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1. Introduction

In 2005, Bottcher and Wenzel [4] raised the so-called BW conjecture that if X, Y are
real square matrices, then
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IXY - YX|2 <2 X2V

where || X|| = vTr X X* is the Frobenius norm (with X* denoting the conjugate trans-
pose of X). After some steps and several fundamentally different proofs (cf. [2,5,21,26]),
the inequality is now known to be true in the complex case. Also, analogues with, e.g.,
Schatten norms were investigated (cf. [6,9,27,28]). We recommend [7] and [24] for a
comprehensive overview on the developments.

In comparison with the BW inequality that estimates the Frobenius norm of the
commutator between two arbitrary matrices, the DDVV inequality involves commutators
of arbitrary many, but only real symmetric matrices. The original formulation in the
language of submanifold theory was posed in 1999 by De Smet, Dillen, Verstraelen and
Vrancken [11], but later transformed into the matrix-algebraic inequality

> Ba, Be] I < e <Z IIBa||2> ,

a,f=1 a=1

(see [12]). The classical result is ¢ = 1. It was shown by the authors’ groups independently
and differently (cf. [14,21,10,15,20]). Also other classes of matrices were analyzed (cf. [13,
16,17]), resulting into various DDVV-type inequalities with other values of ¢ depending
on the matrix structure.

With the BW inequality and the DDVV inequality on both hands, Lu and Wenzel
([23,24]) summarized the commutator estimates and considered a unified generalization
of them. They started with the following three conjectures and an open question in the
space M (n,K) of n x n matrices over the field K.

Conjecture 1. Let By,--- , B, € M(n,R) subject to
Tr (Ba[BW, Bﬁ]) =0

forany 1 < a, 8,7 <m, then

> IHBa, Bal|* < (Z ||Ba||2> : (1.1)
a,B=1 a=1

Conjecture 2. (LW Conjecture). Let B, By, -+ , By, € M(n,R) with

(i) Tr(BaBj) =0 (i.e., Bo LBg) for any o # B;
(ii) Tr (BQ[B,Bg]) =0 forany 2 < o, < m.

Then

m m
B.B,lII? < B, B,II? ) I|IBJ?. 1.2
ZQII[ ,Bal |l _<25a§nll ol +2H ol | 1Bl (1.2)
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Note that the number m cannot be arbitrarily large.

Conjecture 3. For X € M(n,R) with | X| = 1, let Tx be the linear map on M (n,R)
defined by Tx (V) = [X*,[X,Y]] and M\ (Tx) > Xa(Tx) > A3(Tx) - -+ be its eigenvalues.
Then

M(Tx)+ A3(Tx) < 3.

k
Question 1. What is the upper bound of > Ao;—1(Tx)?
i=1

If k =1, the bound is 2 by the BW inequality, i.e., \1(Tx) < 2, since we have

M (Tx) = max (TxY,Y) = max [|[X,Y]||* <2.
IYl=1 I l=1

If k£ = 2, the bound is supposed to be 3 by Conjecture 3. How are all these conjectures
and the known inequalities connected? When restricted to real symmetric matrices, Con-
jecture 1 reduces to the DDVV inequality. It turns out that not only the BW inequality
and the DDVV inequality but also both Conjectures 1 and 3 are implied by Conjecture 2
(cf. [23]). Moreover, we will show that Conjecture 2 is equivalent to assigning k+1 as the
upper bound of Zle A2i—1(Tx) for k > 1, which is nothing but the new Conjecture 4
due to the fact that Ag;_1(Tx) = A2i(Tx) for any ¢ (see Proposition 2.2 (¢)). Hence, Con-
jecture 2 (as well as the equivalent Conjectures 4-6) takes exactly the role of a unified
generalization of the BW inequality and the DDVV inequality for real matrices. We call
it the Fundamental Conjecture of Lu and Wenzel, or simply the (real) LW Conjecture.
First consider K = R.

Conjecture 4. For X € M(n,K) with || X|| = 1, we have

n

2k 9
D N(Tx)<2k+2, k=1,---, {7] (1.3)
=1

In fact, the sum 21221 Ai(Tx) in Conjecture 4 cannot exceed 2n. We explain this by
introducing the following Conjecture 5 which looks stronger but in fact is equivalent to
Conjecture 4.

Before continuing, we adopt some notation from [29] and [19]. Let x = (z1, 22, -,
Zn) € R™, where a:% > 1‘% > .. >zt For = (z1,79, + , o) and y = (Y1,%2,"* ,Yn)
in R™, we say that x is weakly majorized by y, written as x < y, if

k k
in SZyj, k=1,2,--- ,n.
i=1 i=1
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Multisets are an extension of the set definition by allowing elements to appear more than
one time. A finite multiset is often represented as {aT(al),agn(‘”), .. .,ax(a")h where
m(ax) € N is the multiplicity, that is, the number of occurrences. For example, the
multiset {a,a,b} is written as {a?,b}. We use ordered vectors and abbreviating multisets

synonymously.

Conjecture 5. For X € M(n,K) with || X| = 1, the set A\(Tx) of decreasingly ordered
eigenvalues of Tx is weakly majorized by the multiset {22 1274, 0("_1)2“‘1}.

As promised, this becomes

2k
Z)‘i(TX) <2n, fork>n,
i=1

seemingly strengthening the assertion of Conjecture 4. Another equivalent conjecture
that also appears to be stronger is the following Conjecture 6. It omits the second
assumption of Conjecture 2, at the price of a factor 2 in the bound.

Conjecture 6. Let B, By, - -+, By, € M(n,K) with Tr(BoBj) =0 for any2 < a # 3 < m.
Then

2 2 2 2
[LEATE (22ga<xm||3an A ) |5

a=2

We summarize the relations of these conjectures in the following theorem. Remember
K =R so far.

Theorem 1.1. The following relations hold in these conjectures.

(i) Conjectures 2, 4, 5, and 6 are equivalent to each other.
(ii) If one of the conjectures above is true, then Conjectures 1 and 3 hold.

Since the BW inequality (resp. the DDVV inequality) holds also for complex (resp.
complex symmetric) matrices (cf. [5], [17]), we can also consider the same conjectures as
above in the complex version K = C. In fact we will prove the relations of Theorem 1.1
between these conjectures in the complex version. Hence we call Conjecture 2 for complex
matrices the complex LW Conjecture. Obviously, the complex LW Conjecture implies
the real LW Conjecture.

In this paper, we prove the complex LW Conjecture in some special cases which we
conclude in the following.

Theorem 1.2. The complex LW Conjectures J and 5 (and because of Theorem 1.1 all
conjectures of this paper) are true in one of the following cases:
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(i) X € M(n,C) is a normal matriz;
(ii) rank X = 1;
(ili) n =2 orn = 3.

For the Conjectures 4 and 5 in general we are able to get some weakened results as
follows.

Theorem 1.3. For X € M(n,C) with || X|| = 1, we have

44+ /10
2

/\1(Tx) + )\3(Tx) < ~ 3.58.

Theorem 1.4. For X € M(n,C) with | X| = 1, we have

2k 9
D Ai(Tx) <2k +1+2VE, k:l[%}
t=1

In Section 2 we prepare several useful lemmas and properties of T'x. It turns out that
the methods we developed in the study of the conjectures above lead us to some new
simple proofs of the complex BW inequality and its condition for equality, which we
will discuss in Section 3. It is just the first eigenvalue estimate \q(Tx) < 2, the basic
case k = 1 of the complex LW Conjecture 4. In Section 4 we prove the equivalences in
Theorem 1.1 in the complex version. In Section 5 we prove the special cases given in
Theorem 1.2 and the partial results of Theorems 1.3 and 1.4.

Although the inequalities we study in this paper are matrix inequalities, it is not hard
to generalize them as inequalities of bounded operators on separable Hilbert spaces. In
quantum physics, these inequalities are related to the Uncertainty Principle, or more
precisely, the Robertson-Schrodinger relations. The classical Uncertainty Principle, in
our notations, can be formulated by

where || - ||op is the operator norm and A, B are self-adjoint. In this context, the BW-

[4, Bl < 4114156 - [1BlIE P

type inequality can be interpreted as a mathematical generalization of the Uncertainty
Principle, because we don’t need to assume A, B are self-adjoint. There are some liter-
atures in physics providing various of generalizations of the Uncertainty Principle; see
[25] for example. In our paper, we study the optimal version of all these inequalities in
the Frobenius norm.

2. Preliminaries
In this section, we will introduce some necessary notations and lemmas which are

interesting in themselves. To avoid needless duplication, we discuss the complex version
directly so as to include the real version.
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Let T be a linear mapping on a complex N-dimensional vector space V with Hermitian
inner product (-,-). In this paper, we always denote by

ANT) = {M(T) > - > An(D)}, o(T) = {o(T) > -+ > on(T) > 0}

the ordered sets of real eigenvalues (if available) and singular values of T' respectively,
where singular values are square roots of eigenvalues of T*T.
By elementary linear algebra, we have the following statements.

Lemma 2.1. Suppose T be self-dual and positive semi-definite.

(a) The (geometric) multiplicity of each positive eigenvalue of T is even if and only if
there exists a mapping S such that

T=5*S=-52
In addition, Tx = 0 if and only if Sx = 0.

Assume T furthermore has even multiplicities (i.e., Aoi—1(T) = Xo;(T) for any i with
Xoi—1(T) > 0), and S be the unitary skew-symmetric mapping as in (a).

(b) Lety € V with ly| = 1. Then

Sy Sy
728 PV N S 1y ).
(s isgl) = (Too0)

(¢) Let W CV be a complex m-dimensional isotropic subspace of S, i.e., S(W) C W+
((Sw1,ws) =0 for any w1, ws € W). Then we have

Ty, < TeT|gqy, TTy < > Aaica (D).
i=1

Proof. First we prove (a), the sufficiency is clear. Now suppose that there are g dis-
tinct positive eigenvalues A\(T') = {t; = s§ > --- > t, = s2 > 0} with multiplicities
2nq,--+,2ng, and denote by r = 22?;1 n; the rank of 7. Then we can diagonalize T

by a unitary matrix U as
T = U diag (mm . ,tgfgng,ON_r) U,

where Oy _, denotes the zero matrix of order N — r. Then the required unitary skew-
symmetric matrix can be defined as

. . O  —s1l,, 0] —8g1n, N
S.—Udl&g((sljnl 4 >(ngn o ~),ONT)U.
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Next we prove (b). Since T'= S§*S = —S2, the inequality in (b) is equivalent to

(T?y,y) > (Ty,y)>.

Let {e;}}¥, be an orthonormal basis of V' such that e; is a unit eigenvector corresponding
to A (T'). Setting y = Zf\il yi€;, then Zivzl y? = 1 and we have

N
ZyQV (ZyQV )(Z@ﬁ)
N 2 )
> (Zzﬁ&(ﬂ) = (Ty,y)*.

To prove (c), we will find a suitable basis to compare the traces by using (b). Let
{E;}N| be an orthonormal basis of V' such that {E;}I", is a basis of W, and under this
basis we identify V =2 CV. Denote

rank(SFEy, - ,SEy,) =dimS(W) = k < m.

Assume k > 1, otherwise we have S|W = 0 and thus TrT’W = 0 by (a). By singular
value decomposition, there exist P € U(N) and @ € U(m) such that

* A . Agx O
P (SE17 7SE771)Q A ( O O)Nxmv

where A =: diag(Aq, -+ ,Ag), A; > 0 for 1 < i < k. Setting
PA =: (Fy, -, Fp),

we have (F;, Fj) = AjAj6;; for 1 <4, <k and F; =0 for ¢ > k. Thus E = A;lFi gives
an orthonormal basis of S(W). Let

(Eh e 7Em) = (Ela T aEm)Qa
then {E;}", is an orthonormal basis of W and satisfies
(Fi,-+ ,Fn)=PA=(SE1, -+ ,SE,)Q = (SE1, -, SEp).

Therefore, (b) implies

m k
TeT|,, =Y (TE,E) <Y (TF,E) =TeT|g .
i=1 i=1
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Since S(W) c WL, {E;}™, U{F,}*_, is an orthonormal basis of W & S(W). Hence,

m—+k 2m

TrT‘W + TrT|S(W) = TrT‘W@S(W) < Z Mi(T) < Z)‘i(T>’
i=1 i=1
1 2m m
TeT|,, < 5 SN =D i (D).
i=1 i=1

The proof is complete. O

Now we consider the linear operator T'x as in Conjecture 3. More specifically, for any
n X n complex matrix X with || X|| = 1, we define

Tx : M(n,C) — M(n,C), Y — [X*,[X,Y]]. (2.1)

It turns out that Tx is exactly an operator of the same type as T in the preceding
lemma with V = M(n,C), dimV = n? =: N (cf. [21]). For the sake of completeness, we
repeat some properties of Ty, which was the key to Lu’s method for proving the BW
and DDVYV inequalities.

Proposition 2.2. T'x has the following properties:

(a) Tx is an self-dual and positive semi-definite linear map.

(b) The set of eigenvalues \(Tx) := {M(Tx) > --- > An(Tx)} is invariant under
unitary congruences of X.

(¢) The multiplicity of each positive eigenvalue of Tx is even, i.e., Ao;—1(Tx) = A2i(Tx)
for any i with Ao;—1(Tx) > 0.

Proof. For (a), the real version proof given in [21, Lemma 3] is easily turned complex

by using adjoints instead of transposes.
Part (b) follows immediately from

To-xv(U'YU) =U*(TxY)U, forU € U(n). (2.2)
Finally we prove (c). Let A > 0 be a positive eigenvalue of T'x and F\ be its eigenspace.

We will show that the complex dimension of F) is even.
Define a quasi-linear map by

Sx : M(n,C) — M(n,C), Y — [X,Y]".

Then it follows easily that Sx(zY) = zSx(Y) for z € C, Sy is anti-self-dual and
Tx = —S5% because
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Tr (V2(Sx71)") = Tr (Va[X, 1i]) = Tr (X1, V3] ) = = Tr (Va(SxY2)"),
—S%Y = —[X,[X,Y]']" = [X*,[X,Y]] = TxY.

Now for any eigenvector ¥ € Ej, i.e., TxY = AY, we claim that §XY is also an
eigenvector in F) which is C-independent (even C-orthogonal) to Y. In fact, since Tx =
—S% we have

TxSxY = SxTxY = ASxY, |SxY|?>= (IxY,Y)=\|Y]|?>0,
Tr (Y(§XY)*) =T (Y[X, Y]) =0, andthus (V,8xY)=(iY,SxY) =0,
where i, as usual, is the imaginary unit.

For k > 1, suppose that SpanC{Yi,ngi}f:l C E\ and Yi41 € E) is orthogonal to
Spanc{Y;, SxY;}¥ ;. Then it suffices to prove

SxYiy1L Spanc{Y;, Sx Y} .

This is easily verified as follows:

Tr (Yi(SxYier1)") = = Tr (Yinr (Sx¥5)") =0,
Tr (§X}Q(§ka+1)*) - (YkH(TXYi)*) — ATy (Ykﬂ(Yi)*) —0.
The proof is complete. O

Specifying T" and S in Lemma 2.1, we can define a unitary skew-symmetric linear
operator Sx on V = M(n,C) such that Tx = S%Sx = —S% as follows.® Taking an
orthonormal basis {v;}~; of V such that v; is an eigenvector of the eigenvalue \;(Tx),
we define Sx on this basis by Sx(v;) := Sxv; = [X,v;]* and then extend it linearly to
the whole space as

N N
Sx : M(n,C) — M(n,C), Y:Zyivi%Zyi[X,vi]*. (2.3)

=1 i=1

As in Lemma 2.1 (a), suppose that there are g distinct positive eigenvalues A(Tx) =
{t1 = s > -+ > t; = s2 > 0} with multiplicities 2n;,--- ,2ny, and denote by r =
2 Z?:l n; the rank of T’x. By the proof of Proposition 2.2 (¢), we see that Sx preserves
the eigenspaces of T'x and we can choose the orthonormal basis such that the first r
vectors are ordered as:

U{a"' ’Uij’ng{/ungiu’_” ’ngij/||§x1}%j“5 j: 17"' » 95

3 Notice that §X is not C-linear and hence we need to define Sx instead.
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J
|Sxvi|| =+ = [Sxvy,, || = s;j. Under the special basis above, the linear operator Sx

where v]’s are unit eigenvectors of T'x corresponding to the eigenvalue ¢; and thus

can be represented by the real skew-symmetric matrix

o O —s11p, O —8g1n,
SX—dlag<(81Im O )7...7<Sg-[ng 4 -))ONT)?

while T'x is represented by
Tx = diag (t1[2n1 )t 7tg12n970N—r>-

One can also reorder the basis in the way vg; = nggi_l/”ngzi_l” such that

SX:dlag (In1®(801 _691)55]%9@(5(1 _59)701\/—7") (24)

Hence, Lemma 2.1 (¢) is suitable for the pair (T'x, Sx) and will be applied in the proof
of the equivalence of Conjecture 2 and Conjecture 4.
We will also need the following notations and useful lemmas. Let Vec be the canonical
isomorphism from M (n,C) to C¥, i.e.,
Vec : M(n7(c) — (CN) X = (x’bj) — (xlla oy Tpls L1257 5 T2yt Tny 7xnn)t7
where X7 is the transpose of X. Using Kronecker product of matrices, we have

Lemma 2.3. [18] Vec(AY B) = (B' @ A) Vec(Y).

Moreover, Vec is an isometry since (X,Y) = (Vec(X), Vec(Y)), and thus we can
calculate the eigenvalues of T'x by

MTx) = A (VecoTx o (Vec)™).

Proposition 2.4. A\(Tx) = M(K5xKx) = A(K1 + K3), where Kx =1 ® X — X'®1I and
Ki=IoX*X+XX'®I, Ko=-X'9X"—-X®X.

Proof. Define ®x(Y) := [X,Y], by Lemma 2.3, we have
Vec (Px(Y)) = Kx Vec(Y),

where Ky is regarded as a linear operator on C¥, or equivalently as a N x N matrix.
Then it is easily seen that Kx+« = K% and as compositions of the operators we have

Veco®y o (Vee)™' = Kx, Tx = ®x-0dx.
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In particular, we have
VecoTx o (Vec) ™! = Kx-Kx = KxKx,
hence
MTx) = MExKx).

By direct calculation, we have Ky Kx = K; + K3, where K; and K; are Hermitian
matrices. O

Corollary 2.5. For X € M(n,C) with || X| = 1, we have TrTx = 2n — 2| Tr X|2. In
particular, forn =2, \(Tx) = Xa(Tx) =2 — | Tr X|? and A\3(Tx) = M(Tx) = 0.

Proof. It follows immediately from Proposition 2.4 that
TrTx = Tr Ky + Tr Ko = 2n|| X ||* — 2| Tr X|? = 2n — 2| Tr X |*.

For n = 2, the conclusion follows from Proposition 2.2 (¢) and the fact that Tx X = 0
and thus T'x must have at least one zero eigenvalue. 0O

To end this section, we cite two useful properties about eigenvalues of Kronecker
product and sum of two matrices.

Lemma 2.6. [29] Let A and B be m x m and n X n complex matrices with eigenvalues
a1,y and B, , Bn, Tespectively.

(a) ([29, Theorem 4.8]) The eigenvalues of A® B are
a;f,1<i<m,1<j<n,
and the eigenvalues of AQ I, + I, ® B are
o +8;,1<i<m,1<j5<n.
(b) (/29, Theorem 8.18]) Suppose A, B are n xn Hermitian matrices and aq > -+ > o,

b1 > > Bn. Let C = A+ B with eigenvalues v, > - -+ > vp. Then for any sequence
1< <~ <1 <,

k k k k k
i+ Brokir <> Vi <Y i+ Y B
=1 =1 =1 =1 =1
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3. Some new proofs of the complex BW inequality

In this section, we will give some new simple proofs of the complex BW inequality
by eigenvalue estimates of Tx for X € M(n,C) with || X|| = 1. Each estimate implies
A1(Tx) < 2 and thus the complex BW inequality, since for ||Y]| = 1,

B VIR < ma (XY = max (TY,¥) = A (T) < 2 = 20 X2V

As a matter of fact, the core of our approach lies in the fact that the multiplicity of
positive eigenvalues of T'x is even (Proposition 2.2 (¢)).

Theorem 3.1. Let X = A+ B € M(n,C) be the canonical decomposition and | X|| = 1,
where A is Hermitian, B is skew-Hermitian. Then

M (Tx) < 2(max{—aia} + max{~bib,}) + (F(X) +03(X)) <2,

where 01(X) > -+ > 0,(X) are singular values of X and A\(A) = {a1, -+ ,a,}, A(B) =
{b1i, -+ ,b,i} are eigenvalues of A, B respectively.

Proof. Let 01(X) > -+ > 0,(X) be singular values of X, then

A(X*X) = XXX = {03(X), - .02 (X))}

rYn

We decompose Ty with help of Proposition 2.4. Hence for K; = I @ X*X + XX!'® I,
we have by Lemma 2.6 (a)

K1) ={0}(X)+07(X):1<i,j<n} (3.1)

In particular, A2 (K1) = 02(X)+02(X). And for K, we calculate by inserting X = A+ B
that

Ky=-X'0X"-X®X=2B'@B-A"®A4).
Then by Lemma 2.6 (a),

AN=A'"® A) = {—a;a; : 1 <i,5 <n},

ANB'® B) = {-bib; : 1 <i,j <n},

where M(A) ={a; a1 > -+ > ap}; AM(B) = {bji: by > --- > b, }. Therefore
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Ai(—A'® A) = max{—a;a;} = maX{mQX{—aiaj},maX{—a?}}
2] 1#£] [
< aa < -
> max{r?jj({ aa;},0} < Ig?j?(ﬂazaﬂ} (3.2)
< Lmax{a? +a2) < L4
T2 ¢ T2 ’
Similarly
t 1 2, 72 1 2
A (B' ® B) = max{—b;b;} < - max{b; + b7} < =| BJ*. (3.3)
i 2 i#j T2
Since B ® B and —A! @ A are Hermitian, by Lemma 2.6 (b), we have

M (K2) <2 (M(B'® B) + A (—A! @ A)) =2 ( masc{—aa;} + Hi;%x{fb,-bj}) -,
< AP+ IBII* = | X]]* = 1.
Moreover, for K% Ky = K7 + Ko in Proposition 2.4, again by Lemma 2.6 (b) we have
Ma(Kx Kx) < Ao(K1) + M (F) < 0f(X) + 03 (X) + || X7 < 21X,
Finally by Proposition 2.2 (¢), we have the desired estimate
M(Tx) = Xo(Tx) = Mo (K Kx) < 2| X[* = 2.

The proof is complete. O

For X € M(n,C) with ||X|| = 1, we have the following characterization of when
A1 (Tx) attains the upper bound 2.

Theorem 3.2. A\ (Tx) = 2 if and only if X = U diag(Xo, On—2)U* for some U € U(n),
where Xog € M(2,C) and Tr(Xy) = 0.

Proof. We first prove the necessity. All the inequalities in the proof of Theorem 3.1
achieve equality when A1(Tx) = 2. Thus by the equality conditions of (3.2) and (3.3),
we have a; = —a, =:a > 0,b; = —b, =: b > 0,and a; = b; = 0 for 1 < i < n. Therefore,

M=A'® A) = {da*,a?,0,---,0, —a?, —a?},
MB'® B) = {*,%,0,---,0,—b% —b?},

and there exist U,V € U(n) such that

U*AU = diag(a, —a,0,--- ,0),
V*BV = diag(bi, —bi,0,--- ,0).
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Hence
Tr(X) = Tr(A) + Tr(B) = 0.

Because (3.4) achieves equality, the eigenspaces of A\ (B! ® B) and A\(—A’ ® A) have a
nontrivial intersection. Let U = (uy,ug, -+ ,un), V = (v1,v2, -+ ,v,), we have

Auy = auq, Aug = —aug, Au; =0, 3<j <n;
Bvy = bivy, Bvp = —bive, Bv; =0, 3 <j < n.

Since A is Hermitian and B is skew-Hermitian, we have

Ay = auy, A'ig = —atz, A'u; =0, 3<j<mn;

B'v1 = bivy, B'v; = —bivz, B'o; =0, 3<j <n.

By the properties of the Kronecker product, the eigenspace of A\;(—A*® A) is Spanc {7 ®
ug, Uz @uy }, and the eigenspace of A\ (B! ® B) is Spanc{v1 ® va, T3 ® v }. So, there exist
ki,ko,l1,lo € C and |k1‘2 + |]€2|2 = ‘l1|2 + |12|2 75 0 such that

kit @ us + kot ® up = 1107 ® vg + loT7 ® v1. (3.5)

Recall that U,V € U(n), so we have

kaua = Iy (ulive)vy + lo(utvy )vg,

by left-multiplication with I ® u} and conjugating (3.5). Similarly, kyu; = Iy (ujve)vy +
lg(uévl)v% ll’Ul = kl(’U;UQ)Ul + k'Q(U;Ul)'UQ, lg’Ug = kl(UTUQ)Ul + k’Q(UTUl)Ug.
If kiko # 0, it is easy to see that Spanc{ui,us} = Spang{vy,ve}. If one of ky, ko is

zero, we can assume without loss of generality that k1 # 0 and ko = 0. Then one of [1, [5
is also zero, otherwise v; and ve would be linearly dependent. Assume without loss of
generality that I; # 0,1y = 0, thus

ki @ ug = 1107 ® va.
Since U,V € U(n), we have |k1/l;| =1 and
1= (v] ®v3)(T1 ® v2) = (k1 /l)(v] ® v3) (W1 @ up) = (k1 /l)(v1UT @ vuz).

The equality condition of Cauchy-Schwartz inequality implies that uy,v; are linearly
dependent and us, v are linearly dependent.
In any case, we have Spanc{ui,us} = Spanc{v1,ve}. Therefore

U*XU = U*AU + U*BU = diag(a, —a,0, - - - ,0) + diag(By, On_2),

where By € M (2,C). Setting X, := diag(a, —a) + By, we have the necessity.
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To prove the sufficiency, since Xg € M(2,C) and Tr Xy = 0, it follows from Proposi-
tion 2.2 (b) and Corollary 2.5 that

M(Tx) = M (Taiag(x0.0, ) = M(Tx,) = 2 = [Tr(Xo)[* = 2.
This completes the proof. 0O

Now we give a new proof of the equality condition for the complex BW inequality.
With the notion introduced in [5], a pair (X,Y") of M(n,C) is said to be maximal if
X #0,Y #0 and | XY — YX|? = 2||X|]?|]Y]|? is satisfied.

Corollary 3.3. Let X,Y € M(n,C) be nonzero matrices. Then (X,Y) is mazimal if and
only if there exists a unitary matrix U € U(n) such that

X = U diag(Xo,0)U* and Y = U diag(Yp,0)U"
with a mazimal pair (Xo,Yo) in M(2,C), i.e., XoLcYy and Tr Xo = Tr Yy = 0.

Proof. Without loss of generality, we assume || X|| = |Y]| = 1. If (X,Y") is maximal, by
definition, we have

(IxY,Y) = (Iy X, X) = ||[X, Y]|]* = 2.

Thus A\ (Tx) = M (Ty) = 2 and hence by Theorem 3.2, there exist unitary matrices
Ui,Us € U(n) such that

X = U, diag(Xo,0)U; and Y = U, diag(Yy,0)Us

with Tr X = TrY = 0. Since Y is an eigenvector of the maximal eigenvalue A\;(Tx) = 2
and X is an eigenvector of the zero eigenvalue of T'x, we know immediately X LcY.
Moreover, by (2.2) and Proposition 2.2 (b) we know U;YU; is an eigenvector of the
maximal eigenvalue A\ (Ty: xv,) = M (Tx,) = 2, which implies Uf'YU; = diag(Y),0) for
some Yy € M(2,C). This completes the proof of the necessity.

The sufficiency can be verified by direct computation (cf. [5,8]). O

Let [|X||(2),2 be the Ky Fan-mix (2, 2)-norm defined by (see [2,27])
X2 = /o7(X) + o3 (X).
For X € M(n,R), Lu [22] has already proved
M(Tx) <2 X |3y 2

Though this proof can be technically extended to the complex version, we want to give
an alternative proof using the approach of Kronecker products.
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Theorem 3.4. For X € M(n,C) with || X|| = 1, we have
M (Tx) < 2||X||%2),2 <2
Proof. For Y € M(n,C), by Proposition 2.4 we have
(WW*3,7) = (TxY,Y), (3.6)
where
v (1501 0), 0 7 (V).
2N x2N

Notice that

. [(I®X'X —-X'@X*
ww _<—X®X XXt®I>2NX2N’
* ty
W*W:(I(XJXX gXX@I 8) '
2N x2N

Let L; and F; be the first eigenspace of Tx and WW* | respectively. And let
=~ VecY
Ll = {(VecY) Y € Ll}a Ef_ = {§ S (C2N : fJ_El}

We can assume without loss of generality that dim £ = 1, since dim £ > 2 implies that
A (WW*) = Ao(WW™*), then by Lemma 2.6 (a) and (3.6) we have

A (Tx) <20 (WW*) = 20(WW*) = 22 (W*W) = 2(07(X) + 05(X)) = 2] X |7 2-
Thus by Proposition 2.2 (¢) we have dim L; > 2 and
dim(L; N Ef) = dim Ly + dim Ef- — dim(L; U Ef)
>242N-1-2N=1.

Therefore L1 N E{ is non-empty and by Lemma 2.6 (a) and (3.6), for any Y € L; with

IY] =1and &= (YY) € Ly (€]l = v2), we have

M(Tx) = (TxY,Y) = (WW'E,§) =2 max (WW7E,§)

f€L1ﬁE1J'
llgli=1
< 2 max (WW*E, &) = 20 (WW*) = 2| X ||ty »-
i1
| =

This completes the proof. 0O
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Denote the upper bound in Theorem 3.1 by
Cx = 2(Iri1%x{—aiaj} + Hzlz}x{—bibj}) + HX||?2)12.

It is worth remarking that Cx < 2||X||%2) , if rank(X) < 2. In general, C'x is not
necessarily less than 2||X||%2) ,- However, we are able to obtain Cx < 3HX||?2) 5, since

{la; —ibp_jt1 |2}§L:1 is majorized by {07 (X)}7_, due to Ando-Bhatia [1]. Therefore these
two upper bounds are strictly different. Combining Theorems 3.1 and 3.4, we have the
following estimate.
Corollary 3.5. For X € M(n,C) with || X|| = 1, we have

M (Tx) <min{Cx, 2| X ||ty 5} < 2.

Furthermore, our approach can be used to estimate all eigenvalues of T'x by these of
K, (Proposition 2.4). Recall that the set of eigenvalues of K is given in (3.1).

Theorem 3.6. For X € M(n,C) with || X|| = 1, we have \j(Tx) < 2X;(K1) for all i.
Proof. Recall that K1 = I ® X*X + XX'® I, Ko =— (X'® X*+ X ® X), and
VecoTx o (Vec)_1 =K + K>.
Let Ky := I ® X + Xt ® I. Then we observe
2K, — VecoTx o (Vec) ' = K1 — Ky = Ky Kx >0,

which implies \;(Tx) < 2X\;(K7) for alli. O

In particular, Theorem 3.6 implies Theorem 3.4 since

M (Tx) = Aa(Tx) < 2Xo(Ky) = 2(0% + 03) = 2HX||%2),2~

4. Equivalence of the conjectures with the LW Conjecture

In this section, we prove the equivalence between Conjectures 4—6 and Conjecture 2,
i.e., Theorem 1.1 in the complex version. The proof will be split into the following four
propositions.
Proposition 4.1. Conjecture 2 is equivalent to Conjecture /.

Proof. Assume Conjecture 2 is true at first. Setting B = X and B, be a unit eigenvector
of Aan—3(Tx) for @« = 2,--- ;m, by the representation of Sx in (2.3, 2.4) we know
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Sx B, = [B, B,]* is exactly an eigenvector of Aaq—2(Tx). Therefore the conditions (i, ii)
of Conjecture 2 are satisfied and thus we have the inequality (1.2). Then the inequality
(1.3) of Conjecture 4 for k = m — 1 follows by Proposition 2.2 (¢) and the following
calculation:

2k m m m
> Xil(Tx) =2 Xa—s(Tx) =2 (TsBa,Ba) =2 |[B,Ba]|I?
=1 a=2 a=2 a=2

<2 ( max | Ba | + Z ||Ba|2> |B||? = 2m = 2(k + 1).

2<a
a=2

Now we assume Conjecture 4 is true. Without loss of generality, we assume 1 = || B|| >
|B2|| > -+ > ||Bm|| > 0. Using summation by parts, we can write

I =S (T5Ba, Ba) = <TB a_ _Ba >||Ba||2
2 Iz 2 AT B B

B8
B B,
1Bs ]2 — | B <TB a >
(155 ) 2 T B B

2 a=2

Ms

a=2

(4.1)

I
NgE

i~y
||

where By,+1 = 0. Setting X = B, the conditions (i, ii) of Conjecture 2 show that the
subspace W := Spanc{B,}1, is isotropic about Sx, i.e., Sx(W)LcW. Then by the
formula above, Lemma 2.1 (¢) and the inequality (1.3) of ConJecture 4, we have

ZII [B. Bal|I” <

B

(||Bﬁ||2 —1Bg11l%) Y Asas(Tx)
a=2

NE uMs

< (IBsI?* = I1Bs+11?) 8

T
[ V)

= 1Ba® + D [I1Ball?,
a=2

which is the inequality (1.2) of Conjecture 2. The proof is complete. O
Proposition 4.2. Conjecture 4 is equivalent to Conjecture 5

Proof. Obviously Conjecture 5 implies Conjecture 4 by definition. Suppose Conjecture 4
to be true. To prove Conjecture 5, we only need to prove the following four parts:

(i (TX)<2
Ni(Tx) <2k + 2
= Ni(Tx) < 2k + 1

)
ii)
iii)
iv) Ni(Tx) =2n —2|Tr X|? < 2n,

A1
Drl
Z2
YL
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where (i) and (iv) are ensured by the complex BW inequality (e.g., Theorem 3.1) and
Corollary 2.5, and (ii) is assumed by Conjecture 4, respectively. We are left to show the
inequality (iii). We prove it by contradiction in the following.

Assume that there is a positive number m > 2 such that

2m—1

Z Al(Tx) >2m + 1.
i=1

Then
2m—1 2m—2
2m+1< Z Xi(Tx) = Xom—1(Tx) + Z Xi(Tx) < Xom—1(Tx) + 2m.
i=1 i=1
Thus
>\2nL(TX) = AQm—l(TX) > 17
and
2m 2m—1
D Ai(Tx) = dom(Tx) + > Mi(Tx) > 1+2m+1=2m+2.
i=1 i=1

This leads to the contradiction to (ii) and completes the proof. O
Proposition 4.3. Conjecture 4 is equivalent to Conjecture 6.

Proof. The proof is somehow similar to that of Proposition 4.1. However, we are unable
to use Lemma 2.1 (c¢), since we have no condition (ii) of Conjecture 2. Therefore we
estimate the full sum of \;’s here instead of only half of it.

Assume Conjecture 6 is true. Setting B = X and B, be a unit eigenvector of A,—1(T’x)
for « = 2,---,m, we know or can ensure that B,’s are C-orthogonal, and therefore
we have the inequality of Conjecture 6. Then the inequality (1.3) of Conjecture 4 for
m = 2k + 1 follows by

S M) = 3 et (Tx) = S (T5Ba, Ba) = 3 1B, Bl
i=1 a=2 a=2 a=2

2<a<m

< (2 max [|Ba]”+ IIBa||2> 1B]|* = m +1.

a=2

Now we assume Conjecture 4 is true (and hence Conjecture 5 is true by Proposi-

tion 4.2). We have
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m

Z’\i(TX) <m+2 for any m.
i=1

Without loss of generality, we assume 1 = [|B|| > ||Bz2|| > -+ > ||Bn]| > 0 and set
B,,+1 = 0. Then by (4.1), we have

B—1

(HBBH2 —[1Bs+1l*) D Aa(Tx)

a=1

ZIIBB JI* <

(IBsll* = 1 Bs+111?) (B + 1)

MS ||MS

b
[

=2||Ba|* + ) | Ball?,
a=2

which is the inequality of Conjecture 6. O
Proposition 4.4. [23] The LW Congjecture 2 implies Conjectures 1 and 3.

Proof. Conjecture 3 is trivially implied by Conjecture 4 due to Proposition 4.1 and thus
by Conjecture 2.

As for Conjecture 1, the proof is similar to the real version in [23] with only the inner
products replaced by traces for our complex version now. O

5. Partial results on the complex LW Conjecture

In this section, we prove the complex LW Conjecture separately for a couple of special
cases (Theorem 1.2). For the general case, we give some non-sharp upper bounds for the
inequalities of Conjectures 3 and 4 (Theorems 1.3 and 1.4).

Firstly we prove the complex version of Conjecture 3 for the first special case of
Theorem 1.2. We remind that Conjecture 3 is the first instance of the complex LW
Conjecture 4 after the solution of the BW inequality (i.e., A\1(Tx) < 2).

Normality often plays a special role, and also the BW inequality could be treated much
simpler with this property. In the context of geometry as with the DDVV inequality, it
naturally emerges.

Theorem 5.1. Conjecture 3 is true when X is a normal matriz.
Proof. Since X is a normal matrix, there exists a unitary matrix U such that

U*XU = diag(z1,- -+ ,&n), for some xq1, -+ ,x, € C with 2:|ch|2 =
i

Direct calculations show that for any 1 < 4,5 < n,
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Ty-xu(Eij) = |z — z;*Eij,

where E;; € M(n,C) is the standard basis matrix with the (7, j)-clement being 1 and
the others being 0. Then by the identity (2.2):

Ty-xv(U*YU) = U*Tx (Y)U,
we have
Tx(UE;;U*) = UTy-xu(Eij))U* = |v; — 2, PUE;U*.
It follows that
MIx) ={|z; —2;?:1<i,j<n}={\ > >N}

Suppose A1 = Ay = |, — 3p|%, A3 = Ay = |2, — 24/, where 1 < a,b,¢,d < n. There are
two cases need to be discussed:

o If a,b,c,d are four different integers, then
M+ A3 = [za — p|* + |ze — zal® < 2(Jwal® + 2o]* + J2e|® + |zal?) < 2.
e If one of a,b is equal to one of ¢, d, we can assume a = ¢, b # d. Then
AL+ Az = [zq — 2)* + |20 — 24l
= |20l = 2aTp — Tawy + 23] + |2a|® — 20Td — Tawa + |2al?
< 2lq|? + 2[aa| (20| + |2al) + |20]* + |24
< 3Jzal® + (Jab] + [wal)® + [as)? + |2a]?
< 3(|Jwal® + |zof* + |za?) < 3.
The equality holds if and only if |z,| = @, Tp = Tq= —%xa, other z. = 0.
The proof is complete. O

For more general cases, we need Lu’s lemma in the complex version. By dividing each
complex number into real and imaginary parts, the complex version follows immediately
from the real version.

Lemma 5.2. [21, Lemma 1] Suppose n1,--- ,ny, are complex numbers and

Mt =0, |t =1
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Let rij > 0 be nonnegative numbers for i < j. Then we have

Z ‘771 773| 7"2] S ZT” + maX sz) (51)

1<j 1<j
Corollary 5.3. The complex LW Conjecture /j is true when X is a normal matriz.
Proof. Let X be a normal matrix with || X|| = 1, and let

X:X—TrX

1.
n

Then Tr X = 0, [X,Y] = [X,Y] and

| Tr X |?

IX11% = 1x11* < [IX[P* =1

It follows from the proof of Theorem 5.1 that
ATx) = NTx) = {ln: —n|* : 1 <i,j <n},
where A(X) = {171,772,--~ M} Let X = X/||X| and r;; € {0,1}. Then Tr X = 0,

|X|2=1and Ty =Ty = ||X||2T~ Thus Lemma 5.2 is applicable and tells us

k
Y Aoa1(Tx) = ZAM | _||XH2Z/\2& 1(Tx) <k +1,
a=1

a=1

where A2o—1(T5) equals some ‘771/||XH —nj/HXH‘ and 7;; = 1 for k pairs of (i < j).
This completes the proof. O

Corollary 5.4. Let By, -+, B, € M(n,C) be Hermitian matrices. Assume that

Tr (BQ[B,Y,B/B]) =0 (5.2)

forany 1 < «,B,v < m, we have

i 1 1Ba, Bs] [I* < (Z 1 Ba |I2>

a,B=1

Proof. As Hermitian matrices are normal matrices, by Corollary 5.3 above, the complex
LW Conjecture 4 holds for this case. This in turn by Theorem 1.1 implies the complex
version of Conjecture 1. O
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Remark 5.5. When By, - -+, B, are real symmetric matrices, (5.2) is valid for all «, 3, .
Thus the corollary generalizes the DDVV inequality. We remind that for general Hermi-
tian matrices without the trace condition, the optimal constant ¢ = % is bigger than 1
here (cf. Section 1, [16], [17]).

Next we prove Conjecture 3 for the second special case rank(X) = 1.
Theorem 5.6. The complex LW Congecture 4 is true when rank(X) = 1.
Proof. Recall Proposition 2.4 that we have K} Kx = K; + K3, where K1 =1 ® X* X +

XX'®lI, Ky=— (Xt®X* +7®X). Denote K3 = — X' ® X*, then Ky = K + Kj.
In [3], we can find that for any M € M(n,C),

M*+ M
A (T—‘r) SO’i(M), 1<1<n.

Thus

K; + K

Ai(Ka2) = 2); ( .

) <20;(K3), 1<i<n.
Let 01(X) > --- > 0,(X) be the singular values of X, then by Lemma 2.6 (a),
O'(Kg) = {UZ(X)JJ(X) 1< 27] < ’I’L}

In particular, now rank(X) = 1 implies 01(X) = 1 and 0;(X) = 0 for 2 < i < n. Thus
we have o(K3) = {11,0¥~1} and by (3.1)

MK = {00(X)? + 0;(X)? : 1 <, j < n} = {2,120=D (=D},

Finally by Propositions 2.2 (¢), 2.4 and Lemma 2.6 (b), we have

k k k k
ZAQi—l(TX) = Z)\Qi(TX) < Z)\i(Kl) + Z)\Qi(KZ)

k
)\'L(Kl) + Z 2021'(K3)

=1

-

s
Il
-

|

s
I
—

)\i(Kl) S k + ]-7

which completes the proof. O

Furthermore, we can get the characteristic polynomial of Tx if rank(X) = 1.
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Proposition 5.7. Let Kx = I ® X — Xt ® I. Then the sets of singular values
o(kx)=o(Ten —(Aen) (@ e Q)),
where X = Q1AQ> is the singular value decomposition of X and Q = Q2Q.

Proof. Direct calculations show

Kx=10X —X'®I=I1®(Qi1AQ2) — (Q4AQ}) ® I
= (50 Q) [IeA —(A0]D)(Q'® Q)] (Q2® Q).

This completes the proof thanks to the invariance of singular values under congru-
ences. O

Theorem 5.8. Let X be a complex square matriz of order n (> 2) with || X|| = 1 and
rank(X) = 1, then the characteristic polynomial of Tx is

2
det()\IN — TX) = ()\ -2+ |TrX|2) ()\ . 1)2n74 /\(n—1)2+1.

Proof. Proposition 5.7 implies o(Kx) = 0(Kx), where Kx = I®A —(A® I) (Q® Q).
By Proposition 2.4, we have

A(Tx) = MExK5) = AKxKx ),
where direct calculations show
KxKx =10 + o1 —(Q"A) 8 (AQ") - (AQ)® (QA).
Since || X|| = 1 and rank(X) = 1, one has A = diag(1,0,---,0). By direct calculations,

we have I @ A2 + A2 ® 1 = diag(I + A,A,---,A) and thus

. A B
(oD - R — nxn nx(N—n)
(I@I) - KxKx (C(N—n)Xn Dv—myx(v=n) ) y

where

A= ()‘ - 1) I-A+ Q11©A + EAQta B:= (ql?@Aa (113@/\7 e 7q1n@A) )
C:=B*, D:=diag(\[ — A,\[—A,--- AT — A).

Without loss of generality, suppose that the determinant of the matrix D is not zero,
then
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A B
det(c D)det (A—BD™'C) -det D

- det( (1 ~qu )QABAQf> -det D

(A |q“| QAQ) -det D,

where D = (Al — A)~! = diag(515, %+, ). Thus

_ 1—|gul’ = A Bix(n-1
A—BD 1C:A_4QAQt: _ X _ ><(n ) ,
A—1 Cin-1)x1 Din-1)yx(n-1)/ 5,

" - 2
where A := \—2+42|q11|> — M lqu1 |, (%1%1%7“' NI 2,\+_‘liu| ),
C:=B*D:=M\-1)1- %u u, = (G21,431, """ > Gn1)-

Similarly,
det (4 ?) ~det (A~ CA'B) - det A
C D
1 . ~
=det [(A=1)] — ————u"u | -det A
A=1+|qu

/\—2‘|'|(]11|2 n—2 1 2 2
S P Vi L W J—(r-1 —2
l)\/\—l—i—qnf A=1) )\71(/\ +laul )(A +|q11|>
2
- ()\— 2+ |q11|2) (A—1)" 3,

So we have

det (é g) —det (A~ CA™'B) - det A-det D
= (A= 2+laul) A=A G- 1A
= ()\ -2+ |¢111|2)2 (A —1)2 A\

Finally we observe that q1; = Tr X. The proof is complete. O

Immediately, we obtain the following assertion.

Corollary 5.9. Let X be a complex square matriz of order n (> 2) with || X|| =1 and
rank(X) = 1. Then \(Tx) = 2 if and only if Tr(X) = 0.
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Remark 5.10. Actually, the conditions || X || = 1, rank(X) = 1 and Tr(X) = 0 in Corol-
lary 5.9 imply that X is unitarily similar to diag(Xy, O), where

0 0
=1 )
Here, we can give a simple calculation. Suppose X = @Q1AQ2 is the singular value

decomposition of X and @ = Q2Q1, then QX Q1 = AQ. Due to || X|| =1, rank(X) =1
and Tr(X) = 0, we can assume

AQ=<8 3)7

where ¢ = (q12,¢13," - ,q1n) and |lg]] = 1. Extend ¢ to be a unit orthogonal basis
{a,p1,p2, -+ ,pn—2} of C"~! and let
g (0 1 0 0 0
¢ O pi Py - Pha)’

then U*U = I and U*Q; X QU = diag(Xy, O).
The last special case of Theorem 1.2 is a simple consequence of Corollary 2.5.
Theorem 5.11. The complex LW Conjecture j is true when n = 2, 3.

Proof. The case n = 2 is immediate since Corollary 2.5 implies that the set of eigenvalues
A(Tyx) is weakly majorized by {22,02}.
The case n = 3 is similar, since Corollary 2.5 shows that

2k
D N(Tx) < TrTx =6-2Tr X|° <6 <2k+2 foranyk >2,
i=1

and for k =1 it follows from the BW inequality (e.g., Theorem 3.1) that

2k
D Ai(Tx) =20 (Tx) <4 =2k +2.

i=1
The proof is complete. O
Now we come to prove the partial results with increased bounds.
Proof of Theorem 1.3. Due to the previous result, we assume n > 4. Otherwise it is

trivial. By Lemma 2.6 (b) and the proof of Theorem 3.1, for the fixed sequence i; =
2,19 = 3,13 = 4, we have
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4 4 3
D N(Tx) <Y N(Kr) + ) Ni(Ka)
=2 =2 =1
3
< 3(0%()() + ag(X)) +2)° (/\l—(—At ® A) + (B ® B)),

as Kpy = —X'@X* - X®X =2(B'® B~ A" ® A) for the decomposition X = A+ B
with A Hermitian and B skew-Hermitian. Similarly we have

M (Tx) = Ma(Tx) < o3(X) + 03(X) + 2()\1(—At ® A) + M (Bt ® B)).

This implies

4

> 0i(Tx) < 4(03(X) +03(X)) + 6(X),

i=1

where ¢(X) := p(A4) + ¢(B) and

3
P(A) = AN (AT @ A)+2)  N(—A'® A),
=2
3
$(B) =4\ (B'®@B)+2> \(B'® B).

Let MA) ={a1, - ,an}, a1 > -+ > an; A(B) = {b1i,- -+ ,bni}, by > -+ > b,. Then
by Lemma 2.6 (a),

)\(—At (39 A) = {_aia'j 01 S Za.] S Tl},
AB'® B) = {=bibj : 1 <i,j <n}.

We claim that
B(X) = p(4) + 3(B) < VIO(J|AI* + | BI).

We only show ¢(A4) < v/10||A|%. The argumentation for ¢(B) is similar. Obviously ¢(A)
can only be positive if Ay > 0, i.e. a; > 0 > a,, in which case we have

M (—A'® A) = Mo(-A'® A) = aran| = max{—a;a;}
,]
and

A(—A'® A) = M(—A' ® A) = asa,]| (or ai|a,—_1]|) > 0.
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Then

©(4) = 6a1|an| + 2az|an| = 2|a,|(3a1 + a2)
< 2V10|an|\/a? + a? < V10(a2 + af + a3)
< V10[|A[?,

(or o(A) = 6a1|an| + 2a1|an_1| = 2|a1|(3an + an_1) < V10| A||?). In conclusion,
4

> A(Tx) < 4(03(X) + 03(X)) + VIO(J|AJ2 + | BI?) < (44 VI0)[X] %
=1

As all eigenvalues arise twice, this completes the proof. O

Remark 5.12. From the proof, one can see that the (non-sharp) upper bounds for the
complex version and the real version of Conjecture 3 are both equal to 2 4+ 1/10/2.

Remark 5.13. The reason of why we did not get the optimal upper bound 3 of Conjec-
ture 3 mainly comes from that we divided the Hermitian matrix K% K x into three parts
and estimated them separately. With the following example in mind, we don’t know how
to sharpen our method to prove Conjecture 3. Set

—0.1236 0.0334 0.0647
X = —-04343 0.1029 —-0.8833
0 0 0

By numerical calculation we see

4
> Ai(Tx) % 5.9814 < 6 < 4(03(X) + 03(X)) + 6(X) ~ 7.0554 < 4+ V0.
=1

To estimate higher order eigenvalues, we need the following lemma.

Lemma 5.14. Suppose 1n1,M2, - ,Mn, and wi,wa, - Wy, are nonnegative real numbers
and ri; € {0,1} such that

niy n2

inf—l—iw? =1, erij =m.
i=1 i=1

i=1 j=1

Then we have

ny N2

\/ﬁ
ZZ%%‘U;‘ < 5 (5.3)

i=1j=1
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Proof. Suppose 11 > -+ > np, > 0and wy > -+ > wy, > 0, without loss of generality
we can select the following m elements with non-vanishing r;;’s:

© 2 MW,
-2 2Wp,

¢ NwW1 > Nw2

> ..
e MoWwi = Nows > - -

o MW = Mo = Z Wy,

where py + ps + - - - + p = m. Thus we complete the proof by

ni no t Pi

t t  pi t
DD Ty = Zmzwa SOOI DI NP I,
i=1 i=1 j=1

=1 j=1 =1 =1 j=1

< T mier s (L) =

Proof of Theorem 1.4. The proof is similar to that of Theorem 1.3. Briefly, by Lemma 2.6
(b) and Lemma 5.14, we have

2k 2k 2k
> Xi(Tx) < ZMKl) + ZAZ-(IQ)

Z (K1) +2Z( (~A'® A) + \(B' @ B))
<2%+1+ 2(\/E||A||2 + \/E||B||2>
=2k + 1+ 2V,
where Zfil Ai(K1) < 2k + 1 follows from
M (K1) =203(X) <2, Mi(K7) < Ao(Kp) =03(X) +05(X) <1 fori>2;

and

k
S N(A @A) <23 Ao (—AT @ A) < VE|A|?

r=1
(similar for Z L \i(Bt® B) < VE||BJ|?) follows by setting in Lemma 5.14

{m = a;/||Al], 1< <ny,
Wy = _a‘n1+j/||A||7 1<j<n—mn,
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fora; > -+ > an, > 0> ap,41 > --- > a, and noticing that now the nonnegative
eigenvalues \o,_1(—A' @ A) = Ao, (—A' ® A) = —a;a,,+; appear in pairs. O
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