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Analysis of the Laplacian on the moduli space
of polarized Calabi-Yau manifolds

Zhigin Lu and Hang Xu

ABSTRACT. In this paper, we generalize the spectrum relation in the paper
On the spectrum of the Laplacian, Math. Ann., 359(1-2):211-238, 2014 (by
Nelia Charalambous and Zhigin Lu) to any Hermitian manifolds. We also
prove that the closure of Laplace operator [0 = &d on the moduli space of
polarized Calabi-Yau manifolds is self-adjoint.

1. Introduction

Let (M, g) be a Hermitian manifold with a holomorphic vector bundle (E, k).
Suppose [ is the Hodge Laplacian on smooth E-valued (p, ¢) forms. Though [ in
general is only symmetric but not self-adjoint, one can consider self-adjoint exten-
sions of the Hodge Laplacian. One well-known self-adjoint extension is the so-called
Gaffney extension (g ([5]). In this note, we generalize the spectrum relations in
[2] to the Gaffney extension on incomplete manifolds. One key ingredient for the
spectrum relations is a generalized version of the Weyl's criterion.

Another well-know extension of [ is the Friedrichs extension [z. s and Op
are in general different on incomplete manifolds. In the special case of the moduli
space of polarized Calabi-Yau manifolds M with the Weil-Petersson metric wy g,
we prove the Cauchy boundary of M has zero capacity, and therefore g = g on
functions. Furthermore, we also show that the Hodge Laplacian on functions with
certain Doml] is essentially self-adjoint, which is a generalization of the results in
[6] and [10].

Using the spectrum results we obtain on different self-adjoint extensions of the
Laplacians, we study the L2-estimates on incomplete manifolds. The L2-estimate
played one of the most crucial roles in several complex variables and complex ge-
ometry. The method allows us to construct a lot of holomorphic functions and
holomorphic sections in various function spaces.

One of the most important applications of the L2-estimate is the proof of Ko-
daira’s embedding theorem. Let L be a positive line bundle over a compact com-
plex manifold X. Then there exists a positive integer k such that the line bundle
L¥ =L ®---® L has a lot of (ample) holomorphic sections.
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In this paper, we study the case when X is not a complete complex manifold.
As it is well known, on a incomplete manifold, the extension of the Laplacian as a
self-adjoint operator is not unique. So we need to specify the extension. Secondly,
the L? estimates heavily depends on the spectrum gap on the bundle-valued (0, 1)
forms. Therefore, it is useful to generalize the results in [2] to the incomplete case.

The main result of this paper is in §5, where we re-prove the results of Masamune
[10,11]. We found a gap in his proof and we showed this gap by a counter-example
in §8.

In §7 and §8, we apply our results to the moduli space of Calabi-Yau manifolds.

Acknowledgments. We are very thankful to the anonymous referees for many
helpful comments.

2. Two Self-Adjoint Extensions of Hodge Laplacian

In this section, we assume (M, g) is a Hermitian manifold with a holomorphic
Hermitian vector bundle (E, k). Consider Hodge Laplacian on E-valued (p, g) forms
with compact support. As the Hodge Laplacian is symmetric but not self-adjoint,
we consider the self-adjoint extensions of the Hodge Laplacian via the corresponding
closed quadratic forms. By endowing the quadratic form with different domain of
definition, we will get two important self-adjoint extensions, which are respectively
Gaflney extension and Friedrichs extension. For more details about this section,
we recommend references [9,15].

We begin with the d-bar differential operator

Op,q : L*(M,APY(E)) — L*(M, AP*Y(E)),
with
Dm@nt})
= {¢ € L*(M, AP%(E)) : the distributional derivative 8¢ € L?(M, AP (E))}.

With the above domain of definition, the operator Ep‘g is a densely defined closed
operator. We denote the L? inner product on L?(M,AP4(E)) as (-,-)pq. With
respect to the L? inner product on L?(M, AP4(E)) and L?(M, AP-9t1(E)), we have

the adjoint operator of 9y, 4 as
Oy g1 : L2 (M, AP9HY(E)) — L*(M,AP9(E)),
with
Dom(8} 1) = {6 € LA(M, AP9+Y(E)) : 3 p € L*(M, AP9(E)) such that
(EU: P)p.a+1 = (u,p)p,q for any u € Dom(5p1q)}-
And in the above notation, 9*¢ is defined to be .

In the following, we will suppress the indices p,q in the operators and inner
product for simplicity when there is no confusion from context.

Now let us recall Hodge Laplacian and the associated quadratic form. We use
the notation D(M, AP9(E)) to denote the set of all smooth E-valued (p, g) forms
with compact support.

This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.



LAPLACIAN ON THE MODULI SPACE OF CALABI-YAU MANIFOLDS 181

DEFINITION 2.1. i) Let O : D(M,AP49(E)) — D(M,AP49(E)) be the
Hodge Laplacian defined as
O = 98* + 9*0.

ii) Let @ : D(M,AP4(E)) x D(M, AP9(E)) — C be the quadratic form asso-
ciated to [] defined as

Qp,¢) = (9p,09) + (8", 0" ¢) for any ¢, € D(M,API(E)).
Since 8, 8* are closed operators, if we endow quadratic form Q with Dom(Q) =
Dom(d)nDom(8*), then Q is closed. That means, for any sequence ¢, € Dom(Q),

¢n 2 ¢ and Q(om — @nypm — @) — 0 as m,n — oo, then » € Dom(Q) and
Q(pn — @, on —¢) = 0.
We cite the following theorem from [14] in Chapter VIIL6.

TueEOREM 2.1 ([14]). If Q is a closed semibounded quadratic form, then Q is
the quadratic form of a unique self-adjoint operator.

By applying this theorem to our quadratic form Q with Dom(Q) = Dom(9) N
Dom(8*) C L?(M,AP4(E)), we get a self-adjoint extension of [, which is called
Gaflney extension and denoted as [gz. The domain of Ug is

Dom(O¢g) = {¢ € Dom(d) N Dom(8*) : 3y € L*(M, AP%(E)) such that
Q. ) = (n, ) for any é € Dom(B) 0 Dom(&")}.

And in the same notation as above, U is defined to be 7.
The following Gaffney’s Theorem from [5] (See also chapter 3 in [9]) tells us
that Gaffney extension can be viewed as the composition of @ and 8* as follows.

THEOREM 2.2 (Gaffney).

(2:2)
Dom(O¢) = {¢ € Dom(d) N Dom(d*) : dp € Dom(8*) and 8*p € Dom(d)}.

(2.1)

And for any ¢ € Dom(Og), we have
Ogp = 00* ¢ + 0*0¢.

Similarly, we will introduce Friedriechs extension by endowing @) with a dif-
ferent domain of definition. Let’s first recall the following Sobolev spaces. We
denote Q1(-,-) = Q(-,-) + (-,-). It is not hard to see @}; is an inner product on
D(M, APA(E)).

DEFINITION 2.2 (Sobolev Spaces).

W3 (M, AP4(E) =Completion of D(M, AP?(E))
with respect to Q7 inner product,
W1(M, AP?(E)) =Completion of {¢ € C*°(M,AP4(E)) : Qi(p,¢) < oo}

with respect to Q7 inner product.

(2.3)

(2.4)

REMARK 2.3. Note that ¢ is not necessarily in Dom(d;, ,) when ¢ € C>(M,
AP4(E)). So in the definition of W(M, AP9(E)), to be precise, Q1(p,p) < oo
means ¢ € L?(M,AP?(E)) and the point-wise differentials dp,0*p belong to
L*(M,AP9TY(E)) and L%(M, AP 1(E)) respectively. And one can prove ¢ €
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182 LU AND XU

W1 (M,AP4(E)) if and only if ¢ € L?(M,AP4(E)) and the distributional differ-
entials 9y, 0*p belong to L2(M, AP9+t1(E)) and L?(M, AP9—1(E)) respectively.

REMARK 2.4. Note that W§ C Dom(8) N Dom(8*) c W'. But they are
generally not equal to each other.

If we endow Q with Dom(Q) = W{, then it becomes a closed quadratic form.
By applying Theorem 2.1 again, we will get a different self-adjoint extension of
Hodge Laplacian [, which is called Friedrichs extension and denoted as Op. Note
that Oy is generally different from (g by Remark 2.4.

EXAMPLE 2.5. Take the Hermitian manifold M = Q € C™ be a bounded open
set with smooth boundary. Let Hermitian vector bundle E be the trivial line bundle.
Assume u € C® (12, AP9). Let us investigate the boundary conditions induced from
Oz and Op in this case.

Ifue Dom(a_*), then
(Op, u) = (p,0%u) for any ¢ € C=(1Q, ﬁp,q—l)_
Note

(E(p,u):/ BQDA*E:/ np/\*ﬁ—i—(—l)p"'q/go/\g*ﬁzf © A FU+ (p, 0%u).
Q a0 Q a0

Here * is the Hodge star operator. The second equality follows from Stokes Theorem
and the last one is based on the identity 9* = — % @*. Therefore we have

/ @A+t =0 for any ¢ € Cm(ﬁ, Aps'?—l),
a0

It implies *u|sn = 0(the restriction of *u to 92). So by Theorem 2.2, u € Dom(Ug)
implies the boundary condition #u|sn = 0 and *5u|aﬂ =0.

For the Friedrichs extension, u € Dom(Op) implies u € W{. Then there exists
a sequence u; € D(M, AP+9) such that u,, — u in W}, By Weitzenbock formula, we
have

"9 "9 0
(25) i == g =~ 2 g

Therefore by taking the inner product with wu;,

~~ 9 0 "9 a
(2.6) Qy;,u5) = ;(ﬁuja ﬁuj) = ;(gi&j: %)
Then we have
a 3] a . 12 .
(2.7) 5% — 7Y and il T par I L* norms for each i.
zl zi z! zl

If we write u = u dez‘r A dz?, then each function u,5 is in the standard Sobolev
space Hg (), which implies u,5|sn = 0 for each multi-index I, J.

3. Spectrums of Gaffney Extension

The main goal of this section is to prove the following spectrum relations of
Gaflney extension.
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THEOREM 3.1. Let (M, g) be a Hermitian manifold with a holomorphic Her-

mitian vector bundle (E, h). Consider Gaffney extension of Hodge Laplacian, Uy, 4 :
L?(M,AP4(E)) — L?*(M, AP4(E)). We have the following spectrum relations.

(3.1) Spec(Tp,q) U {0} = Spec(89; 4,1) U Spec(8*Bp,q—1) U {0}
(3.2) Spec(pq) U {0} = Spec(00, P,q) U Spec(d* ip,q) u{0}.

REMARK 3.1. The above notation 55* means qu 15* and 5*5;,,; means
8;, q +1ap q- Note that 88* and 9* 8p q are se]_f adjoint operators by Von Neumann'’s
Theorem (see Chapter X in [13]) since both 3, 4 and 9, o are densely defined closed
operators. In the following we will omit the sub-indices p,q when there is not

confusion from context.

This is a generalization of results in [2], where similar spectrum relations were
proved for complete Riemannian manifolds. One main tool we are going to use is
the generalized Weyl criterion from [2]. The advantage of this generalized Weyl
criterion is that we do not necessarily pick the test sequence from the domain of
an unbounded operator. After proving it, we will mention a well known relation
between Gaffney extension and L? estimates, which serves a preparation for later
sections.

We will split the proof of Theorem 3.1 into to several Lemmas. First, we prove
one containment relation of (3.1).

LEMMA 3.2. Under the same assumption as Theorem 3.1, we have
(3.3) Spec(0,,4) C Spec(90, e gi1) U Spec(0*0,,4_1) U {0}.

ProoF. In this proof, we will use I to represent [, 4 for simplicity. Take Ag €
Spec(ld) and A\g > 0. By Weyl’s criterion, there exists a sequence u; € Dom(L)
with (u;,u;) =1 such that

(O—Xo)uj; = 0as j — oo.

Since [J is non-negative and self-adjoint, (1+0)~! : L2(M, AP4(E)) — Dom(0,,)
C L?(M,AP4(E)) is a bounded operator. By identity (2.1), we have

(34) Q((1+0)%uy, (14+0) ;) = (O + 0)~uy, (1 +0)~2uy).
Let {Py} be the Projection Valued Measure of [1. Then

65 (O0+D) A +0) ) = [ mdPa )
Take C(\g) = llﬂ%u](] 257 > 0. Then
(36)
| i) = € / A(Puz, ) 2 COO)IPrgag a1

We denote ug ) P( 1r0,320) %) and u( ) uj—u:(';l). By using the Projection Valued

Measure again, we have

(O = Xo)uy, (O — Xo)uy) = / (A Au)zd(PAuJ,w*“n u? |12,
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184 LU AND XU

Since we know (L1 — Ag)u; — 0 as j goes to infinity, we have
[u$ || = 0 as j — oo,
whence
[u$"]] = 1 as j — oo.
Together with (3.4), (3.5) and (3.6), we have for sufficiently large j

= _ -~ _ C(A
(3.7) 8L+ D)2y + 187 (14 D)2 >

On the other hand, we have
135" — 20)A(1 +0)~%u; 1 + [|(870 — X0)A(1 + 0)~?uy|?
=[19(0 = Xo)(1 + 0) " uyl|* + [18"(0 = Ao)(1 +0O) ~*uy*
= (01 +0)72(0 = Ao)uy, (L+0)72(0 = Ao)uy)
<[ = Ao)uy .
The first equality is because 909 = 0 on Dom(8) and 8* 0d* = 0 on Dom/(8*). The
second one follows from (2.1) and the commutativity of (] and (1 +)~!. And the

last inequality follows from |[(1 + 0)~!||z2z2 < 1 and ||O(1 +0)7|p2z2 < 1.
Therefore

(38) (@0 — 2)B(1 +D0)2us|* + (53 — A)3(1 +0)~uy|* .

Combining (3.7) and (3.8), we have A\g € Spec(ggs,q+1) U Spec(9*9p,4—1) by Weyl
criterion. So the result follows. 0

> 0.

Now we prove the other containment of (3.1).

LEMMA 3.3. Under the same assumption as Theorem 3.1, we have
Spec(88; ,41) U Spec(9*0pq—1) C Spec(Tp,q) U {0}
In order to prove this lemma, we will use one generalized Weyl criterion from
[2].

THEOREM 3.2 (Charalambous-Lu). Let H be a non-negative self-adjoint oper-
ator on Hilbert space H. A positive real number A is contained in Spec(H) if there
erists a sequence u; € H such that

(1) For any j, ||lu;|| = 1.
(2) ((H—=X0)(1+H) "uj,u;) =0 form=1,2.

Note that compared to the classical Weyl criterion, the above theorem does not
require u; € Dom(H). We give a proof of this theorem here for the completeness.

Proor. Note that
(H—2)*1+H)2=H-X)1+H) ™ =X+ 1)(H—-X)1+H)2
The assumptions imply that

(3.9) ((H = X0)*(1+ H) %uj,u;) — 0.
Let {Py} be the Projection Valued Measure of H. Then
* (A= Ag)?
(3.10) ((H = X0)*(1+ H) %uy,uy) 2/0 ﬁd(]ﬁuﬁu}-).
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Define ugl) = Pixg—e; Aote;)Uy and u:(';z) =u; — (1) The constants ¢; € (0 42 are

to be selected later. Note the integrand %T);%)g— in (3.10) has the fo]lowmg lower
bound for A & (Ao — €5, Ao + &5).

A=) & 2 71
. A P > .
S S VARl N S vees Y s e vermes ) I S
Therefore

(312) (= 20)* (1 + H)Puy, ;) > s

(1 3)\ 0)?
Choose a sequence €; € (0, %) such that

i) g5 = 0.
i) ((H — 20)°(1+ H)2uj,u5) /€2 — 0,

For example, we can take &; = ((H — Xo)*(1 + H) 2u;, u;)

Ll

Therefore (3.12)

implies

[w$?]| — 0 as j — oo,
whence
(3.13) [usP]] =1 as j — oo.

On the other hand, as

/ N2d(Pyu?,u{M) < (Ao + €)%y < oo,

the sequence u ) e Dom(H). So we can apply the classical Weyl Criterion to the

sequence u; ), By Projection Valued Measure again,

19 001 = [T e Pl ) < o,
0
which implies Ay € Spec(H ). So the result follows. 0

REMARK 3.4. Note that the condition (2) in the theorem can be weaken to
((H — X0)%(1 + H)~2u;,u;) — 0 by the proof.

REMARK 3.5. The above theorem also holds for A; = 0. And in fact we can
also prove conditions (1) and (2) are not only sufficient but also necessary for

Ao € Spec(H). More details can be found in [2].

With the generalized Weyl criterion 3.2, we are ready to prove Lemma 3.3.

ProoF. Here we prove Spec(a g+1) C Spec(U, ) U{0}. The other contain-
ment Spec(0*0pq_1) C Spec(pq) U {0} can be proved similarly.

Take Ay € Spec(aa*) and A9 > 0. By classical Weyl criterion, there exists a
sequence u; € Dom(90*) with (u;,u;) = 1 such that

(3.15) (35" — Xo)uy, (B8* — Ao)uy) — 0.
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We will verify that the sequence 5*1;3; satisfies conditions in Theorem 3.2. For
m=1,2,

(@O =X0)(1+0) ™%y ,0%u;)
=((O—Xo)(1 +0O) ™uj;, 00%u;)
= ((00* — Xo)(1 + D)_muj,gg*uj)
= (86*(1 +0) ™y, (80" — Ao)uy) .
The first equality is because (1+0)~19* = 9*(1 +0) __1 on Dom/(8*), ~which follows
from Theorem 2.2. The second one follows from d o d = 0 on Dom(3). The third

one comes from the self-adjointness of 89* and straightforward calculations. Since

(3.16) [96% (1 +0)~™uy| < [|B(1 +0) ™ uyl| < [Jus]l =1,
(3.15) implies
(3.17) (O=Xo)(1+0) ™0 u;,0%u;) — 0 for m = 1,2.

The other thing we need to verify is that [|§*u;|| has a positive lower bound
uniformly for all j. This is from the following calculations:

(3.18) (8%uy,8%u;) = ((B8* — Ao)uj,u;) + Ao — Ao > 0.

Since ||@*u;|| has a uniform lower bound, we can apply Theorem 3.2 to the scaled
sequence 0*u;/||0*u;| and the result follows immediately. 0

Now we are going to finish the proof of Theorem 3.1 in next lemma.
LEMMA 3.6. Under the same assumption as Theorem 3.1, we have
Spec(Up.q) C Spec(gc';;,q) U Spec(g*gp,q) u{0}.

Proor. Take Ay € Spec((J) and A9 > 0. Then by classical Weyl criterion,
there exists a sequence u; € Dom(O) with ||u;|| =1 such that
(3.19) (00— Ao)u; — 0.
We will use 99*(1+0)~2u; and 8*9(1 +0)~2u; as the test sequences. By the fact
that 303 =0 on Dom(9) and (1 +0)~!0 =0(1+ 0)~! on Dom(O), we have

(3.20) (08* — X0)B8* (1 4 O)~2u; = 98* (1 + 0)~2(0 — Ao)u;.
Since [[88*(1 4+ 0)~2||z2 2 < 1, it implies

(3.21) 108" — X0)88* (1 + )~ 2uy| < [|(3 — Ao)uy|| — 0.
Similarly, we also have

(3.22) [1(8*8 — XA0)d*9(1 + O)%uy]| < ||(T — Xo)uy| — 0.

Now we need to check either ||80*(1 + O)~2u,|| or [|8*9(1 + O)~2u || has a
positive lower bound. Note
(3.23) [[99* (1 +0)~2uy||? + 16*D(1 + D)~ 2u; | = [|O(L + 0)~2uy ||,

Let {Py} be the Projection Valued Measure of [1. Then
2

A
(3:24)  [IO(1 + 0O0)~ 2uylf? :/0 md(ﬂuj,uj) > C(M)1Pi320,320 %1%
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Note (L — Ag)u; — 0 implies
(3.25) 1P yrg 220yl = 1.
Therefore for sufficiently large 7,

(3.26) 196" (1 + 0)~%uy|1* + (10°3(1 + O) 2wy

22@>0.

So Ap € Spec(ﬁg;;:q) USpec(8*8p q) by classical Weyl criterion and the result follows.
O

One direct corollary from Theorem 3.1 is the following spectrum relations of
Gaflney extensions.

COROLLARY 3.7. Under the same assumption as Theorem 3.1, we have
(3.27) Spec(Up,q) C Spec(Up,g+1) U Spec(Up,g—1) U {0}.

At the end of this section, let us recall the well known relation between the
spectrum of Gaffney extension and L? estimates.

THEOREM 3.3. Let (M, g) be a Hermitian manifold with a holomorphic Her-
mitian vector bundle (E,h). Assume the Gaffney extension of Hodge Laplacian
Op.g+1 : L2(M, AP9+1(E)) — L2(M, AP-9+1(E)) satisfies Spec(Cpq+1) C [a,00) for
some positive number a. Then for any [ € ker5p1q+1 c L%(M,AP9Y(E)), there
ezists u € L>(M, AP4(E)) such that Ou = f with the following estimate

(3.28) (w,0) < (£, ).

PrOOF. In the proof, we will use I to represent [J, .., for simplicity. By
the condition Specl] C [a,00), we have O0~-! : L?(M,AP9+t1(E)) — Dom(0) C
L?(M, AP9t1(E)) is a bounded operator with

1
(3.29) 107 g2y 2 < e

Take u = 8*(01 f and we will verify u satisfies all the conclusions. First, since the
Gaffney extension satisfies (1 = 89* + 9*0 by Theorem 2.2, we have

(3.30) Ou=00"0"1f=f—8"00 1}

Therefore f € ker 8 implies *000~! f € ker d. By taking the following inner product
(3.31) 0= (99*00"'f,00°'f) = (9*00'f,000'f),

we have

(3.32) o*o0-1f =o.

Again by taking the following inner product with (-1 f

(3.33) 0=(9"007'f,07"f) = (007" £,007'f),

we have

(3.34) o0-1f=o.

Together with (3.30), we have
Ou=f.
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Second, we will verify the estimate (3.28). By (3.34) and straightforward cal-
culations, we have

(w,u) = (8*"071£,6"071f) = (0°071£,071f) = (£,07'f).
Therefore (3.29) implies the result. 0

REMARK 3.8. Note we cannot directly use gp,q_,_glj;; nf= D;,; +25p_q+1 f=0

in the proof as we do not know the existence of D;,; 4o

4. Spectrums of Friedrichs Extension

In this section, we assume (M,w) is a Kéhler manifold with a holomorphic
Hermitian line bundle (L, k) . Since Dom(Or) C W, we will not get any bound-
ary term when doing integration by parts for sections in Dom(Ur). By using
the Weitzenbock formula, we will prove the following spectrum lower bound for
Friedrichs extension under certain curvature conditions.

THEOREM 4.1. Let (M,w) be a Kdhler manifold with a holomorphic Hermit-
ian line bundle (L,h). Consider Friedrichs extension of Hodge Laplacian, U q :
L2(M,A%9(L)) — L*(M,A%9(L)). If Ric(TM) + Ric(L) > aw for some positive

number a, then
(4.1) Speclly 4 C [ag, o).

REMARK 4.1. In this section, [y 4 always represents the Friedrichs extension
and we will omit the subindex {0, ¢} when there is no ambiguity.

ProOF. Take ¢ € Dom(Og ). As Dom(Ogq) € W3 (M, A%9(L)), there exists
a sequence ¢, € D(M,A%(L)) such that ¢, — ¢ in W3. By the Weitzenbdck
formula Oy ; = —VV + qRic(TM) + gRic(L), we have

(42)  Q(¢n,¥n) = (Ven, Von) + (g(Ric(T'M) + Ric(L))@n, ¢n) > ag(@n, pn).
Letting n — oo, we have

(4.3) Q(p, ) > ag(p, p).
As Q(p, ¢) = (Ho,qp, ), the result follows. 0

REMARK 4.2. Let n = dim M. As the Weitzenbock formula for L-valued (n, q)
form is O, 4 = —VV + gRic(L). If Ric(L) > aw for some positive constant a, then
the Friedrichs extension [, 4 satisfies Specl,, ; C [ag, 00).

5. Manifolds with Almost Polar Boundary

Let (M, g) be a Riemannian manifold. Similar as the Definition 2.2, we can
define the Sobolev space for functions by taking the quadratic form Q4(-,-) =

DEFINITION 5.1.
(5.1) W3 (M) = Completion of D(M) with respect to Q; inner product,

(5.2) W1(M) = Completion of {¢ € C*°(M) : Q;(y,¢) < 0o}

with respect to @y inner product.
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Generally we know W1(M) = W}(M) for complete Riemannian manifolds.
In [10,11], Masamune proved W1(M) = W (M) for Riemannian manifolds with
almost polar boundary. We will repeat the proof here for the sake of completeness
and because there is a gap in Masamune’s proof.

We first introduce the definition and notations. Let d be the distance function
induced by the length of piecewise curves on M. Then (M,d) is a metric space.
We use (M, d) to denote the Cauchy completion of (M,d). We define the Cauchy
boundary 8.M =M. — M.

DEFINITION 5.2. We define the capacity of an open set O ¢ M, by

(5.3) cap(0) = inf{Q (u,u) : u € W'(M),0 < u <1 and u|onnr = 1}.
We also define the capacity of an arbitrary set ¥ c M, by
(5.4) cap(X) = inf{cap(0),E € 0,0 c M., is open}.

A set X is said to be almost polar if cap(X) = 0.

REMARK 5.3. For any open set O C M,, e € W1(M) is called the equilibrium
potential of O if it satisfies
L. Qi(e,e) = cap(O).
2. elo =1.
3.0<e<l.
It is know that the equilibrium potential exists for any open set O C M,. See [3]
for more details.

Here is the main theorem we are going to prove.

THEOREM 5.1. Let (M, g) be a Riemannian manifold. If cap(0.M) =0, then
(5.5) W (M) = WA(M).

Before going to the proof, let’s explain the main idea. First we show that
Lo (M)NWY(M) c W(M) is dense. Then it is sufficient to consider f € L>(M)N
W1(M). Choosing a sequence of open sets {V,,} decreasing to .M, by using the
equilibrium potential of V,,, say e,, we can approximate f by (1 — ep)f whose
support is contained in M — V,,. In the last, we want to modify the function
(1 — en)f to be compactly supported. As (M,,d) is only a complete metric space,
the closed metric ball excluding an open set containing .M might not be a compact
set even if cap(9.M) = 0(See Section 8 for more details). So we will refer to the
intrinsic distance and verify that the intrinsic distance induces the same topology
as d on M —V,,. As the closed metric ball with respect to the intrinsic distance is
compact by Hopf-Rinow-Cohn-Vossen Theorem (see Theorem 2.5.28 in [1]). And
we will use some cut-off function to finish the modification on support.

We begin the proof with the following lemma described above.

LEMMA 5.4. For any Riemannian manifold (M, g), L>°(M)NW?(M) is dense
in W1(M).

ProOF. Take f € W1(M). Define a cut-off function p € C>(R) such that

p(z)={1 =

0 z>2’
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and
0<p<1, -C<p <o

We define pm(z) = p(£) and fm = pm(|f])f. Note fm € L=(M) N W1(M) and
we will prove f,, — f in W!(M). By dominated convergence theorem, we directly
get fm — f in L2(M).

As to dfy,, we have

_ar — (oM 1
(5.6) dfm —df = (p(50) = V)df + —p'(C)f - dIf].
The first term on the right hand side converges to 0 in L%(M, A!) as |p(|mﬂ) -1 <
X{|f|>m}- For the second term, since

L, If
(57) = ()7 - dif)] < 20xmeisicom 411
m S m
it follows that %p’(%)f -d|f| = 0 in L?(M,A'). So we have f,, — f in W}(M)
and the result follows. [l
In next two lemmas, we will construct open sets containing 8.M with smooth
boundary.

LEMMA 5.5. .M C M, is a closed subset.

PROOF. Since M is the complement of d,M in M., it is equivalent to check
that M c M, is an open subset. For any z € M, let i, be the injectivity radius
of (M, g) at z. Then for any r € (0,%;), by considering the exponential map at =,
we know Byr(z,7) = {y € M,d(x,y) < r} is compact, whence complete. Therefore
B (z,7) = Byp (z,7) ={y € M., d(x,y) < r} since we will not add any new point
to By (z,7) during the Cauchy completion of M. So Bgr (z,7) C M and the result
follows. [l

LEMMA 5.6. For any open set U C M, containing 0.M, there exists an open
set V.C M, such that .M c V. c V. Cc U and 8(M.\V) C M is a smooth

submanifold of codimension 1.

PRrOOF. Let U€ be the complement of U in M,. Since .M and U€ are both
closed in (M.,d). By Urysohn’s Lemma, there exists a function f € C(M,) such
that 0 < f <1, f~1({0}) = 8.M and f~1({1}) = U°. Take S = f~([0, %)) Then
S is an open subset of M, such that .M c Sc S c U.

Note that S\ .M = SN M and U® are both closed in M. By the Smooth
Urysohn'’s Lemma in [12], there exists a function g € C°°(M) such that 0 < g < 1,
g 1({0}) = S\ .M and g 1({1}) = U®. By Sard’s Theorem, without loss of
generality, we can assume % is a regular value of g. Take V = g~1(]0, %)) ua.M c
M,. Then it’s easy to see V = g~ ([0, %)) US. Therefore V is open in M such that
.M cV cV =g1([0,3))US C U. The remaining part of the lemma follows
from (M. \ V) =g '({3}) and 3 is a regular value of g. O

Let V be an open subset satisfying the conclusion in the above lemma. Denote
Ve = ﬂc\v as the complement of V in M,. Then V€ = Uycp Ay, where each A
is a connected component of V¢ and A is the index set. Since V¢ is locally path

connected, each A, is both open and closed in V¢. Define the intrinsic distance
function d 4, on A, as

This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.



LAPLACIAN ON THE MODULI SPACE OF CALABI-YAU MANIFOLDS 191

DEFINITION 5.7. Define the intrinsic distance on Ay as d4, : Ay x Ay — [0, 00),
5.8 d = inf ||l
58) () = inf

where L, = {all piecewise smooth curves contained in A, from z to y} and ||I||
denotes the length of curve I.

REMARK 5.8. d(z,y) < da,(z,y) for any z,y € A, as d is the infimum over a
larger set.

In general, d and d4, are not globally equivalent to each other on A). The
next lemma shows that they are locally equivalent on A,.

LEMMA 5.9. For any = € A, there ezists r = r(z) > 0 such that
(5'9) dAA (1": y) S 4d($1 y) fOT any y € BAA (I: T)'
where Ba, (z,7) = {y € Ax,d(z,y) <T}.

PrOOF. For any = € Ay ¢ V€ C M, either z is in the interior of VE or
x € V. In the first case, take r < i, (i denotes the injectivity radius at
z) small enough such that Bps(z,r) C Ax. Then for any y € Bp(z,7), there
existed a minimizing geodesic | C Bp(z,r) such that ||I|| = d(z,y). Therefore
dAA (:E:y) = d(I, y) for any y € BAA (:E! 'l") = BM’(:B: 'l").

In the second case, i.e. = € VY, take r < i,. We can identify Bgm(o,T)
(w.r.t the Euclidean metric g;) with Bys(z,7) by the exponential map Exp, at z.
By shrinking r, we can assume the Riemannian metric on Bjps(x,7) is equivalent
to the metric at x, say %gw < g < 2g,. Let {e;}™, be the standard orthonor-
mal basis of R™. Up to an orthonormal linear transformation, we can assume
{e:}™7' € Tx(8VE) and ey, is the normal direction of dVC at z. By Lemma 5.6,
possibly shrinking r again, we can assume VS = {(z1,z2,--- ,mm) € B(o,7), T =
h(x1,22- -+ ,Tm_1)} where h € C*°(R™!) and h(0, --- ,0) = 0. Since {e;}7;" are
tangent vectors of VC at x, Vh(0,---,0) = 0. By shrinking r again, we can
assume |Vh| <1 in Bgm-1(o,r).

For any point y € Bgm (0, 7), consider the curve l; = (ty1,ty2, - , tYm—1, h(ty1,
e ,tym—l)) fort e [0! 1] and 12 = (y];yZ-; T :ym—latym+(1_t)h(y1:y25 e ,ym—l))
for t € [0,1]. Then the concatenation l; Ulp C V¢ is from = to y. The Euclidean
length of [1,[; are respectively

1
"11 "]R"" :/ \/‘y% + y%-l-' - '+y72n_]_+|vh(tyl1ty2: e Jtym—l)'(y11y21 e :ym—].)|2dt
0

£2\/y¥+y§+---+y§1_1,
”IZHRM :|ym - h(y11y21 o :ym—].)|

<|ym| + \/yf +y3 YR
Therefore

da,(z,y) <||Lfl + |L2]|
<21y [|lgm + 2|l2||rm

£4\/y¥+y%+---+y§1_1 + 2,
=4d(z,y).
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The second inequality is because %g:, < g < 2g,. So the result follows. O

Base on Remark 5.8 and Lemma 5.9, we have the following properties on
(Ax,da,)-

ProrosITION 5.10. (Ax,da,) satisfies the following property.

(a). (Ax,da,) and (Ax,d) have the same topology.

(b). (Ax,da,) is locally compact.
(). (Ax,da,) is complete.

ProOF. Part (a) directly follows from Remark 5.8 and Lemma 5.9.

Now we prove part (b). Since VC is a closed subset of (M,d) and (M,d) is
locally compact, (V°,d) is locally compact. And we know A} is a closed subset of
(V€,d), therefore (Ay,d) is locally compact. The result follows by part (a).

Last we prove part (c). Let {z,,}2° ; be a Cauchy sequence in (A,,d4, ). By Re-
mark 5.8, {z, }2° , is also a Cauchy sequence in (A, d). Since A, is closed in (V°, d)
and V' is closed in the complete space (M,,d), (Ax,d) is complete. Then there
exists some = € Ay such that limd(z,z,) = 0. By Lemma 5.9, limda, (zn,z) =0
and therefore the result follows. [l

For any z € A, define the function r,, : Ay — [0,00) as r,,(z) = da, (zg, T).
Then 1z, has the following property.

ProrosITION 5.11. For the function r,, defined as above, we have
(5.10) |Vr|g < 4.
Proor. Since |r(z)—7(y)| < da,(z,y), the result follows from Lemma 5.9. [

The closed metric ball induced by da, is compact though it is not the case
for the closed metric ball induced by d. The following lemma is essentially Hopf-
Rinow-Cohn-Vossen Theorem. See Theorem 2.5.28 in [1] for more details.

LEMMA 5.12. For any = € Ay,r > 0, B(Ah,d“)(x,r) is compact.
Here B(a, a,,)(z,T) denotes the set {y € Ax,da, (z,y) < T}.

REMARK 5.13. By part (a) in Proposition 5.10, the closures of B(AA,dAA)(:B’ T)
in (A,,d) and in (A,,d,) are the same. The compactness in (A,,d) and that in
(Ax,d,) are also the same. So there is no ambiguity in the above lemma.

ProoF. By part (b) in Proposition 5.10, the set
{r > 0,B(a, da4,)(z,7) is compact}

is nonempty. So we can define ry = sup{r > 0, B(Akd“)(z, ) is compact}. Now it
suffices to prove g = co. Assume not. Then 7 € (0, o0).

First, we prove that B(AA,dAA)(a:,ru) is compact. Take an arbitrary £ > 0.
For any y € B(AA,dAA)(I’ Tg), since d 4, (z,y) < 19, there exists a piecewise smooth

curve [ C Ay from x to y such that ||I|| < ro + . Reparametrize the curve | by arc
length. Then the restriction I|[,,_ ) is a piecewise smooth curve from a point in

B(Az,d,s.h)(f‘:: ro — €) to y. Since

el iro—e.lull < 2&,y € Bray,aa,)(B(ay,da,) (€m0 —€),2€).

This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.



LAPLACIAN ON THE MODULI SPACE OF CALABI-YAU MANIFOLDS 193

Therefore

Bayda,)(T,70) C Ba,,da, ) (B(asda,) (T, 70 —€),26).

Since B(Ak,d”)(ﬂ?,?'u —¢) is compact by the definition of ry, B(AA,dAA)(Ii‘ Tp) 18
totally bounded in (A, da, ). Therefore B4,
Proposition 5.10.

Second, we prove that B(Ak,d”)(a:, ro + 6) is compact for some § > 0, which

da, y(x,70) is compact by part (c) in

contradicts the definition of 7y and therefore we get the result. Since m
is also compact, together with part (b) in Proposition 5.10, B(AA,dAA)(:B'l o) has a
finite cover {B(a,,da,) ¥ §) Y ,, such that vy; € m, d; > 0 and
B(m,d“)(yi, 20;) is compact for each i. Take § = minj<;<n 6;. Then

B(AA,dAA)(I'I To + 5) C Ué\;lB(AA,,dAA)(y‘i: 26!')

is compact. O
Now we are ready to prove the Theorem 5.1.

PROOF. Since cap(8.M) = 0, there exists a sequence of open sets {U,}22
such that d.M C U, and limcap(U,) = 0. For U;, by Lemma 5.6, there exists an
open set V; such that .M c V; ¢ V] ¢ U; and 9(VF) is a smooth submanifold.
Then for V; N Us, by Lemma 5.6, there exists an open set V5 such that 8.M C
Vo c Vo c ViNnU; and A(VF) is a smooth submanifold. Inductively, we construct
Vit1 by applying Lemma 5.6 to V; MU, 4+1. So we get a sequence of decreasing open
sets {Vp}52, such that .M c V, ¢ V,, € Vo_1 NU, and 8(V,C) is a smooth
submanifold. Since in particular V,, C U, we have lim cap(V,) = 0.

Take f € W(M)n L*. It suffices to prove f € Wi (M).

First, we approximate f by functions with support in some V,¢. Let e, be the
equilibrium potential (see Remark 5.3) of V,,, i.e. e, satisfies

e e, € W and Q1(en,en) = cap(Vy).
® eply, = 1.
e 0<e, <1.

Since ||eq||lw = cap(Vn) —+ 0, we can assume e, — 0 a.e. by passing to a subse-
quence. Let f, = (1 —ep_1)f. Then f, — f in W'(M) and supp(f,) C V¢, C
Vo C interior(V,S).

Secondly, we approximate each f, with supp(f,) C interior(V,) by functions
with compact support. From now on, we fix f, and V,¢. For economy we suppress
the index n. Write V¢ into the disjoint union of connected component, VE =
UxeaAys. Since f € WH(M) and {Ajr}aea is pairly disjoint, f vanishes on all
but countably many A, say {Ax;}72;. Denote g; = fxa,, where x4, is the
characteristic function of A, . Note g; € W!(M) and Vg; = (Vf)XAAj by the
fact that 0A,, C A(VE) and f vanishes close to (V) as supp f C interior(V ).
Then f = E;il g; and || f||3, = 2321 llg;||%- Therefore for any & > 0, there exists

N
N > 0 such that ||f — 3.7, g;llw <e.

Now it suffices to approximate each g; be compact supported function. Take
z; € Ay, and define 7 : Ay; — [0,00) as j(x) = day, (zj, ). Then |[Vrjlg <4 by
Proposition 5.11. Let ¢ € C*°(R) satisfy the following conditions:

® ¢ is a decreasing function and 0 < ¢ < 1.
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L] ‘Pl(—oo,(}] =1 and 50[1100) =0.
e |¢'| < C and C is a fixed constant.

Define ¢y (z) = ¢(Z). Then pgor; — 1 ae. on Ay, ask — oo and [V(pp 07|y <

4C. Therefore we have (¢ o 15)g; — g; in W'(M). And supp((¢k o 13)g;) C

supp(px o 13) C B(A;_q.,,d“j)(Ij:Qk): which is compact by Lemma 5.12. So the

result follows. O

6. Moduli Space of Polarized Calabi-Yau Manifolds

Let (M, L) be a Calabi-Yau manifold polarized by a positive line bundle L.
That is, M is a compact Kéhler manifold with a Ricci flat Kdhler metric w and
the metric w is contained in the first Chern class of L. Let M be the moduli
space of Calabi-Yau manifolds polarized by a fixed positive line bundle L. In [16],
Viehweg proved the moduli space M is a quasi-projective variety. Take M as
the compactification of M. With the classical result of Hironaka, by resolution of
singularities, we can choose M in such a way that the divisor Y = M\ M is a
divisor of normal crossings. After passing to a finite cover, we may assume M and
‘M are smooth manifolds (see Lemma 4.1 in [8]). From now on, we will work on
this quasi-projective Kéhler manifold (M, ww p) with the compactification M as a
compact Kéahler manifold.

Here is the main theorem we are going to prove in this section.

THEOREM 6.1. The moduli space of polarized Calabi- Yau manifolds (M, ww p)
has almost polar Cauchy boundary, i.e. cap(9,M) = 0.

REMARK 6.1. In general, the Cauchy completion M, is not necessarily identical
to the compactification M.

It is well-known that there is a complete Kdhler metric on M such that it is
asymptotical to the Poincaré metric near infinity. We call it Poincaré metric and
denote it by wp(See Lemme 3.1 in [8]). The key ingredient to prove Theorem 6.1
is the following lemma in [7].

LEMMA 6.2. For any € > 0 small enough, there is a smooth real valued function
ps € D(M) such that
(a). 0<p <1
(b). There is a constant C, independent of €, such that —Cwp < /—190p, <
pr;
(c). In a neighborhood of Y, pc =0 and pe(z) =1 if the Fuclidean distance of
€M toY is greater than 2¢.

PROOF. As Y C M is a divisor of normal crossings, by [8] (see Lemma 4.1),
we can find a finite cover {U,},_; of M such that Y ¢ US_,U, and Ugyq U---U
U;) NY = ). Furthermore, we can assume that U, — Y = (A*)% x (A)’ with

(o'}

the coordinates (s7,---,sg ,w{, - ,wp ) for any 1 < o < s, where A* and A are

respectively the punctured unit disk and the unit disk in C. Let : R —+ R be a
smooth decreasing function such that 0 <7 <1 and

_J1 <0
Yo z>1"
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Let
1 |z| <e =
1y-1_
me(z) = A p(EEEL_8) et <o < e
0 |z| > e~ 2
And let
Ay
’?g(scfa Tty Sgﬂ,) = H(l - 7?6(3?))-
j=1
Then define the function

] t
PEZZQ!{JQ”?—’_ Z ¢05
a=1

a=s+1

where {1, } is a partition of unity subordinated to {U,}.
Then 0 < p. < 1. By a straightforward calculation, we have

By = o — L
2e Z(log-%r)21

aﬁﬁszin” dz ndz -I—l?}’ dz Ndz '
17" TRog 1)t T 2" :P(log 1)?

Note that 7' = 0 unless £ < (log ﬁ)_l < 2¢. Therefore

—= dz
0n| < Cl——7-
|z|10g-|?|-

dz ANdz

, 100n| < Cl——1

I

where C' is a constant independent of €. Therefore we obtain part (b) as 1, are

fixed smooth functions on M.
Let z € M. When z is sufficiently close to Y, ¥y, = 0 for any a > s+ 1 and

ne =0 for any a < s. Therefore p. = 0 in a neighborhood of Y. If the distance of
r to Y is at least 2¢, then there is a constant C' > 0 such that [sj| > C¢ for any

1<j<apand 1 <a <s. Sinceseil?—)-ooass—)(},whensissma]lenoughwe

have p-(z) = Y v = 1. O
Now we are ready to prove Theorem 6.1.

ProoOF. Take the function p. constructed in Lemma 6.2. As p. € D(M) and
0 < p: <1, we have

w

T
WP for any £ > 0.
n!

w'ﬂ
61 cap@M) < [ 1= pPAE [ po)p
M . M

Since p. — 1 pointwise on M and the volume of Weil-Petersson metric is finite
by Theorem 1.1 in [8],

. _ 2wnWP:
(62) lim [ 1= pePEE <0,
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It suffices to prove that [, |dp|? — 0. Note
/M dpe ey p =2 / Bpewhyp = 2n / V=T0p. ABpe Ay
= —2n/ V—1p:00p. A wiyp.

Since —Cwp < \/—185,05 < Cwp and ww p < Cwp(see Proposition 3.1 in [8]), we
have

[ BoPupsc [  up
M supp(dpe)

Use the same cover of {Uy},,_; of M as in Lemma 6.2. Then Y C US_,U,,
UgpqU---U U;) NY =0 and U, — Y = (A*)% x (A)b» with the coordinates
(875 s 8a.,wi, - ,wy ) for any 1 < a < s. When ¢ is small enough, we can
assume that supp(8p.) N Uy C {Is7] < 2, lw§| < 5 } for any 1 < a < s. Since in
U,—-Y for any 1 < a < s, the Pomca:re metric wp is asymptotic to

—T [ ds2 A dse ba
(6.3) v21 (Z aza l&' +Zdw§f/\dm;'),

j=1 |Sj | (lOg |_g§_‘|)2

j=1
we have
(6.4)
wp < C / d|s| / |ws |d|ws| < Ce.
/suppmpg i ZUH] |s“|(log [s5](log Zeq)? H 71

So we have

= 2 n —
(6.5) tim [ ldpuPsy p =0
and the result follows. O

7. Self-Adjointness of the Laplacian on Moduli Space

In this section, we will consider the self-adjointness of Laplacian on (M, ww p).
Let us consider the differential operators d and & defined on C! functions and C?!
forms on M respectively. We define the domain Dom/(d) of d to be the set of C*
functions f defined on M such that both f and df are in L2. Similarly, we define
the domain Dom(§) of & to be the set of C! 1-forms w such that both w and dw are
in L2. We then define the Laplacian A with respect to wwp by A with Dom(A)
given by the set of C? functions f such that f € Dom(d) and df € Dom/(6). In this

section, we will prove the closure A of A is self-adjoint.

THEOREM 7.1. On (M,wwp), the closure A of Laplacian on functions is self-
adjoint.

It is proved in [6] that A is self-adjoint on M \ ¥3; when M is an algebraic
variety with the induced Fubini-Study metric and X, is the singular set at least
of real codimension 2. Here our result is different as we are considering the Weil-
Petersson metric.
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PROOF. By the theorem of Gaffney in [4], in order to show A is self-adjoint,
it is sufficient to prove

(7.1) (df, w) = (f, 6w)

for any f € Dom(d) and w € Dom/(4). By Theorem 6.1 and 5.1, we have W1(M) =
W3 (M). Since Dom(d) C W1(M), there exists a sequence f,, € D(M) such that
fn — fin WYM). As each f, has compact support, by integration by parts, we
have

(7.2) (dfn,w) = (fn, dw).
The result follows by taking n — occ. O

8. An Example

Let (M, g) be a Riemannian manifold. A closed metric ball in (M, d) excluding
an open set containing J,M might not be compact even if cap(9.M) = 0. In this
section, we will give a concrete example.

Consider the Riemannian manifold (M, g) as follows. M = R3 and in terms of
the cylindrical coordinates (r, 8, z),

(8.1) g =€ (dr® + f*(r)d6® + dz*).

Here the function f € C*°([0, 00)) satisfies the following properties:
o f(r)y=rforre0,3]
e f is increasing on [0,1] and f(1) =1.
e f is decreasing on [1,c0).
e f(r)=e" for f € [2,00).
For any piecewise smooth curve ! : [a,b] — M, we denote the length of [ by
il ie.

b
(8.2) lI2]] = / e*O0[F2(t) + F2(r(t)02(t) + 22(t)dt
And define the distance function d as
d(p.q) = int .

where L = {all piecewise smooth curves from p to q}. Then we know (M,d) is a
metric space.

LEMMA 8.1. For any P, P, € M, denote the coordinate of P; as (ri, 05, z:) for
i=1,2. Then

(8.3) d(Py, P3) < €1 + 2.

ProoF. For any ty < min(z1, z2). Define the following three smooth curves.

e [y : (r1,01,t) for t € [tg, z1] oriented form 27 to tg.
o Iy :(r1+ (ro —r1)t, 61 + (62 — 61)t, o) for ¢ € [0,1].
e I3: (r2,02,t) for t € [tg, 23]

This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.



198 LU AND XU

Then [; Ul;Ul; is a piecewise smooth curve connecting P; and P,. We can calculate
the length of these curves straightforwardly.

1
Il = [ etdr = e e,
ty

Z3
il = [ et = e = e,
to
1

2 = A e/ (ra — 1) + (62 — 61)%F2(r1 + (rp —m1)t)dt

<ey/(ra—11)2 + (A2 — 6;)2.

Therefore

d(Py, Pp) < € + €™ —2e™ + €/ (rg — r1)% + (62 — 61)2.
Taking tg — —oo, the result follows. O

Define Hf =R2 x [ = {(r,0,2) : z € I} for any I C R. And we will use diam S
to denote the diameter of set S C M.

COROLLARY 8.2. diam H(_. 0 < 2.

PRrROOF. For any Pi, Py € H(_x 0], we have d(Py, P;) < € + €% < 2. O
LEMMA 8.3. For any P, P, e M,
(84) d(Py, P;) > |€** — 2.

ProoF. For any piecewise smooth curve [ : [0,1] = M from P; to P,, we have

1
Il = / EO\#2(t) + 2(r(£)62() + 22(t)dt

1
2/ €*|2(t)|dt
0
> |e*t —e®2|.
O

Note that the metric space (M, d) is not complete. {(0,0,—n)}22, is a Cauchy
sequence since d((0,0,—m), (0,0,—n)) < e ™ + e ". But it is not convergent in

M.

THEOREM 8.1. Let M be the completion of M with respect to metric d. Then
M = M U {oc} where {oo} is defined as the Cauchy sequence {(0,0,—n)},.

We want show that for any Cauchy sequence {P,}32,, either it is convergent
in M or it is equivalent to the Cauchy sequence {(0,0, —n)} ;. We split the proof
into following lemmas.

LEMMA 8.4. Let {P,}32 , be a Cauchy sequence in M and denote P,, = (ry,, 0y,
zp). Then {z,}32, is either convergent in R or limy,_,o 2 = —00.

ProoF. By inequality (8.4), we have d(Py,, P,) > |e*™ —e**|. Therefore {e*"}
is a Cauchy sequence in R. So the result follows. O

LeEmMA 8.5. Let {P,}22, be a Cauchy sequence in M and denote P,, = (1, 0,
zn)- If{zn}5% is a Cauchy sequence in R, then {rp}52; is a Cauchy sequence in R.
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PROOF. Let 25 = lim z,,. By dropping finitely many beginning terms, we can
assume 2y, € [20 — 1,20 + 1]. Let § = §(20) = e®~! — e*~2. Since {P,} is Cauchy,
by dropping more beginning terms, we can assume further that d(Pp,, P,) < % for
any m,n € ZT. By the definition of metric d, there exists a piecewise smooth curve

ln : [0,1] = M from P, to P, such that ||l;,,| < %d(Pm, P,). We claim

(8.5) 32:[%3] z(t) > z0 — 2.

Assume not. Take ¢ = ¢y € [0,1] be the first time such that z(¢) = z9 — 2, which
implies that z(t) > 29 — 2 for ¢ € [0, #g]. Then

to
[ lmn| > / e*W|2(t)|dt > e — e*li0) > g1 — g2 =4,
0
However, according to our assumption on l;,, we have
3 )
(8.6) ltmn|l < 5d(Pm, Pn) < 3,
which is a contradiction and therefore the claim follows. Thus we have
3 ].
58P, Pr) 2 b > / OV (t)|dt > € 2|rm — 7.
0

Therefore {r,} is a Cauchy sequence in R. O

LEMMA 8.6. Let {P,}32, be a Cauchy sequence in M and denote P, = (ry,, 0n,
zp). If {2, }22 is a Cauchy sequence in R and imr,, > 0, then {6, }22 , is a Cauchy
sequence in R.

PROOF. Let 2zp = limz, and 9 = limr,. By dropping finitely many be-
ginning terms, we can assume that z, € [z0 — 1,20 + 1] and 7, € [%T{),%T{)] for
any n € Z. Define §(29) = €' — e*~2 and 6(ro,20) = 1roe®™ 2. And take
d = min{d(29), 8(r0,z0)}. By dropping more beginning terms, we can assume fur-
ther d(Pn, P,) < % for any m,n € Z. Again we take a piecewise smooth curve
lmn : [0,1] = M from P, to P, such that ||ly| < %d(Pm,Pn). By the proof in

Lemma 8.5, we have min z(¢) > zp — 2. Here we claim
1 7
(8.7) r(t) € [Z'rg, Zru] for any t € [0,1].
Assume not. Then let ¢ =ty be the first time such that r(tp) = %T{) or %T{). Then
to 1
Lmnl| > / i (t)]dt > €7 ?|r(to) — rm| 2 Jr0e™ ™ = 6(r0, 20)-
0
But we also have
3 é
lmnll < 5d(Pm, Pa) < 3,

which is a contradiction. So the claim follows. Therefore
3 1 )
54 (Pm; Pn) 2 [|tmn| Z/ e*® f(r(t))16(t)|dt
0

> &2 min{ f(370), £(370)Hom — Onl.

It follows that {f,} is a Cauchy sequence. 0
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LEmMA 8.7. Let P, = (ry,0n,2,) be a sequence in M. If r, — 19,0, —
To, 2n — 2o n R, then P, converges to Py = (ro, o, z0) with respect to metric d.

PROOF. Since 2z, — zp in R. By dropping finitely many beginning terms,
we can assume z, € [z9 — 1,29 + 1]. Define a smooth curve from P, to P, as

[(t) = (ro + (rn — T0)t, 00 + (6n — 60)t, 20 + (2n — 20)t). Then

d(Po, Pn) < ||lI|| =intae* P/ (rn—r10)2 + f2(ro+(rn — 10)t) (0n—00)2+(2n —20)2dt
<™t/ (rn —10)2 4 (6, — 60)2 + (20 — 20)2

So the result follows. [l
Now we are ready to prove prove Theorem 8.1.

Proor. Let {P,}22; be a Cauchy sequence in M. By Lemma 8.4, we have
either lim z, = —oo or lim 2z, = zp for some zg € R. In the first case, we have

d(P,,(0,0,—n)) < e +e " —=0.

Therefore Cauchy sequence {P,} and {(0,0,—n)} are equivalent to each other.

In the second case that zp = lim z;, € R, we can assume z,, € [29 — 1, 29 + 1] for
any n € Z*. By Lemma 8.5, we know that {r,} is a Cauchy sequence in R. Let
o = limr,. We have two sub-cases, either 7o = 0 or 19 > 0. When rg = 0, take a
smooth curve [ from (0,0, zp) to P, as l(t) = (rnt,Ont, 20 + (2n — 20)t). Then

1
d((0,0, z), Pa) < [lI]] = / O /T T P D02 + (o — 70)dt
0

1
<eot / V72 4722 (rab) + (2n — 20)2dt
0

—0 asn — oo.

Therefore P, —+ (0,0, zp) in M.
In the second sub-case that g > 0, by Lemma 8.6, we have that lim 6, = 6y for

some 6y € R. Then by Lemma 8.7, we have that P, converges to Py = (rg, fp, 20)
in M. So the result follows. O

THEOREM 8.2. The capacity of .M = {cc} € M, is zero.

PRrOOF. Define a decreasing function ¢ € C*°(R) such that

50(Z)={1 =

0 z>1.

For any a € R, define p, € C®(M) as @q(P) = ¢(z — a) for any P
(r,0,z) € M. Then ¢ =1 on H(_, 4) = B(0o,€”) and ¢ = 0 outside H(_, q+1) =

This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.



LAPLACIAN ON THE MODULI SPACE OF CALABI-YAU MANIFOLDS 201

/ padVy 5/ dVy
M H

(—e0,a+1)

a+1 2w oo
_ / / / &% f(r)drdbdz
—00 0 0

= 27e3at3 / f(rydr
0

— 0, asa— —oo.

B(oco,e*t!). Then

On the other hand,

/ Vipa[2dV,, = / (= — a)2e2aV,
M H

(a,a+1)

_ /G ! /0 % /D |G (= — a) e f(r)drdodz

< 27r(e“+1 —¢e?) sup |¢p'|/ f(r)dr
R 0
—0, asa— —oc.
Therefore the result follows. O

PROPOSITION 8.8. Let o = (0,0,0). Then B(o,2) \ B(co,e™1) is not compact
in M.

ProofF. By Corollary 8.2, we have
B(0,2) — B(co,e™ ') D H(_oo0) — H_o,—1) = H(_19)-
Consider the sequence P, = (n,0,0) in H(_1 ;. We claim
(8.8) d(Pm,P,) > min(e”',1— e ') for any m # n.

Let I : [0,1] = M be an arbitrary smooth curve from P,, to P,. Then either
I C H(_1 4 or | will hit the plane z = —1. In the first case, we have

1
U2 [ OOt > et —ral > e
0
In the second case, take t = ¢y be the first time [ hit the plane z = —1. Then
to
I > / EO|3()|dt > @ — o) =1 1,
0

Combining these two cases, we have ||l|| > min(e=!,1 — e~!) for any piecewise
smooth curve from P, to P,. So the claim follows. Therefore, there is no convergent
subsequence of {P,} and thus the result follows. O
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