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Abstract Many applications in science and engineering require the solution of
large linear discrete ill-posed problems. The matrices that define these problems
are very ill-conditioned and possibly numerically singular, and the right-hand sides,
which represent the measured data, typically are contaminated by measurement error.
Straightforward solution of these problems generally is not meaningful due to severe
error propagation. Tikhonov regularization seeks to alleviate this difficulty by replac-
ing the given linear discrete ill-posed problem by a penalized least-squares problem,
whose solution is less sensitive to the error in the right-hand side. The penalty term
is determined by a regularization matrix. A suitable choice of this matrix may result
in a computed solution of higher quality than when the regularization matrix is the
identity. Two iterative solution methods based on the global Arnoldi decomposition
method have been proposed in the literature for the solution of large-scale penalized
least-squares problems that stem from Tikhonov regularization. In one of these, the
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regularization matrix influences the choice of the solution subspace; in the other one,
it does not. This paper compares these approaches both with respect to the quality of
the computed solution and computing time.

Keywords Linear discrete ill-posed problems · Global Arnoldi process · Matrix
Krylov subspace · Standard Tikhonov problems · Regularization

Mathematics Subject Classification (2010) 65F10 · 65F22 · 65R30

1 Introduction

We consider the approximate solution of large-scale minimization problems of the
form

min
X∈Rm×n

‖G −
p∑

i=1

Ai X Bi‖F , (1.1)

where ‖ · ‖F denotes the Frobenius matrix norm. At least one of the matrices Ai ∈
R

m×m and Bi ∈ R
n×n of each pair (Ai, Bi) is large and of ill-determined rank,

i.e., its singular values decay to zero with increasing index without a significant gap.
Minimization problems of the form (1.1) with matrices Ai and Bi of this kind are
commonly referred to as discrete ill-posed problems. For notational simplicity, we
assume the matrices Ai and Bi to be square; however, this restriction easily can be
removed. The matrix G ∈ R

m×n in (1.1) represents available error-contaminated
data, such as a blurred and noise-contaminated image.

Let the matrix E ∈ R
m×n represent the unknown noise-contamination of G. Thus,

G = Ĝ + E, (1.2)

where Ĝ ∈ R
m×n denotes the unknown error-free matrix associated with G. We

assume the unavailable linear system of equations

p∑

i=1

Ai X Bi = Ĝ (1.3)

to be consistent and let X̂ ∈ R
m×n denote the solution of (1.3) of minimal Frobenius

norm. We would like to determine an approximation of X̂ by computing a suitable
approximate solution of (1.1). The consistency requirement may be dispensed with;
see below.

The solution of (1.1) of minimal Frobenius norm, typically, is not a meaningful
approximation of X̂ due to severe propagation of the error E in G into the computed
solution. This depends on that at least one of the matrices in each pair (Ai, Bi) has
some “tiny” positive singular values. Therefore, one often replaces (1.1) by a nearby
problem, whose solution is less sensitive to the error in G than the solution of (1.1),
and computes the solution of the modified problem so obtained. This replacement
is known as regularization. The possibly most popular regularization method is due
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to Tikhonov. This method replaces (1.1) by a penalized least-squares problem of the
form

min
X∈Rm×n

⎧
⎪⎨

⎪⎩

∥∥∥∥∥

p∑

i=1

Ai X Bi − G

∥∥∥∥∥

2

F

+ μ

∥∥∥∥∥∥

q∑

j=1

L
(1)
j X L

(2)
j

∥∥∥∥∥∥

2

F

⎫
⎪⎬

⎪⎭
, (1.4)

where the matrices L
(1)
j ∈ R

s×m and L
(2)
j ∈ R

n×t are referred to as regularization
matrices and μ > 0 is a regularization parameter. The purpose of this parameter is
to balance the influence of the first term (the fidelity term) and the second term (the
regularization term) on the solution Xμ of (1.4). We will let the matrices L

(i)
j be

discretizations of differential operators in one space dimension. Then, generally, the
minimization problem (1.4) has a unique solution for any μ > 0; see below.

We note that the choice of the matrices L
(i)
j is important for the quality of the com-

puted approximation Xμ of the desired solution X̂. The L
(i)
j should be chosen so that

important features of X̂ or X̂T are in the null spaces of the matrices L
(1)
j or (L

(2)
j )T ,

respectively, and, therefore, are not damped when solving (1.4). Here the superscript
T denotes transposition. Several techniques for constructing regularization matrices
with desirable properties are described in the literature; see, e.g., [7, 9–11, 20, 28, 29].
Minimization problems (1.4) with at least one of the matrices L

(i)
j different from the

identity matrix are said to be in general form; when all the L
(i)
j are identity matrices,

the problem (1.4) is said to be in standard form.
The quality of the solution Xμ of (1.4) also depends on the value of the regular-

ization parameter μ. A too large value gives an over-smoothed solution Xμ that lacks
details that the desired solution X̂ may have; a too small value yields a solution Xμ

that is contaminated by unnecessarily much propagated error. We will use the dis-
crepancy principle [13, 16] to determine μ in the computed examples of Section 4. Its
application requires (1.3) to be consistent. Many other techniques for determining a
suitable value of μ, including the L-curve criterion and generalized cross validation,
also can be used; see [2, 4–6, 17, 24, 30, 33] for discussion and illustrations. The latter
methods do not demand (1.3) to be consistent. All methods mentioned for determin-
ing a suitable μ value require that several problems (1.4) be solved approximately for
different μ values.

Let the vector x = vec(X) ∈ R
mn be obtained by stacking the columns of the

matrix X in order. The Kronecker product ⊗ of two matrices C ∈ R
mc×nc and D ∈

R
md×nd is defined as the (mcmd) × (ncnd) matrix C ⊗ D = [cijD]; see, e.g., [19].

We can express the minimization problem (1.4) in the form

min
x∈Rmn

{
‖Kx − g‖22 + μ ‖Lx‖22

}
, (1.5)

with

K =
p∑

i=1

BT
i ⊗ Ai, L =

q∑

j=1

(
L

(2)
j

)T ⊗ L
(1)
j , g = vec(G),

where ‖ · ‖2 stands for the Euclidean vector norm. The solutions Xμ of (1.4) and xμ

of (1.5) are related by xμ = vec(Xμ). The minimization problem (1.5) has a unique
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solution for any μ > 0 if and only ifN (K)∩N (L) = {0}, whereN (M) denotes the
null space of the matrix M . This requirement implies an analogous condition for the
unique solvability of (1.4).

Many iterative methods are available for the solution of problems of the form
(1.5); see, e.g., [15, 18, 23, 25, 27, 31, 32, 34] and references therein. However, we
will see in Section 4 that it is beneficial to solve the equivalent problem (1.4) instead.
We are therefore interested in studying iterative solution methods for the latter prob-
lem. Several block iterative methods for the solution of minimization problems of the
form (1.4) are described in [1, 12, 21, 22]. We are particularly interested in the appli-
cation of the global Arnoldi method and variants thereof, which have been applied to
image restoration in [2, 3, 11]. Block Arnoldi-type methods have the advantage over
methods based on block Golub–Kahan bidiagonalization that they only require the
evaluation of one matrix-block-vector product (instead of two) per iteration, and they
only demand matrix-block-vector product evaluations with the matrix A (instead of
with A and AT ).

The remainder of this paper is organized as follows. Section 2 reviews two kinds of
global Arnoldi methods and discusses some properties of these methods. Application
of these methods to the solution of the minimization problem (1.4) is described in
Section 3. Computed examples with application to image restoration can be found in
Section 4, and Section 5 contains concluding remarks.

2 Global iteration schemes based on the Arnoldi method

This section reviews the global Arnoldi method by Jbilou et al. [21, 22] and the
generalized global Arnoldi method due to Bouhamidi et al. [3]. We will need the
following definitions: The Frobenius inner product is given by

〈V,W 〉F = trace(V T W)

for matrices V,W ∈ R
m×n. Matrices V and W that satisfy 〈V,W 〉F = 0 are said

to be F -orthogonal. Moreover, a sequence of matrices V1, V2, V3, . . . is said to be
F -orthonormal if

〈Vi, Vj 〉F =
{
0 i �= j,

1 i = j.

2.1 The global Arnoldi method

We discuss the global Arnoldi method for the computation of solution subspaces
determined by the linear operator and data matrix G in (1.1). The global Arnoldi
method was introduced and analyzed by Jbilou et al. [21, 22]; see also Elbouyahyaout
et al. [12] and Frommer et al. [14].

Define the linear operator

A : Rm×n −→ R
m×n

X −→ A(X) =
p∑

i=1

Ai X Bi. (2.1)
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The application of k steps of the global Arnoldi method to this operator with initial
matrix G yields an F -orthonormal basis {V1, V2, . . . , Vk+1} of block vectors Vj ∈
R

m×n for the block Krylov subspace

Kk+1(A, G) = span{G,A(G), . . . ,Ak(G)}. (2.2)

In particular, V1 = G/‖G‖F ∈ R
m×n. We define the matrix Vk+1 =

[V1, V2, . . . , Vk+1]. Algorithm 1 implements the global Arnoldi method; see [12,
21, 22] for further discussions of this and other block methods. Application of k

steps of the algorithm requires k evaluations of the operator A. This is typically the
dominating computational effort of the algorithm.

Algorithm 1 The global Arnoldi method

1. Let V1 = G/‖G‖F ∈ R
m×n;

2. for j = 1, . . . , k do
2.1. V = A(Vj );
2.3. for i = 1, . . . , j do

hi,j = 〈V, Vi〉F ;
V = V − hi,jVi ;

2.4. end for
2.5. hj+1,j = ‖V ‖F ;
2.6. if hj+1,j > 0 then

Vj+1 = V/hj+1,j ;
else

exit;
2.7. end if

3. end for

It follows from the recursions of Algorithm 1 that

[A(V1), . . . ,A(Vk)] = Vk+1 (H̃k ⊗ In), (2.3)

where H̃k = [hi,j ] ∈ R
(k+1)×k is an upper Hessenberg matrix, whose nontrivial

entries are defined by the algorithm. The following result is closely related to [3,
Proposition 1].

Proposition 2.1 Let Vk = [V1, V2, . . . , Vk] be determined by Algorithm 1. For any
z, g ∈ R

k , we have

1. 〈Vk(z ⊗ In),Vk(g ⊗ In)〉F = 〈z, g〉2. In particular, ‖Vk(z ⊗ In)‖F = ‖z‖2.
2. 〈Vk(z ⊗ In), G〉F = z1‖G‖F , where z = [z1, z2, . . . , zk]T ∈ R

k .
3. ‖Vk(z ⊗ In) − G‖F = ‖z − ‖G‖F e1‖2,

where 〈z, g〉2 = zT g denotes the standard inner product between vectors, and
e1 = [1, 0, . . . , 0]T ∈ R

k is the first axis vector.
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Proof Property 1 follows from the fact that

〈Vk(z ⊗ In),Vk(g ⊗ In)〉F =
k∑

i,j=1

〈ziVi, gjVj 〉F =
k∑

i=1

zigi = 〈z, g〉2

for any z = [zi] ∈ R
k and g = [gi] ∈ R

k . The F -orthonormality of the block vectors
V1, V2, . . . , Vk and the fact that G = ‖G‖F V1 give Property 2.

From Properties 1 and 2, we obtain

‖Vk(z ⊗ In) − G‖2F = ‖Vk(z ⊗ In)‖2F − 2〈Vk(z ⊗ In), G〉F + ‖G‖2F
= ‖z‖22 − 2z1‖G‖F + ‖G‖2F
= ‖z − ‖G‖F e1‖22,

which shows Property 3.

2.2 The generalized global Arnoldi method

This subsection reviews the generalized global Arnoldi method introduced in [3]. Let
s = m, t = n in (1.4), and let the operatorA be defined by (2.1). Introduce the linear
regularization operator

L : Rm×n −→ R
m×n

X −→ L(X) =
q∑

j=1

L
(1)
j X L

(2)
j .

Application of k steps of the generalized global Arnoldi method to the operator pair
(A,L) with initial matrix G ∈ R

m×n determines the matrix

Vk = [V1, V2, . . . , Vk], (2.4)

where the F -orthonormal block vectors Vj ∈ R
m×n form a basis for the generalized

block Krylov subspace spanned by the first k of the block vectors

G,A(G),L(G),A2(G),AL(G),LA(G),L2(G), . . . .

Algorithm 2 provides a MATLAB-like description of the computations required.
The algorithm requires k applications of each of the operators A and L. Since the
matrices that make up L are very sparse (banded with a small bandwidth), the dom-
inating computational effort is the application of the operator A. The algorithm also
determines matrices HA and HL such that

[A(V1),A(V2), . . . ,A(Vk)] = V(:, 1 : αkn) (HA,k ⊗ In)
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and

[L(V1),L(V2), . . . ,L(Vk)] = V(:, 1 : βkn) (HL,k ⊗ In),

where HA,k = HA(1 : αk, 1 : k) and HL,k = HL(1 : βk, 1 : k), and αk and βk

are the values of the parameter N at the end of lines 2.7 and 2.13 of Algorithm 2,
respectively, at the last iteration; see [3] for details.

Algorithm 2 The generalized global Arnoldi method

1. V1 := G/‖G‖F ; N := 1;
2. for j = 1, 2, . . . , k do

2.1. if j > N then exit;
2.2. Ṽ := A(Vj ) ;
2.3. for i = 1, . . . , N do

HA(i, j) := 〈Ṽ , Vi〉F ;
Ṽ := Ṽ − HA(i, j)Vi ;

2.4. end for
2.5. HA(N + 1, j) := ‖Ṽ ‖F ;
2.6. if HA(N + 1, j) > 0 then

N := N + 1;
VN := Ṽ /HA(N, j);

else
exit;

2.7. end if
2.8. Ṽ := L(Vj );
2.9. for i = 1, . . . , N do

HL(i, j) := 〈Ṽ , Vi〉F ;
Ṽ := Ṽ − HL(i, j)Vi ;

2.10. end for
2.11. HL(N + 1, j) := ‖Ṽ ‖F ;
2.12. if HL(N + 1, j) > 0 then

N := N + 1;
VN := Ṽ /HL(N, j);

else
exit;

2.13. end if
3. end for

3 Tikhonov regularization methods

This section describes iterative methods for the solution of (1.4) based on
Algorithms 1 and 2, as well as a solution method based on the application of the stan-
dard Arnoldi method to the solution of the minimization problem (1.5). We begin
with a discussion on the application of Algorithm 1.
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3.1 Tikhonov regularization based on the global Arnoldi method

At step k of Algorithm 3 below, the approximation Xk of the solution of (1.4) in the
block Krylov subspace Kk(A, G) is of the form

Xk =
k∑

i=1

y
(i)
k Vi = Vk (yk ⊗ In), (3.1)

where y
(i)
k denotes the ith component of the vector yk ∈ R

k . The following result
has been shown in [21, Theorem 2] for the situation when A is a square matrix. We
present a proof for the convenience of the reader.

Proposition 3.1 Let the upper Hessenberg matrix H̃k ∈ R
(k+1)×k and the F -

orthonormal bases {V1, V2, . . . , Vj } of the block Krylov subspaces Kj (A, G) for
j ∈ {k, k + 1} be produced by Algorithm 1. Let Xk and yk be related by (3.1). Then,

‖A(Xk) − G‖F = ∥∥H̃k yk − ‖G‖F e1‖2. (3.2)

Proof Equations (2.3) and (3.1) give

A(Xk) =
k∑

i=1

y
(i)
k A(Vi)

= [A(V1),A(V2), . . . ,A(Vk)] (yk ⊗ In)

= Vk+1 (H̃k ⊗ In) (yk ⊗ In)

= Vk+1 (H̃k yk ⊗ In).

Using the above relations, together with Property 3 of Proposition 2.1, we obtain

‖A(Xk) − G‖2F = ∥∥Vk+1
(
H̃k yk ⊗ In

)− G
∥∥2

F

= ∥∥H̃k yk − ‖G‖F e1
∥∥2
2.

Proposition 3.2 Let Xk be of the form (3.1). Then, there is a matrix L̃T
k ∈ R

k×k such
that

‖
q∑

j=1

L
(1)
j XkL

(2)
j ‖2F = ‖L̃T

k yk‖22.

Proof Let

Mi =
q∑

j=1

L
(1)
j ViL

(2)
j , 1 ≤ i ≤ k. (3.3)
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Then,
∥∥∥∥∥∥

q∑

j=1

L
(1)
j XkL

(2)
j

∥∥∥∥∥∥

2

F

=
∥∥∥∥∥∥

q∑

j=1

L
(1)
j

(
k∑

i=1

y
(i)
k Vi

)
L

(2)
j

∥∥∥∥∥∥

2

F

=
∥∥∥∥∥∥

k∑

i=1

y
(i)
k

⎛

⎝
q∑

j=1

L
(1)
j ViL

(2)
j

⎞

⎠

∥∥∥∥∥∥

2

F

=
∥∥∥∥∥

k∑

i=1

y
(i)
k Mi

∥∥∥∥∥

2

F

= trace

⎛

⎝
(

k∑

i=1

y
(i)
k MT

i

)⎛

⎝
k∑

j=1

y
(j)
k Mj

⎞

⎠

⎞

⎠

(3.4)

=
k∑

i,j=1

y
(i)
k y

(j)
k trace(MT

i Mj ) = yT
k Nkyk, (3.5)

where

Nk = [ni,j ] ∈ R
k×k, ni,j = trace(MT

i Mj ), yk = [y(1)
k , y

(2)
k , . . . , y

(k)
k ]T .

(3.6)
The symmetric matrix Nk is a Gram matrix. It is easy to see that it is positive

semidefinite. This follows from the fact that yk ∈ R
k is an arbitrary vector and

combining (3.4) and (3.5) shows that yT
k Nkyk ≥ 0.

If Nk is positive definite, then we can let L̃k be its lower triangular Choleski factor.
The proposition now follows from the observation that

yT
k Nkyk = yT

k L̃kL̃
T
k yk = ‖L̃T

k yk‖22.
The Choleski factor L̃k is easy to update when k is increased.

When Nk is singular, it may be attractive to instead define L̃T
k with the aid of the

spectral factorizationNk = QkDkQ
T
k , whereQk ∈ R

k×k is an orthogonal matrix and
the diagonal matrix Dk ∈ R

k×k has nonnegative diagonal entries. We may choose
L̃T

k = D
1/2
k QT

k .

Combining Propositions 3.1 and 3.2 yields the following result.

Theorem 3.3 Let Xk = ∑k
i=1 y

(i)
k Vi = Vk (yk ⊗ In) denote the solu-

tion of (1.4) restricted to the block Krylov subspace Kk(A, G), where yk =
[y(1)

k , y
(2)
k , . . . , y

(k)
k ]T . Then, yk solves the reduced Tikhonov minimization problem

min
y∈Rk

{∥∥H̃ky − ‖G‖F e1
∥∥2
2 + μ

∥∥∥L̃T
k y

∥∥∥
2

2

}
. (3.7)

Typically, the matrix L̃T
k is not very ill-conditioned. This holds, for instance, for

the computed examples in Section 4. We will assume this to be the case and let
z = L̃T

k y and

Ĥk = H̃k L̃−T
k . (3.8)
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Then, the Tikhonov minimization problem (3.7) can be expressed in standard form,

min
z∈Rk

{ ‖Ĥk z − ‖G‖F e1‖22 + μ‖z‖22 }. (3.9)

We solve (3.9) by computing the solution zμ,k of the least-square problem

min
z∈Rk

∥∥∥∥

[
Ĥk

μ1/2Ik

]
z −

[ ‖G‖F e1
0

]∥∥∥∥
2

2

. (3.10)

In the present paper, we determine the regularization parameter μ > 0 by the
discrepancy principle. This requires that a bound for the error E in G be available.
Thus, assume that a bound

‖E‖F ≤ ε (3.11)

is known. The discrepancy principle prescribes that the parameter μ > 0 be chosen
so that

∥∥∥∥∥G −
p∑

i=1

Ai Xμ,k Bi

∥∥∥∥∥

2

F

= ‖‖G‖F e1 − Ĥkzμ,k‖22 = ηε, (3.12)

where the first equality above stems from (3.2) and η ≥ 1 is a user-chosen constant
independent of ε. The second equality provides a nonlinear equation for μ with small
matrices. It can be solved by a variety of methods such as by Newton’s method. Let
v = 1/μ, and introduce the function

φ(v) = ‖f − Ĥkz1/v,k‖22, (3.13)

where f = ‖G‖F e1. The following proposition, shown in [34], sheds some light on
the properties of this function.

Proposition 3.4 Assume that Ĥ T
k f �= 0. Then, the function (3.13) can be expressed

as

φ(v) = f T (vĤkĤ
T
k + Ik)

−2f ,

and φ is decreasing and convex for v > 0. Furthermore, the equation φ(v) = τ 2 has
a unique solution 0 < v < +∞ for any τ with

‖PN (ĤkĤ
T
k )

(f )‖22 < τ 2 < ‖f ‖22,

where PN (ĤkĤ
T
k )

denotes the orthogonal projector onto the null space of ĤkĤ
T
k .

Algorithm 3 summarizes the global Arnoldi–Tikhonov regularization method for
the solution of (1.4). The solution subspace (2.2) is independent of the orthogonal
projectors that determine the regularization term in (1.4). The matrix L̃T

k is assumed
to be fairly well conditioned. In certain situations, such as when the solution subspace
is required to contain a component of the null space of the regularization operator,
this may not be the case. It may then be attractive to define L̃T

k with the aid of the
spectral factorization of the matrix Nk as described in the proof of Proposition 3.2.
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Algorithm 3 Global Arnoldi–Tikhonov regularization method

1. input: Ai ∈ R
m×m, Bi ∈ R

n×n, G ∈ R
m×n, L(1)

j ∈ R
s×m, L(2)

j ∈ R
n×t ;

2. initialize: ε, η > 1;
3. for k = 1, 2, . . . until convergence do

3.1. construct Vk = [V1, V2, . . . , Vk] and H̃k by Algorithm 1;
3.2. compute Mi (i = 1, 2, . . . , k) by (3.3) and N by (3.6);
3.3. compute L̃T

k as described by Proposition 3.2;
3.4. compute Ĥk by (3.8);
3.5. compute the zero v of (3.13) by the discrepancy principle;
3.6. define the regularization parameter μ = 1/v;
3.7. compute zμ,k by (3.10), and let yk = L̃−T

k zμ,k;
4. end for

5. output: approximation solution X∗
k = ∑k

i=1 Viy
(i)
k of (1.4);

3.2 Tikhonov regularization based on the generalized global Arnoldi method

We turn to the application of Algorithm 2 to the solution of (1.4). Let the matrix Vk

be defined by (2.4). Restricting the solution of (1.4) to the space spanned by the block
columns of Vk gives the minimization problem

min
X∈span{V1,V2,...,Vk}

{
‖A(X) − G‖2F + μ‖L(X)‖2F

}
. (3.14)

An analog of Proposition 2.1 is valid; see Bouhamidi et al. [3]. This can be used to
show that

‖A(Xk) − G‖2F = ∥∥Vαk

(
HA,k yk ⊗ In

)− G
∥∥2

F

= ∥∥HA,k yk − zG

∥∥2
2 + ‖G‖2F − ‖zG‖22

and

‖L(Xk)‖F = ∥∥Vβk
(HL,k yk ⊗ In)

∥∥
F

= ∥∥HL,k yk

∥∥
2.

We conclude that problem (3.14) is equivalent to the low-dimensional Tikhonov
regularization problem

min
yk∈Rk

{ ‖HA,k yk − zG‖22 + μ‖HL,k yk‖22 }. (3.15)

We refer to Bouhamidi et al. [3] for details. The problem (3.15) can be transformed
to standard form similarly as (3.7), and the transformed problem can be solved by an
algorithm analogous to Algorithm 3. We omit the details.

3.3 Tikhonov regularization based on the standard Arnoldi method

This subsection discusses the application of the standard Arnoldi method to the
Tikhonov regularization problem (1.5). The Arnoldi method applied to the matrix
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K with initial vector g yields at step k the matrix Vk+1 = [v1, v2, . . . , vk+1] ∈
R

mn×(k+1), whose columns form an orthonormal basis for the Krylov subspace

Kk+1(K, g) = span{g, Kg, . . . , Kkg},
and the upper Hessenberg matrix H̃k ∈ R

(k+1)×k . These matrices satisfy

KVk = Vk+1H̃k; (3.16)

see, e.g., [6, 15, 26, 35]. We assume here that the Arnoldi method does not break
down. This is the generic situation. Matrix-vector product evaluations with K should
be carried out without explicitly forming K .

Algorithm 4 The standard Arnoldi–Tikhonov regularization method

1. input: Ai ∈ R
m×m, Bi ∈ R

n×n, G ∈ R
m×n, L(1)

j ∈ R
s×m, L(2)

j ∈ R
n×t ;

2. initialize: ε, η > 1;
3. let K , L, and g be as defined in (1.5); the matrices K and L

do not have to be explicitly formed;
4. for k = 1, 2, . . . until convergence do

4.1. construct Vk = [v1, v2, . . . , vk] and H̃k by the Arnoldi process;
4.2. compute LVk = [LVk−1, Lvk];
4.3. compute RL,k by (3.17);
4.4. compute Ĥk by (3.8);
4.5. compute the zero v of (3.13) by the discrepancy principle;
4.6. define the regularization parameter μ = 1/v;
4.7. compute zk by (3.10), and let yk = R−1

L,kzk;
5. end for
6. output: approximation solution x∗

k = Vkyk of (1.5);

Let LVk = [LVk−1, Lvk] and compute the QR factorization

LVk = QL,k RL,k, (3.17)

where the matrix QL,k ∈ R
st×k has orthonormal columns and RL,k ∈ R

k×k is
upper triangular. This factorization can be evaluated by updating the available QR
factorization of LVk−1; see Daniel et al. [8] for a discussion on updating methods.

By using (3.16) and (3.17), it is not difficult see that when restricting the solution
of the problem (1.5) to the Krylov subspace Kk(K, g), the minimization prob-
lem so obtained can be expressed as the low-dimensional Tikhonov regularization
problem

min
y∈Rk

{ ‖H̃k y − ‖zG‖2e1‖22 + μ‖RL,ky‖22 }.

This minimization problem can be transformed to standard form (3.9) by using (3.8).
Algorithm 4 summarizes this solution method for problem (1.5).

Numer Algor (2019) 81:33–5544



4 Numerical examples

This section presents a few examples that compare the solution methods described
in Sections 3.1, 3.2, and 3.3 when applied to image restoration problems. The solu-
tion method defined by Algorithm 3 is referred to as the global Arnoldi–Tikhonov
(GAT) method. We refer to the method discussed in Section 3.2 as the generalized
global Arnoldi (GGA) method. These methods are compared to the standard Arnoldi
(SA) method outlined in Section 3.3. The regularization parameter μ is determined
with the aid of the discrepancy principle for all methods. Thus, we assume that a
bound (3.11) for the error E in G is known; cf. (1.2). The matrix E has normally
distributed entries with zero mean and is scaled to correspond to a specific noise
level

ν := ‖E‖F

‖Ĝ‖F

,

which is assumed to be known. Thus, we use ε = ν‖Ĝ‖F in (3.12) and let η = 1.01.
For each example, we choose a pair of regularization matrices (L

(1)
j , L

(2)
j ), where

L
(	)
1 is of the form

L1 =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 −1 0
1 −1

1 −1
. . .

. . .

1 −1

0 0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎦

∈ R
n×n (4.1)

and L
(	)
2 is of the form

L2 =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0
−1 2 −1

−1 2 −1
. . .

. . .
. . .

−1 2 −1

0 0 0 0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎦

∈ R
n×n.

We note that the matrices L1 and L2 do not have to be square for the GAT and
SA methods. Here we choose square regularization matrices because this is required
by the GGA method. The zero-padding of L1 and L2 does not affect the solutions
computed by the GAT and SA methods.
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Fig. 1 Example 4.1: a available blur- and noise-contaminated peppers image represented by the matrix
G, b desired image, c restored image for the noise level ν = 1 · 10−3 and regularization matrix pair
(L1, L1), and d convergence of the relative error ek (in logarithmic scale) as a function of k for the SA,
GGA, and GAT methods

The quality of the computed approximate solutions Xμ,k of (1.4) of the general
form (3.1) is measured with the relative error norm

ek := ‖Xμk,k − X̂‖F

‖X̂‖F

,

where X̂ is the desired solution of the unknown error-free problem (1.3).
The iterations with the algorithms in our comparison are terminated as soon as the

relative change in an iterate satisfies

‖Xμk,k − Xμk−1,k−1‖F

‖Xμk−1,k−1‖F

≤ τ (4.2)

or the number of iterations reaches kmax = 40. We set τ = 1 · 10−4 for Example 4.1
and τ = 5 · 10−4 for the remaining examples. The parameters kmax and τ are chosen
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Table 1 Example 4.1: number of iteration k, regularization parameter μk , CPU time in second, and rela-
tive error ek in the computed approximate solutions Xμk,k determined by different methods with different
noise levels and regularization matrices

Method (L
(1)
1 , L

(2)
1 ) k μk CPU time Relative

(s) error ek

Noise level ν = 1 · 10−2

SA (L1, L1) 16 8.79 · 10−2 2.34 9.59 · 10−2

GGA (L1, L1) 34 2.94 · 10−2 13.57 9.88 · 10−2

GAT (L1, L1) 16 8.79 · 10−2 1.42 9.59 · 10−2

SA (L1, L2) 15 1.70 · 10−1 2.18 9.64 · 10−2

GGA (L1, L2) 35 5.98 · 10−1 13.76 1.03 · 10−1

GAT (L1, L2) 15 1.70 · 10−1 1.13 9.64 · 10−2

SA (L2, L2) 14 4.86 · 10−1 2.14 9.70 · 10−2

GGA (L2, L2) 25 7.31 · 10−2 8.30 9.82 · 10−2

GAT (L2, L2) 14 4.87 · 10−1 1.08 9.70 · 10−2

Noise level ν = 1 · 10−3

SA (L1, L1) 25 1.03 · 10−3 4.17 7.56 · 10−2

GGA (L1, L1) 29 6.77 · 10−2 10.37 8.97 · 10−2

GAT (L1, L1) 25 1.03 · 10−3 2.55 7.56 · 10−2

SA (L1, L2) 24 1.17 · 10−3 4.12 7.59 · 10−2

GGA (L1, L2) 34 8.75 · 10−1 13.16 8.88 · 10−2

GAT (L1, L2) 24 1.19 · 10−3 2.47 7.59 · 10−2

SA (L2, L2) 23 1.87 · 10−3 3.78 7.60 · 10−2

GGA (L2, L2) 20 2.35 · 10−3 6.02 8.47 · 10−2

GAT (L2, L2) 22 2.48 · 10−3 2.17 7.65 · 10−2

so that the computed solution does not change much with the iteration number, k,
when the iterations are terminated. All computations were carried out in MATLAB
R2017a with about 15 significant decimal digits on a laptop computer with an Intel
Core i7-6700HQ CPU @ 2.60GHz processor and 16GB RAM.

Example 4.1 We consider the restoration of the test image peppers, which is repre-
sented by an array of 256×256 pixels. We let p = 1 and q = 1 in (1.4). The available
blur- and noise-contaminated image is represented by the matrix G ∈ R

256×256. It
is corrupted by Gaussian blur and additive zero-mean white Gaussian noise. The
blurring matrix A1 = [aij ] ∈ R

256×256 is of Toeplitz form and given by

aij =
{

1
σ
√
2π

exp
(
− (i−j)2

2σ 2

)
, |i − j | ≤ d,

0, otherwise.

It is generated by theMATLAB function blur from [17] using the parameters band =
d = 7 and sigma = σ = 2. We let B1 = A1.
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Fig. 2 Example 4.2: a available blur- and noise-contaminated cameraman image represented by the
matrix G, b desired image, c restored image for the noise level ν = 1 · 10−3 and regularization matrix pair
(L1, L1), and d convergence of the relative error ek (in logarithmic scale) as a function of k for the SA,
GGA, and GAT methods

The available blur- and noise-contaminated image is displayed in Fig. 1a. The
noise corresponds to the noise level ν = 1 · 10−3. Table 1 shows results for the
restoration of this image as well as for an image that has been contaminated by noise
of level ν = 1 · 10−2 and the same blur. Figure 1b depicts the desired blur- and
noise-free image. It is represented by the matrix X̂ ∈ R

256×256 and is assumed not to
be known. Figure 1c displays the restoration that is obtained with the regularization
matrix pair (L

(1)
1 , L

(2)
1 ) = (L1, L1). Finally, Fig. 1d shows the convergence history

of the relative error in the computed iterates as a function of the number of itera-
tions. The iterations are terminated as soon as the stopping rule (4.2) is satisfied.
Table 1 shows the number of iterations, denoted by k, the value of the regularization
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Table 2 Example 4.2: number of iteration k, regularization parameter μk , CPU time in second, and rela-
tive error ek in the computed approximate solutions Xμk,k determined by different methods with different
noise levels and regularization matrices

Method (L
(1)
1 , L

(2)
1 ) k μk CPU time Relative

(s) error ek

Noise level ν = 1 · 10−2

SA (L1, L1) 10 1.86 · 10−1 4.01 6.38 · 10−2

GGA (L1, L1) 6 8.86 · 10−2 2.49 7.91 · 10−2

GAT (L1, L1) 10 1.86 · 10−1 2.43 6.38 · 10−2

SA (L1, L2) 14 4.89 · 10−1 6.33 6.52 · 10−2

GGA (L1, L2) 14 5.97 · 10−2 9.27 7.75 · 10−2

GAT (L1, L2) 14 4.89 · 10−1 4.04 6.52 · 10−2

SA (L2, L2) 14 2.17 6.49 6.53 · 10−2

GGA (L2, L2) 11 5.09 · 10−2 6.22 7.24 · 10−2

GAT (L2, L2) 14 2.25 3.85 6.53 · 10−2

Noise level ν = 1 · 10−3

SA (L1, L1) 13 2.84 · 10−5 5.65 5.17 · 10−2

GGA (L1, L1) 10 1.94 · 10−1 5.22 6.12 · 10−2

GAT (L1, L1) 13 2.84 · 10−5 3.35 5.17 · 10−2

SA (L1, L2) 13 1.01 · 10−5 6.16 5.14 · 10−2

GGA (L1, L2) 10 2.78 · 10−1 5.19 6.15 · 10−2

GAT (L1, L2) 13 1.01 · 10−5 3.41 5.14 · 10−2

SA (L2, L2) 21 8.19 · 10−3 11.40 4.11 · 10−2

GGA (L2, L2) 7 2.83 · 10−3 3.21 6.63 · 10−2

GAT (L2, L2) 20 1.57 · 10−2 7.22 4.23 · 10−2

parameter at iteration k, denoted by μk , the CPU time, and the relative error, ek , in the
computed approximate solutions Xμk,k determined by the GAT, GGA, and SA meth-
ods. The GAT and SA methods are seen to yield more accurate approximations of X̂

than the GGA method for both noise levels and all choices of regularization matrix
pairs. We also note that the regularization matrices L

(1)
1 = L

(2)
1 = L1 give somewhat

more accurate approximations of X̂ than the other choices of regularization matrices.
The GAT and SA methods yield restorations of the highest quality, but the CPU

times required by these methods differ. Step 4.3 of Algorithm 4 demands more
CPU time than steps 3.2–3.3 of Algorithm 3. These methods use the same solution
subspaces, but their implementation differs. The GAT method works with block vec-
tors in R

n×n, while the SA method works with the associated vectors in R
n2 . The

handling of the regularization term differs and this may affect the computed solutions
and when the stopping criterion is satisfied by the GAT and SA methods. The timings
do not include the time for matrix-vector product evaluations, because by using the
structure of the operators A and L, the evaluation of these products takes the same
time for all methods.
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Table 3 Example 4.3: number of iteration k, regularization parameter μk , CPU time in second, and rela-
tive error ek in the computed approximate solutions Xμk,k determined by different methods with different
noise levels and regularization matrices

Method (L
(1)
1 , L

(2)
1 ) k μk CPU time Relative

(s) error ek

Noise level ν = 1 · 10−2

SA (L1, L1) 8 5.46 · 10−1 3.07 4.39 · 10−2

GGA (L1, L1) 6 1.88 · 10−1 2.70 5.54 · 10−2

GAT (L1, L1) 8 5.45 · 10−1 1.98 4.39 · 10−2

SA (L1, L2) 12 9.31 · 10−1 5.14 4.50 · 10−2

GGA (L1, L2) 14 1.23 · 10−1 9.64 5.24 · 10−2

GAT (L1, L2) 12 9.31 · 10−1 3.50 4.50 · 10−2

SA (L2, L2) 15 2.63 7.31 4.58 · 10−2

GGA (L2, L2) 10 1.68 · 10−3 5.64 5.23 · 10−2

GAT (L2, L2) 15 2.63 5.07 4.58 · 10−2

Noise level ν = 1 · 10−3

SA (L1, L1) 17 1.02 · 10−2 8.36 2.21 · 10−2

GGA (L1, L1) 6 7.13 · 10−1 2.78 4.30 · 10−2

GAT (L1, L1) 17 1.02 · 10−2 6.10 2.21 · 10−2

SA (L1, L2) 16 9.23 · 10−3 7.70 2.22 · 10−2

GGA (L1, L2) 11 4.20 · 10−1 6.50 3.62 · 10−2

GAT (L1, L2) 16 9.23 · 10−3 5.45 2.22 · 10−2

SA (L2, L2) 9 1.33 · 10−4 3.59 2.66 · 10−2

GGA (L2, L2) 10 4.84 · 10−3 5.72 3.34 · 10−2

GAT (L2, L2) 9 1.33 · 10−4 2.31 2.66 · 10−2

Example 4.2 We consider the restoration of the test image cameraman, which is
represented by an array of 512 × 512 pixels. We let p = 1 and q = 1 in (1.4). The
available image, represented by the matrix G ∈ R

512×512, is corrupted by Gaussian
blur and additive zero-mean white Gaussian noise. The blurring matrices A1 and B1
are of the same type as in Example 4.1 with band = d = 7 and sigma = σ = 2.5.
A larger σ yields more blur than a smaller one. The blur- and noise-contaminated
image with noise level 1 · 10−3 is shown in Fig. 2a. Figure 2b displays the desired
blur- and noise-free image, which is represented by the matrix X̂ ∈ R

512×512 and is
assumed not to be known.

Table 2 is analogous to Table 1. Also, for this example, the GAT and SA methods
yield the most accurate restorations with about the same error, with GAT requiring
the least CPU time. The regularization matrix pair (L1, L1) gives slightly higher
accuracy than pairs of other regularization matrices for ν = 1 · 10−2.
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Fig. 3 Example 4.3: a available blur- and noise-contaminated cameraman image represented by the
matrix G, b restored image for the noise level ν = 1 · 10−3 and regularization matrix pair (L1, L1), and
c convergence of the relative error ek (in logarithmic scale) as a function of k for the SA, GGA, and GAT
methods

Example 4.3 This example differs from Example 4.2 only in that the available image
is contaminated by two kinds of Gaussian blur as well as by Gaussian noise. We let
p = 2 and q = 1 in (1.1) define the blurring operator

A(X) = A1XB1 + A2XB2,

where Ai and Bi are matrices of the same form as in Example 4.2. The matrices A1
and B1 are determined by the parameters d = 5 and σ = 1.5, and the matrices A2
and B2 are defined by the parameters d = 7 and σ = 2.5. The regularization matrices
are the same as in Example 4.2. Table 3 and Fig. 3 are analogous to Table 2 and
Fig. 2, respectively. Similarly as in the previous examples, the GAT and SA methods
yield restorations of the highest quality with the former method requiring the least
CPU time. The most accurate restorations are obtained when regularization matrix
pair (L1, L1) is used with the GAT and SA methods.
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Fig. 4 Example 4.4: a available blur- and noise-contaminated hgxwechat image represented by the
matrix G, b desired image, c restored image for the noise level ν = 1 · 10−3 and regularization matrix pair
(L1, L1), and d convergence of the relative error ek (in logarithmic scale) as a function of k for the SA,
GGA, and GAT methods

Example 4.4 This example differs form Example 4.3 only in the image to be
restored. Here we consider the restoration of the image hgxwechat, which is
represented by an array of 512 × 512 pixels and has been corrupted by Gaus-
sian blur and additive zero-mean white Gaussian noise. The blurring operator and
matrices Ai and Bi used for this example are the same as in Example 4.3 and so
are the noise levels. Figure 4 and Table 4 are analogous to Fig. 3 and Table 3,
respectively.

Table 4 shows both GAT and SA to determine the best approximations of X̂ for all
noise levels, but SA needs more CPU time than GAT. All regularization matrix pairs
give restorations of about the same quality.
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Table 4 Example 4.4: number of iteration k, regularization parameter μk , CPU time in second, and rela-
tive error ek in the computed approximate solutions Xμk,k determined by different methods with different
noise levels and regularization matrices

Method (L
(1)
1 , L

(2)
1 ) k μk CPU time Relative

(s) error ek

Noise level ν = 1 · 10−2

SA (L1, L1) 12 1.17 5.11 5.12 · 10−2

GGA (L1, L1) 6 1.85 · 10−1 2.74 5.80 · 10−2

GAT (L1, L1) 12 1.17 3.43 5.12 · 10−2

SA (L1, L2) 11 2.06 4.61 5.15 · 10−2

GGA (L1, L2) 12 1.22 · 10−1 7.59 5.64 · 10−2

GAT (L1, L2) 11 2.06 3.29 5.15 · 10−2

SA (L2, L2) 11 4.95 4.64 5.16 · 10−2

GGA (L2, L2) 6 1.07 · 10−1 2.77 5.71 · 10−2

GAT (L2, L2) 11 4.94 2.98 5.16 · 10−2

Noise level ν = 1 · 10−3

SA (L1, L1) 9 1.21 · 10−3 3.51 3.76 · 10−2

GGA (L1, L1) 6 8.48 · 10−1 2.74 4.85 · 10−2

GAT (L1, L1) 9 1.21 · 10−3 2.32 3.76 · 10−2

SA (L1, L2) 9 4.07 · 10−4 3.55 3.76 · 10−2

GGA (L1, L2) 11 4.40 · 10−1 6.59 4.33 · 10−2

GAT (L1, L2) 9 4.07 · 10−4 2.28 3.76 · 10−2

SA (L2, L2) 9 1.37 · 10−4 3.80 3.76 · 10−2

GGA (L2, L2) 5 5.00 · 10−1 2.15 4.78 · 10−2

GAT (L2, L2) 9 1.37 · 10−4 2.34 3.76 · 10−2

5 Concluding remarks

This paper compares three iterative methods based on the Arnoldi process for the
solution of large-scale discrete ill-posed problems. They differ in the choice of
solution subspace, choice of regularization matrices, and implementation. A global
Arnoldi method, referred to as the GAT method, that generates the solution subspace
independent of the regularization matrices is found to generally yield restorations
of the highest quality and to typically require the least CPU time for various
regularization matrix pairs (L

(1)
1 , L

(2)
1 ).

While other solution subspaces may yield higher accuracy for certain discrete ill-
posed problems, our investigation suggests that for many problems, the GAT method
may be competitive. This method allows rectangular regularization matrices and our
experiments suggest that the regularization matrix (4.1) or its rectangular analog are
good default choices for linear discrete ill-posed problems in two space dimensions.

Funding information Research by GH was supported in part by the Fund of Application Foun-
dation of Science and Technology Department of the Sichuan Province (2016JY0249) and by NNSF

Numer Algor (2019) 81:33–55 53



(2017YFC0601505, 41672325), research by LR was supported in part by NSF grants DMS-1729509 and
DMS-1720259, and research by FY was supported in part by NNSF (11501392).

References

1. Bentbib, A.H., El Guide, M., Jbilou, K., Reichel, L.: Global Golub–Kahan bidiagonalization for image
restoration. J. Comput. Appl. Math. 300, 233–244 (2016)

2. Bouhamidi, A., Jbilou, K.: Sylvester Tikhonov-regularization methods in image restoration. J.
Comput. Appl. Math. 206, 86–98 (2007)

3. Bouhamidi, A., Jbilou, K., Reichel, L., Sadok, H.: A generalized global Arnoldi method for ill-posed
matrix equations. J. Comput. Appl. Math. 236, 2078–2089 (2012)

4. Brezinski, C., Redivo–Zaglia, M., Rodriguez, G., Seatzu, S.: Extrapolation techniques for ill-
conditioned linear systems. Numer. Math. 81, 1–29 (1998)

5. Brezinski, C., Rodriguez, G., Seatzu, S.: Error estimates for the regularization of least squares
problems. Numer. Algorithms 51, 61–76 (2009)

6. Calvetti, D., Morigi, S., Reichel, L., Sgallari, F.: Tikhonov regularization and the L-curve for large,
discrete ill-posed problems. J. Comput. Appl. Math. 123, 423–446 (2000)

7. Calvetti, D., Reichel, L., Shuibi, A.: Invertible smoothing preconditioners for linear discrete ill-posed
problems. Appl. Numer. Math. 54, 135–149 (2005)

8. Daniel, J.W., Gragg, W.B., Kaufman, L., Stewart, G.W.: Reorthogonalization and stable algorithms
for updating the Gram-Schmidt QR factorization. Math. Comp. 30, 772–795 (1976)

9. Donatelli, M., Reichel, L.: Square smoothing regularization matrices with accurate boundary condi-
tions. J. Comput. Appl. Math. 272, 334–349 (2014)

10. Donatelli, M., Neuman, A., Reichel, L.: Square regularization matrices for large linear discrete ill-
posed problems. Numer. Linear Algebra Appl. 19, 896–913 (2012)

11. Dykes, L., Huang, G., Noschese, S., Reichel, L.: Regularization matrices for discrete ill-posed
problems in several space-dimensions. Numerical Linear Algebra Appl. (2018, in press)

12. Elbouyahyaout, L., Messaoudi, A., Sadok, H.: Algebraic properties of the block GMRES and block
Arnoldi methods. Electron. Trans. Numer. Anal. 33, 207–220 (2009)

13. Engl, H.W., Hanke, M., Neubauer, A.: Regularization of Inverse Problems. Kluwer, Dordrecht (1996)
14. Frommer, A., Lund, K., Szyld, D.B.: Block Krylov subspace methods for functions of matrices.

Electron. Trans. Numer. Anal. 47, 100–126 (2017)
15. Gazzola, S., Novati, P., Russo, M.R.: On Krylov projection methods and Tikhonov regularization.

Electron. Trans. Numer. Anal. 44, 83–123 (2015)
16. Hansen, P.C.: Rank-Deficient and Discrete Ill-Posed Problems. SIAM, Philadelphia (1998)
17. Hansen, P.C.: Regularization tools version 4.0 for MATLAB 7.3. Numer. Algorithms 46, 189–194

(2007)
18. Hochstenbach, M.E., Reichel, L.: An iterative method for Tikhonov regularization with a general

linear regularization operator. J. Integral Equations Appl. 22, 463–480 (2010)
19. Horn, R.A., Johnson, C.R.: Topics inMatrix Analysis. Cambridge University Press, Cambridge (1991)
20. Huang, G., Noschese, S., Reichel, L.: Regularization matrices determined by matrix nearness

problems. Linear Algebra Appl. 502, 41–57 (2016)
21. Jbilou, K., Messaoudi, A., Sadok, H.: Global FOM and GMRES algorithms for matrix equations.

Appl. Numer. Math. 31, 49–63 (1999)
22. Jbilou, K., Sadok, H., Tinzefte, A.: Oblique projection methods for linear systems with multiple right-

hand sides. Electron. Trans. Numer. Anal. 20, 119–138 (2005)
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