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Abstract
In this article we prove that the spectrum of the Laplacian on k-forms over a non compact
flat manifold is always a connected closed interval of the non negative real line. The proof is
based on a detailed decomposition of the structure of flat manifolds.
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1 Introduction

Weconsider the spectrumof theHodgeLaplacian� on differential forms of any order k over a
noncompact completeflatmanifoldM . It iswell known that theLaplacian is a densely defined,
self-adjoint and nonnegative operator on the space of L2 integrable k-forms. The spectrum
of the Laplacian consists of all points λ ∈ R for which � − λI fails to be invertible. The
essential spectrum consists of the cluster points in the spectrum and of isolated eigenvalues of
infinite multiplicity.Wewill be denoting the spectrum of the Laplacian on k-forms overM by
σ(k, M) and its essential spectrum by σess(k, M). The complement of the essential spectrum
in σ(k, M), which consists of isolated eigenvalues of finite multiplicity, is often referred to
as the discrete isolated spectrum and is denoted by σpt(k, M). Since � is nonnegative, its
spectrum is contained in the nonnegative real line. The spectrum, the essential spectrum, and
the discrete isolated spectrum are closed subsets of R.

When the manifold is compact, the essential spectrum is an empty set and the spectrum
consists only of discrete eigenvalues. In the case of a noncompact complete manifold on the
other hand, a continuous part in the spectrum might appear. Unlike the discrete spectrum,
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which in most cases cannot be explicitly computed, the essential spectrum can be located
either by the classical Weyl criterion as in [5], or by a generalization of it as we have shown
in previous work [1]. Both criteria require the construction of a large class of test differential
forms that act as generalized eigenforms.

Ourmain goal in this article is to compute the spectrum and essential spectrum of a general
noncompact complete flat manifold Mn . The main result of this paper is the following:

Theorem 1.1 Let M be a flat noncompact complete Riemannian manifold. Then

σ(k, M) = σess(k, M) = [α,∞)

for some nonnegative constant α.

The constant α in the above theorem is the first eigenvalue on �-forms (� ≤ k) for some
compact flat manifold that reflects the structure of M at infinity. In Sect. 4 we will give a
more precise description of it.

The structure of a complete flat manifold may be understood through the results of
Cheeger–Gromoll, by which flat manifolds are diffeomorphic to normal bundles over totally
geodesic compact submanifolds known as the soul. It is also well known that a complete
flat manifold is given as the quotient of Euclidean space R

n by a discrete subgroup � of
the Euclidean group E(n). The properties of �, when it is cocompact, are described by the
Bieberbach Theorems (see, [8,19]). We recall that in order for the quotient to be a complete
manifold, � must be discrete and fixed point free. If M can be decomposed as the direct
product of a compact manifold Zn−s times a Euclidean space Rs , then the spectrum of the
Laplacian on forms can be computed as we show in Lemma 2.1. In this case, the discrete iso-
lated spectrum is empty and the spectrum of the Laplacian on k-forms is a closed connected
interval as in Theorem 1.1.

A general flat manifold however, cannot always be decomposed in product form. More-
over, the classification of non-compact flat manifolds is far from being complete. Thurston
illustrates that the soul of the manifold is essentially the quotient of Euclidean space modulo
an abelian subgroup of �, and proves that the manifold is a normal flat bundle over this
compact flat submanifold [18]. Mazzeo and Phillips use this decomposition when computing
the spectrum of the Laplacian on forms over hyperbolic manifolds in [15]. However, the
normal bundle structure of a general flat manifold may be quite complicated, and the soul
of the manifold might not provide us with neither sufficient nor useful information when
computing the spectrum of the Laplacian on forms (see, Example 2.2).

One of the main accomplishments of this article is to find an adequate subgroup �2 of the
group �, so that the spectrum of the flat manifold Rn/� coincides with that of Rn/�2. Our
choice of �2 will be such that Rn/�2 is a product manifold whose spectrum and essential
spectrum can be computed. Finding �2 is the crux of our results. Although we begin our
analysis of � by using the subgroup �∗ introduced in Wolf [19], (the same group is also used
by Thurston and Mazzeo–Phillips to describe the soul of the manifold [15,18]) we need to
take our decomposition one step further and a more detailed analysis is necessary. The details
of this construction can be found in Sect. 3.

Over a noncompact manifold the essential spectrum of the Laplacian on functions can
present gaps [12,13,16,17]. These manifolds do not have nonnegative Ricci curvature, but
some of them have bounded positive scalar curvature. On the other hand, it is not uncommon
for the spectrum of the Laplacian on forms to have gaps. In Example 2.3, over certain even
dimensional quotients of hyperbolic space H

N+1, for the half dimension k = (N + 1)/2,
the essential spectrum of the Laplacian on k-forms is not a connected set. Given all the
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The spectrum of the Laplacian on forms over flat manifolds 3

above known examples, the result of our paper is somewhat surprising. We show that the
spectrum will always be a connected interval for a noncompact complete flat manifold. In a
forthcoming paper we will illustrate the significance of this result as it will become essential
for studying the spectrum of the Laplacian on forms over asymptotically flat manifolds [2].
The latter is a significantly more difficult task as can be seen by comparing the difference
between compact flat manifolds and compact almost flat manifolds.

2 The spectrum of a product flat manifold

Let Mn = Zn−s × R
s be the product of a compact manifold Zn−s of dimension n − s

and Euclidean space R
s of dimnension s for some 1 ≤ s < n, endowed with the product

metric. We denote the Laplace operator on Z by�Z and onRs by�Rs . Since Z is a compact
manifold, the spectrum of �Z on �-forms is discrete and we denote by λZ (�) the smallest
eigenvalue1 of �Z on �-forms, for 0 ≤ � ≤ n − s. Recall that λZ (�) = λZ (n − s − �) by
Poincaré duality.

Define α(Z , s, n, k) = 0 when s ≥ n/2, or when s < n/2 and either 0 ≤ k ≤ s, or
n − s ≤ k ≤ n. Define α(Z , s, n, k) = min{λZ (�) | k − s ≤ � ≤ k}, when s + 1 ≤ k ≤ n/2,
and α(Z , s, n, k) = α(Z , s, n, n − k), when n/2 < k ≤ n − s − 1.

Lemma 2.1 Let M = Mn = Zn−s ×R
s as above. Let 0 ≤ k ≤ n. Then σpt(k, M) = ∅, and

σ(k, M) = σess(k, M) = [α(Z , s, n, k),∞).

Proof By Poincaré duality, we know that

σ(k, M) = σ(n − k, M).

Therefore whenever s ≥ n/2, or when s < n/2 and either 0 ≤ k ≤ s or n − s ≤ k ≤ n, we
can use the duality to reduce computing the spectrum to the case 0 ≤ k ≤ s. Let x1, · · · , xs
be the coordinates on R

s . Since σ(0,Rs) = [0,∞), it is well-known that for any λ ∈ R
+

and any ε > 0, there is a function2 f �= 0 with compact support on R
s such that

‖�Rs f − λ f ‖L2 ≤ ε‖ f ‖L2 .

Using the test form

ω = f (x) dx1 ∧ · · · ∧ dxk

on R
s and hence on M = Z × R

s , we have

‖�ω − λω‖L2 ≤ Cε‖ω‖L2 ,

where C > 0 is a constant that only depends on the dimension n. It follows that

σ(k, M) = [0,∞).

Now we assume s < n/2 and s + 1 ≤ k ≤ n/2. Since M = Z × R
s , we have

�M = �Z ⊗ 1 + 1 ⊗ �Rs .

1 Note for example that λZ (0) = 0, not the first nonzero eigenvalue of the compact manifold Z .
2 A special choice of f (x) is given in the proof of Proposition 4.1.
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4 N. Charalambous, Z. Lu

Therefore,

σ(k, M) =
k⋃

�=k−s

(
σ(�, Zn−s) + σ(k − �,Rs)

)
.

Since σ(k − �,Rs) is always [0,∞), we have

σ(k, M) = [α,∞),

where α = α(Z , s, n, k). Finally, the case n/2 < k ≤ n − s − 1 follows from Poincaré
duality.

The result for the essential spectrum of M follows in a similar manner, because M is
translation invariant. Since the essential spectrum coincides with the spectrum, the discrete
isolated spectrum is an empty set. The translation invariance of M also implies that the set
of eigenvalues of finite multiplicity, is an empty set. �


As we have mentioned, for the computation of the essential spectrum of the Laplacian
we must consider the structure of the flat manifold with further detail. The example below
illustrates why it is important to not simply consider the manifold as a flat bundle over its
soul.

Example 2.2 Consider M = R
3/� where � is generated by a glide rotation that is composed

of an irrational rotation in the xy-plane combined with a translation along the z axis. Note
that near infinity this flat manifold is essentially isometric to R

3, since its injectivity radius
becomes infinite.

At the same time, the maximal abelian subgroup �∗ of � is the translation group Z and
the soul of the manifold is the circle, S1. On the other hand, the group �2 that we describe in
the following section, consists only of the identity element. Therefore, the structure of M at
infinity is more accurately described by the quotient R3/�2.

One can easily see from this example that if the flat manifold is not a parallel normal
bundle over the soul, then the soul need not determine its spectrum.

When the manifold has negative curvature, the spectrum of the Laplacian on forms can
have gaps. This occurs even over hyperbolic space as the following example illustrates.

Example 2.3 The essential spectrum of the Laplacian on forms over the hyperbolic space
H

N+1 is given by

σess(k,�) = σess(N + 1 − k,�) = [ ( N2 − k)2,∞ )

for 0 ≤ k ≤ N
2 , and whenever N is odd

σess
( N+1

2 ,�
) = {0} ∪ [ 1

4 ,∞ ).

This result can be found in Donnelly [7]. Mazzeo and Phillips also show that the same result
is true over hyperbolic manifolds (in other words quotients of hyperbolic space HN+1/�)
that are geometrically finite and have infinite volume [15].

At the same time there has been an extensive study of curvature conditions on themanifold
so that the essential spectrum of the Laplacian on functions is the nonnegative real line [1,9,
10,14]. Escobar and Freire also found sufficient curvature assumptions so that the essential
spectrum of the Laplacian on forms is [0,∞). The above Lemma gives however a very simple
example of a flat manifold for which the spectrum of the Laplacian on 2-forms is not [0,∞).
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The spectrum of the Laplacian on forms over flat manifolds 5

Example 2.4 Consider the product manifold M4 = F3 × R, where F3 is the compact flat
three-manifold constructed by Hantzsche and Wendt in 1935 with first Betti number zero
(see, [3] for a family of manifolds of any dimension n ≥ 3 with the same property). Note that
the second Betti number of F3 is also zero by Poincaré duality. As a result, the first eigenvalue
of the Laplacian on 1-forms, λF3(1), is strictly positive and in fact λF3(1) = λF3(2) > 0.
The product manifold M is a flat noncompact manifold. By Lemma 2.1

σess(k,�) = [0,∞) for k = 0, 1, 3, 4.

However, since there do not exist any harmonic 1-forms nor harmonic 2-forms on F then

σess(2,�) = [λF3(1),∞) where λF3(1) = λF3(2) > 0.

In other words, its essential spectrum is smaller in half-dimension.

This example illustrates the stronger connection of the spectrum of the Laplacian on forms
to the topology of the manifold and shows that sufficient conditions so that the form spectrum
is [0,∞) must be stricter than for the case of functions.

3 A characterization of noncompact flat manifolds on large sets

We will now consider the general case of complete flat manifolds. Recall that a complete
flat manifold is given as the quotient of Euclidean space by a discrete subgroup � of the
Euclidean group E(n). As has already been mentioned, � must be discrete and fixed point
free in order for the quotient space to be a complete manifold.

Fixing a reference point on the Euclidean space each element of E(n) can be uniquely
represented by (g, a)where g ∈ O(n) and a ∈ R

n . The action of (g, a) is given by (g, a)x =
gx + a for any x ∈ R

n . Note that Rn and hence any subspace of Rn can be embedded in
E(n) by a �→ (1, a). Define the homomorphism ψ : E(n) → O(n) by ψ(g, a) = g.

We define �∗ to be the intersection of � with the identity component of the closure of
� · Rn . By [19, Theorem 3.2.8], we know that �∗ is a normal subgroup � of finite index
and there exists a vector subspace V ⊂ R

n and a toral subgroup T of O(n) such that T acts
trivially on V , �∗ ⊂ T · V and �∗ is isomorphic to a discrete uniform subgroup of V .

With V defined as above we get the orthogonal decomposition

R
n = V⊥ ⊕ V .

Let

�1 = {(g, a) ∈ � | g leaves V⊥ invariant, i.e. g|V⊥ = IV⊥}
and define

�∗∗ = �∗ ∩ �1.

Lemma 3.1 �1 is a subgroup of �, and �∗∗ is a normal subgroup of �1 of finite index.
Moreover, �∗∗ is a subgroup of the translation group which acts on V ; in other words it acts
trivially on V⊥.

Proof Let (g1, a1), (g2, a2) ∈ �1. Then

g1g2|V⊥ = IV⊥ ,
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6 N. Charalambous, Z. Lu

and hence �1 is a subgroup. By [19, Theorem 3.2.8], since �∗ is normal in �, then �∗∗ in
also normal in �1. Moreover, we have

[�1, �
∗∗] ≤ [�,�∗] < ∞.

Finally, by definition, ψ(�∗∗) is the identity matrix. Therefore �∗∗ ⊂ �∗ is a translation
group acting on V . �


Define

V2 = span (�∗∗),

and let

V = V1 ⊕ V2

be the orthogonal decomposition of V . In this way, we write

R
n = V⊥ ⊕ V1 ⊕ V2. (1)

Define the subgroup �2 of �1 by

�2 = {(g, a) ∈ �1 | g leaves V1 invariant, i .e. g|V1 = IV1}.
For any vector a ∈ R

n , we decompose

a = a⊥ + a= = a⊥ + a1 + a2,

where a⊥ ∈ V⊥, a= ∈ V , a1 ∈ V1 and a2 ∈ V2. Let

d⊥ = dim V⊥, d1 = dim V1, d2 = dim V2. (2)

We also choose a coordinate system

a = (a1, . . . , ad⊥ , ad⊥+1, . . . , ad⊥+d1 , ad⊥+d1+1, . . . , an) (3)

so as to be compatible with the decomposition (1). Here for 1 ≤ j ≤ n, a j is the j-th
component of a.

Let g ∈ O(n), we use g⊥, g=, g1, and g2 to represent the restrictions of the operator to
V⊥, V , V1, and V2, respectively. Note that since g is orthogonal, if the restriction is also an
orthogonal matrix, then the corresponding space and its orthogonal complement are invariant
spaces of g.

Lemma 3.2 Let (g, a) ∈ �. Then there exists a constant C such that

‖a⊥‖ ≤ C .

Moreover, if (g, a) ∈ �1, then a⊥ = 0.

Proof We first consider the case (g, a) ∈ �1, and we write

(g, a) =
((

1 0
0 g=

)
,

(
a⊥
a=

))
,

Since �∗∗ is of finite index in �1, by Lemma 3.1, we have

(g, a)N =
((

1 0
0 1

)
,

(
Na⊥

∗
))

∈ �∗∗ ⊂ �∗.
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The spectrum of the Laplacian on forms over flat manifolds 7

for some positive integer N . By Lemma 3.1, �∗∗ is a subgroup of the translation group that
acts only on V , therefore Na⊥ = 0; hence a⊥ = 0.

Now we assume that (g, a) ∈ �. �∗ is normal and of finite index in �. Therefore, there
exists a finite set {(g′

α, a′
α)} ⊂ � such that

(g, a) = (h, b)(g′
α, a′

α)

for some α and (h, b) ∈ �∗. By [19, Theorem 3.2.8], we have

a⊥ = (ha′
α)⊥ + b⊥ = (ha′

α)⊥.

Since the set {a′
α} is finite and h ∈ O(n), we conclude that ‖a⊥‖ is bounded. �


By the same argument we have

Lemma 3.3 Let (g, a) ∈ �1. Then there exists a constant C such that

‖a1‖ ≤ C .

Moreover, if (g, a) ∈ �2, then a1 = 0.

�

By the above two lemmas, we have the decomposition

R
n/�2 = V⊥ ⊕ V1 ⊕ V2/�2.

For a vector x ∈ V⊥ ⊕ V1 we write

x̃ = (x⊥, x1, 0) ∈ R
n .

Let T̂ be the closure ψ(�), where ψ is the projection of E(n) to O(n) defined before. By
[19, Theorem 3.2.8], T̂ is a finite extension of the toral group T .

Lemma 3.4 There exists an x ∈ V⊥ ⊕ V1 such that for all g ∈ T̂ ,

(1) If (gx̃ − x̃)⊥ = 0, then g⊥ = IV⊥ ;
(2) If both (gx̃ − x̃)⊥ = 0 and (gx̃ − x̃)1 = 0, then both g⊥ and g1 are the identity.

The points x described in the above lemma are sufficiently generic in the sense that one
can find them in any open set. The essence of the argument is the observation that T̂ is a
finite extension of a toral group, and as a result it suffices to only consider the representatives
of T̂ over T . Even though the elements of T may be uncountable, they are easier to control
because they are diagonalizable under a fixed coordinate system.

Proof We let p0, . . . , pt ∈ T̂ be the representatives of the group T̂ /T . We assume that

(1) p0 = I ;
(2) pi |V⊥ = IV⊥ and pi |V1 = IV1 for 1 ≤ i ≤ t1;
(3) pi |V⊥ = IV⊥ but pi |V1 �= IV1 ; moreover, for all h ∈ T , hpi belongs to neither category

(1) nor (2) above, for t1 < i ≤ t2;
(4) pi |V⊥ �= IV⊥ ; moreover, for all h ∈ T , hpi belongs to neither category (1), (2) nor (3)

above for t2 < i ≤ t .

Obviously, there exists an x ∈ V⊥ ⊕ V1 such that

(1) (pi x̃ − x̃)⊥ �= 0 for t2 < i ≤ t ;
(2) (pi x̃ − x̃)1 �= 0 for t1 < i ≤ t2.
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8 N. Charalambous, Z. Lu

By continuity, there exists a neighborhood U of x on which the above two conditions are
still held. Therefore, without loss of generality, we assume that all the components of x are
not zero.

Since T is the toral group, we may assume that under the coordinate system (3) for Rn ,
its elements can be represented by

⎛

⎜⎜⎜⎝

Sθ1

. . .

Sθr

I

⎞

⎟⎟⎟⎠ (4)

where Sθi =
(

cos θi sin θi
− sin θi cos θi

)
, and 2r ≤ d⊥. We write

V⊥ = P1 ⊕ P2 ⊕ · · · ⊕ Pr ⊕ Pr+1

according to the above representation. We prove by contradiction. Let g be an element of T̂
such that (gx̃− x̃)⊥ = 0. We assume that g = hpi for some h ∈ T and i . Assume that i > t2.
Then there exists an 1 ≤ j ≤ r + 1 such that Pj is not invariant under pi . If j ≤ r , then

((pi x̃)
2 j−1)2 + ((pi x̃)

2 j )2 �= ((x̃)2 j−1)2 + ((x̃)2 j )2.

As a result, the projection of (gx̃ − x̃)⊥ = (hpi x̃ − x̃)⊥ to Pj is not zero, which contradicts
the assumption. Similarly, if Pr+1 is not invariant under pi , then again (gx̃ − x̃)⊥ �= 0. This
proves the first part of the lemma.

Similarly, we can prove the case when both (gx̃ − x̃)⊥ and (gx̃ − x̃)1 are zero. The lemma
is proved. �

Lemma 3.5 Let x be as in the above lemma. Then

lim
j→∞ inf

(g,a)∈�\�2
‖(g, a)( j x̃) − j x̃‖ = ∞.

Proof If the lemma is false, then there exists a subsequence {λ j } of positive integers
λ j → ∞, (g j , a j ) ∈ �\�2,

such that
‖(g j , a j )(λ j x̃) − λ j x̃‖ ≤ C . (5)

For the same N as in the proof of Lemma 3.1, (g j , a j )
N = (h j , b j ) ∈ �∗. We will consider

two cases.
In the first case we assume (h j , b j ) /∈ �1 for a subsequence of the (h j , b j ) for which we

use the same notation. We have

‖(h j , b j )(λ j x̃) − λ j x̃‖ ≤ NC

since (g j , a j ) is an isometry. By orthogonality we get

‖λ j (h j x̃ − x̃)⊥ + (b j )⊥‖ ≤ NC (6)

and
‖λ j (h j x̃ − x̃)= + (b j )=‖ ≤ NC . (7)

By Lemma 3.2, the upper bound (6) is equivalent to

‖λ j (h j x̃ − x̃)⊥‖ ≤ NC .
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The spectrum of the Laplacian on forms over flat manifolds 9

Since λ j → ∞, we must have
‖(h j x̃ − x̃)⊥‖ → 0 (8)

as j → ∞. Given that (h j , b j ) ∈ �∗ we know (h j x̃)= = (x̃)=. Using (7) we get ‖(b j )=‖ ≤
NC . Applying Lemma 3.2 once again, we obtain the uniform upper bound

‖b j‖ ≤ ‖(b j )⊥‖ + ‖(b j )=‖ ≤ C

for some constant C . �∗ as well as � are discrete groups, therefore there exist only finitely
many (h j , b j ) with b j bounded. This implies that for sufficiently large j we have (h j x̃ −
x̃)⊥ = 0, which is only possible, by Lemma 3.4, when we have (h j )⊥ = IV⊥ . Therefore
(h j , b j ) ∈ �1 and we get a contradiction.

We now consider the case (h j , b j ) ∈ �1 for all sufficiently large j . This implies that
(h j , b j ) ∈ �1 ∩ �∗ = �∗∗. As a result gNj = h j = IRn . On the other hand, using (5), we get

‖λ j (g j x̃ − x̃)⊥‖ ≤ C

for all j , which again imples that

‖(g j x̃ − x̃)⊥‖ → 0 (9)

as j → ∞.
Since � is finite over �∗, we can write

(g j , a j ) = (g′
j , a

′
j )(p j , q j )

for (p j , q j ) ∈ �∗ and finitely many (g′
j , a

′
j ) . By passing to a subsequence if necessary, we

assume that

g j → g∞, g′
j → g′∞, p j → p∞.

By (9) and Lemma 3.4, we have g∞|V⊥ = IV⊥ . Since g∞ = g′∞ p∞ and V⊥ is an invariant
space for p∞, it is also an invariant subspace for g′∞. However, since there exist only finitely
many g′

j , we must have g′
j = g′∞ for j � 0. Thus V⊥ is an invariant space for g′

j for j � 0.

As a result, V⊥ is an invariant space for g j = g′
j p j for j � 0. Since gNj = IV⊥ and g j

satisfies (9), we conclude that g j = IV⊥ for j � 0.
ByLemma3.3,we alsomust have (g∞ x̃−x̃)1 = 0.UsingLemma3.4we get g∞|V1 = IV1 ,

and hence g∞|V⊥⊕V1 = IV⊥⊕V1 . Since g
N
j = IRn and g j → g∞ with g∞|V⊥⊕V1 = IV⊥⊕V1 ,

we must have g j |V⊥⊕V1 = IV⊥⊕V1 for j � 0. Thus (g j , a j ) ∈ �2, which is a contradiction.
�


Theorem 3.6 Let M = R
n/� be a flat noncompact Riemannian manifold. Then there exists

a compact flat manifold Z of dimension n−s, such that for any sufficiently large real number
R > 0, there exists an isometric embedding

Z × Bs(R) → R
n/�,

where Bs(R) is a ball of radius R in the Euclidean space Rs .

Proof We take Z = V2/�2 which is compact given our choice of �2. Note that s = d⊥ +d1.
Choose any C > 0 such that the diameter of Z satisfies diam(Z) ≤ C . By Lemma 3.5 there
exists a λ > 0 such that

inf
(g,a)∈�\�2

‖(g, a)(λx̃) − λx̃‖ ≥ 3C .

This implies that the ball of radiusC/2 ofRn/�2 can be isometrically embedded intoRn/�.
�
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10 N. Charalambous, Z. Lu

4 Computation of the spectrum

The isometric embedding we have chosen in Theorem 3.6 will now allow us to compute the
spectrum of the Laplacian on k-forms over the flat manifold. We will first show that this
embedding implies that the essential spectrum contains a connected interval.

Proposition 4.1 Let M = R
n/� be a flat noncompact Riemannian manifold. Then for any

0 ≤ k ≤ n,

σess(k, M) ⊃ σess(k,R
n/�2).

Proof Note that Rn/�2 = Z × R
s where Z = V2/�2 and V2 is the Euclidean space of

dimension n− s. Let λ ∈ σess(k,Rn/�2). Then by the proof of Lemma 2.1, the approximate
eigenforms can be chosen as

ω1 ∧ ρ ei
√

μ1r ω2

where ω1 is the first eigenform corresponding to the smallest eigenvalue λ1 of the Laplacian
on �-forms for some � on Z = V2/�2, r is the distance function to the origin on R

s ,
ω2 = dx1 ∧ · · · ∧ dxk−�, and ρ is the standard cut-off function so that the approximation
eigenform is of compact support within the annulus of radii R − 1 and 2R + 1 for R � 0.
μ1 is chosen so that

λ = λ1 + μ1.

We choose C > 4R as in the proof of Theorem 3.6. Then by a standard integral estimate
ρ ei

√
μ1rω1 ∧ ω2 becomes the approximate eigenform for both R

n/�2 and M for any non-
negative real number μ1. This completes the proof of the proposition. �


We will now prove that the two spectra in Proposition 4.1 are in fact equal. To achieve
this, it suffices to show the following result.

Proposition 4.2 Letλo(k, X) denote the bottomof the Rayleigh quotient for theHodge Lapla-
cian on k-forms over a Riemannian manifold X.

The following inequalities hold

λo(k, M) ≥ λo(k,R
n/�2),

λesso (k, M) ≥ λesso (k,Rn/�2) = λo(k,R
n/�2).

Akeycomponent of the proof of this proposition is the fact that the group� is of polynomial
growth.

Proof To simplify notation we denote λo(k, M) = λo. Then for any ε > 0, there exists a
k-form ω ∈ C∞

o (
k(M)) such that
∫
M |∇ω|2∫
M |ω|2 ≤ λo + ε

since the manifold is flat and the Weitzenböck tensor on k-forms vanishes.
We assume without loss of generality that

∫
M |ω|2 = 1.

We consider the covering

μ : Rn/�2 → R
n/� = M .
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If F = supp (ω) is the compact support of ω, we let {Fj } be the lift of F in R
n/�2. We

fix a point y ∈ R
n/�2 and denote By(R) the ball of radius R at y in R

n/�2. Let

ξ(R) = #{Fj
∣∣ Fj ∩ By(R) �= ∅ }.

Let D be the diameter of Fj . Let ρ be a cut-off function such that

ρ = 1 on By(R1)

ρ = 0 outside By(R2)

|∇ρ| ≤ C

R2 − R1
,

where R2 > R1 are big numbers.
We consider the pull-back of the form ω, η = μ∗ω, on R

n/�2. Then the form ρη is
compactly supported on R

n/�2. For any ε0 > 0 we have
∫

Rn/�2

|∇(ρη)|2 ≤ (1 + ε0)

∫

Rn/�2

ρ2 |∇η|2 +
(
1 + 1

ε0

) ∫

Rn/�2

|∇ρ|2 |η|2.

Since μ is a local isometry we estimate
∫

Rn/�2

ρ2 |∇η|2 ≤ ξ(R2)

∫

M
|∇ω|2 ≤ ξ(R2)(λo + ε)

and
∫

Rn/�2

|∇ρ|2 |η|2 ≤ ξ(R2)
C2

(R2 − R1)2

∫

M
|ω|2 = ξ(R2)

C2

(R2 − R1)2
.

Combining the above we get
∫

Rn/�2

|∇(ϕη)|2 ≤
(

(1 + ε0)(λo + ε) +
(
1 + 1

ε0

)
C2

(R2 − R1)2

)
ξ(R2).

On the other hand,
∫

Rn/�2

|ρη|2 ≥ ξ(R1 − D)

∫

M
|ω|2 = ξ(R1 − D).

Therefore,
∫
Rn/�2

|∇(ρη)|2
∫
Rn/�2

|ρη|2 ≤
(

(1 + ε0)(λo + ε) +
(
1 + 1

ε0

)
C2

(R2 − R1)2

)
ξ(R2)

ξ(R1 − D)
.

By the Bishop–Gromov volume comparison theorem, we have
∫
Rn/�2

|∇(ρη)|2
∫
Rn/�2

|ρη|2 ≤
(

(1 + ε0)(λo + ε) +
(
1 + 1

ε0

)
C2

(R2 − R1)2

) (
R2

R1 − D

)n

Choosing R1, R2 sufficiently large with R2/R1 → 1, and ε0 = (R2−R1)
−1 → 0, we obtain

λo(k,�,Rn/�2) ≤ λo + o(1).

The proposition is proved. A similar method works for the essential spectrum. �
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As we mentioned in the proof of Theorem 3.6, the quotient Z = V2/�2 is compact. The
main theorem, Theorem 1.1 follows by combining this fact with Propositions 4.1, 4.2 and
Lemma 2.1. In fact, the bottom of the essential spectrum is determined by the eigenvalues of
the compact space Z = V2/�2 depending on the order of the forms. Below we give a more
detailed description of the bottom of the spectrum which is a consequence of Lemma 2.1.

Theorem 4.3 Let M = R
n/� be a flat noncompact Riemannian manifold. Let Z be the

compact flat manifold Z = V2/�2 of dimension n − s. Then

σ(k,Rn/�) = σess(k,R
n/�) = σess(k, Z

n−s × R
s) = [α(Z , s, n, k),∞)

where α(Z , s, n, k) is as in Lemma 2.1.

The flatness of the manifold now gives the following immediate corollary.

Corollary 4.4 The same result is true for the covariant Laplacian.
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