
Integrating Parallel Computing in Introductory Programming 
Classes: An Experience and Lessons Learned 

Sheikh Ghafoor, David W. Brown and Mike Rogers 
{sghafoor, dwbrown, mrogers}@tntech.edu 

Department of Computer Science 
Tennessee Tech University 

Abstract. Parallel and distributed computing (PDC) has become ubiquitous to the extent that even 
common users depend on parallel programming. This points to the need for every programmer to 
understand how parallelism and distributed programming affect problem solving, teaching only 
traditional sequential programming is no longer sufficient. To address the rapidly widening gap 
between emerging highly-parallel computer architectures and the sequential programming approach 
taught in traditional CS/CE courses, the Computer Science Department at Tennessee Technological 
University has integrated PDC into their introductory programming course sequence. This paper 
presents our implementation efforts, experience and lessons learned, as well as preliminary evaluation 
results. 
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1 Introduction 

The widespread deployments of multicore and GPU based computing systems in recent 
years have changed the computing landscape. Parallel and Distributed Computing (PDC) 
now permeates almost all computing activities. The pervasiveness of multicore computing 
devices is making even common users dependent on PDC techniques.  The ever-increasing 
use of web-based services and emerging applications, such as mobile applications, cloud 
computing, big data analytics, and the Internet of Things (IoT), has made high performance 
computing common. Therefore, the most effective programmers understand how 
parallelism and distributed programming affect problem solving. Acquiring only traditional 
sequential programming skills is no longer sufficient, even for basic programmers. These 
changes emphasize the need for providing a broad-based skill set in PDC technology at 
various levels in Computer Science (CS) and Computer Engineering (CE) programs, as well 
as related computational disciplines. However, the rapid changes in hardware platforms, 
devices, languages and supporting programming environments continue to challenge 
educators in ascertaining appropriate content for curriculum and how to effectively teach 
that material. 



The computer science education community now recognizes that integrating PDC concepts 
in undergraduate curriculums is vital to comprehensive CS/CE education. The TCPP 
curriculum report [1] has identified core and elective PDC topics that a student graduating 
with a Bachelor’s degree in CS or CE is expected to have covered. Furthermore, PDC has 
been designated as a new ‘required knowledge’ unit in the ACM/IEEE-CS Curricula 2013 
[2]. However, most undergraduate CS/CE/Engineering programs still do not teach PDC 
concepts, and such programs typically train students to think and program exclusively in a 
sequential manner. Although some CS/CE programs offer PDC courses as an upper division 
elective, very few introduce PDC early, in the introductory programming classes (CS1 and 
CS2). The gap is rapidly widening between the emerging parallel computing architectures 
and the sequential computing approach taught in traditional undergraduate curriculums. 
There are currently three thousand and eleven (3011) 4-year universities in the United States 
[3] and most of them offer an undergraduate degree program in CS and/or CE. In addition, 
one thousand, eight hundred and ninety one (1891) two year community colleges offer 
CS/CE pre-university coursework [3]. However, while no statistics are available on how 
many institutions are teaching PDC concepts at the undergraduate level, the authors 
conservatively estimate this number at no more than 300. This estimation is based on grants 
sponsored by the National Science Foundation, “early adaptor” mini-grants awarded by the 
CDER Center [4], and faculty development workshops conducted by CS in Parallel [1].  

This paper presents the PDC topics and related hands on exercises that have been integrated 
in traditional CS0, CS1 and CS2 classes taught in the Computer Science Department at 
Tennessee Technological University (TTU). The paper further describes our experiences 
and lessons learned from this PDC integration effort. 

2 Related Works 

Researchers are actively seeking methodologies and tools for introducing PDC into 
introductory CS courses. In [5], the authors present their effort to implement parallelism in 
first and second year CS courses. The authors found that students can learn the material and 
enjoyed the experience. However, in [6], the author suggests that CS2 is the natural place 
to introduce parallelism, and the author uses minimalistic parallel programming patterns, 
called patternlets, to teach the student in CS2. 

Some researchers have focused on teaching PDC topics to students in upper division 
courses. For example, Geist et al. [7] describes a course for seniors and first year graduates 
that covers a real-world problem. Similarly, Lupo et al. [8] focusses on real world 
experiences with students working in teams. The authors state that eight of the ten learning 
objectives were met, and that the students enjoyed the real-world experience. 



Researchers have also attempted to integrate PDC throughout the curriculum. Burtscher et 
al. [9] taught PDC in several lower division courses and a senior capstone course. The 
authors show encouraging empirical results that they achieve their goals in terms of student 
outcomes, engagement, and interest. Graham [10] used various software models and 
programming options to teach PDC at various levels of the curriculum. The author also 
states the students show interest in the topics, but that PDC must be introduced early for the 
concepts to take root. Neelima and Li [11] present their experiences in introducing PDC 
topics over 6 academic years. The authors state that the PDC topics were well received by 
the students. Many students implemented successful projects, and some participated in 
conferences. Brown, Shoop [12, 13] and Adams [14] argue that PDC concepts should be 
taught at all undergraduate levels. They have developed a community of PDC educators 
available at CSinParallel.org [1]. 

Foley and Hurley [15] state that complex and unfamiliar parallel computing environments, 
or PCEs, present a barrier to students. The authors present a web portal, called OnRamp, 
which allows students to interactively explore PDC concepts. 

The CDER Center [4] is an NSF supported center for PDC Curriculum and educational 
resources development. Project personnel chair PDC educational conferences such as 
EduPar and EduHPC, as well as workshops. Additionally, the CDER Center provides 
competitive grants for early adopters of PDC in CS courses. The center also provides a book 
[16] for introducing concurrency in undergraduate courses and provides downloadable and 
searchable courseware. 

3 PDC Implementation 

3.1 CS Curriculum at TTU 

TTU is a medium sized, accredited public university with an enrollment of approximately 
twelve thousand students. The Computer Science department has approximately four 
hundred undergraduate majors and offers BS, MS, and Ph.D. degrees in Computer Science. 
The introductory courses offered as part of this degree are Introduction to Problem Solving 
and Computer Programming (CS1), Data Structures and Algorithms (CS2), and Object 
Oriented Programming and Design (CS3). Multiple sections of these introductory courses 
are offered each semester; usually the different sections of these courses are taught 
independently by different instructors. To address the high DFW rates in the 1st and 2nd 
programming classes, a required Principles of Computing (CS0) class was added to the 
curriculum in fall 2013. The students in these courses are usually first or second semester 
freshmen and are placed in CS0/CS1 according to their math aptitude scores. If the students 
are able to enroll in calculus, they are allowed to take CS0 and CS1 concurrently. In 



addition, CE students are required to take CS1 and CS2 but are exempted from CS0. For 
the majority of students involved, these courses represent their first real exposure to 
programming. 

In addition to the introductory level coursework, required upper division courses are 
typically offered once each school year. Our required upper division courses for the 
traditional CS degree include Assembly Language Programming, Operating Systems, 
Computer Networks, Computer Architecture, Database Systems, and a two-semester 
capstone Software Engineering series. 

Beginning in fall 2015, we began introducing parallel concepts into some sections of our 
CS0, CS1 and CS2 curriculum. One to two days of lecture per semester have been dedicated 
to introducing why PDC programming is necessary, parallel architecture, basic concepts 
and how PDC programming differs from sequential coding. Examples are provided to the 
student outlining parallelism, distributed computing, race conditions and concurrency. In 
the weeks following these lectures, hands on PDC exercises are introduced into the attached 
lab portion of the class, or as homework, that highlight a particular attribute of PDC 
development. 

Following the idea of exposing the students “early and often” to the concepts of PDC, each 
class introduces topics that build upon previous coursework. To accomplish this, we 
introduce similar concepts in CS0, CS1 and CS2 but at different levels of depth. This model 
allows the students to practice one facet of PDC in a manner that does not lead to confusion 
over the complex details of any advanced techniques. Each lab exercise or homework 
assignment takes as part of the study is worth 8-10% of the final grade in the lab course. 
The following sections briefly describe the implementation in each class with concise 
descriptions of the hands on exercises. One of the exercises is described in greater detail for 
the better understanding of our reader. 

3.1.1 Principles of Computing (CS0) 

The concepts introduced in the CS0 lecture include serial computing, parallel computing, 
concurrency, race condition and speed-up, and the need for parallel computing. We used 
SNAP [17] to implement the in class examples highlighting these topics. Using animated 
sprites, provided in SNAP, to represent which components of the application are computing 
and which ones are not. To highlight the benefits of parallelism, the students are shows two 
lists of random numbers and the instructor will work them through a sort done in parallel. 
The instructor can spawn the final merge step for this application in parallel or sequentially 
after the parallel sort to show that synchronization is needed to overcome the race condition. 
The module focuses on visualization and examples of parallelism, and does not include 



coding parallel algorithms. Once the students have been exposed to the concepts, a hands 
on exercise allows the students to run the sort over data collections and time their results to 
demonstrate speed-up. 

3.1.2 Introduction to Problem Solving and Computer Programming (CS1) 

The objective in the CS1 parallel introduction is to introduce the students to basic OpenMP 
coding, the fork-join model of parallel processing, as well as have the student become more 
familiar with the ideas of shared v. distributed memory, designing parallel programs and 
the differences between concurrency and parallelism. In addition, the topics covered in CS0 
are restated since that course is not a requirement for all students. 

Two modules have been created for use in the CS1 laboratory course. The first is a simple 
demonstration of fork-join summation and allows the students to create a basic parallel 
program and observe the speed-up PDC allows. The second more complex module walks 
the students through the manipulation in parallel of arrays for the means of image 
manipulation. Both modules help reinforce the concepts covered in the main lecture. 

Parallel Sum for CS1: The parallel sum lab is designed to introduce students to the fork-
join model of parallel programming. The lab begins by introducing the concepts and 
reasoning behind PDC programming and explaining the expected results of the experiment. 
The students are instructed to create a program which will create a large array, at least 1 
million elements, of randomly generated integers. A function is created to process the array, 
adding all the elements in a standard sequential manner. A separate function is created to 
perform the same process but utilize fork – join through OpenMP. A timer function placed 
in the program allows the users to accurately determine how long each function took to 
arrive at the answer. The students run the program multiple times using each of the two 
functions and are able to see the time savings adding simple parallel code can have on their 
programs performance. 

Parallel Image Processing for CS1: The lab describes image flipping and gray-scaling 
with an example, shown in Figure 1. In particular, images are represented as colored dots, 
known as pixels, on the monitor screen. The color of the pixel is represented as a mixture 
of intensities of the colors red, green and blue. Each intensity is characterized by an 8-bit 
number in the range from 0 to 255. For example, the value (0, 0, 0) represents the color 
black, the values (255, 0, 0) represents red, and the values (255, 255, 0) represent yellow. 
We call these intensities, the colors RGB (or red, green, blue) values. 



 
a) Color original image 

 
b) Gray-scaled and flipped image 

Figure 1: Flipping and gray-scaling an image 

Gray-scaling an image represented as a series of RGB values is easy. Different methods 
exist, but an effective method is called the luminosity method. In this method, if you are 
given the ith pixel, you gray-scale that pixel with the following formula: 

gray_value[i] = 0.21 * pixel[i].red + 0.72 * pixel[i].green + 0.07 * pixel[i].blue (1) 

Then, for each i, set the red, green and blue component of pixel[i] to gray_value[i] to gray-
scale the image. Flipping an image is accomplished by flipping the first pixel with the last 
pixel, the second pixel with the second-to-last pixel, and so on. The lab then describes how 
an image can be flipped and gray-scaled in parallel. An image has both a height and a width. 
The array of color values represents rows of pixels, where each row is a line of pixels that 
would appear across the screen. The size of each line of pixels is equal to the image’s width, 
and the number of lines is equal to the images height. When writing a parallel application, 
the programmer must first determine how to divide the problem among the available 
processors. Dividing the problem requires determining 1) how much of the problem each 
processor should compute, and 2) determining where, in the input data, the processor should 
begin and end its computations. In general, when dividing the rows among processors, the 
programmer should divide the work equally. So, if the image consists of n rows, and there 
are p processors available, then each processor should get roughly n/p rows. 

A natural division for an image is to divide the image into chunks, where each chunk 
consists of a number of rows of pixels. Then, each processor computes its assigned chunk. 
So, if the given machine has four processors and the image file is eight pixels square, each 
processor would compute two rows. Processor 1 would compute the first two rows, starting 
at index 0 and finishing with index 15, processor 2 would start at index 16 and process 
through index 31, and so on. 

Next, the lab describes the tools needed to edit and compile a parallel program, and includes 
a link to download code for loading and saving images in the simple PMM format, as well 
as a description of the PPM libraries API. The lab also describes pseudocode gray-scaling 
and flipping before finally explaining how OpenMP can make writing parallel programs 



easier. In fact, when using OpenMP, writing code to parallelize simple loops, such as the 
ones in this lab, becomes trivial. 

3.1.3 Data Structures and Algorithms (CS2) 

The objective in the CS2 parallel introduction is to reinforce the material the students had 
covered in CS1 while expanding their ability to learn and think in parallel, as well as how 
to design programs to effectively take advantage of the speed increases PDC provides. As 
with CS1, multiple modules exist to reinforce the instruction provided in the course lecture 
sections. The first allows the students to again observe speed-up of parallel programming 
by implementing a parallelized bubble sort. The second works with image modification, but 
this time utilizing pipelining and the producer-consumer model of parallelization 

Simple Bubble Sort with Merge for CS2: Even though the student should have covered 
sorting before attempting this lab, the module gives a brief description of Bubble Sort with 
examples for review. The lab exercise then describes a simple method for parallelizing the 
sort using domain decomposition. The computation occurs in two phases, the first of which 
divides the work equally among the available processors. A second phase occurs after all 
of the processors are finished with the initial sort, because sorting the pieces of the array 
does not result in a completely sorted array. In this step, the master must merge sorted pieces 
to produce a completely sorted result. However, the second phase must be done in serial 
using a single processor. 

Parallel Image Processing for CS2: The CS2 image processing lab is similar to the CS1 
image processing lab but follows the producer-consumer paradigm. This module does not 
apply gray-scaling in parallel followed by flipping in parallel, but instead the lab describes 
the image processing concept of pipelining filters as shown in . By utilizing a pipeline and 
the producer-consumer model, the students are able to gray-scale the image and flip the 
pixels in the same loop. In other words, once the gray-scale filter has been applied to a 
single row, that row can be enqueued to the flip filter while the gray-scale filter moves to 
the next row. 

 

Figure 2: Implementing a pipeline with a queue 



4 Evaluation 

We assessed how our integration efforts affected our students’ ability to think effectively 
using parallel concepts and the knowledge gained in PDC topics. As part of this assessment, 
we have conducted subjective and objective evaluations of the knowledge transfer. The 
objective evaluations were accomplished through quizzes, lab assignments, and homework, 
which is reflected in the course grade. The subjective evaluation was achieved through pre 
and post surveys designed to gather the students’ self-evaluation of their understanding of 
PDC concepts. We assessed the self-evaluations on a five point Likert scale to subjectively 
gauge their understanding of the concepts taught during the coursework. 

Results for this study were gathered from students in multiple sections of CS0, CS1 and 
CS2 courses over three semesters; fall 2015, spring 2016 and spring 2017. Due to time 
constraints with the existing curriculum and faculty capabilities this was a very sporadically 
applied implementation, which is something that we hope to address in the future. The class 
sizes for the courses under study have varied during the implementation of this study, see 
Table 1, but while the lecture size has fluctuated greatly, the associated lab sections have 
stayed around a 40 student enrollment on average. 

Table 1: Enrollment in Courses 

Course / Semester Section Lecture Size Laboratory Size 

CS0 FA15 001 44 N/A 
 002 43 N/A 
CS1 SP16 002 60 51 
CS2 SP16 001 37 39 
 002 54 49 
CS1 SP17 001 103 36 
 002 103 34 
 003 103 36 
 004 91 25 

Grades for the PDC module assignments followed the general template for laboratory work 
in the CS1/CS2 computer classes at TTU. If the assignment is complete and on time, the 
user is given full credit, work with errors are reduced in score either by 25% or 50% 
depending on the severity of the errors present. Regardless of errors, as long as work is 
submitted the student scores a 25%. Based on this scale, the classes we observed have 
performed below average on the PDC lab. The 2016 CS1 averaged a 67.9% on the PDC lab 
and those same students finished the semester with an average lab grade of 78.4%. 



Meanwhile, the 2017 students averaged a 72.6% on the PDC lab and finished the semester 
with an 80.9% average in the course. This is to be expected considering the overall lack of 
experience and limited time the professors were able to spend covering the PDC material 
prior to the work being accomplished.  

Figures 3 through 5 show the results of the students’ self-evaluation of their understanding 
of PDC concepts. These evaluations were done using a 5-point Likert scale (1 – none to 5 
– a great deal). From these evaluations we can see that race conditions appear to be one of 
the hardest PDC topics to understand for CS0 and CS1. We can also see that the number of 
responses of ‘None at All’ and ‘Little’ decrease from CS0 to CS1, we can also see the 
responses for ‘A Lot’ and ‘A Great Deal’ increase between CS1 and CS2. While our 
implementation was sporadic, these changes are to be expected as the students’ aptitude and 
exposure to programming has increased. 

 

Figure 3: Learning Outcomes for CS0 
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Figure 4:Learning Outcomes for CS1 

 

Figure 5: Learning Outcomes for CS2 

5 Conclusion 

Over the past two years, we have attempted to introduce PDC concepts into multiple 
sections of the CS0, CS1 and CS2 coursework at TTU. These implementations, limited 
though they may be, have been somewhat successful and point to several promising 
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outcomes moving forward. The biggest challenge we faced was the time constraints that 
were placed upon us due to the nature of these courses and the amount of material already 
present in their curriculum. This challenge made implementation of the necessary PDC 
material very difficult. Despite this, the subjective analysis of the results from the 
implementation show that the students can learn this material at this point in their academic 
careers and it is feasible to introduce these concepts in early classes. 

A second lesson we learned is that students tended to learn more from doing the PDC labs 
and homework rather than just listening to the lectures. Part of this is the trial and error 
learning that occurred as the users attempted to solve the problems presented, but also that 
we waited too long into the semester to begin talking about the concepts. In CS1, the PDC 
lab was the 10th out of 13 labs, and we feel that if we could introduce the concepts sooner 
in the semester before the students had started tuning out the lectures, we would be more 
successful in imparting the necessary skills. 

A third lesson is we need to formalize the introduction. The work we accomplished was 
only possible in a rather scattershot manner and instead we will work with the entire faculty 
teaching the CS0, CS1 and CS2 courses to develop lesson plans that will fit into their 
existing coursework and allow us to test the early and often paradigm over the course of 
several semesters to ensure the knowledge retention. For this to work will require 
coordination between all members of faculty responsible for teaching these courses and buy 
in to support the introduction of these topics. 

Though we have not tested the theory yet, we believe including unplugged activities that 
demonstrate parallel concepts away from the computer will be beneficial and should be 
included in future implementations. We would also like to include concepts of distributed 
computing in future research, possibly adding them to web based activities in CS0 or coding 
assignments in CS2. Regardless, we still believe the topics introduced should be presented 
in small, bite size doses because of variations in student preparedness at this early point in 
their careers. 
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