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Abstract—The continuous rise of the blockchain technology
is moving various information systems towards decentralization.
Blockchain-based decentralized storage networks (DSNs) offer
significantly higher privacy and lower costs to customers compared
with centralized cloud storage associated with specific vendors.
Coding is required to retrieve data stored on failing components.
While coding solutions for centralized storage have been intensely
studied, those for DSNs have not yet been discussed. In this paper,
we propose a coding scheme where each node receives extra
protection through cooperation with nodes in its neighborhood
in a heterogeneous DSN with any given topology. Our scheme
can achieve faster recovery speed compared with existing network
coding methods, and can correct more erasure patterns compared
with our previous work.

Index Terms—Joint hierarchical coding, cooperative data pro-
tection, blockchain technology, decentralized storage networks.

I. INTRODUCTION

Blockchain, a technology supporting the digital currency
called bitcoin, has been intensively discussed and regarded as
a substantial innovation in cryptosystems [1]-[3]. Blockchain
enables recording transactions through a decentralized de-
ployment, which effectively addresses the potential issues of
compromised data privacy and key abuse, arising from the
existence of a central node that monopolizes all the actions
and resource allocations in traditional centralized systems.
Decentralization has the potential to universally revolutionize
a variety of applications, one of which is cloud storage.

In contrast to traditional centralized storage based on the
client-server model, where big companies monopolize rent-
ing the storage space to users, blockchain-based decentralized
storage networks (DSNs) enable non-enterprise users to not
only get access to the network storage space but also to
contribute to increasing it via renting their remaining storage
space on personal devices. Blockchain-based DSNs allocate
the storage space and distribute the encrypted user data with
the validation and integrity certification of a third-party, and
thus have potential to offer higher privacy, higher reliability,
and lower cost than currently available solutions. It has been
found that the benefits in data integrity of decentralization are
typically at the cost of higher latency and difficult maintenance.

While blockchain technology empowers DSNs to ensure
the network-layer security, appropriate error-correction codes
(ECC) are needed to further improve the physical-layer relia-
bility. In a coded DSN, data are encoded and stored in nodes,
where each node is allowed to communicate with its neighbor-
ing nodes. If data in each node are encoded independently, the
system will be vulnerable to information leakage, data loss, and
data tampering by malicious users. Therefore, enabling joint
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the neighborhood cooperatively protect and validate their stored
data collectively in the DSN is an essential requirement.

In existing literature on coding for distributed storage [4]-[6],
there has been no explicit consideration of random distributions
and clustering nature of network nodes. Clustered distributed
storage has received attention in recent years in the context
of multi-rack storage, where either the sizes of clusters and
the capacities of the communication links are considered to
be homogeneous [7]-[10], or the network topology has a
simple structure [11], [12]. However, DSNs typically have
more sophisticated topologies characterized by heterogeneity
among capacities of communication links and erasure statistics
of nodes due to the random and dynamic nature of practical
networks [12]-[16]. Instead of solutions for simplified models,
schemes that fit into any topology (referred to as “topology-
awareness” later on) are desired to exploit the existing re-
sources, thus achieving lower latency and higher reliability.

To further reduce latency and decoding complexity, we
propose to provide each node with multiple ECC capabilities
enabled by cooperating with neighboring nodes in a series of
nested sets with increasing sizes: we refer to this as ECC
hierarchy later on in the paper. As the size of the set increases,
the associated ECC capability increases. In our method, we
consider the case where each node stores encoded messages
with local data protection, where the data length and codeword
length can be customized by the user at each node.

In this paper, we introduce a topology-aware coding scheme
that enables hierarchical cooperative data protection among
nodes in a DSN, which is built upon our prior work in [17] in
the context of centralized cloud storage and preserves desirable
properties like scalability and flexibility. The rest of the paper
is organized as follows. In Section II, we introduce the DSN
model and necessary preliminaries. In Section III, we define
ECC hierarchies as well as their depth, and present a coding
scheme with depth 1. In Section IV, we define the notion of
compatible cooperation graphs, and propose an explicit con-
struction of hierarchical codes for nodes with their cooperation
graph being compatible. Finally, we summarize our results and
discuss future directions in Section V.

II. SYSTEM MODEL AND PRELIMINARIES

In this section, we discuss the model and mathematical
representation of a DSN, as well as necessary preliminaries.
Throughout the remainder of this paper, [N] refers to {1,2,
..., N'}. For vectors u and v of the same length p, u > v and
u < v implies u; > v; and u; < v;, for all ¢ € [p], respectively;
u>vmeans “u> voru=v’,and u X v means “u < v
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Fig. 1: Decentralized storage network (DSN). For the cluster with
the master node v;, message m; is encoded to c; and symbols of
c; are stored distributively among non-master nodes that are locally
connected to v;. In the figures after Fig. 1, we omit the local non-
master nodes for clarity of figures.

A. Decentralized Network Storage

As shown in Fig. 1, a DSN is modeled as a graph G(V, E),
where V' and E denote the set of nodes (master only) and edges,
respectively. Codewords are stored among the nodes in a cluster.
A failed node in a cluster is regarded as an erased symbol in the
codeword stored in this cluster. A cluster is represented in G by
its master node v; € V solely. Each edge e; ; € F represents a
communication link connecting node v; and node v;, through
which v; and v; are allowed to exchange information. Denote
the set of all neighbors of node v; by N, e.g., N; = {j1, Jo,
js} in Fig. 1, and refer to it as the neighborhood of node v;.
Messages {m,; },,cy are jointly encoded as {c;},cv, and c;
is stored in v;. For a DSN denoted by G(V, E), let p = |V|.
Suppose G is associated with a tuple (n,k,r) € (NP)*, where
k,r > 0 and n = k 4 r. Note that k; represents the length of
the message m; associated with v; € V'; n; and r; denote the
length of c; stored in v; and its syndrome, respectively.

B. Preliminaries

Based on the aforementioned notation, a systematic generator
matrix of a code for G(V, E) has the following structure:

Ik1 A171 0 A172 e 0 Al,p

0 A271 Ik2 A272 R 0 A.27p
G=|"" : . . . (D

0 |Ap1 | O | Ao | | Ik, | App

where all elements are from a Galois field GF(q), ¢ = 2¢ and
6 > 2. The major components of our construction are the so-
called Cauchy matrices specified in Definition 1.

Definition 1. (Cauchy matrix) Let s,t € N and GF(q) be a
finite field of size q. Suppose aq,...,as,b1,...,by are s x t
distinct elements in GF(q). The following matrix is known as
a Cauchy matrix,

1 1 1
a1—b a;—b T ar1—b
1701 1702 170t
agfbl a27b2 aszt

1 1 1
as—by as—bs T as—by

We denote this matrix by Y (aq, . . Sy be).

III. COOPERATIVE DATA PROTECTION

.,as;bl,..

In this section, we first mathematically describe the ECC
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Fig. 2: ECC hierarchy of node v; € V.

capabilities of nodes while cooperating with different sets of
other nodes. We then propose a cooperation scheme where each
node only cooperates with its single-hop neighbors.

A. ECC Hierarchy

Denote the ECC hierarchy of node v; € V' by a sequence
d; = (dio,din, ... dir,), where L; is called the depth of d;,
and d; ; represents the maximum number of erased symbols v;
can recover in its codeword c; from the I-th level cooperation,
for alll € [L;]. The 0-th level cooperation refers to local erasure
correction, i.e., the local node w; recovers its data without
communicating with neighboring nodes.

For each v; € V such that L; > 0, there exist two series
of sets of nodes, denoted by @ € A} C A? C --- C A C
V and {B!}[7,, where AL N Bl = @ for all | € [L;], and a
sequence (A; ;W) gcyycpe- In the I-th level cooperation, node
v; € V tolerates A; 1,y (b C W C Bl) erasures if all nodes
in AL U W are able to decode their own messages, where the
maximum value is \; ;.51 = d;; and is reached when W = B.;
the minimum value is )\;J; o and is reached when VW = &. See
Fig. 2. We first take a look at the cooperation schemes with
ECC hierarchy of depth 1.

B. Single-Level Cooperation

We next discuss the case where each node only has co-
operation of depth 1. Consider a DSN represented by G(V,
E) that is associated with parameters (n,k,r) and a class of
sets {M,}y,cv such that & € M; C N, for all v; € V.
In Construction 1, we present a joint coding scheme where
node v; only cooperates with nodes in M, for all v; € V.
Heterogeneity is obviously achieved since n;, k;, r;, are not
required to be identical for all v; € V.

Construction 1. Ler G(V, E) represent a DSN associated with
parameters (n,k,r) and a local ECC parameter 8, where r —
0 = 0. Let p = |V| and GF(q) be a Galois field of size q,

whereq>glg§ ni+5i+ZjGMi5j .
For i € [p|, let ajy, biy, x € [ki+0;], and y €
[ri + 2 iem; 54 be distinct elements of GF(q).

Cauchy matrix 'T; € GF(q)(kiHi)X(”JFZiEMi %) such that
T, = Y(ai,l, e QG 455 bi71, RN bimﬁZ_,»eMi 5].). Matrix G
in (1) is assembled as follows. For i € [p|, obtain {B; ;};cm,,
U,;, A, ;, according to the following partition of T;,

T, — [ Ai;| Bij,|...|B

U, | Z,
where M; = {j1,Jo2,. ..

Consider

ML)

Jimg b Ads € GE(g)P*m,U; €

hierarchy of a DSN, and its depth, which specifies the ECCgp3GF(q)%*"™, B;; € GF(q)**% for v; € V and v; € M,.
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Fig. 3: DSN for Example 1.

Let A;; = B, ;U; if v; € M,;, otherwise let it be a zero
matrix. Denote the code with generator matrix G by C;.

Theorem 1. In a DSN with Cy, d; = (’I",' — 0,7 +Zj€./\/ti (Sj),

.All = Mz and Bll — UUjEM'i (Mj \ ({’U,L'} U Mz)),
for all v; € V. The ECC hierarchy associated
with di71 is ()‘i,l;W)@gWQB}’ where )\7;’1;1/\} =

Ti v e MM\ (o DE(MiW) O
Proof. The local ECC capability d; o = r; — J; at node v; has

been proved in [17, Construction 1]. Complete proof for the 1-st
level cooperation is in [18], and we discuss it in Example 1. H

Example 1. Consider the DSN shown in Fig. 3, let M; = N; in
Construction 1, for all i € [12]. The matrix in (3) is obtained by
removing all the block columns of identity surrounded by zero
matrices from the generator matrix (1) of Ci, and is referred
to as the non-systematic component of the generator matrix.

Take node vo as an example. Observe that A3 = My =
{v1,v3,v5}, Al = My = {va}, AL = M3 = {va,v4}, and
Al = M5 = {va,v4, v, vs}. Therefore, B = Ujeqr.a.5 Mi\
{v1, va, 03,05} = {v4, ve, v} Moreover, da = (19 — 62,79 +
21,35 0 Ao = A2 1ifue} = A2 13{vs} = A2 15{vg 05} =
T9 + 01, A2,1;{1}4} - )‘2,1;{1)4,1)6} - )‘2,1;{114,1)8} =72+ 01 + 53;
and )\2,1;{1,471,6’1,8} =179+ 61 + 3 + 5.

Consider the case where the 1-st level cooperation of vs
is initiated, i.e, the number of erasures lies within the inter-
val [7’2 — 52 + 177’2 + (51 + 53 + 55] Then, lf mj,ms, M5 are
all locally recoverable, the cross parities m1B1 2, m3Bs o,
msBs5 o computed from the non-diagonal parts in the generator
matrix can be subtracted from the parity part of co to get
myAs 9. Moreover, the successful decoding of my makes
myBsy 1 known to vs. This process provides (ro + 01) parities
Sor mo, and thus allows vy to tolerate (1o + 01) erasures.

In order to correct more than (ry + 01) erasures, we need
extra cross parities generated from Bg3Us and B s5Us.
However, local decoding only allows vs, vs to know myBg 3+
myBy 3 and myBs 5 + myBy 5 + mgBg 5 + mgBsg 5, respec-
tively. Therefore, vs needs my to be recoverable to obtain
the extra 03 cross parities, and vy needs my, mg, mg to be
recoverable to obtain the extra 05 cross parities.

Fig. 4: The erasure pattern in Example 3.

As shown in Example 1, instead of presenting a rigid ECC
capability, our proposed scheme enables nodes to have cor-
rection of a growing number of erasures with bigger sets
of neighboring nodes recovering their messages. Therefore,
nodes automatically choose the shortest path to recover their
messages, significantly increasing the average recovery speed,
especially when the erasures are distributed non-uniformly and
sparsely, which is important for blockchain-based DSNs [19],
[20]. Moreover, nodes with higher reliabilities are utilized to
help decode the data of less reliable nodes, enabling correction
of error patterns that are not recoverable in our previous work
in [17]. We show these properties in Example 2 and Example 3.

Example 2. (Faster Recovery Speed) Consider the DSN with
the cooperation scheme specified in Example 1. Suppose the
time to be consumed on transferring information through the
communication link e; ; is t; ; € R, where t;j =t;; for all
i,] € [12], 1 7é 7 and maX{tlyz,tzg,} < (t2,3 + t374) < t2’5 +
min{t4,5, t5’6, ts’g}.

Consider the case where node co has (ro+1) erasures, which
implies that apart from the case of my, ms, mg being obtained
locally, recovering my is sufficient for v to successfully obtain
its message. The time consumed for decoding is (t2.3 + t3.4).
Therefore, any system using network coding with the property
that a node failure is recovered through accessing more than 4
other nodes will need longer processing time for this case.

Example 3. (Flexible Erasure Patterns) Consider the DSN
with the cooperation scheme specified in Example 1. Suppose
{mi}¢¢{2,478710} are all locally recoverable. Then, consider
the case where m; has (r; + 1) erasures for i € {2,4,8,
10}, which exemplifies a correctable erasure pattern for our
proposed codes.

The hierarchical coding scheme presented in [17] can re-
cover from this erasure pattern only if the code used adopts a
partition of all nodes into 4 disjoint groups, each of which
contains exactly a node from {vg,vy,vs,v10}, as shown in
Fig. 4. Moreover, the partition of the code in [17] results in a
reduction of the ECC capability of the 1-st level cooperation at

624every node except for v1,v12 because the additional information
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A, BLU 0 0 0 0 0 0 0 0 0 0
B>1U; Az B2,3Us 0 B35Us 0 1) BcVs2  BcVoo  BaVies BiViis 0
0 B32U» Az B3 4Uy 0 0 0 B:.Vso BeVgo B;Vios B;Viis 0
0 0 B, 3U3 Ass BysUs ByeUg 0 B.Vs2 BaVoa ByVige B,V 0
0 B;5.2U; 0 Bs5.4Uy Ass Bs5,6Us 0 B;53Us 0 BnVio2 0 ByViap
0 0 0 Bs,4Us BssUs As s Be7U7 BgVso BgVg B,Vio2 0 B;Via» (4)
0 0 0 0 0 Br6Us A7z BrsUs  BroUg BiViop2 Br1:1Un BiViao
0 B.Vi2 BnVi2 B, Vi BsgsUs B,Vso Bs7Ur Ass BsoUg  B,Vioe B, Vi 0
O B:»VZ,Z BUV.S:Z B: \ 1;2 0 B: v(),_’ B!J,7U7 BS!.SU& A‘),Q B?).l(\UlU B[lvll 2 prllzz
0 BqVZ:H BqV.’#:.{ B,V,1:2 0 BVVG.K B\V7:3 BaVX:H Bm,gUg Al(J,lU B][),]lUlI BIO.I2U12
0 B:Va3 B.:Vssz BiVis B:Vsp 0 Bi117Uz Bu.Vss BuVos Bi1,10Uio Al Bi1,12U12
0 0 0 0 B,Vs2 B.,Vgs ByVrigs 0 B.Vos Bi210Uio Bi211Unn Ao 12
originally flow through edges marked in blue no longer exist. *[1 *[1
1|*1 1 ?——? %——? 1| *|1 1 &1 .d_".d
PEE N WEY e-le [E-1F
IV. MULTI-LEVEL COOPERATION LR E S ——
1|k |1 |1 2 | FT? 1|1 |1 o g1
In this section, we extend the construction presented in T — ] T - ﬁﬁ 1p
. . . . 1 ]
Section III-B to codes with ECC hierarchies of depth larger ERNGE T x|t |1 [
than 1. We first define the so-called cooperation graphs that EnciEncacl AEIENES il b e Bl R
. . . pEERP! 3 (1|1 [+ ]2 [&H &td |2 Ca 1 [ [
describe how the nodes are coupled to cooperatively transmit am =S FREIFE p i S P
. . . . . 3 19 |7 -
information, and then prove the existence of hierarchical codes ERFFEn EE Aok |t e 1+ 1
. . p | i H
over a special class of cooperation graphs: the so-called com- =4 |} rr oy L b

patible graphs.

A. Cooperation Graphs

Based on the aforementioned notation, for each v; € V and
I €[L], let T = AL\ A" and refer to it as the I-th helper
of v;. We next define the so-called cooperation matrix.

Definition 2. For a joint coding scheme C for a DSN repre-
sented by G(V,E) with |V| = p, the matrix D € NP*P  in
which D, ; equals to | for all i,j € [p] such that j € I}, and
zero otherwise, is called the cooperation matrix.

As an example, the cooperation matrix in Example 1 is
exactly the adjacency matrix of the graph in Fig. 3. Note that
not every matrix is a cooperation matrix of a set of joint coding
schemes. In Section I'V-B, we prove the existence of codes if the
cooperation matrix represents a so-called compatible graph.
Before going into details of the construction, we look at an
example to obtain some intuition.

Example 4. Recall the DSN in Example 1. We present a coding
scheme with the cooperation matrix specified in the left part of
Fig. 5. The non-systematic part of the generator matrix is shown
in (4), which is obtained through the following process:

1) PFartition all the non-zero-non-one elements into structured
groups, each of which is marked by either a rectangle or
a hexagon in D, as indicated in the left part of Fig. 5;
Replace the endpoints of each horizontal line segment in
Step 1 with s € S (S is a set of symbols), as indicated in
the right part of Fig. 5; denote the new matrix by X;

3) Assign a parameter s € N to each s € S, and a matrix
B, € GF** 10 any (i, j) such that X; ; = s;

For each i € [p], | € [L], let iy = maxX et x, = Vsr
assign Vi, € GF(q)" %" to v;; let By = [B'Sy, Om:h'ys];
assign A; ; = B,V for s =X, ;, | =D, ;.

5) Assign A; j for X; j = 1 according to Construction 1.

2)

4)

Let us again focus on node vy. Let T = {v1,v3,v5}, I3 =
{’Ug,’Ug}, IS’ = {’1)10,1]11}. Then, B% = {’04,1)6,1}8}, B% = {’04,
v}, By =@, dojg =12 — 02 — Nijo — Nis, dog = dojo + 02 +
01 + 63 4 05, do2 = da1 + Ve, da,3 = d22 + V4.

Fig. 5: Matrices D (left) and X (right) in Example 4.

We first show that knowing {m;}, c Ay IS sufficient for re-
moving 83 =3 ey m;BjoUs +3 7 5 ) i m;Bx, , Vo
from the parity part of cg. Note that if A;; U,; and
{Viitieqa,3y are linearly independent, then for all |,

jert M;Bx; ; is recoverable if my; is recoverable. In our
example, this means that {m;U, 2} ;=135 mgB,, + myB,,
myoB, + m1B, are known: the sum of them is exactly s.
Therefore, so is removed through the 1-st level cooperation.
We next show that additional parities are obtained through l-th
level cooperations with | = 2, 3.

In the 2-nd level cooperation, mg, mg are known. Therefore,
myB. + m3B. + muB, +mgBg is also known. We remove
msB. that is obtained via vs. In order to obtain the . parities
from msB,, one needs my, mg to be recoverable. Therefore,
B3 = {v4,v6}, dog =do1+ Ve Mooz = dai.

As shown in the first step in Example 4, the cooperation
matrix adopts a partition of non-zero-non-one elements into
groups where each of them forms a cycle. Suppose there are T'
cycles. Represent each cycle with index ¢ € [T] by a tuple
(X4, Y, { Xy tiev,, {Yei biex,, i), where X, Y; denote the
indices of the rows and the columns of the cycle, respec-
tively; l; denotes the number assigned to the vertices of the
cycle; Xy,; = {i1,42} for j € Y; and (i1,7), (i2,7) are the
vertices of cycle t; Vi, = {j1,72} for i € X; and (4, 1),
(i,72) are the vertices of cycle t. For example, let t = 1
for the blue cycle at the bottom left part of the matrices
in Fig. 5. Then, it is represented by ({10,11,12},{4,5,6},
{ X1} jeqas6y 1 Y1iibieqi0,11,12),3), where X1.4 = {10, 11},
X155 = {11,12}, X1,6 = {10,12}, Y1.10 = {4, 6}, Y1.11 = {4,
5}, Y112 = {5,6}.

Observe that cycle ¢t € [T] in Fig. 5 essentially represents
a pair of disconnected edges or triangles with vertices from
X, and Y;. We mark X,, Y;, draw a directed edge with label
[ from X; to Y; for each ¢ € [T], and obtain the so-called
cooperation graph. The cooperation graph for the coding

6253cheme in Example 4 is shown in Fig. 6.
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Fig. 6: Cooperation graph of Example 4.

B. Construction Over Compatible Graphs

We have defined the notion of cooperation graphs in Sec-
tion IV-A. Observe that the cooperation graph shown in Fig. 6
satisfies a set of conditions that define the so-called compatible
graph. We show in Theorem 2 the existence of a hierarchical
coding scheme with cooperation graph G if G is a compatible
graph. The coding scheme is presented in Construction 2.

Definition 3. Ler G be a cooperation graph on G(V, E) that is
represented by {(Xt, Y, {X¢;j}jev,, {Yeitiex,  l) herr), and
let the 1-st level cooperation graph be Gy. Let M denote the
set of nodes that have an outgoing edge pointing at v; in Gy.
For each v; € V, 1 € [L;], let Ry = {t : i € Y},t € [T7],
=1} Ri = Uepr,) Rive Tia ={t:j € Ry N Yy, t € [T1}
and Vi = U,cg,, Y- We call G a compatible graph on G if
the following conditions are satisfied:

1) For each v; € V, sets in {Y; }1er, are disjoint;

2) For each v; € V, | € [L;], and any node v; such that

j € ‘/i;l \ {Ui}, ‘G;l g M’L

Construction 2. Let G(V, E) represent a DSN with parameters
(n,k,r). Suppose G is a compatible graph of depth L on
G, with parameters {( Xy, Yy, {Xu;j}jevi, {Yuitiex,, le) ey,
and the 1-st level cooperation graph is denoted by Gy (other
necessary parameters are as they are in Definition 3).

Let 6 be the 1-st level cooperation parameter. For each v; €
V,1<1<L;, and any t € Ty, assign cooperation parameter
Vit o Cy; let njy = maxXeer;, icx,,; Vit

Let w; = k; + 6; + ZlL:lQ N, Vi = T3 + ZjEMi (5]‘ +
Y o<i<riier,, Yits for i € [pl. For each i € [p|, let a;s,
bit, s € [u;] and t € [v;] be distinct elements of GF(q),
where q > max;cp{u; +vi}. Matrix G in (1) is assembled as
Sollows. Consider the Cauchy matrix 'T; on GF(q)“i*"i such
that T; = Y (i1, 005015, 0iw,), for i € [p]. Then,
we obtain A, ;, B, j, Eiy, U;, Vi, fori € [pl, j € [p]\ {i},
according to the following partition of 'T';,

Aii | Bi|Ein|...|Eiyp,
U;
T, = V.i;2 z. ., 0
V;;Li
where By = Bij, | ... | Bij, |, (6)
and E;; = [ Eip, |- ‘ Ez‘;l;tm;” } , @)
such that M; = {j1,j2, -, Jimilp Tig = {ti,ta, -t b

Aii € GF(q)"*", U; € GF(q)**", Vi; € GF(q)":*™,

ol EEN

=y

EiN

7 [
il

ty
| o
oy

s

v

0D

sj;1 =0
ViuNVj#2

Fig. 7: Proof of Theorem 2.

Let Biﬂ‘ = [Ei;l;t’Okix(nj;zf'yi;t)]’ and Aiﬂ‘ = B@jVjJ, for
all] S }/t;i, t € Ti;l; let A'L',j = Bi,jUj for (NS M,
otherwise A;; = O, xr,. Substitute components of G in
(1) correspondingly. Let Cy represent the code with generator
matrix G.

Theorem 2. The code Cy has ECC hierarchies d; = (d;,
dity...,dir,), for all v, € V, where d;y = 1, —
0; — ZlL:Q Nty din = Ti + D iepm, 05 and dig = 1 +
ZjeMi d; + ZQSZ’SMGTM/ Yit- Moreover, T} = M,, B! =
Upert, MG\ {uib UMy)); for 2 < 1 < Ly, I =
UtGR,;;, Xt Bvli = UtGTi;L,je}Q;i(Igl't\({Ui}UAb) (recall Af;
Ur<t ZH) A = Ti + 20 e mo M\ o hemsowy 05+
> 2l <LEET; 1, Yei={4,5' }, Yist, for @ CW C Bl
T\AY C ({0 }uW) or TH\AY C({iuw)

Proof. We briefly introduce the main idea of proving that for
v; € V, the cross parities due to cooperation with nodes in Z,
2 <1< L;, can be computed if {m; }jezil are recovered. The
ECC hierarchies of level 1 has been discussed in Theorem 1,
and we have shown that for the 2-nd level in Example 4 to
develop the intuition. The complete proof is in [18].

Fig. 7 shows a subgraph of the cooperation graph of C
containing v;, Z}, Z! only (right), and its corresponding cycle
representations in the cooperation matrix (left). Condition 1 in
Definition 3 implies that the cycles are all disjoint; Condition 2
implies that all the cycles (marked in red) containing an edge in
column j € Vj,; are contained within the columns representing
T}. Using the fact that the sum of the cross parities on the
vertices of each cycle is 0, we can prove that the sum (denoted
by s;.;) of the [-level cross parities of node v; can be computed

by siy = Zv,i;mvij:l;ez Sj;1- u
V. CONCLUSION

While codes with hierarchical localities have been intensely
discussed in the context of centralized networks, those of
DSNs (no prespecified topology) have not been explored. In
this paper, we presented a topology-aware cooperative data
protection scheme for DSNs, which extends and subsumes our
previous work for centralized storage. Our scheme can achieve
faster recovery speed compared with existing network coding
methods, and can correct more erasure patterns compared with
our previous work.
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