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and the DDVV inequality, Lu and Wenzel proposed several 
conjectures in 2016. In this paper we discuss further these 
conjectures and put forward a couple of new conjectures 
which will be shown equivalent to one of the conjectures. In 
particular, we prove this conjecture and hence all conjectures 
in some special cases. Another conjecture is shown with 
a slightly bigger upper bound. In addition, the developed 
methods give some new simple proofs of the complex BW 
inequality and its condition for equality.
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1. Introduction

In 2005, Böttcher and Wenzel [4] raised the so-called BW conjecture that if X, Y are 
real square matrices, then

* Corresponding author.
E-mail addresses: jqge@bnu.edu.cn (J. Ge), faguili@mail.bnu.edu.cn (F. Li), zlu@math.uci.edu

(Z. Lu), zhou_yi@mail.bnu.edu.cn (Y. Zhou).
1 The first author is partially supported by Beijing Natural Science Foundation (Z190003), NSFC (No. 

11522103, 11331002) and by the Fundamental Research Funds for the Central Universities of China.
2 The third author is partially supported by the National Science Foundation of USA (DMS-19-08513).
https://doi.org/10.1016/j.laa.2020.01.027
0024-3795/© 2020 Elsevier Inc. All rights reserved.

https://doi.org/10.1016/j.laa.2020.01.027
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/laa
mailto:jqge@bnu.edu.cn
mailto:faguili@mail.bnu.edu.cn
mailto:zlu@math.uci.edu
mailto:zhou_yi@mail.bnu.edu.cn
https://doi.org/10.1016/j.laa.2020.01.027
http://crossmark.crossref.org/dialog/?doi=10.1016/j.laa.2020.01.027&domain=pdf


J. Ge et al. / Linear Algebra and its Applications 592 (2020) 134–164 135
‖XY − Y X‖2 ≤ 2‖X‖2‖Y ‖2,

where ‖X‖ =
√

Tr XX∗ is the Frobenius norm (with X∗ denoting the conjugate trans-
pose of X). After some steps and several fundamentally different proofs (cf. [2,5,21,26]), 
the inequality is now known to be true in the complex case. Also, analogues with, e.g., 
Schatten norms were investigated (cf. [6,9,27,28]). We recommend [7] and [24] for a 
comprehensive overview on the developments.

In comparison with the BW inequality that estimates the Frobenius norm of the 
commutator between two arbitrary matrices, the DDVV inequality involves commutators 
of arbitrary many, but only real symmetric matrices. The original formulation in the 
language of submanifold theory was posed in 1999 by De Smet, Dillen, Verstraelen and 
Vrancken [11], but later transformed into the matrix-algebraic inequality

m∑
α,β=1

‖ [Bα, Bβ ] ‖2 ≤ c

(
m∑

α=1
‖Bα‖2

)2

,

(see [12]). The classical result is c = 1. It was shown by the authors’ groups independently 
and differently (cf. [14,21,10,15,20]). Also other classes of matrices were analyzed (cf. [13,
16,17]), resulting into various DDVV-type inequalities with other values of c depending 
on the matrix structure.

With the BW inequality and the DDVV inequality on both hands, Lu and Wenzel 
([23,24]) summarized the commutator estimates and considered a unified generalization 
of them. They started with the following three conjectures and an open question in the 
space M(n, K) of n × n matrices over the field K.

Conjecture 1. Let B1, · · · , Bm ∈ M(n, R) subject to

Tr
(

Bα[Bγ , Bβ ]
)

= 0

for any 1 ≤ α, β, γ ≤ m, then

m∑
α,β=1

‖ [Bα, Bβ ] ‖2 ≤
(

m∑
α=1

‖Bα‖2

)2

. (1.1)

Conjecture 2. (LW Conjecture). Let B, B2, · · · , Bm ∈ M(n, R) with

(i) Tr(BαB∗
β) = 0 (i.e., Bα⊥Bβ) for any α �= β;

(ii) Tr
(

Bα[B, Bβ ]
)

= 0 for any 2 ≤ α, β ≤ m.

Then
m∑

‖ [B, Bα] ‖2 ≤
(

max
2≤α≤m

‖Bα‖2 +
m∑

‖Bα‖2

)
‖B‖2. (1.2)
α=2 α=2
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Note that the number m cannot be arbitrarily large.

Conjecture 3. For X ∈ M(n, R) with ‖X‖ = 1, let TX be the linear map on M(n, R)
defined by TX(Y ) = [X∗, [X, Y ]] and λ1(TX) ≥ λ2(TX) ≥ λ3(TX) · · · be its eigenvalues. 
Then

λ1(TX) + λ3(TX) ≤ 3.

Question 1. What is the upper bound of 
k∑

i=1
λ2i−1(TX)?

If k = 1, the bound is 2 by the BW inequality, i.e., λ1(TX) ≤ 2, since we have

λ1(TX) = max
‖Y ‖=1

〈TXY, Y 〉 = max
‖Y ‖=1

‖[X, Y ]‖2 ≤ 2.

If k = 2, the bound is supposed to be 3 by Conjecture 3. How are all these conjectures 
and the known inequalities connected? When restricted to real symmetric matrices, Con-
jecture 1 reduces to the DDVV inequality. It turns out that not only the BW inequality 
and the DDVV inequality but also both Conjectures 1 and 3 are implied by Conjecture 2
(cf. [23]). Moreover, we will show that Conjecture 2 is equivalent to assigning k+1 as the 
upper bound of 

∑k
i=1 λ2i−1(TX) for k ≥ 1, which is nothing but the new Conjecture 4

due to the fact that λ2i−1(TX) = λ2i(TX) for any i (see Proposition 2.2 (c)). Hence, Con-
jecture 2 (as well as the equivalent Conjectures 4–6) takes exactly the role of a unified 
generalization of the BW inequality and the DDVV inequality for real matrices. We call 
it the Fundamental Conjecture of Lu and Wenzel, or simply the (real) LW Conjecture.

First consider K = R.

Conjecture 4. For X ∈ M(n, K) with ‖X‖ = 1, we have

2k∑
i=1

λi(TX) ≤ 2k + 2, k = 1, · · · ,

[
n2

2

]
. (1.3)

In fact, the sum 
∑2k

i=1 λi(TX) in Conjecture 4 cannot exceed 2n. We explain this by 
introducing the following Conjecture 5 which looks stronger but in fact is equivalent to 
Conjecture 4.

Before continuing, we adopt some notation from [29] and [19]. Let x = (x1, x2, · · · ,

xn) ∈ Rn, where x↓
1 ≥ x↓

2 ≥ · · · ≥ x↓
n. For x = (x1, x2, · · · , xn) and y = (y1, y2, · · · , yn)

in Rn, we say that x is weakly majorized by y, written as x ≺ y, if

k∑
x↓

i ≤
k∑

y↓
i , k = 1, 2, · · · , n.
i=1 i=1
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Multisets are an extension of the set definition by allowing elements to appear more than 
one time. A finite multiset is often represented as {a

m(a1)
1 , am(a2)

2 , . . . , am(an)
n }, where 

m(ak) ∈ N is the multiplicity, that is, the number of occurrences. For example, the 
multiset {a, a, b} is written as {a2, b}. We use ordered vectors and abbreviating multisets 
synonymously.

Conjecture 5. For X ∈ M(n, K) with ‖X‖ = 1, the set λ(TX) of decreasingly ordered 
eigenvalues of TX is weakly majorized by the multiset {22, 12n−4, 0(n−1)2+1}.

As promised, this becomes

2k∑
i=1

λi(TX) ≤ 2n, for k ≥ n,

seemingly strengthening the assertion of Conjecture 4. Another equivalent conjecture 
that also appears to be stronger is the following Conjecture 6. It omits the second 
assumption of Conjecture 2, at the price of a factor 2 in the bound.

Conjecture 6. Let B, B2, · · · , Bm ∈ M(n, K) with Tr(BαB∗
β) = 0 for any 2 ≤ α �= β ≤ m. 

Then

m∑
α=2

‖ [B, Bα] ‖2 ≤
(

2 max
2≤α≤m

‖Bα‖2 +
m∑

α=2
‖Bα‖2

)
‖B‖2.

We summarize the relations of these conjectures in the following theorem. Remember 
K = R so far.

Theorem 1.1. The following relations hold in these conjectures.

(i) Conjectures 2, 4, 5, and 6 are equivalent to each other.
(ii) If one of the conjectures above is true, then Conjectures 1 and 3 hold.

Since the BW inequality (resp. the DDVV inequality) holds also for complex (resp. 
complex symmetric) matrices (cf. [5], [17]), we can also consider the same conjectures as 
above in the complex version K = C. In fact we will prove the relations of Theorem 1.1
between these conjectures in the complex version. Hence we call Conjecture 2 for complex 
matrices the complex LW Conjecture. Obviously, the complex LW Conjecture implies 
the real LW Conjecture.

In this paper, we prove the complex LW Conjecture in some special cases which we 
conclude in the following.

Theorem 1.2. The complex LW Conjectures 4 and 5 (and because of Theorem 1.1 all 
conjectures of this paper) are true in one of the following cases:
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(i) X ∈ M(n, C) is a normal matrix;
(ii) rank X = 1;

(iii) n = 2 or n = 3.

For the Conjectures 4 and 5 in general we are able to get some weakened results as 
follows.

Theorem 1.3. For X ∈ M(n, C) with ‖X‖ = 1, we have

λ1(TX) + λ3(TX) ≤ 4 +
√

10
2 ≈ 3.58.

Theorem 1.4. For X ∈ M(n, C) with ‖X‖ = 1, we have

2k∑
t=1

λi(TX) ≤ 2k + 1 + 2
√

k, k = 1, · · · ,

[
n2

2

]
.

In Section 2 we prepare several useful lemmas and properties of TX . It turns out that 
the methods we developed in the study of the conjectures above lead us to some new 
simple proofs of the complex BW inequality and its condition for equality, which we 
will discuss in Section 3. It is just the first eigenvalue estimate λ1(TX) ≤ 2, the basic 
case k = 1 of the complex LW Conjecture 4. In Section 4 we prove the equivalences in 
Theorem 1.1 in the complex version. In Section 5 we prove the special cases given in 
Theorem 1.2 and the partial results of Theorems 1.3 and 1.4.

Although the inequalities we study in this paper are matrix inequalities, it is not hard 
to generalize them as inequalities of bounded operators on separable Hilbert spaces. In 
quantum physics, these inequalities are related to the Uncertainty Principle, or more 
precisely, the Robertson-Schrödinger relations. The classical Uncertainty Principle, in 
our notations, can be formulated by

‖[A, B]‖2
OP ≤ 4 ‖A‖2

OP · ‖B‖2
OP ,

where ‖ · ‖OP is the operator norm and A, B are self-adjoint. In this context, the BW-
type inequality can be interpreted as a mathematical generalization of the Uncertainty 
Principle, because we don’t need to assume A, B are self-adjoint. There are some liter-
atures in physics providing various of generalizations of the Uncertainty Principle; see 
[25] for example. In our paper, we study the optimal version of all these inequalities in 
the Frobenius norm.

2. Preliminaries

In this section, we will introduce some necessary notations and lemmas which are 
interesting in themselves. To avoid needless duplication, we discuss the complex version 
directly so as to include the real version.
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Let T be a linear mapping on a complex N -dimensional vector space V with Hermitian 
inner product 〈·, ·〉. In this paper, we always denote by

λ(T ) := {λ1(T ) ≥ · · · ≥ λN (T )}, σ(T ) := {σ1(T ) ≥ · · · ≥ σN (T ) ≥ 0}

the ordered sets of real eigenvalues (if available) and singular values of T respectively, 
where singular values are square roots of eigenvalues of T ∗T .

By elementary linear algebra, we have the following statements.

Lemma 2.1. Suppose T be self-dual and positive semi-definite.

(a) The (geometric) multiplicity of each positive eigenvalue of T is even if and only if 
there exists a mapping S such that

T = S∗S = −S2.

In addition, Tx = 0 if and only if Sx = 0.

Assume T furthermore has even multiplicities (i.e., λ2i−1(T ) = λ2i(T ) for any i with 
λ2i−1(T ) > 0), and S be the unitary skew-symmetric mapping as in (a).

(b) Let y ∈ V with |y| = 1. Then〈
T

Sy

|Sy| ,
Sy

|Sy|
〉

≥ 〈Ty, y〉.

(c) Let W ⊆ V be a complex m-dimensional isotropic subspace of S, i.e., S(W ) ⊂ W ⊥

(〈Sw1, w2〉 = 0 for any w1, w2 ∈ W ). Then we have

Tr T
∣∣
W

≤ Tr T
∣∣
S(W ), Tr T

∣∣
W

≤
m∑

i=1
λ2i−1(T ).

Proof. First we prove (a), the sufficiency is clear. Now suppose that there are g dis-
tinct positive eigenvalues λ(T ) = {t1 = s2

1 > · · · > tg = s2
g > 0} with multiplicities 

2n1, · · · , 2ng, and denote by r = 2 
∑g

j=1 nj the rank of T . Then we can diagonalize T
by a unitary matrix U as

T = U diag
(

t1I2n1 , · · · , tgI2ng
, ON−r

)
U∗,

where ON−r denotes the zero matrix of order N − r. Then the required unitary skew-
symmetric matrix can be defined as

S := U diag
((

O −s1In1
s I O

)
, · · · ,

(
O −sgIng

s I O

)
, ON−r

)
U∗.
1 n1 g ng
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Next we prove (b). Since T = S∗S = −S2, the inequality in (b) is equivalent to

〈T 2y, y〉 ≥ 〈Ty, y〉2.

Let {ei}N
i=1 be an orthonormal basis of V such that ei is a unit eigenvector corresponding 

to λi(T ). Setting y =
∑N

i=1 yiei, then 
∑N

i=1 y2
i = 1 and we have

〈T 2y, y〉 =
N∑

i=1
y2

i λ2
i (T ) =

(
N∑

i=1
y2

i λ2
i (T )

)(
N∑

i=1
y2

i

)

≥
(

N∑
i=1

y2
i λi(T )

)2

= 〈Ty, y〉2.

To prove (c), we will find a suitable basis to compare the traces by using (b). Let 
{Ei}N

i=1 be an orthonormal basis of V such that {Ei}m
i=1 is a basis of W , and under this 

basis we identify V ∼= CN . Denote

rank(SE1, · · · , SEm) = dim S(W ) =: k ≤ m.

Assume k ≥ 1, otherwise we have S
∣∣
W

= 0 and thus Tr T
∣∣
W

= 0 by (a). By singular 
value decomposition, there exist P ∈ U(N) and Q ∈ U(m) such that

P ∗(SE1, · · · , SEm)Q = Λ =:
(

Λ̃k×k O
O O

)
N×m

,

where Λ̃ =: diag(Λ1, · · · , Λk), Λi > 0 for 1 ≤ i ≤ k. Setting

PΛ =: (F1, · · · , Fm),

we have 〈Fi, Fj〉 = ΛiΛjδij for 1 ≤ i, j ≤ k and Fi = 0 for i > k. Thus F̃i := Λ−1
i Fi gives 

an orthonormal basis of S(W ). Let

(Ẽ1, · · · , Ẽm) := (E1, · · · , Em)Q,

then {Ẽi}m
i=1 is an orthonormal basis of W and satisfies

(F1, · · · , Fm) = PΛ = (SE1, · · · , SEm)Q = (SẼ1, · · · , SẼm).

Therefore, (b) implies

Tr T
∣∣
W

=
m∑

〈T Ẽi, Ẽi〉 ≤
k∑

〈T F̃i, F̃i〉 = Tr T
∣∣
S(W ).
i=1 i=1
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Since S(W ) ⊂ W ⊥, {Ẽi}m
i=1

⋃
{F̃i}k

i=1 is an orthonormal basis of W ⊕ S(W ). Hence,

Tr T
∣∣
W

+ Tr T
∣∣
S(W ) = Tr T

∣∣
W ⊕S(W ) ≤

m+k∑
i=1

λi(T ) ≤
2m∑
i=1

λi(T ),

Tr T
∣∣
W

≤ 1
2

2m∑
i=1

λi(T ) =
m∑

i=1
λ2i−1(T ).

The proof is complete. �
Now we consider the linear operator TX as in Conjecture 3. More specifically, for any 

n × n complex matrix X with ‖X‖ = 1, we define

TX : M(n,C) −→ M(n,C), Y �−→ [X∗, [X, Y ]]. (2.1)

It turns out that TX is exactly an operator of the same type as T in the preceding 
lemma with V = M(n, C), dim V = n2 =: N (cf. [21]). For the sake of completeness, we 
repeat some properties of TX , which was the key to Lu’s method for proving the BW 
and DDVV inequalities.

Proposition 2.2. TX has the following properties:

(a) TX is an self-dual and positive semi-definite linear map.
(b) The set of eigenvalues λ(TX) := {λ1(TX) ≥ · · · ≥ λN (TX)} is invariant under 

unitary congruences of X.
(c) The multiplicity of each positive eigenvalue of TX is even, i.e., λ2i−1(TX) = λ2i(TX)

for any i with λ2i−1(TX) > 0.

Proof. For (a), the real version proof given in [21, Lemma 3] is easily turned complex 
by using adjoints instead of transposes.

Part (b) follows immediately from

TU∗XU (U∗Y U) = U∗(TXY )U, for U ∈ U(n). (2.2)

Finally we prove (c). Let λ > 0 be a positive eigenvalue of TX and Eλ be its eigenspace. 
We will show that the complex dimension of Eλ is even.

Define a quasi-linear map by

S̃X : M(n,C) −→ M(n,C), Y �−→ [X, Y ]∗.

Then it follows easily that S̃X(zY ) = z̄S̃X(Y ) for z ∈ C, S̃X is anti-self-dual and 
TX = −S̃2

X because
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Tr
(

Y2(S̃XY1)∗
)

= Tr
(

Y2[X, Y1]
)

= Tr
(

X[Y1, Y2]
)

= − Tr
(

Y1(S̃XY2)∗
)

,

−S̃2
XY = −[X, [X, Y ]∗]∗ = [X∗, [X, Y ]] = TXY.

Now for any eigenvector Y ∈ Eλ, i.e., TXY = λY , we claim that S̃XY is also an 
eigenvector in Eλ which is C-independent (even C-orthogonal) to Y . In fact, since TX =
−S̃2

X we have

TX S̃XY = S̃XTXY = λS̃XY, ‖S̃XY ‖2 = 〈TXY, Y 〉 = λ‖Y ‖2 > 0,

Tr
(

Y (S̃XY )∗
)

= Tr
(

Y [X, Y ]
)

= 0, and thus 〈Y, S̃XY 〉 = 〈i Y, S̃XY 〉 = 0,

where i, as usual, is the imaginary unit.
For k ≥ 1, suppose that SpanC{Yi, S̃XYi}k

i=1 ⊂ Eλ and Yk+1 ∈ Eλ is orthogonal to 
SpanC{Yi, S̃XYi}k

i=1. Then it suffices to prove

S̃XYk+1⊥ SpanC{Yi, S̃XYi}k
i=1.

This is easily verified as follows:

Tr
(

Yi(S̃XYk+1)∗
)

= − Tr
(

Yk+1(S̃XYi)∗
)

= 0,

Tr
(

S̃XYi(S̃XYk+1)∗
)

= Tr
(

Yk+1(TXYi)∗
)

= λ Tr
(

Yk+1(Yi)∗
)

= 0.

The proof is complete. �
Specifying T and S in Lemma 2.1, we can define a unitary skew-symmetric linear 

operator SX on V = M(n, C) such that TX = S∗
XSX = −S2

X as follows.3 Taking an 
orthonormal basis {vi}N

i=1 of V such that vi is an eigenvector of the eigenvalue λi(TX), 
we define SX on this basis by SX(vi) := S̃Xvi = [X, vi]∗ and then extend it linearly to 
the whole space as

SX : M(n,C) −→ M(n,C), Y =
N∑

i=1
yivi �−→

N∑
i=1

yi[X, vi]∗. (2.3)

As in Lemma 2.1 (a), suppose that there are g distinct positive eigenvalues λ(TX) =
{t1 = s2

1 > · · · > tg = s2
g > 0} with multiplicities 2n1, · · · , 2ng, and denote by r =

2 
∑g

j=1 nj the rank of TX . By the proof of Proposition 2.2 (c), we see that S̃X preserves 
the eigenspaces of TX and we can choose the orthonormal basis such that the first r

vectors are ordered as:

vj
1, · · · , vj

nj
, S̃Xvj

1/‖S̃Xvj
1‖, · · · , S̃Xvj

nj
/‖S̃Xvj

nj
‖, j = 1, · · · , g,

3 Notice that S̃X is not C-linear and hence we need to define SX instead.
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where vj
i ’s are unit eigenvectors of TX corresponding to the eigenvalue tj and thus 

‖S̃Xvj
1‖ = · · · = ‖S̃Xvj

nj
‖ = sj . Under the special basis above, the linear operator SX

can be represented by the real skew-symmetric matrix

SX = diag
((

O −s1In1
s1In1 O

)
, · · · ,

(
O −sgIng

sgIng
O

)
, ON−r

)
,

while TX is represented by

TX = diag
(

t1I2n1 , · · · , tgI2ng
, ON−r

)
.

One can also reorder the basis in the way v2i = S̃Xv2i−1/‖S̃Xv2i−1‖ such that

SX = diag
(

In1 ⊗
(

0 −s1
s1 0

)
, · · · , Ing

⊗
(

0 −sg

sg 0

)
, ON−r

)
. (2.4)

Hence, Lemma 2.1 (c) is suitable for the pair (TX , SX) and will be applied in the proof 
of the equivalence of Conjecture 2 and Conjecture 4.

We will also need the following notations and useful lemmas. Let Vec be the canonical 
isomorphism from M(n, C) to CN , i.e.,

Vec : M(n,C) −→ CN , X = (xij) �−→ (x11, · · · , xn1, x12, · · · , xn2, · · · , x1n, · · · , xnn)t,

where Xt is the transpose of X. Using Kronecker product of matrices, we have

Lemma 2.3. [18] Vec(AY B) = (Bt ⊗ A) Vec(Y ).

Moreover, Vec is an isometry since 〈X, Y 〉 = 〈Vec(X), Vec(Y )〉, and thus we can 
calculate the eigenvalues of TX by

λ(TX) = λ
(
Vec ◦TX ◦ (Vec)−1) .

Proposition 2.4. λ(TX) = λ(K∗
XKX) = λ(K1 + K2), where KX = I ⊗ X − Xt ⊗ I and 

K1 = I ⊗ X∗X + XXt ⊗ I, K2 = −Xt ⊗ X∗ − X ⊗ X.

Proof. Define ΦX(Y ) := [X, Y ], by Lemma 2.3, we have

Vec (ΦX(Y )) = KX Vec(Y ),

where KX is regarded as a linear operator on CN , or equivalently as a N × N matrix. 
Then it is easily seen that KX∗ = K∗

X and as compositions of the operators we have

Vec ◦ΦX ◦ (Vec)−1 = KX , TX = ΦX∗ ◦ ΦX .
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In particular, we have

Vec ◦TX ◦ (Vec)−1 = KX∗KX = K∗
XKX ,

hence

λ(TX) = λ(K∗
XKX).

By direct calculation, we have K∗
XKX = K1 + K2, where K1 and K2 are Hermitian 

matrices. �
Corollary 2.5. For X ∈ M(n, C) with ‖X‖ = 1, we have Tr TX = 2n − 2| Tr X|2. In 
particular, for n = 2, λ1(TX) = λ2(TX) = 2 − | Tr X|2 and λ3(TX) = λ4(TX) = 0.

Proof. It follows immediately from Proposition 2.4 that

Tr TX = Tr K1 + Tr K2 = 2n‖X‖2 − 2| Tr X|2 = 2n − 2| Tr X|2.

For n = 2, the conclusion follows from Proposition 2.2 (c) and the fact that TXX = 0
and thus TX must have at least one zero eigenvalue. �

To end this section, we cite two useful properties about eigenvalues of Kronecker 
product and sum of two matrices.

Lemma 2.6. [29] Let A and B be m × m and n × n complex matrices with eigenvalues 
α1, · · · , αm and β1, · · · , βn, respectively.

(a) ([29, Theorem 4.8]) The eigenvalues of A ⊗ B are

αiβj , 1 ≤ i ≤ m, 1 ≤ j ≤ n,

and the eigenvalues of A ⊗ In + Im ⊗ B are

αi + βj , 1 ≤ i ≤ m, 1 ≤ j ≤ n.

(b) ([29, Theorem 8.18]) Suppose A, B are n ×n Hermitian matrices and α1 ≥ · · · ≥ αn, 
β1 ≥ · · · ≥ βn. Let C = A +B with eigenvalues γ1 ≥ · · · ≥ γn. Then for any sequence 
1 ≤ i1 < · · · < ik ≤ n,

k∑
t=1

αit
+

k∑
t=1

βn−k+t ≤
k∑

t=1
γit

≤
k∑

t=1
αit

+
k∑

t=1
βt.
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3. Some new proofs of the complex BW inequality

In this section, we will give some new simple proofs of the complex BW inequality 
by eigenvalue estimates of TX for X ∈ M(n, C) with ‖X‖ = 1. Each estimate implies 
λ1(TX) ≤ 2 and thus the complex BW inequality, since for ‖Y ‖ = 1,

‖[X, Y ]‖2 ≤ max
‖Y ‖=1

‖[X, Y ]‖2 = max
‖Y ‖=1

〈TXY, Y 〉 = λ1(TX) ≤ 2 = 2‖X‖2‖Y ‖2.

As a matter of fact, the core of our approach lies in the fact that the multiplicity of 
positive eigenvalues of TX is even (Proposition 2.2 (c)).

Theorem 3.1. Let X = A + B ∈ M(n, C) be the canonical decomposition and ‖X‖ = 1, 
where A is Hermitian, B is skew-Hermitian. Then

λ1(TX) ≤ 2
(

max
i,j

{−aiaj} + max
i,j

{−bibj}
)

+
(

σ2
1(X) + σ2

2(X)
)

≤ 2,

where σ1(X) ≥ · · · ≥ σn(X) are singular values of X and λ(A) = {a1, · · · , an}, λ(B) =
{b1i, · · · , bni} are eigenvalues of A, B respectively.

Proof. Let σ1(X) ≥ · · · ≥ σn(X) be singular values of X, then

λ (X∗X) = λ(XXt) = {σ2
1(X), · · · , σ2

n(X)}.

We decompose TX with help of Proposition 2.4. Hence for K1 = I ⊗ X∗X + XXt ⊗ I, 
we have by Lemma 2.6 (a)

λ(K1) = {σ2
i (X) + σ2

j (X) : 1 ≤ i, j ≤ n}. (3.1)

In particular, λ2(K1) = σ2
1(X) +σ2

2(X). And for K2, we calculate by inserting X = A +B

that

K2 = −Xt ⊗ X∗ − X ⊗ X = 2
(
Bt ⊗ B − At ⊗ A

)
.

Then by Lemma 2.6 (a),

λ(−At ⊗ A) = {−aiaj : 1 ≤ i, j ≤ n},

λ(Bt ⊗ B) = {−bibj : 1 ≤ i, j ≤ n},

where λ(A) = {ai : a1 ≥ · · · ≥ an}; λ(B) = {bji : b1 ≥ · · · ≥ bn}. Therefore
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λ1(−At ⊗ A) = max
i,j

{−aiaj} = max{max
i�=j

{−aiaj}, max
i

{−a2
i }}

≤ max{max
i�=j

{−aiaj}, 0} ≤ max
i�=j

{|aiaj |}

≤ 1
2 max

i�=j
{a2

i + a2
j} ≤ 1

2‖A‖2.

(3.2)

Similarly

λ1(Bt ⊗ B) = max
i,j

{−bibj} ≤ 1
2 max

i�=j
{b2

i + b2
j} ≤ 1

2‖B‖2. (3.3)

Since Bt ⊗ B and −At ⊗ A are Hermitian, by Lemma 2.6 (b), we have

λ1(K2) ≤ 2
(
λ1(Bt ⊗ B) + λ1(−At ⊗ A)

)
= 2

(
max

i,j
{−aiaj} + max

i,j
{−bibj}

)
≤ ‖A‖2 + ‖B‖2 = ‖X‖2 = 1.

(3.4)

Moreover, for K∗
XKX = K1 + K2 in Proposition 2.4, again by Lemma 2.6 (b) we have

λ2(K∗
XKX) ≤ λ2(K1) + λ1(K2) ≤ σ2

1(X) + σ2
2(X) + ‖X‖2 ≤ 2‖X‖2.

Finally by Proposition 2.2 (c), we have the desired estimate

λ1(TX) = λ2(TX) = λ2(K∗
XKX) ≤ 2‖X‖2 = 2.

The proof is complete. �
For X ∈ M(n, C) with ‖X‖ = 1, we have the following characterization of when 

λ1(TX) attains the upper bound 2.

Theorem 3.2. λ1(TX) = 2 if and only if X = U diag(X0, On−2)U∗ for some U ∈ U(n), 
where X0 ∈ M(2, C) and Tr(X0) = 0.

Proof. We first prove the necessity. All the inequalities in the proof of Theorem 3.1
achieve equality when λ1(TX) = 2. Thus by the equality conditions of (3.2) and (3.3), 
we have a1 = −an =: a ≥ 0, b1 = −bn =: b ≥ 0, and ai = bi = 0 for 1 < i < n. Therefore,

λ(−At ⊗ A) = {a2, a2, 0, · · · , 0, −a2, −a2},

λ(Bt ⊗ B) = {b2, b2, 0, · · · , 0, −b2, −b2},

and there exist U, V ∈ U(n) such that

U∗AU = diag(a, −a, 0, · · · , 0),

V ∗BV = diag(bi, −bi, 0, · · · , 0).
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Hence

Tr(X) = Tr(A) + Tr(B) = 0.

Because (3.4) achieves equality, the eigenspaces of λ1(Bt ⊗ B) and λ1(−At ⊗ A) have a 
nontrivial intersection. Let U = (u1, u2, · · · , un), V = (v1, v2, · · · , vn), we have

Au1 = au1, Au2 = −au2, Auj = 0, 3 ≤ j ≤ n;
Bv1 = biv1, Bv2 = −biv2, Bvj = 0, 3 ≤ j ≤ n.

Since A is Hermitian and B is skew-Hermitian, we have

Atu1 = au1, Atu2 = −au2, Atuj = 0, 3 ≤ j ≤ n;
Btv1 = biv1, Btv2 = −biv2, Btvj = 0, 3 ≤ j ≤ n.

By the properties of the Kronecker product, the eigenspace of λ1(−At⊗A) is SpanC{u1⊗
u2, u2 ⊗ u1}, and the eigenspace of λ1(Bt ⊗ B) is SpanC{v1 ⊗ v2, v2 ⊗ v1}. So, there exist 
k1, k2, l1, l2 ∈ C and |k1|2 + |k2|2 = |l1|2 + |l2|2 �= 0 such that

k1u1 ⊗ u2 + k2u2 ⊗ u1 = l1v1 ⊗ v2 + l2v2 ⊗ v1. (3.5)

Recall that U, V ∈ U(n), so we have

k2u2 = l1(u∗
1v2)v1 + l2(u∗

1v1)v2,

by left-multiplication with I ⊗ u∗
1 and conjugating (3.5). Similarly, k1u1 = l1(u∗

2v2)v1 +
l2(u∗

2v1)v2, l1v1 = k1(v∗
2u2)u1 + k2(v∗

2u1)u2, l2v2 = k1(v∗
1u2)u1 + k2(v∗

1u1)u2.
If k1k2 �= 0, it is easy to see that SpanC{u1, u2} = SpanC{v1, v2}. If one of k1, k2 is 

zero, we can assume without loss of generality that k1 �= 0 and k2 = 0. Then one of l1, l2
is also zero, otherwise v1 and v2 would be linearly dependent. Assume without loss of 
generality that l1 �= 0, l2 = 0, thus

k1u1 ⊗ u2 = l1v1 ⊗ v2.

Since U, V ∈ U(n), we have |k1/l1| = 1 and

1 = (vt
1 ⊗ v∗

2)(v1 ⊗ v2) = (k1/l1)(vt
1 ⊗ v∗

2)(u1 ⊗ u2) = (k1/l1)(vt
1u1 ⊗ v∗

2u2).

The equality condition of Cauchy-Schwartz inequality implies that u1, v1 are linearly 
dependent and u2, v2 are linearly dependent.

In any case, we have SpanC{u1, u2} = SpanC{v1, v2}. Therefore

U∗XU = U∗AU + U∗BU = diag(a, −a, 0, · · · , 0) + diag(B0, On−2),

where B0 ∈ M(2, C). Setting X0 := diag(a, −a) + B0, we have the necessity.
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To prove the sufficiency, since X0 ∈ M(2, C) and Tr X0 = 0, it follows from Proposi-
tion 2.2 (b) and Corollary 2.5 that

λ1(TX) = λ1(Tdiag(X0,On−2)) = λ1(TX0) = 2 − |Tr(X0)|2 = 2.

This completes the proof. �
Now we give a new proof of the equality condition for the complex BW inequality. 

With the notion introduced in [5], a pair (X, Y ) of M(n, C) is said to be maximal if 
X �= O, Y �= O and ‖XY − Y X‖2 = 2‖X‖2‖Y ‖2 is satisfied.

Corollary 3.3. Let X, Y ∈ M(n, C) be nonzero matrices. Then (X, Y ) is maximal if and 
only if there exists a unitary matrix U ∈ U(n) such that

X = U diag(X0, 0)U∗ and Y = U diag(Y0, 0)U∗

with a maximal pair (X0, Y0) in M(2, C), i.e., X0⊥CY0 and Tr X0 = Tr Y0 = 0.

Proof. Without loss of generality, we assume ‖X‖ = ‖Y ‖ = 1. If (X, Y ) is maximal, by 
definition, we have

〈TXY, Y 〉 = 〈TY X, X〉 = ‖[X, Y ]‖2 = 2.

Thus λ1(TX) = λ1(TY ) = 2 and hence by Theorem 3.2, there exist unitary matrices 
U1, U2 ∈ U(n) such that

X = U1 diag(X0, 0)U∗
1 and Y = U2 diag(Ỹ0, 0)U∗

2

with Tr X = Tr Y = 0. Since Y is an eigenvector of the maximal eigenvalue λ1(TX) = 2
and X is an eigenvector of the zero eigenvalue of TX , we know immediately X⊥CY . 
Moreover, by (2.2) and Proposition 2.2 (b) we know U∗

1 Y U1 is an eigenvector of the 
maximal eigenvalue λ1(TU∗

1 XU1) = λ1(TX0) = 2, which implies U∗
1 Y U1 = diag(Y0, 0) for 

some Y0 ∈ M(2, C). This completes the proof of the necessity.
The sufficiency can be verified by direct computation (cf. [5,8]). �
Let ‖X‖(2),2 be the Ky Fan-mix (2, 2)-norm defined by (see [2,27])

‖X‖(2),2 =
√

σ2
1(X) + σ2

2(X).

For X ∈ M(n, R), Lu [22] has already proved

λ1(TX) ≤ 2‖X‖2
(2),2.

Though this proof can be technically extended to the complex version, we want to give 
an alternative proof using the approach of Kronecker products.
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Theorem 3.4. For X ∈ M(n, C) with ‖X‖ = 1, we have

λ1(TX) ≤ 2‖X‖2
(2),2 ≤ 2.

Proof. For Y ∈ M(n, C), by Proposition 2.4 we have

〈WW ∗ṽ, ṽ〉 = 〈TXY, Y 〉, (3.6)

where

W =
(

I ⊗ X∗ O
−X ⊗ I O

)
2N×2N

, ṽ =
(

Vec Y
Vec Y

)
.

Notice that

WW ∗ =
(

I ⊗ X∗X −Xt ⊗ X∗

−X ⊗ X XXt ⊗ I

)
2N×2N

,

W ∗W =
(

I ⊗ XX∗ + XtX ⊗ I O
O O

)
2N×2N

.

Let L1 and E1 be the first eigenspace of TX and WW ∗, respectively. And let

L̃1 =
{(

Vec Y
Vec Y

)
: Y ∈ L1

}
, E⊥

1 =
{

ξ ∈ C2N : ξ⊥E1
}

.

We can assume without loss of generality that dim E1 = 1, since dim E1 ≥ 2 implies that 
λ1(WW ∗) = λ2(WW ∗), then by Lemma 2.6 (a) and (3.6) we have

λ1(TX) ≤ 2λ1(WW ∗) = 2λ2(WW ∗) = 2λ2(W ∗W ) = 2(σ2
1(X) + σ2

2(X)) = 2‖X‖2
(2),2.

Thus by Proposition 2.2 (c) we have dim L̃1 ≥ 2 and

dim(L̃1 ∩ E⊥
1 ) = dim L̃1 + dim E⊥

1 − dim(L̃1 ∪ E⊥
1 )

≥ 2 + 2N − 1 − 2N = 1.

Therefore L̃1 ∩ E⊥
1 is non-empty and by Lemma 2.6 (a) and (3.6), for any Y ∈ L1 with 

‖Y ‖ = 1 and ξ =
(Vec Y

Vec Y

)
∈ L̃1 (‖ξ‖ =

√
2), we have

λ1(TX) = 〈TXY, Y 〉 = 〈WW ∗ξ, ξ〉 = 2 max
ξ∈L̃1∩E⊥

1
‖ξ‖=1

〈WW ∗ξ, ξ〉

≤ 2 max
ξ∈E⊥

1
‖ξ‖=1

〈WW ∗ξ, ξ〉 = 2λ2(WW ∗) = 2‖X‖2
(2),2.

This completes the proof. �
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Denote the upper bound in Theorem 3.1 by

CX := 2(max
i,j

{−aiaj} + max
i,j

{−bibj}) + ‖X‖2
(2),2.

It is worth remarking that CX ≤ 2‖X‖2
(2),2 if rank(X) ≤ 2. In general, CX is not 

necessarily less than 2‖X‖2
(2),2. However, we are able to obtain CX ≤ 3‖X‖2

(2),2, since 

{|aj − ibn−j+1|2}n
j=1 is majorized by {σ2

j (X)}n
j=1 due to Ando-Bhatia [1]. Therefore these 

two upper bounds are strictly different. Combining Theorems 3.1 and 3.4, we have the 
following estimate.

Corollary 3.5. For X ∈ M(n, C) with ‖X‖ = 1, we have

λ1(TX) ≤ min{CX , 2‖X‖2
(2),2} ≤ 2.

Furthermore, our approach can be used to estimate all eigenvalues of TX by these of 
K1 (Proposition 2.4). Recall that the set of eigenvalues of K1 is given in (3.1).

Theorem 3.6. For X ∈ M(n, C) with ‖X‖ = 1, we have λi(TX) ≤ 2λi(K1) for all i.

Proof. Recall that K1 = I ⊗ X∗X + XXt ⊗ I, K2 = − 
(
Xt ⊗ X∗ + X ⊗ X

)
, and

Vec ◦TX ◦ (Vec)−1 = K1 + K2.

Let K̂X := I ⊗ X + Xt ⊗ I. Then we observe

2K1 − Vec ◦TX ◦ (Vec)−1 = K1 − K2 = K̂∗
XK̂X ≥ 0,

which implies λi(TX) ≤ 2λi(K1) for all i. �
In particular, Theorem 3.6 implies Theorem 3.4 since

λ1(TX) = λ2(TX) ≤ 2λ2(K1) = 2(σ2
1 + σ2

2) = 2‖X‖2
(2),2.

4. Equivalence of the conjectures with the LW Conjecture

In this section, we prove the equivalence between Conjectures 4–6 and Conjecture 2, 
i.e., Theorem 1.1 in the complex version. The proof will be split into the following four 
propositions.

Proposition 4.1. Conjecture 2 is equivalent to Conjecture 4.

Proof. Assume Conjecture 2 is true at first. Setting B = X and Bα be a unit eigenvector 
of λ2α−3(TX) for α = 2, · · · , m, by the representation of SX in (2.3, 2.4) we know 
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SXBα = [B, Bα]∗ is exactly an eigenvector of λ2α−2(TX). Therefore the conditions (i, ii) 
of Conjecture 2 are satisfied and thus we have the inequality (1.2). Then the inequality 
(1.3) of Conjecture 4 for k = m − 1 follows by Proposition 2.2 (c) and the following 
calculation:

2k∑
i=1

λi(TX) = 2
m∑

α=2
λ2α−3(TX) = 2

m∑
α=2

〈TBBα, Bα〉 = 2
m∑

α=2
‖[B, Bα]‖2

≤ 2
(

max
2≤α≤m

‖Bα‖2 +
m∑

α=2
‖Bα‖2

)
‖B‖2 = 2m = 2(k + 1).

Now we assume Conjecture 4 is true. Without loss of generality, we assume 1 = ‖B‖ ≥
‖B2‖ ≥ · · · ≥ ‖Bm‖ > 0. Using summation by parts, we can write

m∑
α=2

‖ [B, Bα] ‖2 =
m∑

α=2
〈TBBα, Bα〉 =

m∑
α=2

〈
TB

Bα

‖Bα‖ ,
Bα

‖Bα‖

〉
‖Bα‖2

=
m∑

β=2

(
‖Bβ‖2 − ‖Bβ+1‖2) β∑

α=2

〈
TB

Bα

‖Bα‖ ,
Bα

‖Bα‖

〉
,

(4.1)

where Bm+1 = 0. Setting X = B, the conditions (i, ii) of Conjecture 2 show that the 
subspace W := SpanC{Bα}m

α=2 is isotropic about SX , i.e., SX(W )⊥CW . Then by the 
formula above, Lemma 2.1 (c) and the inequality (1.3) of Conjecture 4, we have

m∑
α=2

‖ [B, Bα] ‖2 ≤
m∑

β=2

(
‖Bβ‖2 − ‖Bβ+1‖2) β∑

α=2
λ2α−3(TX)

≤
m∑

β=2

(
‖Bβ‖2 − ‖Bβ+1‖2)β

= ‖B2‖2 +
m∑

α=2
‖Bα‖2,

which is the inequality (1.2) of Conjecture 2. The proof is complete. �
Proposition 4.2. Conjecture 4 is equivalent to Conjecture 5.

Proof. Obviously Conjecture 5 implies Conjecture 4 by definition. Suppose Conjecture 4
to be true. To prove Conjecture 5, we only need to prove the following four parts:

(i) λ1(TX) ≤ 2;
(ii)

∑2k
i=1 λi(TX) ≤ 2k + 2;

(iii)
∑2k−1

i=1 λi(TX) ≤ 2k + 1;
(iv)

∑N
i=1 λi(TX) = 2n − 2| Tr X|2 ≤ 2n,
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where (i) and (iv) are ensured by the complex BW inequality (e.g., Theorem 3.1) and 
Corollary 2.5, and (ii) is assumed by Conjecture 4, respectively. We are left to show the 
inequality (iii). We prove it by contradiction in the following.

Assume that there is a positive number m ≥ 2 such that

2m−1∑
i=1

λi(TX) > 2m + 1.

Then

2m + 1 <
2m−1∑

i=1
λi(TX) = λ2m−1(TX) +

2m−2∑
i=1

λi(TX) ≤ λ2m−1(TX) + 2m.

Thus

λ2m(TX) = λ2m−1(TX) > 1,

and

2m∑
i=1

λi(TX) = λ2m(TX) +
2m−1∑

i=1
λi(TX) > 1 + 2m + 1 = 2m + 2.

This leads to the contradiction to (ii) and completes the proof. �
Proposition 4.3. Conjecture 4 is equivalent to Conjecture 6.

Proof. The proof is somehow similar to that of Proposition 4.1. However, we are unable 
to use Lemma 2.1 (c), since we have no condition (ii) of Conjecture 2. Therefore we 
estimate the full sum of λi’s here instead of only half of it.

Assume Conjecture 6 is true. Setting B = X and Bα be a unit eigenvector of λα−1(TX)
for α = 2, · · · , m, we know or can ensure that Bα’s are C-orthogonal, and therefore 
we have the inequality of Conjecture 6. Then the inequality (1.3) of Conjecture 4 for 
m = 2k + 1 follows by

m−1∑
i=1

λi(TX) =
m∑

α=2
λα−1(TX) =

m∑
α=2

〈TBBα, Bα〉 =
m∑

α=2
‖[B, Bα]‖2

≤
(

2 max
2≤α≤m

‖Bα‖2 +
m∑

α=2
‖Bα‖2

)
‖B‖2 = m + 1.

Now we assume Conjecture 4 is true (and hence Conjecture 5 is true by Proposi-
tion 4.2). We have
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m∑
i=1

λi(TX) ≤ m + 2 for any m.

Without loss of generality, we assume 1 = ‖B‖ ≥ ‖B2‖ ≥ · · · ≥ ‖Bm‖ > 0 and set 
Bm+1 = 0. Then by (4.1), we have

m∑
α=2

‖ [B, Bα] ‖2 ≤
m∑

β=2

(
‖Bβ‖2 − ‖Bβ+1‖2) β−1∑

α=1
λα(TX)

≤
m∑

β=2

(
‖Bβ‖2 − ‖Bβ+1‖2) (β + 1)

= 2‖B2‖2 +
m∑

α=2
‖Bα‖2,

which is the inequality of Conjecture 6. �
Proposition 4.4. [23] The LW Conjecture 2 implies Conjectures 1 and 3.

Proof. Conjecture 3 is trivially implied by Conjecture 4 due to Proposition 4.1 and thus 
by Conjecture 2.

As for Conjecture 1, the proof is similar to the real version in [23] with only the inner 
products replaced by traces for our complex version now. �
5. Partial results on the complex LW Conjecture

In this section, we prove the complex LW Conjecture separately for a couple of special 
cases (Theorem 1.2). For the general case, we give some non-sharp upper bounds for the 
inequalities of Conjectures 3 and 4 (Theorems 1.3 and 1.4).

Firstly we prove the complex version of Conjecture 3 for the first special case of 
Theorem 1.2. We remind that Conjecture 3 is the first instance of the complex LW 
Conjecture 4 after the solution of the BW inequality (i.e., λ1(TX) ≤ 2).

Normality often plays a special role, and also the BW inequality could be treated much 
simpler with this property. In the context of geometry as with the DDVV inequality, it 
naturally emerges.

Theorem 5.1. Conjecture 3 is true when X is a normal matrix.

Proof. Since X is a normal matrix, there exists a unitary matrix U such that

U∗XU = diag(x1, · · · , xn), for some x1, · · · , xn ∈ C with
∑

i

|xi|2 = 1.

Direct calculations show that for any 1 ≤ i, j ≤ n,
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TU∗XU (Eij) = |xi − xj |2Eij ,

where Eij ∈ M(n, C) is the standard basis matrix with the (i, j)-element being 1 and 
the others being 0. Then by the identity (2.2):

TU∗XU (U∗Y U) = U∗TX(Y )U,

we have

TX(UEijU∗) = UTU∗XU (Eij)U∗ = |xi − xj |2UEijU∗.

It follows that

λ(TX) =
{

|xi − xj |2 : 1 ≤ i, j ≤ n
}

= {λ1 ≥ · · · ≥ λn2}.

Suppose λ1 = λ2 = |xa − xb|2, λ3 = λ4 = |xc − xd|2, where 1 ≤ a, b, c, d ≤ n. There are 
two cases need to be discussed:

• If a, b, c, d are four different integers, then

λ1 + λ3 = |xa − xb|2 + |xc − xd|2 ≤ 2(|xa|2 + |xb|2 + |xc|2 + |xd|2) ≤ 2.

• If one of a, b is equal to one of c, d, we can assume a = c, b �= d. Then

λ1 + λ3 = |xa − xb|2 + |xa − xd|2

= |xa|2 − xaxb − xaxb + |xb|2 + |xa|2 − xaxd − xaxd + |xd|2

≤ 2|xa|2 + 2|xa| (|xb| + |xd|) + |xb|2 + |xd|2

≤ 3|xa|2 + (|xb| + |xd|)2 + |xb|2 + |xd|2

≤ 3(|xa|2 + |xb|2 + |xd|2) ≤ 3.

The equality holds if and only if |xa| =
√

6
3 , xb = xd = −1

2xa, other xe = 0.

The proof is complete. �
For more general cases, we need Lu’s lemma in the complex version. By dividing each 

complex number into real and imaginary parts, the complex version follows immediately 
from the real version.

Lemma 5.2. [21, Lemma 1] Suppose η1, · · · , ηn are complex numbers and

η1 + · · · + ηn = 0, |η1|2 + · · · + |ηn|2 = 1.
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Let rij ≥ 0 be nonnegative numbers for i < j. Then we have∑
i<j

|ηi − ηj |2rij ≤
∑
i<j

rij + max
i<j

(rij). (5.1)

Corollary 5.3. The complex LW Conjecture 4 is true when X is a normal matrix.

Proof. Let X be a normal matrix with ‖X‖ = 1, and let

X̂ = X − Tr X

n
I.

Then Tr X̂ = 0, [X̂, Y ] = [X, Y ] and

‖X̂‖2 = ‖X‖2 − | Tr X|2
n

≤ ‖X‖2 = 1.

It follows from the proof of Theorem 5.1 that

λ(TX) = λ(TX̂) =
{

|ηi − ηj |2 : 1 ≤ i, j ≤ n
}

,

where λ(X̂) = {η1, η2, · · · , ηn}. Let X̃ = X̂/‖X̂‖ and rij ∈ {0, 1}. Then Tr X̃ = 0, 
‖X̃‖2 = 1 and TX = TX̂ = ‖X̂‖2T

X̃
. Thus Lemma 5.2 is applicable and tells us

k∑
α=1

λ2α−1(TX) =
k∑

α=1
λ2α−1(TX̂) = ‖X̂‖2

k∑
α=1

λ2α−1(T
X̃

) ≤ k + 1,

where λ2α−1(T
X̃

) equals some 
∣∣∣ηi/‖X̂‖ − ηj/‖X̂‖

∣∣∣2 and rij = 1 for k pairs of (i < j). 
This completes the proof. �
Corollary 5.4. Let B1, · · · , Bm ∈ M(n, C) be Hermitian matrices. Assume that

Tr
(

Bα[Bγ , Bβ ]
)

= 0 (5.2)

for any 1 ≤ α, β, γ ≤ m, we have

m∑
α,β=1

‖ [Bα, Bβ ] ‖2 ≤
(

m∑
α=1

‖Bα‖2

)2

.

Proof. As Hermitian matrices are normal matrices, by Corollary 5.3 above, the complex 
LW Conjecture 4 holds for this case. This in turn by Theorem 1.1 implies the complex 
version of Conjecture 1. �
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Remark 5.5. When B1, · · · , Bm are real symmetric matrices, (5.2) is valid for all α, β, γ. 
Thus the corollary generalizes the DDVV inequality. We remind that for general Hermi-
tian matrices without the trace condition, the optimal constant c = 4

3 is bigger than 1
here (cf. Section 1, [16], [17]).

Next we prove Conjecture 3 for the second special case rank(X) = 1.

Theorem 5.6. The complex LW Conjecture 4 is true when rank(X) = 1.

Proof. Recall Proposition 2.4 that we have K∗
XKX = K1 + K2, where K1 = I ⊗ X∗X +

XXt ⊗ I, K2 = − 
(
Xt ⊗ X∗ + X ⊗ X

)
. Denote K3 = −Xt ⊗ X∗, then K2 = K∗

3 + K3. 
In [3], we can find that for any M ∈ M(n, C),

λi

(
M∗ + M

2

)
≤ σi(M), 1 ≤ i ≤ n.

Thus

λi(K2) = 2λi

(
K∗

3 + K3

2

)
≤ 2σi(K3), 1 ≤ i ≤ n.

Let σ1(X) ≥ · · · ≥ σn(X) be the singular values of X, then by Lemma 2.6 (a),

σ(K3) = {σi(X)σj(X) : 1 ≤ i, j ≤ n}.

In particular, now rank(X) = 1 implies σ1(X) = 1 and σi(X) = 0 for 2 ≤ i ≤ n. Thus 
we have σ(K3) = {11, 0N−1} and by (3.1)

λ(K1) = {σi(X)2 + σj(X)2 : 1 ≤ i, j ≤ n} = {21, 12(n−1), 0(n−1)2}.

Finally by Propositions 2.2 (c), 2.4 and Lemma 2.6 (b), we have

k∑
i=1

λ2i−1(TX) =
k∑

i=1
λ2i(TX) ≤

k∑
i=1

λi(K1) +
k∑

i=1
λ2i(K2)

≤
k∑

i=1
λi(K1) +

k∑
i=1

2σ2i(K3)

=
k∑

i=1
λi(K1) ≤ k + 1,

which completes the proof. �
Furthermore, we can get the characteristic polynomial of TX if rank(X) = 1.
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Proposition 5.7. Let KX = I ⊗ X − Xt ⊗ I. Then the sets of singular values

σ(KX) = σ
(

I ⊗ Λ − (Λ ⊗ I)
(
Qt ⊗ Q∗) ),

where X = Q1ΛQ2 is the singular value decomposition of X and Q = Q2Q1.

Proof. Direct calculations show

KX = I ⊗ X − Xt ⊗ I = I ⊗ (Q1ΛQ2) −
(
Qt

2ΛQt
1
)

⊗ I

=
(
Qt

2 ⊗ Q1
) [

I ⊗ Λ − (Λ ⊗ I)
(
Qt ⊗ Q∗)] (Q2 ⊗ Q2

)
.

This completes the proof thanks to the invariance of singular values under congru-
ences. �
Theorem 5.8. Let X be a complex square matrix of order n (≥ 2) with ‖X‖ = 1 and 
rank(X) = 1, then the characteristic polynomial of TX is

det(λIN − TX) =
(

λ − 2 + |Tr X|2
)2

(λ − 1)2n−4
λ(n−1)2+1.

Proof. Proposition 5.7 implies σ(KX) = σ(K̃X), where K̃X = I ⊗Λ −(Λ ⊗ I)
(
Q ⊗ Q

)
. 

By Proposition 2.4, we have

λ(TX) = λ(KXK∗
X) = λ(K̃XK̃X

∗
),

where direct calculations show

K̃XK̃X

∗
= I ⊗ Λ2 + Λ2 ⊗ I − (Q∗Λ) ⊗

(
ΛQt

)
− (ΛQ) ⊗

(
QΛ

)
.

Since ‖X‖ = 1 and rank(X) = 1, one has Λ = diag(1, 0, · · · , 0). By direct calculations, 
we have I ⊗ Λ2 + Λ2 ⊗ I = diag(I + Λ, Λ, · · · , Λ) and thus

λ · (I ⊗ I) − K̃XK̃X

∗
=
(

An×n Bn×(N−n)
C(N−n)×n D(N−n)×(N−n)

)
N×N

,

where

A := (λ − 1) I − Λ + q11QΛ + q11ΛQt, B :=
(
q12QΛ, q13QΛ, · · · , q1nQΛ

)
,

C := B∗, D := diag(λI − Λ, λI − Λ, · · · , λI − Λ).

Without loss of generality, suppose that the determinant of the matrix D is not zero, 
then
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det
(

A B
C D

)
= det

(
A − BD−1C

)
· det D

= det
(

A −
(

1 − |q11|2
)

QΛD̂ΛQt
)

· det D

= det
(

A − 1 − |q11|2

λ − 1 QΛQt

)
· det D,

where D̂ = (λI − Λ)−1 = diag( 1
λ−1 , 1

λ · · · , 1
λ ). Thus

A − BD−1C = A − 1 − |q11|2

λ − 1 QΛQt =
(

Ã1×1 B̃1×(n−1)
C̃(n−1)×1 D̃(n−1)×(n−1)

)
n×n

,

where Ã := λ −2 +2 |q11|2 − 1−|q11|2

λ−1 |q11|2, B̃ := (q11q21
λ−2+|q11|2

λ−1 , · · · , q11qn1
λ−2+|q11|2

λ−1 ), 

C̃ := B̃∗, D̃ := (λ − 1) I − 1−|q11|2

λ−1 u∗u, u := (q21, q31, · · · , qn1).
Similarly,

det
(

Ã B̃

C̃ D̃

)
= det

(
Ã − C̃Ã−1B̃

)
· det Ã

= det
(

(λ − 1) I − 1
λ − 1 + |q11|2

u∗u

)
· det Ã

=
[

λ
λ − 2 + |q11|2

λ − 1 + |q11|2
(λ − 1)n−2

]
·
[

1
λ − 1

(
λ − 1 + |q11|2

)(
λ − 2 + |q11|2

)]
=
(

λ − 2 + |q11|2
)2

(λ − 1)n−3
λ.

So we have

det
(

A B
C D

)
= det

(
Ã − C̃Ã−1B̃

)
· det Ã · det D

=
(

λ − 2 + |q11|2
)2

(λ − 1)n−3
λ (λ − 1)n−1

λ(n−1)2

=
(

λ − 2 + |q11|2
)2

(λ − 1)2n−4
λ(n−1)2+1.

Finally we observe that q11 = Tr X. The proof is complete. �
Immediately, we obtain the following assertion.

Corollary 5.9. Let X be a complex square matrix of order n (≥ 2) with ‖X‖ = 1 and 
rank(X) = 1. Then λ1(TX) = 2 if and only if Tr(X) = 0.
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Remark 5.10. Actually, the conditions ‖X‖ = 1, rank(X) = 1 and Tr(X) = 0 in Corol-
lary 5.9 imply that X is unitarily similar to diag(X0, O), where

X0 =
(

0 0
1 0

)
.

Here, we can give a simple calculation. Suppose X = Q1ΛQ2 is the singular value 
decomposition of X and Q = Q2Q1, then Q∗

1XQ1 = ΛQ. Due to ‖X‖ = 1, rank(X) = 1
and Tr(X) = 0, we can assume

ΛQ =
(

0 q
0 0

)
,

where q = (q12, q13, · · · , q1n) and ‖q‖ = 1. Extend q to be a unit orthogonal basis 
{q, p1, p2, · · · , pn−2} of Cn−1 and let

U =
(

0 1 0 0 · · · 0
q∗ O p∗

1 p∗
2 · · · p∗

n−2

)
,

then U∗U = I and U∗Q∗
1XQ1U = diag(X0, O).

The last special case of Theorem 1.2 is a simple consequence of Corollary 2.5.

Theorem 5.11. The complex LW Conjecture 4 is true when n = 2, 3.

Proof. The case n = 2 is immediate since Corollary 2.5 implies that the set of eigenvalues 
λ(TX) is weakly majorized by {22, 02}.

The case n = 3 is similar, since Corollary 2.5 shows that

2k∑
i=1

λi(TX) ≤ Tr TX = 6 − 2| Tr X|2 ≤ 6 ≤ 2k + 2 for any k ≥ 2,

and for k = 1 it follows from the BW inequality (e.g., Theorem 3.1) that

2k∑
i=1

λi(TX) = 2λ1(TX) ≤ 4 = 2k + 2.

The proof is complete. �
Now we come to prove the partial results with increased bounds.

Proof of Theorem 1.3. Due to the previous result, we assume n ≥ 4. Otherwise it is 
trivial. By Lemma 2.6 (b) and the proof of Theorem 3.1, for the fixed sequence i1 =
2, i2 = 3, i3 = 4, we have
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4∑
i=2

λi(TX) ≤
4∑

i=2
λi(K1) +

3∑
i=1

λi(K2)

≤ 3
(

σ2
1(X) + σ2

2(X)
)

+ 2
3∑

i=1

(
λi(−At ⊗ A) + λi(Bt ⊗ B)

)
,

as K2 = −Xt ⊗ X∗ − X ⊗ X = 2 (Bt ⊗ B − At ⊗ A) for the decomposition X = A + B

with A Hermitian and B skew-Hermitian. Similarly we have

λ1(TX) = λ2(TX) ≤ σ2
1(X) + σ2

2(X) + 2
(

λ1(−At ⊗ A) + λ1(Bt ⊗ B)
)

.

This implies

4∑
i=1

λi(TX) ≤ 4
(

σ2
1(X) + σ2

2(X)
)

+ φ(X),

where φ(X) := ϕ(A) + ϕ̃(B) and

ϕ(A) := 4λ1(−At ⊗ A) + 2
3∑

i=2
λi(−At ⊗ A),

ϕ̃(B) := 4λ1(Bt ⊗ B) + 2
3∑

i=2
λi(Bt ⊗ B).

Let λ(A) = {a1, · · · , an}, a1 ≥ · · · ≥ an; λ(B) = {b1i, · · · , bni}, b1 ≥ · · · ≥ bn. Then 
by Lemma 2.6 (a),

λ(−At ⊗ A) = {−aiaj : 1 ≤ i, j ≤ n},

λ(Bt ⊗ B) = {−bibj : 1 ≤ i, j ≤ n}.

We claim that

φ(X) = ϕ(A) + ϕ̃(B) ≤
√

10
(

‖A‖2 + ‖B‖2
)

.

We only show ϕ(A) ≤
√

10‖A‖2. The argumentation for ϕ̃(B) is similar. Obviously ϕ(A)
can only be positive if λ1 > 0, i.e. a1 > 0 > an, in which case we have

λ1(−At ⊗ A) = λ2(−At ⊗ A) = a1|an| = max
i,j

{−aiaj}

and

λ3(−At ⊗ A) = λ4(−At ⊗ A) = a2|an| (or a1|an−1|) ≥ 0.
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Then

ϕ(A) = 6a1|an| + 2a2|an| = 2|an|(3a1 + a2)

≤ 2
√

10|an|
√

a2
1 + a2

2 ≤
√

10(a2
n + a2

1 + a2
2)

≤
√

10‖A‖2,

(or ϕ(A) = 6a1|an| + 2a1|an−1| = 2|a1|(3an + an−1) ≤
√

10‖A‖2). In conclusion,

4∑
i=1

λi(TX) ≤ 4
(

σ2
1(X) + σ2

2(X)
)

+
√

10
(

‖A‖2 + ‖B‖2
)

≤ (4 +
√

10)|X‖2.

As all eigenvalues arise twice, this completes the proof. �
Remark 5.12. From the proof, one can see that the (non-sharp) upper bounds for the 
complex version and the real version of Conjecture 3 are both equal to 2 +

√
10/2.

Remark 5.13. The reason of why we did not get the optimal upper bound 3 of Conjec-
ture 3 mainly comes from that we divided the Hermitian matrix K∗

XKX into three parts 
and estimated them separately. With the following example in mind, we don’t know how 
to sharpen our method to prove Conjecture 3. Set

X =

⎛⎝−0.1236 0.0334 0.0647
−0.4343 0.1029 −0.8833

0 0 0

⎞⎠ .

By numerical calculation we see

4∑
i=1

λi(TX) ≈ 5.9814 < 6 < 4
(

σ2
1(X) + σ2

2(X)
)

+ φ(X) ≈ 7.0554 < 4 +
√

10.

To estimate higher order eigenvalues, we need the following lemma.

Lemma 5.14. Suppose η1, η2, · · · , ηn1 and ω1, ω2, · · · , ωn2 are nonnegative real numbers 
and rij ∈ {0, 1} such that

n1∑
i=1

η2
i +

n2∑
i=1

ω2
i = 1,

n1∑
i=1

n2∑
j=1

rij = m.

Then we have
n1∑

i=1

n2∑
j=1

ηiωjrij ≤
√

m

2 . (5.3)
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Proof. Suppose η1 ≥ · · · ≥ ηn1 ≥ 0 and ω1 ≥ · · · ≥ ωn2 ≥ 0, without loss of generality 
we can select the following m elements with non-vanishing rij ’s:

• η1ω1 ≥ η1ω2 ≥ · · · ≥ η1ωp1

• η2ω1 ≥ η2ω2 ≥ · · · ≥ η2ωp2

• · · ·
• ηtω1 ≥ ηtω2 ≥ · · · ≥ ηtωpt

where p1 + p2 + · · · + pt = m. Thus we complete the proof by

n1∑
i=1

n2∑
j=1

ηiωjrij =
t∑

i=1
ηi

pi∑
j=1

ωj ≤

√√√√ t∑
i=1

η2
i

√√√√ t∑
i=1

(
pi∑

j=1
ωj)2 ≤

√√√√ t∑
i=1

η2
i

√√√√ t∑
i=1

pi

pi∑
j=1

ω2
j

≤

√√√√ n1∑
i=1

η2
i

√√√√m

n2∑
j=1

ω2
j ≤

√
m

2

( n1∑
i=1

η2
i +

n2∑
i=1

ω2
i

)
=

√
m

2 . �

Proof of Theorem 1.4. The proof is similar to that of Theorem 1.3. Briefly, by Lemma 2.6
(b) and Lemma 5.14, we have

2k∑
i=1

λi(TX) ≤
2k∑

i=1
λi(K1) +

2k∑
i=1

λi(K2)

≤
2k∑

i=1
λi(K1) + 2

2k∑
i=1

(
λi(−At ⊗ A) + λi(Bt ⊗ B)

)
≤ 2k + 1 + 2

(√
k‖A‖2 +

√
k‖B‖2

)
= 2k + 1 + 2

√
k,

where 
∑2k

i=1 λi(K1) ≤ 2k + 1 follows from

λ1(K1) = 2σ2
1(X) ≤ 2, λi(K1) ≤ λ2(K1) = σ2

1(X) + σ2
2(X) ≤ 1 for i ≥ 2;

and

2k∑
i=1

λi(−At ⊗ A) ≤ 2
k∑

r=1
λ2r−1(−At ⊗ A) ≤

√
k‖A‖2

(similar for 
∑2k

i=1 λi(Bt ⊗ B) ≤
√

k‖B‖2) follows by setting in Lemma 5.14

{ ηi := ai/‖A‖, 1 ≤ i ≤ n1,

ω := −a /‖A‖, 1 ≤ j ≤ n − n ,
j n1+j 1
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for a1 ≥ · · · ≥ an1 ≥ 0 ≥ an1+1 ≥ · · · ≥ an and noticing that now the nonnegative 
eigenvalues λ2r−1(−At ⊗ A) = λ2r(−At ⊗ A) = −aian1+j appear in pairs. �
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