1 ∈ GF(q)δ

a
1 , yb

1 ∈ GF(q)δ
b
1 such

that y1 =
[
ya
1,y

b
1

]
;

3) Compute ca1 =
[
ma

1,m
a
1A1a,1a +

(
mb

1B1b,1a + ya
1

)
Ua

1

]
,

and cb1 =
[
mb

1 ,m
b
1A1b,1b +

(
ma

1B1a,1b + yb
1

)
Ub

1

]
.

One can prove that the local codewords stored in the new
clouds 1a and 1b such that they are capable of correcting
(ra1 − δa1) and (rb1 − δb1) local erasures, respectively. Other
local clouds are not affected.

V. CONCLUSION

Multi-level accessible codes have been shown to be benefi-
cial for cloud storage. While the previous literature works was
typically focused on double-level accessible codes and their
erasure-correction capabilities, in this paper, we focus on codes
with hierarchical locality and additional properties motivated
by their practical importance. We proposed a CRS-based code
on a finite field with size that grows linearly with the maximum
local codelength. We showed that our construction achieves
scalability, heterogeneity and flexibility, which are important
in dynamic cloud storage.

ACKNOWLEDGMENT

This work has received funding from NSF under the grants
CCF-BSF 1718389 and CCF 1717602.

REFERENCES

[1] Y. Cassuto, E. Hemo, S. Puchinger, and M. Bossert, “Multi-block inter-
leaved codes for local and global read access,” in Proc. IEEE Int. Symp.
Inf. Theory, 2017, pp. 1758–1762.

[2] M. Hassner, K. Abdel-Ghaffar, A. Patel, R. Koetter, and B. Trager,
“Integrated interleaving-a novel ECC architecture,” IEEE Transactions on
Magnetics, vol. 37, no. 2, pp. 773–775, 2001.

[3] M. Blaum and S. R. Hetzler, “Extended product and integrated interleaved
codes,” IEEE Trans. Inf. Theory, vol. 64, no. 3, pp. 1497–1513, 2018.

[4] X. Zhang, “Generalized three-layer integrated interleaved codes,” IEEE
Communications Letters, vol. 22, no. 3, pp. 442–445, 2018.

[5] Y. Wu, “Generalized integrated interleaved codes,” IEEE Transactions on
Information Theory, vol. 63, no. 2, pp. 1102–1119, Nov. 2017.

[6] U. Martnez-Penas and F. R. Kschischang, “Universal and dynamic locally
repairable codes with maximal recoverability via sum-rank codes,” in
2018 56th Annual Allerton Conference on Communication, Control, and
Computing (Allerton). IEEE, 2018, pp. 792–799.

[7] B. Mao, S. Wu, and H. Jiang, “Improving storage availability in cloud-
of-clouds with hybrid redundant data distribution,” in 2015 IEEE Inter-
national Parallel and Distributed Processing Symposium. IEEE, 2015,
pp. 633–642.

[8] B. P. Rimal, E. Choi, and I. Lumb, “A taxonomy and survey of cloud
computing systems,” in INC, IMS and IDC, 2009. NCM’09. Fifth Inter-
national Joint Conference on, 2009, pp. 44–51.

[9] S. Yang, A. Hareedy, R. Calderbank, and L. Dolecek, “Hierarchical
coding to enable scalability and flexibility in heterogeneous cloud
storage,” 2019. [Online]. Available: https://arxiv.org/abs/1905.02279.pdf

Authorized licensed use limited to: Duke University. Downloaded on September 10,2020 at 22:01:52 UTC from IEEE Xplore. Restrictions apply.

