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Abstract. Self-interacting dark matter has been proposed to explain the apparent mass
deficit in astrophysical small-scale halos, while observations from galaxy clusters suggest that
the corresponding cross section depends on the velocity. Accounting for this is often believed
to be highly model-dependent with studies mostly focusing on scenarios with light media-
tors. Based on the effective-range formalism, in this work we point out a model-independent
approach which accurately approximates the velocity dependence of the self-interaction cross
section with only two parameters, in addition to the dark matter mass. We illustrate how
this parameterization can be simultaneously interpreted in various well-motivated scenarios,
including self-interactions induced by Yukawa forces, Breit-Wigner resonances and bound
states. We investigate the astrophysical implications and discuss how the approximation can
be improved in certain special regimes where it works poorly.
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1 Introduction

In contrast to the ordinary substances found on Earth, more than three quarters of the mat-
ter in the Universe is not made of protons, neutrons, or electrons. This is the so-called dark
matter (DM) and identifying its particle nature is one of the chief goals of particle physics and
cosmology today. According to the ΛCDM model [1], which accurately describes the Universe
at cosmological scales, DM interacts very weakly with normal matter and it was cold and colli-
sionless during the formation of structures in the early universe. Although DM can be treated
as collisionless particles at large scales, non-gravitational DM scatterings can still occur in
the dense central regions of small-scale halos such as those of dwarf or low-surface-brightness
galaxies. This is the self-interacting dark matter (SIDM) hypothesis, which was proposed [2]
to explain the seeming discrepancies between observations of the smallest DM halos that we
can currently observe and certain predictions of the ΛCDM model; see [3, 4] for recent reviews.

The aforementioned discrepancies can be explained if DM elastically scatters with a
cross section per unit of mass as large as several cm2/g when it moves at approximately
10 km/s, i.e., roughly the DM velocity dispersion in small-scale objects [5–10]. Meanwhile,
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recent studies on halo dynamics at cluster scales provide upper bounds on the self-interaction
cross section of around 0.2−1 cm2/g [11–16], which are associated with typical DM velocities
of the order of 103 km/s.

A natural question then arises: how can these observations be interpreted in terms of
the properties of the DM particle? One possibility is to postulate a specific DM model, and
translate the previous velocity-dependent cross section in terms of masses and couplings.
For instance, this has been done for scenarios where DM interacts by means of a light me-
diator [17–19] and for models in which DM resonantly self-scatters [20–22]. Nevertheless,
from the phenomenological point of view, this is not very practical, not only because the
cross sections typically depend in a complicated way on the model parameters, but also
because there are a myriad of SIDM scenarios. The essence of this work is to propose a
simple parametrization of the DM self-interaction cross section, which approximates with
great accuracy the velocity-dependent effects, and most importantly, which interpolates the
predictions of different DM scenarios allowing to establish comparisons among them. More
precisely, here we advocate the use of the effective-range theory as a model-independent way
to study the velocity dependence of SIDM. Notice that this approach has been adopted in
concrete models of DM before [23–27].

The effective-range approach was formulated [28, 29] as an effort to explain the non-
relativistic scattering of neutrons by protons. Based on simple assumptions from quantum
mechanics, this approach suggests that the scattering observables can be parametrized in
terms of two quantities: the scattering length a, and the effective range re. While being very
predictive, the effective-range theory does not demand a precise knowledge of the underlying
interactions among the colliding particles, apart from the requirement that the scattering
force must vanish at sufficiently large distances. In fact, due to this, it can describe the non-
relativistic scattering induced by contact interactions, light mediators, and Breit-Wigner
resonances, among others.

A brief historical remark may be helpful to readers.1 In late 1940s people proposed
different models to describe nucleon-nucleon scattering cross sections at low energies. After
many explicit calculations, it became clear that only two parameters are relevant, independent
of details of models. Schwinger came up with a proof why that was the case in an unpublished
lecture note. Blatt and Jackson [29] showed with more calculations that indeed only two
parameters were necessary to explain the data. Then Bethe [28] came up with a simple and
elegant proof (reproduced in appendix A) to understand this observation. The flip side of
this remarkable simplicity is that we gain very little information on the detailed model from
the data. Bethe wrote “practically no information could be obtained, from classical scattering
experiments, on the shape of the potential.” On the other hand, for the purpose of describing
the impact of self-interaction among dark matter particles in various halos, this is a boon;
we need to specify only two parameters (and the mass of dark matter) in order to simulate
the impact of self-interactions without the need for dealing with explicit models. This is why
we propose the use of the effective range theory for the study of SIDM.

This paper is organized as follows. In section 2, we review the effective-range approach,
and explain how it can be useful to describe DM self-scattering. In section 3, we discuss the
implications of this approach for describing the velocity-dependence of DM self-interactions in
astrophysical halos in a model-independent way. In section 4, we investigate how to relate the
scattering length and effective range to parameters of concrete DM models. In section 5, we

1Hans Bethe personally described the history in a YouTube video
https://www.youtube.com/watch?v=hbcQMG2XpTI.
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Figure 1. Comparison of the numerical S-wave cross section per unit mass (solid) against the
effective-range approximation (dashed). Orange and red lines correspond to the numerical results
for attractive and repulsive forces, respectively. Note that the mass here is the actual mass of the
scattering particles, not the reduced mass.

propose a concrete method on how the effective-range approach can be extended or improved
in some cases where it fails. Section 6 provides the final conclusions and future prospects.

2 The effective-range formalism

Before focusing on SIDM, we will first introduce the effective-range approximation. In any
collision the differential cross section dσ/dΩ determines the scattering rate and describes the
velocity dependence of the process. Up to a possible symmetry factor, it is given by dσ =
|f(k, θ)|2dΩ, where f(k, θ) is the scattering amplitude with k being the incoming momentum.2

For collisions with definite orbital angular momentum, `, the amplitude is proportional to the
Legendre polynomial, P`(cos θ), with the corresponding coefficient defining the partial-wave
amplitude, f`(k). More precisely

f(k, θ) =

∞∑
`=0

(2l + 1)f`(k)P` (cos θ) , (2.1)

with f`(k) ≡ e2iδ`(k) − 1

2ik
=

1

k (cot δ`(k)− i)
. (2.2)

The second relation defines the phase shift, δ`(k) for the ` partial wave. While the precise
value of δ`(k) must be obtained by solving the Schrödinger equation describing the scattering
process, this phase shift always satisfies some general requirements. For instance, it must be
real if inelastic processes are absent. In this work, we are concerned with elastic scatterings
in astrophysical halos, as a result, unless stated otherwise, we will assume that inelastic
processes are relatively weaker and take δ` real (see section 5.3 for how to include the inelastic
processes).

Another requirement on the phase shift is that, for finite-range interactions, the function
k2`+1 cot δ`(k) must be analytic at k = 0 (for more details see appendix A). The effective-
range approximation [28, 29] consists in neglecting the high-order terms in the corresponding

2Here and below, we separate the center-of-mass motion and hence k is the relative momentum of two
particles that scatter. The orbital angular momentum ` below is defined in the center-of-mass frame. Note
also that we are dealing with low velocities, less than about 10−2c, which are typical in halos, so the use of
non-relativistic quantum mechanics is justified.
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expansion in k2, so that

k2`+1 cot δ`(k) ' − 1

a2`+1
`

+
1

2r2`−1e,`

k2 . (2.3)

The quantities a` and re,` thus defined are known as the scattering length and the effective
range, respectively. This approximation describes the phase shift with good accuracy at
sufficiently low energies. Consequently, if one partial wave dominates the scattering process,
the velocity dependence of the cross section is determined by only two parameters.

Let us focus on the S-wave case, which dominates the low-energy scattering rate in
many situations of interest. In this case, the cross section is given by3

σ0 =
4π

k2
sin2 δ0 ≈

4πa2

1 + k2 (a2 − are) + 1
4a

2r2ek
4
. (2.4)

Note that the unitarity bound, 4π/k2, is saturated for |a| → ∞. One important example of
this kind is the case of particles of mass m interacting via the Yukawa potential

V (r) = ±αe
−mφr

r
. (2.5)

Figure 1 compares the numerically-evaluated cross section and the approximation based on
eq. (2.4) for a particular region of the parameter space.4 Despite its simplicity, the effective
range approximation works very well, i.e. high-order terms of k2 in eq. (2.3) can be neglected.
In particular, it is able to reproduce the peak structure of the cross section. As is well known,
such peaks are related to zero-energy bound states induced by the attractive potential.

A similar example is the non-relativistic scattering of two nucleons. In the case of
proton-neutron collision, for the spin-one channel and kinetic energies up to a few MeV,
eq. (2.4) accurately describes the velocity dependence of the corresponding cross section
with a = 5.42 fm and re = 1.75 fm (see e.g. [30, 31]). This is also related to a bound state:
the deuteron.

Likewise, the collision of two neutrons — for which the total spin is zero — can be
characterized by a = −18.9 fm and re = 2.75 fm. In contrast, in this case no real bound
state exists. Instead, the scattering is induced by a virtual level,5 commonly known as the
dineutron (see figure 2).

Equally interesting is the fact that Breit-Wigner resonances can also be described using
the effective-range approximation. For simplicity let us suppose that the colliding particles
are scalars with the same mass m, and that the resonance has spin `. Thus, if the energy,

3From now on, for simplicity we will omit the subscript ` = 0 for the scattering length and the effective
range in the S-wave.

4Note that it is essential to go beyond the lowest-order perturbation theory (first Born approximation)
σ = 4π(αm/m2

φ)2, which does not depend on the sign of α nor produces spikes in the full calculation. Effective
range theory reproduces both correctly.

5A bound state is a pole in the scattering amplitude f`(k) along the positive imaginary axis on the complex
k plane, which corresponds to exponential damping of the radial wave function ∝ eikr. When parameters
of the potential are varied, a pole may move to the negative imaginary axis, which no longer describes a
bound state because the wave function grows exponentially. However, the existence of a pole in the scattering
amplitude can produce a pronounced enhancement in the cross section and is hence important. In this case,
the pole is called a virtual level. It should not be confused with virtual particles or virtual states that refer
to intermediate particles or states (propagators) in perturbation theory.
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Figure 2. Sketch of the scattering length and the effective range, which determine the cross section
using eq. (2.4). They simultaneously parametrize the non-relativistic scattering in seemingly different
theories including that induced by a Yukawa force, collisions via Breit-Wigner resonances, scatterings
induced by bound state or virtual level, and the collision of non-relativistic protons (p) and neutrons
(n). For the last case, the displayed values in units of fm accurately describe the experimental data [31].

E = k2/m, is sufficiently close to the resonance ER, the cross section is dominated by the
partial wave ` so that

σ` =
4π(2l + 1)

mE

Γ(E)2/4

(E − ER)2 + Γ2(E)/4
. (2.6)

The width in general varies with the energy in such way that Γ(E) ∝ E(2`+1)/2 (see e.g. [20]).
Using the effective-range approximation to the phase shift (eq. (2.3)), we find that the cross
section, σ` = 4π(2`+ 1) sin2 δ`/k

2, exactly matches the previous formula with

a` = − Γ(ER)
1

2`+1

2
1

2`+1E
2`+3
4`+2

R m
1
2

, re,` = −
2

2
−2`+1E

2`+1
−4`+2

R

Γ
1

−2`+1m
1
2

. (2.7)

Far from the resonance, some deviations are expected. In fact, as shown in right panel of
figure 1, the effective-range approximation also fails close to the antiresonances, i.e., where the
cross section vanishes. We will elaborate more on these cases in section 5. Likewise, when the
range of the Yukawa potential, m−1φ , is close to or larger than the de Broglie wavelength of the

incoming particles, k−1, the approximation fails. This region, usually referred to as classical
regime, corresponds to mφ . 5 MeV for the parameter region of the right panel of figure 1. In
fact, this is true for any potential, for momenta larger than the inverse of the force range, not
only must one include higher-order terms in eq. (2.3), but also the differential cross section
receives contributions from high partial waves. In this case, the exact values of more phase
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Figure 3. Self-scattering cross section as a function of the velocity for the indicated ratios of the
effective range to scattering length.

shifts δ` are needed to obtain the total scattering cross section. As a result, the effective-range
approach can not be applied for long-range forces. For more details, see e.g. [32–34].

In summary, the effective-range approximation properly describes many types of low-
energy scattering. These cases differ in the magnitude and sign of the effective range param-
eters, as will be explained in section 4 and as sketched in figure 2.

3 Astrophysical implications

The main hypothesis of SIDM paradigm is that small-scale DM halos such as those of dwarf
galaxies do not develop a high central density because its DM particles self-scatter with a
cross section per unit mass in the range 1− 10 cm2/g [6–8]. On the other hand, observations
of clusters of galaxies indicate that σ/m . 0.2−1 cm2/g [11–16]. Since in the former objects
the average DM relative velocity is typically of the order of 10 km/s, whereas in clusters of
galaxies it is around 2000 km/s, a velocity-dependent cross section is required in order to
accommodate both.

Before discussing this in detail, let us note that we use m for the DM mass, v for
the relative velocity between two initial DM particles in the centre-of-mass (CM) frame,
m? = m/2 for the reduced mass and k = m?v = mv/2 for each incoming DM momentum.

3.1 Velocity dependence in effective range theories

In the effective-range framework, the velocity-dependent cross section is given by6

σ(v) = 4πa2

((
1− 1

8

re
a

(mav)2
)2

+
1

4
(mav)2

)−1
, (3.1)

6The transfer cross section, σT =
∫
dσ(1 − cos θ), is typically used as a proxy for the scattering effects

in DM halos. This is because, on the one hand, σT takes into account that perpendicular scattering is most
efficient for thermalizing the DM halo and affecting structure observables. On the other hand, SIDM studies
often discuss scatterings induced by the exchange of a light mediator, which exhibits a divergence in the
forward direction regularized by the transfer cross section. For S-wave scattering, σT and σ0 coincide and are
therefore interchangeable.
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Figure 4. Contours of the cross section per unit of mass at cluster scales (v ∼ 2000 km/s) for
the indicated cross sections at zero velocity. In the parameter space shown in each plot, the latter
coincides within 1% with the cross section at dwarf-galaxy scales (v ∼ 10 km/s). The gray area, where
σ/m & 1 cm2/g, is excluded by cluster observations [11–13].

where the signs of the scattering length and the effective range only enter in the equation
via their ratio, and can not be separately constrained by studying the velocity dependence
of the DM scattering.

The velocity-dependence of the scattering cross section is also shown in figure 3. At very
low velocities the cross section is roughly constant and equal to 4πa2. If re/a < 1, the cross
section monotonously decreases, most appreciably for high DM velocities, v & (m|a|)−1.
In contrast, if re/a > 1, the cross section increases with v until it reaches the maximum
4πr2ea/(2re − a) at vpeak = 2(m|re|)−1

√
2(re/a− 1) and then decreases. If |a| � 1/m, the

corresponding cross section can be considered as a constant in all realistic DM halos.

To numerically illustrate this for halos of various sizes, figure 4 shows the contours
of the self-interaction cross section per unit mass at v = 2000 km/s for σ/m|v→0 equal to
1 cm2/g (left) and 10 cm2/g (right). We would like to note that σ/m|v→0 approximates the
corresponding values in dwarf scales at 1% level in the parameter space shown in the figure.
From figure 4, we conclude that GeV SIDM is associated with scattering lengths of several
fm and that sub-GeV SIDM is either excluded by cluster observations or requires a cross
section of around 1 cm2/g throughout all scales of interest. While some of these conclusions
have been obtained in specific SIDM scenarios such as those involving a light mediator [35]
or resonant SIDM [20], we would like to emphasize that these conclusions apply to any model
where the effective-range approach applies.

Figure 4 also suggests that the ratio re/a is poorly constrained by the velocity depen-
dence of the cross section. In the light of this and in order to consider a wider range of
parameter space, in figure 5 we show three possibilities for the effective range compared to
the scattering length. Concretely, for each fixed value of re/a, we illustrate the parameter
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Figure 5. Contours of σ/m within the range of 1 cm2/g-10 cm2/g at dwarf scales (v = 10 km/s).
The gray areas represent the exclusion limit from cluster-scale observables (v = 2000 km/s), and are
extended to the gray dashed curves if one requires σ/m . 0.2 cm2/g at cluster scales.

space simultaneously satisfying

1 cm2/g .
σ

m

∣∣∣∣∣
v=10 km/s

. 10 cm2/g ,

σ

m

∣∣∣∣∣
v=2000 km/s

. 1 cm2/g .

(3.2)
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The former takes place within the colored region while the latter, as in figure 4, corresponds
to the region not excluded by the gray area. Recent studies have claimed stronger constraints
of 0.2 cm2/g from observations of galaxy clusters [14–16], which are indicated as a gray dashed
line in each panel.

In each panel there are regions where all the constraints are simultaneously satisfied.
This confirms our previous remark that the ratio re/a is largely unconstrained. Likewise,
scenarios with a cross section of 1 cm2/g at dwarf and cluster scales are those for which the
borders of the gray and the colored regions lie on top of each other and — as mentioned
above — they correspond to DM masses below a few GeV.

3.2 Realistic velocity distributions

So far we have assumed a monochromatic velocity distribution for all DM particles in each
halo. Below, we take into account the realistic distribution of DM velocities and then consider
the corresponding average cross section for individual DM halos. The former is typically
achieved by assuming a Maxwell-Boltzmann distribution with a cut-off scale:

f(v, v0) =
4v2e−v

2/v20
√
πv30

Θ (vmax − v) , (3.3)

where vmax is the escape velocity and v0 is a parameter determining the typical velocities in
the DM halo. For vmax � v0, the average velocity is 〈v〉 = 2v0/

√
π. More concretely, we

take the average cross section as 〈σv〉/〈v〉 = (
∫∞
0 f(v, v0)σv dv)/(

∫∞
0 f(v, v0) v dv). Using a

Maxwell-Boltzmann distribution would at most modify the curves of figure 5 mildly, so the
conclusion of the previous subsection remains unchanged. For a detailed calculation and a
numerical comparison of 〈σv〉/〈v〉 and σ(〈v〉), see appendix. B.

On the observational side, extracting cross sections from experimental data is challeng-
ing and generally requires delicate N-body simulations at present. An intermediate method
is given by the semi-analytical method proposed in [12], which allows to infer the velocity-
averaged cross section per unit mass, 〈σv〉/m, for a given DM halo. This method was applied
to five clusters from [36], seven low-surface-brightness (LSB) spiral galaxies in [37] and six
dwarf galaxies of the THINGS sample [38] (see also [39]). Figure 6 shows their resulting
values in green, blue and red, respectively.

Using the velocity-averaged scattering cross section, we can fit |a|, re/a and m to the
aforementioned semi-analytical results and thus constrain the parameters of the effective-
range theory. The best-fit point is shown in figure 6 and corresponds to the benchmark S1.7

As expected, it fulfills the condition stated in eqs. (3.2).

We would like to emphasize that the points shown in figure 6 should be taken with
caution, as subtle effects, such as tidal stripping, still need to be further studied to understand
the (sub-)halo dynamics (see e.g. [40–44] for recent discussions). In fact, the need of a sizeable
DM self-interaction at cluster scales is under debate as this relies on the assumption that
one can robustly infer the existence of cores in clusters of galaxies. This motivates us to also
consider other possibilities which are not necessarily fitting the green points but in agreement
with conservative bounds at cluster scales, σ/m . 1 cm2/g. These are the benchmarks S2,
S3 and S4 labeled in figure 6.

7As mentioned before, the sign of a or re can not be fit by studying the velocity dependence of the
scattering. Moreover, since S1 has very small value of re, flipping the sign of either of them, in practice, gives
the same cross section as a function of the velocity.
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Figure 6. Fit of DM self-interaction cross sections at various astrophysical scales using effective
range approach. The points gives the inferred values of 〈σv〉/m taken from [12]. The curves of S1-4
show the averaged 〈σv〉/m as a function of v, calculated for four benchmark parameter sets (see the
top table). Note that although a is set to be positive in the table, changing a → −a and re → −re
simultaneously results in the same curve. Among them, S1 gives the best-fit set.

The benchmark S2 fits the dwarf and LSB data points fairly well with a relatively high
cross section but is too low to fully accommodate the cluster points. This is because its
peak is very pronounced with re/a� 1 and 〈σv〉 decreases very rapidly for 〈v〉 greater than
the peak velocity. This can be achieved with a narrow resonance [20]. In contrast, another
benchmark S3 describes an almost constant self-interaction cross section. Interestingly, this
is the benchmark that gives the lowest DM mass. As mentioned below, this is the sort of
points expected in particle models with contact interaction or heavy mediators. Finally,
benchmark S4 describes a velocity-averaged cross section whose peak velocity is around 50
km/s and avoids potentially stringent bounds on self-interaction cross section from massive
galaxy/cluster observations.

4 Interpreting a and re in terms of model parameters

In this section, we discuss how the scattering length and the effective range are related to the
model parameters of several SIDM scenarios, including those with a light mediator [2, 17],
resonant SIDM [20], as well as Strongly Interactive Massive Particles (SIMP) [45–47].
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Figure 7. Left: S-wave scattering length as a function of αm/mφ for the Yukawa (solid) and the
Hulthén (dashed) potentials. The case of a repulsive force (α < 0) is shown in gray. For the attractive
case (α > 0), as αm/mφ increases, a different color is chosen after the phase shift reaches an odd
multiple of π/2. This indicates a parametric resonance, where the cross section reaches a maximum
(the unitarity limit) and the scattering length diverges. The antiresonances, δ = 0, correspond to
vanishing scattering lengths and thus zero cross sections. Right: same as the left panel but for the
S-wave effective range.

4.1 Contact interaction

The simplest model discussed for SIDM is

V =
1

2
m2φ2 +

1

4!
λφ4 (4.1)

where m is the DM mass and λ the coupling. It leads to a constant cross section (within the
Born approximation)

σ0 =
λ2

128πm2
. (4.2)

In the effective-range framework, this happens for |re| � |a| � k−1 so that

σ0 = 4πa2. (4.3)

For the Born amplitude to be trusted, we need λ . 1, and hence

m . 8.14 MeV λ2/3
(

1 cm2/g

σ0/m

)1/3

. (4.4)

If we believe in the upper limit from the clusters, such contact interaction provides a poor fit
to the data. Note that the benchmark point S3 corresponds to a large coupling λ ∼ 105 for
15 GeV DM, where we can no longer trust the Born approximation. Typically, the φ4 theory
requires a UV completion of a strongly-coupled dynamics among dark matter particles.

4.2 SIDM with a light mediator

Models in which non-relativistic DM is coupled to a boson of mass mφ predict DM self-
interactions mediated by the Yukawa potential of eq. (2.5). Using the numerical method
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Figure 8. S-wave scattering cross section for the repulsive Yukawa potential in eq. (2.5). The
red solid lines are the numerical results, while the dashed gray lines are given by the corresponding
effective-range approximation.

discussed in appendix A, we calculate the S-wave scattering length and effective range to-
gether with the corresponding exact and approximated cross sections, for both repulsive and
attractive cases. The results are shown in figure 7, figure 8 and figure 9, respectively. Notice
that fixing αm/mφ and v/α determines all quantities in units of m−1φ . The figure also gives

the (a, re) parameters of the Hulthén potential V (r) = ±αδe−δr/(1− e−δr), which has been
used to approximate the Yukawa potential by setting δ =

√
2ζ(3)mφ [35]. Both potentials

give similar effective-range parameters, and thus similar self-interacting cross sections.

The Born regime. In this case αm � mφ and the phase shift can be found by solving
the Schrödinger equation perturbatively. In this way, according to eq. (A.11), we have

tan δ0 ' −mk
∫ ∞
0

r2V (r)
sin2(kr)

(kr)2
dr

=
mαk

m2
φ

(
1− 2k2

m2
φ

+O

(
k4

m4
φ

))
, (4.5)

which implies

a = −mα
m2
φ

, and re =
4

mα
. (4.6)

Therefore, in the limit of very small α, the scattering length is negligible, the effective range
re is large and they have opposite signs. This behaviour is clearly shown in figure 7. As
can be seen from the k2 expansion of eq. (4.5), even in this Born regime, the effective range
formula k cot δ0 = −1/a+ rek

2/2 can only approximate the S-wave phase shift for k � mφ.
The opposite case is the classical regime mentioned before, where higher partial waves have
to be taken into account.
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Figure 9. S-wave scattering cross section for the attractive Yukawa potential in eq. (2.5). The orange
solid lines are the numerical results, while the dashed gray lines are the corresponding effective-range
approximation. Vertical cyan lines correspond to the first resonance at αm/mφ ' 1.68.

The resonant regime. Now we turn to the parameter regime satisfying αm & mφ, where
non-perturbative effects play an important role. In particular, the attractive case exhibits a
very rich phenomenology. This is in sharp contrast to the repulsive case shown in figure 8,
where the scattering cross section simply increase with larger couplings.

For attractive interactions, figure 7 shows that as mα/mφ gradually increases, a critical
value is reached at which the scattering length goes to negative infinity. This corresponds
to a phase shift approaching π/2 from below and a cross section of σ0 = 4π/k2. Notice that
this is the maximum value allowed by unitarity. Immediately after mα/mφ exceeds such a
critical value, a becomes positively infinite.

Then, with even larger mα/mφ, the scattering length starts to decrease, until it reaches
zero, corresponding to a phase shift of π. This is the so-called antiresonance, where the cross
section takes its minimum value. Further increasing mα/mφ leads to negative values for a,
which eventually approaches negative infinity again. The same cycle repeats itself indefinitely.
Notice that this behavior of the cross section is responsible for the peak structure observed
in figures 1 and 9. As mentioned in the previous section, there is a close connection between
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Figure 10. The real and imaginary parts of kpole+ in units of 1/|a| as a function of re/a for both
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left panel the pole at re/a > 1/2 is unphysical (see footnote 9).

those peaks, where |a| → ∞, and the bound states that are formed due to the Yukawa poten-
tial. Below, we discuss this and how they are related to the poles of the scattering amplitude.

4.3 SIDM via bound states or virtual levels

Eq. (2.4) has the following poles

kpole± =
i

a

2

1±
√

1− 2re/a
. (4.7)

Even though the poles are in general complex, they can influence the low-energy scattering if
they are sufficiently close to the incoming particle momentum. In fact, a close inspection of
the Schrödinger equation allows us to interpret them in terms of physical states.8 In figure 10
we plot the real and the imaginary parts of kpole+ , which is the closer pole to the real axis.

For simplicity, let us consider first the case of a pure imaginary kpole. The corresponding
energy E = (kpole)2/(2m?) is negative, indicating the existence of a bound state with binding
energy ε = −E. Eq. (4.7) then leads to

2m?ε =

(
1

a
+m?εre

)2

. (4.8)

This formula is remarkable. Take as an example the case of proton-neutron system in the spin-
1 configuration. The values quoted above (a = 5.42 fm and re = 1.75 fm), which characterize
the velocity dependence of the cross section σpn, can be used to solve for the binding energy
of the deuteron. The result is in perfect agreement with the observed value of ε = 2.2 MeV.

Nonetheless, not every pole is related to a bound state. The latter are only associated
with kpole = i|k| (i.e., Im k > 0). Poles with a negative imaginary part correspond to either
virtual levels (kpole = −i|k|) or resonances (kpole = κd− i|γd|).9 An example of the former is
given by the collision of neutrons (a = −18.9 fm and re = 2.75 fm). No bound state of two
neutrons exists in nature. In fact, the state inducing such scattering is a virtual level.

8For a textbook review of these topics, see Landau & Lifshitz [48].
9For κd 6= 0, the imaginary part of kpole cannot be positive to conserve the total probability, see e.g. [49].
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The relevance of this for SIDM is that if DM forms a bound state, as predicted in
many well-motivated scenarios, the corresponding binding energy would be related to the
parameters that determine velocity dependence of the self-interaction cross section by means
of eq. (4.8). This is particularly true for the Yukawa potential. At the peaks of the cross
section (see e.g. figure 1), we found that |a| → ∞. Eqs. (4.7)–(4.8) in turn suggest |a| ∼
1/
√

2mε with ε→ 0. The peaks in the cross section are thus related to the existence of nearly
zero-energy bound states.

Even though the regime associated with such bound states is usually referred to as “res-
onant regime”, we would like to emphasize that there are no intermediate particles produced
on shell, i.e., particle resonances. Instead, there are parametric resonances in the sense that
for certain parameter combinations the cross section saturates the unitarity limit, where ε
approaches zero. All this explains why the presence of poles with very small ε affects the
scattering cross section dramatically.

4.4 Resonant SIDM

In the case of a particle resonance mediating the self-scattering, it is straightforward to see
that the kinetic energy E = (kpole)2/(2m?) is complex, with its real and imaginary parts
corresponding to the energy above the threshold ER, and the decay width of the resonant
state Γ(E), respectively. More precisely, for the ` = 0 case, E = ER − iΓ(E)/2, which
together with eq. (2.7) leads to the well-known formulas

δ0 = tan−1
(

Γ(E)/2

ER − E

)
, (4.9)

σ0 =
4π

mE

Γ(E)2/4

(E − ER)2 + Γ2(E)/4
. (4.10)

To conclude, when the scattering is induced by a bound state, a virtual level or a
resonance, this shows up as momentum poles in the complex k plane. Depending on the sign of
the scattering length and the ratio re/a, the effective range theory allows to predict which one
actually takes place. In fact, one can elaborate further on the nature of the intermediate state
in the scattering process using re and a. For instance, in the context of the deuteron, Weinberg
showed that one can infer whether the intermediate state is composite or not from the sign of
the effective range [50]. Discussing these interesting topics lies beyond the scope of this work.

4.5 SIMPs

The Strongly Interacting Massive Particle (SIMP) is a proposal where the thermal freeze-out
occurs by a 3 → 2 transition, which is important when the dynamics is strongly coupled,
hence the name [47]. It can be naturally realized in QCD-like gauge theories where pions
interact via the Wess-Zumino-Witten term [51]. Many variations and mediation mechanisms
are discussed in the literature [52–73].

The SIMP mechanism prefers dark matter mass in the range from 100 MeV to GeV,
and is in marginal conflict with the cluster data as seen in figure 5. On the other hand,
the strong dynamics often leads to existence of real resonances, bound states, and/or virtual
levels, which can improve the agreement by suppressing the cross section at high velocities.
In fact, such resonances in QCD-like models of SIMPs are possible [74].
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Figure 11. S−wave cross section for the first antiresonance of the attractive Yukawa potential (solid-
orange) and the approximation (dotted-gray) based on the improved effective-range formula (eq. (5.1))
giving a ≈ R = −0.85 and re = 13.4. For comparison, the standard effective-range approximation
gives a = 0 and therefore a negligible cross section everywhere, which does not show up in the plot.

5 Improving the effective-range approximation

Although figures 8 and 9 show that the effective-range approximation works remarkably well
in large portions of the parameter space of the Yukawa potential, they make clear that the
approximation fails close to the parameter points where the cross section vanishes, i.e., at
the anti-resonances. In fact, for realistic S-wave Breit-Wigner resonances, it may not work
for all possible values of the momentum. Likewise, so far we have used the effective range
approach to discuss the non-relativistic DM scattering induced by short-range interactions
while inelastic scatterings have been neglected to make sure that the potential, as well as
the phase shift, is always real. In this section, we demonstrate that all these effects can be
properly described by extending the effective range formalism.

5.1 Antiresonances

S-wave antiresonances are probably the simplest example where the effective range formalism
fails. In contrast to the prediction of eq. (2.4), the scattering amplitude and the cross section
vanish at a particular value of the momentum, but not everywhere. One possible way to
account for this is to decompose the total phase shift into two pieces — one of them satisfying
the effective range approximation — in such a way that they interfere destructively. More
precisely,

e2iδ0(k) = e2ikRe2iδa(k) = e2ikR

(
−1

a + 1
2rek

2 + ik

−1
a + 1

2rek
2 − ik

)
, (5.1)

which leads to the scattering amplitude

f0(k) =
e2iδ0(k) − 1

2ik
=
e2ikR − 1

2ik
+

e2ikR

−1
a + 1

2rek
2 − ik

, (5.2)
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vanishing at certain values of the momentum, as required. Note that here a and re are not
the standard scattering length and effective range.

At small k, this is equivalent to f0(k) = R+(−1/a+rek
2/2−ik)−1, as suggested in § 134

of ref. [48]. However, the latter expression does not respect unitarity because |e2iδ0(k)| 6= 1
as follows from eq. (2.2). In contrast, our parametrization of eq. (5.1) respects unitarity
manifestly.

Figure 11 illustrates our parametrization for the first antiresonance of the attractive
Yukawa potential. The difference between the numerical result and the approximation based
on eq. (5.1) is imperceptible.

5.2 Sharp resonances

Eq. (5.1) can also describe sharp resonances (second term) accompanied with a continuum
piece (first term), while the standard effective range approximation can only describe one of
the two. To illustrate this fact, let us consider the potential

V (r) = −mα2Θ(λcut − r) + Θ(r − λcut)
α

r
e−mφr, (5.3)

which we depict in figure 12 for a particular parameter choice.

This potential gives rise to positive-energy bound states that decay through quantum
tunneling. These are real resonances in contrast to the peaks associated with the Yukawa
potential in figure 1, as explained above. In fact, as shown in the left panel of figure 13,
the scattering cross section exhibits a resonant enhancement for certain values of the mo-
mentum. These correspond to the formation of unstable bound-states. Interestingly, while
the standard effective range formula describes the continuum part of cross section fairly
well, it fails to describe scattering cross section at the peak. In spite of this, the improved
formula approximates the exact result very well. Notice that, as explained above, such an
improvement is in practice adding a continuum piece to cross section (except for negative and
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Figure 13. Same as figure 11 but for the potential of eq. (5.3). The exact result is the solid orange
line, the dashed line is the approximation based on eq. (5.1) while the dotted gray line is the standard
effective-range approximation of eq. (2.4).

positive interference just below and above the resonance), which has already been considered
in phenomenological studies of resonant SIDM [20].

In the same fashion, eq. (5.1) can simultaneously describe a resonance and an antires-
onace as it is the case for potential in eq. (5.3) for certain points of the parameter space. This
is shown in the right panel of figure 13 for another parameter choice. In this case, the antires-
onance is induced by the destructive inferences between the continuum and resonance parts.

5.3 Inelastic scatterings

Even though we have assumed that inelastic scatterings — such as DM annihilation or
radiative capture [23, 24] — are subleading, in principle they can play a role. For instance,
in the vanilla light-mediator model, DM typically annihilates into the mediators, leading to
a complex potential [75]. In this case the corresponding phase shift can be decomposed as
δ` = Re δ` + iIm δ`. Assuming |δ`| � Imδ` ≥ 0, one can adopt the S-wave effective range
approximation in the following way

k cot δ0 ' k cot(Reδ0)−
ikImδ0

sin2(Reδ0)
' −1

a
+
re
2
k2 , (5.4)

where a and re contain a subleading imaginary component [76]. If we further neglect the imag-
inary component of re, the S-wave annihilation and scattering cross sections are related via

σan, 0(k) =
4π

k2
1− |e2iδ0 |2

4
' σ0(k)

k

|Ima|
(Rea)2

. (5.5)

Note that such expression does not violate the unitarity limit as its last factor vanishes at
|a| → ∞. Moreover, it shows that σan, 0(k) becomes constant at k � 1/|a| as long as the
effective range approximation applies. For more discussions on parametrizing the relation
between elastic and inelastic cross sections, see e.g. [24, 75].
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6 Summary and outlook

In this work, we have studied the effective range approach as a model-independent way to
parametrize DM scattering cross sections in astrophysical halos. While it only contains two
parameters besides the DM mass, it provides a good description of the self-scattering in most
appealing SIDM scenarios, including SIMPs, SIDM with a light mediator and resonant SIDM
models.

Starting with a brief introduction to the effective-range approach, we have studied
the astrophysical implications. In general, there exists a velocity scale, (m|a|)−1, below
which the scattering cross section can be treated as a constant. For velocities well above
this scale, the cross section quickly decreases. Taking bounds derived from current cluster
observations, we have reached the conclusion that DM masses below several GeV are excluded
for σ/m ∼ 10 cm 2/g in dwarf-sized halos. See figures 4 and 5. The tentative non-vanishing
values of σ/m — extracted from observational data at various scales — can also be fit in
terms of the effective-range parameters. See figure 6. Our results suggest that more precise
measurements and better extractions are needed to identify or constrain such parameters.
Nevertheless, since the value of re/a only affects the cross section around v ∼ 1/(m|a|),
obtaining its value from future observations might be challenging.

In addition, we have further investigated the correspondence of the scattering length
a and the effective range re to the model parameters of several popular SIDM scenarios.
In general, the scattering cross sections calculated from a and re agrees well with the exact
values as long as the range of the interaction is sufficiently short. Moreover, the effective-range
approach demonstrates that significant enhancements in the self-scattering cross section are
induced by the poles in the complex plane of the DM momentum. In analogy to nuclear
physics, such poles can be interpreted as intermediate physical states, such as a bound state,
a virtual level or a resonance.

In the end, we have briefly commented on possible extensions of the effective-range
approach, especially for the cases that contain anti-resonances or sharp resonances. Besides,
we have also shown that it is possible to study subleading inelastic processes such as DM
annihilations using the same framework.

We believe the effective-range approach provides a simple, yet very useful, parametriza-
tion to consistently take into account the velocity dependence of DM self-interactions in
cosmological simulations involving different astrophysical scales. For instance, such velocity-
dependence may play an important role in better understanding the evolution of the sub-halos
that move inside the Milky Way halo. This is left for future work.
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A The effective range theory

The phase shifts associated with the self-scattering of DM particles are obtained by solving
the Schrödinger equation for the radial wavefunction R`,k(r) of the reduced DM two-particle
system. This is given by

1

r2
d

dr

(
r2
dR`,k
dr

)
+

(
k2 − `(`+ 1)

r2
−mV (r)

)
R`,k = 0 , (A.1)

together with a boundary condition demanding that rRl,k must vanish at r = 0. In fact, close
to the origin it is expected that the angular-momentum term dominates for sufficiently well-
behaved potentials, in which case Rl,k ∝ rl. At large distances from the origin, the potential
vanishes and the wave function must be that of a free particle, i.e., a superposition of two
spherical waves. The phase shift, δ`, parametrizes such a superposition. More precisely, at
r →∞ the asymptotic behavior R`,k(r) is given by

R`,k(r) ∝ cos δ` j`(kr)− sin δ`n`(kr) ≈
1

r
sin

(
kr − lπ

2
+ δ`

)
, (A.2)

where j` and n` are respectively the spherical Bessel functions of first and second order.

A.1 A simple method to find the phase shift

In the SIDM context, ref. [35] presented a systematic method for solving eq. (A.1). Here we
would like to point out a simpler possibility that will not only provide a powerful method to
solve for the phase shift but will also allow us to define the scattering length and the effective
range. Let us first define

t`,k(r) =
j`(kr)

(
R′`,k(r)

R`,k(r)
− `

r

)
+ k j`+1(kr)

n`(kr)
(
R′`,k(r)

R`,k(r)
− `

r

)
+ k n`+1(kr)

. (A.3)

Simple algebra shows that

dt`,k(r)

dr
= −kmr2V (r) (j`(kr)− t`,k(r)n`(kr))2 . (A.4)

The fact that R`,k ∝ r` and eq. (A.2) fix the boundary conditions of this differential equation
to

t`,k(0) = 0 and t`,k(r)→ tan δ` at r →∞ . (A.5)

Notice that j`(kr) ∝ k` and n`(kr) ∝ k−(`+1) in the limit k → 0, which together with
eq. (A.4) imply that tan δ` ∝ k2`+1 for small momenta. The corresponding coefficient of
proportionality defines scattering length a`. More precisely,

a2`+1
` ≡ − lim

k→0

tan δ`
k2`+1

. (A.6)

The function k2`+1 cot δ` is thus analytic at k = 0. The next-to-leading term determines the
effective range, re,`, by means of

k2`+1 cot δ` = − 1

a2`+1
`

+
1

2 r2`−1e,`

k2 +O(k4) . (A.7)
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As a by-product we have found a powerful method to solve for the phase shift.10 In fact,
it is numerically much more efficient to integrate eq. (A.4) than to integrate eq. (A.1), not
only because the former is of first order but also because solving eq. (A.4) does not require
matching the solution to a plane wave at infinity in order to find the phase shift.

Eq. (A.4) can be solved by expanding on the potential, with the first term determining
the Born regime, which is given by

tan δl

∣∣∣∣∣
Born

= −km
∫ ∞
0

r2V (r)j`(kr)
2dr . (A.11)

A.2 The S-wave case

Let us take ` = 0 and introduce uk(r) = rRk ,0(r). Then, eqs. (A.1) and (A.2) read(
d2

dr2
+ k2 −mV (r)

)
uk(r) = 0 , (A.12)

and

uk(0) = 0 , uk(r)→ ψk(r) =
sin (kr + δ0)

sin δ0
at r →∞ . (A.13)

Here we have chosen a convenient normalization factor for uk. In the following we will find it
useful to employ the previous definition of ψk(r) for any positive value of r. Simple algebra
proves that for any potential

uk(r)
du0(r)

dr
− u0(r)

duk(r)

dr

∣∣∣∣∣
r

0

= k2
∫ r

0
u0(r

′)uk(r
′)dr′ . (A.14)

Moreover, using the fact that ψk(r) is the solution of the Schrödinger equation for V (r) = 0,
we find that

ψk(r
′)
dψ0(r

′)

dr
− ψ0(r

′)
dψk(r

′)

dr

∣∣∣∣∣
r

0

= k2
∫ r

0
ψ0(r

′)ψk(r
′)dr′ . (A.15)

Notice that ψ0(r) = 1− r/a0, where a0 is the scattering length. Subtracting eq. (A.14) from
eq. (A.15), taking r →∞ and using the fact that uk and ψk approach to each other in that

10Simple changes of variable on eq. (A.4) allow to simplify the method further. For instance, in the presence
of resonances — for which the angle δ` goes beyond π/2 and its tangent takes values in different branches —
it is more convenient to use

dδ`,k(r)

dr
= −kmr2V (r) (cos δ`,k(r)j`(kr)− sin δ`,k(r)n`(kr))

2 , (A.8)

with

δ`,k(0) = 0 and δ`,k(r)→ δ` at r →∞ . (A.9)

Alternatively, using the spherical Hankel function of first kind, h
(1)
` , one finds the even simpler formula

dδ`,k(r)

dr
= −kmr2V (r) Re

[
eiδ`,k(r)h

(1)
` (kr)

]2
, (A.10)

which must be solved together with eq. (A.9). Due to the fact that h
(1)
` (r) ∝ r−(`+1), this algorithm is

numerically unstable for very large `. Since those values are only relevant in the classical regime, in that case
it might be more efficient to use the analytical formula for δ` from classical physics [48].
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limit, we find that

k cot δ0 = − 1

a0
+ k2

∫ ∞
0

(ψ0ψk − u0uk) dr

= − 1

a0
+

1

2
re,0k

2 +O(k4) . (A.16)

where

re,0 = 2

∫ ∞
0

(
ψ2
0 − u20

)
dr . (A.17)

This is the original expression found by Bethe [28], who argued that the expansion in
eq. (A.16) approximates the phase shift with a great accuracy because ψk and uk differ
only where the potential is non-negligible. Note that this conclusion is based on the assump-
tion that in this region both wave functions depend very weakly on k, which is generally true,
when the potential energy is much larger than kinetic energy and kr is small.

To qualitatively understand the effective range, one can consider the following upper
bound, which is valid for potentials that effectively vanish at distances greater than certain
range R [77], as it is the case of the Yukawa potential. Then, ψ0 and u0 in eq. (A.17) coincide
for r & R, which implies that

re,0
R
≈ 2

R

∫ R

0

((
1− r

a0

)2

− u20

)
dr

≤ 2

(
1− R

a0
+

1

3

(
R

a0

)2
)
. (A.18)

Moreover, for shallow attractive potentials, u0 behaves like a slowly-varying sine function,
where mostly u0 . ψ0, resulting in a positive re,0. See also §. 133 of [48].

A.3 The Hulthén potential

In the main text, it has been mentioned that the Hulthén potential

V (r) = ±αδe−δr/(1− e−δr) (A.19)

approximates well the Yukawa potential if one sets δ =
√

2ζ(3)mφ, where α gives the coupling
and mφ is the mediator mass of the Yukawa potential [78]. The advantage of employing the
Hulthén potential is that its corresponding Schrödinger equation is analytically solvable, and
yield the S-wave phase shift [35, 78]

δ0 = arg

(
iΓ(λ+ + λ− − 2)

Γ(λ+)Γ(λ−)

)
. (A.20)

Here, the dimensionless function λ± is given by 1 + imv/(2δ)±
√
αm/δ −m2v2/(2δ)2.
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Figure 14. Contours of the ratio of 〈σv〉 and σ(〈v〉)〈v〉 as a function of am〈v〉 and re/a.

Using eqs. (A.16) and (A.17), one can obtain the analytical expressions of the S-wave
effective-range parameters as

a =
ψ(0)(1 + η) + ψ(0)(1− η) + 2γ

δ
, (A.21)

re =
2a

3
− 1

3δη
[
ψ(0)(1 + η) + ψ(0)(1− η) + 2γ

]2
×
{

3
[
ψ(1)(1 + η)− ψ(1)(1− η)

]
+ η

[
ψ(2)(1 + η) + ψ(2)(1− η) + 16ζ(3)

]}
, (A.22)

where η =
√
αm/δ, ψ(n)(z) are the polygamma functions of order n and γ ' 0.5772 is the

Euler-Mascheroni constant.

B Velocity-averaged cross sections

The averaged cross section 〈σv〉 can be calculated in terms of

〈σv〉
〈v〉
≡
∫∞
0 f(v, v0)σv dv∫∞
0 f(v, v0) v dv

= πa2
r2e (z+ − z−)

a2 − 2are
(φ(z+)− φ(z−)) , (B.1)
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with

φ(z) = z e−zΓ(0,−z) , (B.2)

z± =
32

π(am〈v〉)2

(
1− a

re
± a

re

√
1− 2re

a

)
a

re
. (B.3)

We also show the ratio of 〈σv〉 and σ(〈v〉)〈v〉 as a function of am〈v〉 and re/a in figure 14,
which shows that within the effective-range approach both coincide at one percent level,
except for the large-velocity regime 〈v〉 � (|a|m)−1, where σ can be sensitive to v.
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