
A New Family of Constrained Codes with
Applications in Data Storage

Ahmed Hareedy and Robert Calderbank
Electrical and Computer Engineering Department, Duke University, Durham, NC 27705 USA

ahmed.hareedy@duke.edu and robert.calderbank@duke.edu

Abstract—Line codes make it possible to mitigate interference,
to prevent short pulses, and to generate streams of bipolar
signals with no direct-current (DC) power content through
balancing. They find application in magnetic recording (MR)
devices, in Flash devices, and in optical recording devices.
This paper introduces a new family of fixed-length, binary
constrained codes, named lexicographically-ordered constrained
codes (LOCO codes), for bipolar non-return-to-zero signaling.
LOCO codes are capacity achieving, the lexicographic indexing
enables simple, practical encoding and decoding, and this sim-
plicity is demonstrated through analysis of circuit complexity.
Experimental results demonstrate a gain of up to 10% in rate
achieved by LOCO codes with respect to practical run-length-
limited codes designed for the same purpose. Simulation results
suggest that it is possible to achieve channel density gains of about
20% in MR systems by using a LOCO code to encode only the
parity bits of a low-density parity-check code before writing.

I. INTRODUCTION

From data storage to data transmission, line codes are em-
ployed in many systems. An early example, introduced in
[1], is the family of run-length-limited (RLL) codes used to
mitigate inter-symbol interference (ISI) in magnetic recording
(MR) systems by appropriately separating transitions. RLL
codes are associated with bipolar non-return-to-zero inverted
(NRZI) signaling, where a 0 is represented by no transition and
a 1 is represented by a transition, with the transitions being
from −A to +A and vice versa. RLL codes are characterized
by (d, k), where d (resp., k) is the minimum (resp., maximum)
number of 0’s between adjacent 1’s. A (2, 7) RLL code
appeared in early IBM disk drives [2].

For simplicity, we abbreviate a run of r consecutive 0’s
(resp., 1’s) to 0r (resp., 1r). A Tx-constrained code is a code
that forbids the patterns in Tx , {01y0, 10y1 | 1 ≤ y ≤ x}
from appearing in any codeword. Tx-constrained codes are
associated with bipolar non-return-to-zero (NRZ) signaling,
where a 0 is represented by level −A and a 1 is represented
by level +A. The parameter x separates transitions, which
mitigates ISI, serving the same purpose as the parameter d in
RLL codes. We focus in this paper on Tx-constrained codes.

Constrained codes continue to be used in modern MR
systems [3] to improve the performance of sequence detection
on partial response (PR) channels [4], [5]. PR channels with
equalization targets that follow the channel impulse response
[6] require forbidden patterns to be symmetric. Moreover,
constrained codes improve the performance on low resolution
media [7] by preventing short pulses. The requirement that the
power spectrum of a line code vanishes at frequency zero, i.e.,
the code is direct-current-free (DC-free), is important in optical
recording [8]. This requirement is typically accomplished by
balancing signal signs in the stream of transmitted (written)
codewords (for a frequency domain approach, see [9]).

Constrained codes also find application in Flash memories.
Consider a single-level cell (SLC) Flash memory system. The

pattern 101 can result in inter-cell interference (ICI) caused
by an unintentional increase of the charge level in the inner
cell. The pattern 010 is typically less detrimental, but it can
cause problems when block erasure is not adopted. See [10]
for a study of balanced constrained codes that alleviate ICI in
Flash systems. Line codes also find application in computer
standards for data transmission [11].

The idea of lexicographic indexing can be traced back to
[1] and to [12]. The RLL codes constructed in [13] are based
on [12], and the rates achieved improve upon those of earlier
RLL codes. However, these gains are only realized at relatively
large code lengths, and therefore at a significant cost in
terms of complexity, storage overhead, and error performance.
Techniques based on lookup tables incur significant encoding
and decoding complexity.

In this paper, we return to the presentation of lexicographic
indexing in [1], and develop the idea in the context of a
new family of codes, named lexicographically-ordered Tx-
constrained codes (LOCO codes). We develop a simple rule for
encoding and decoding LOCO codes based on lexicographic
indexing. This rule reduces the encoding-decoding of LOCO
codes to low-complexity mapping-demapping between the in-
dex and the codeword itself. We demonstrate that LOCO codes
are capacity achieving codes, and that at moderate lengths, they
provide a rate gain of up to 10% compared with practical RLL
codes used to achieve the same goals. We also demonstrate
density gains of about 20% in modern MR systems by using
a LOCO code to protect only the parity bits of a low-density
parity-check (LDPC) code via alleviating ISI.

The rest of the paper is organized as follows. In Section II,
LOCO codes are formally defined and analyzed. The mapping-
demapping between the index of a codeword and the codeword
itself is introduced in Section III. Next, the rates of LOCO
codes in addition to the practical encoding and decoding
algorithms are presented in Section IV. LOCO codes are
applied to MR systems in Section V. Finally, the paper is
concluded in Section VI.

II. ANALYSIS OF LOCO CODES

We start with the formal definition of the proposed fixed-
length LOCO codes.

Definition 1. A LOCO code Cm,x, with parameters m and x,
is defined by the following properties:

1) Each codeword c ∈ Cm,x is binary and of length m.
2) Codewords in Cm,x are ordered lexicographically.
3) Each codeword c ∈ Cm,x does not contain any pattern

in the set Tx, where:

Tx , {010, 101, 0110, 1001, . . . , 01x0, 10x1}; (1)

therefore, |Tx| = 2x, with x ∈ {1, 2, . . . }.

2019 IEEE Information Theory Workshop (ITW)

978-1-5386-6900-6/19/$31.00 ©2019 IEEE
Authorized licensed use limited to: Duke University. Downloaded on September 10,2020 at 21:29:05 UTC from IEEE Xplore.  Restrictions apply. 



TABLE I
ALL THE CODEWORDS OF TWO LOCO CODES, Cm,1 , m ∈ {5, 6}. THE

FOUR DIFFERENT GROUPS OF CODEWORDS ARE EXPLICITLY ILLUSTRATED
FOR THE CODE C6,1 .

Codeword index g(c)
Codewords of the code Cm,1

m = 5 m = 6
0 00000 000000

Group 1

1 00001 000001
2 00011 000011
3 00110 000110
4 00111 000111
5 01100 001100
6 01110 001110
7 01111 001111
8 10000 011000

Group 4
9 10001 011001
10 10011 011100
11 11000 011110
12 11001 011111
13 11100 100000

Group 3
14 11110 100001
15 11111 100011
16 100110
17 100111
18 110000

Group 2

19 110001
20 110011
21 111000
22 111001
23 111100
24 111110
25 111111

Code cardinality N(5, 1) = 16 N(6, 1) = 26

4) Codewords in Cm,x are all the codewords satisfying the
previous three conditions.

Throughout the paper, NRZ (resp., NRZI) signaling is
adopted for LOCO (resp., RLL) codes.

Remark 1. In the case of Flash systems, the level −A is
replaced by the erasure level E.

Observe the connection between the forbidden patterns, i.e.,
the patterns in Tx, and the physics of different data storage
systems. As x increases, ISI (resp., ICI) is more alleviated in
MR (resp., Flash) systems, and the minimum width of a pulse
increases. However, increasing x reduces the rate.

Table I presents the LOCO codes Cm,1, m ∈ {5, 6}. These
LOCO codes have x = 1 and T1 = {010, 101}.

We partition the codewords in Cm,x into four distinct groups:
Group 1: Codewords here start with 00 from the left, i.e.,

in their left-most bits (LMBs).
Group 2: Codewords here start with 11 from the left.
Group 3: Codewords here start with 10x+1 from the left.
Group 4: Codewords here start with 01x+1 from the left.
The four groups are shown in Table I for the code C6,1.

Remark 2. In order to satisfy Condition 3 in Definition 1 for a
stream of codewords of a LOCO code Cm,x, a bridging pattern,
to be discussed later, needs to be added between any two
consecutively transmitted (written) codewords in this stream.

First, we determine the cardinality of Cm,x.

Theorem 1. Let N(m,x) be the cardinality (size) of the
LOCO code Cm,x, i.e., N(m,x) = |Cm,x|. Define:

N(m,x) , 2, m ≤ 1. (2)

Then, the following recursive formula gives N(m,x):

N(m,x) = N(m− 1, x) +N(m− x− 1, x), m ≥ 2. (3)

Proof: We use the above group structure to prove Theo-
rem 1. See [14], which is the long version of the paper.

The value of Theorem 1 is the insight it provides into the
structure of Cm,x. Not only does Theorem 1 perform enumer-
ation via simple recursion, it also significantly contributes to
the low-complexity encoding and decoding schemes, which
are based on the lexicographic ordering. Note that N(m,x) is
always even.

For x = 1, the cardinalities form a Fibonacci sequence as
(3) becomes:

N(m, 1) = N(m− 1, 1) +N(m− 2, 1). (4)

The cardinalities N(m, 1) for m ∈ {5, 6} are given in the last
row of Table I.

Example 1. Consider the LOCO code C6,1 illustrated in
the last column of Table I. From Theorem 1, N(0, 1) , 2,
N(1, 1) , 2, N(2, 1) = 4, N(3, 1) = 6, and N(4, 1) = 10.
Thus, and from (3), the cardinality of C6,1 is:

N(6, 1) = N(5, 1) +N(4, 1) = 16 + 10 = 26.

We now use the group structure of LOCO codes to define
a lexicographic indexing of codewords.

Define the index of a codeword c ∈ Cm,x as g(m,x, c) ∈
{0, 1, . . . , N(m,x) − 1}, which we also abbreviate to g(c)
when the context is clear. Since the four groups can be
defined for a LOCO code of any length, we define them for
Cm+1,x. For Groups 1 and 2 in Cm+1,x, let c ∈ Cm,x be the
corresponding codeword to c′ ∈ Cm+1,x, i.e., the m RMBs
in c′ are c. Moreover, for Groups 3 and 4 in Cm+1,x, let
c′′ ∈ Cm−x,x be the corresponding codeword to c′ ∈ Cm+1,x,
i.e., the m− x RMBs in c′ are c′′.

We define the shift in codeword indices for different groups
in Cm+1,x as follows:

ζ` ,

{
g(m+ 1, x, c′)− g(m,x, c), ` ∈ {1, 2},

g(m+ 1, x, c′)− g(m− x, x, c′′), ` ∈ {3, 4}, (5)

where ` is the group index. Observe that this shift is fixed for
all the codewords in the same group in Cm+1,x.

The following lemma gives the values of the shift for all the
four groups.

Lemma 1. The shift in codeword indices defined in (5) for
different groups in a LOCO code Cm+1,x is given by:

ζ` =


0, ` = 1,

N(m− x, x), ` = 2,
1
2N(m+ 1, x), ` = 3,

1
2 [N(m,x)−N(m− x, x)] , ` = 4.

(6)

Proof: See [14].

Example 2. The values of ζ`, ` ∈ {1, 2, 3, 4}, for the
LOCO code C6,1 given in the last column of Table I are
ζ1 = 0, ζ2 = N(4, 1) = 10, ζ3 = 1

2N(6, 1) = 13, and
ζ4 = 1

2 [N(5, 1)−N(4, 1)] = 3. Note that here m + 1 = 6,
i.e., m = 5, and x = 1.

III. PRACTICAL ENCODING AND DECODING
OF LOCO CODES

In this section, we describe how lexicographic indexing
supports simple, practical encoding and decoding of LOCO
codes. The following theorem is fundamental to the encoding
and decoding algorithms.

In the following, we define a codeword c ∈ Cm,x as c ,
[cm−1 cm−2 . . . c0], where ci ∈ {0, 1}, for all i. We also
define a decimal variable ai such that ai , 1 if ci = 1, and

2019 IEEE Information Theory Workshop (ITW)

Authorized licensed use limited to: Duke University. Downloaded on September 10,2020 at 21:29:05 UTC from IEEE Xplore.  Restrictions apply. 



ai , 0 if ci = 0. The same applies for c′ ∈ Cm+1,x and
c′′ ∈ Cm−x,x. Note that codeword indexing is trivial for the
case of m = 1.

Theorem 2. Consider a LOCO code Cm,x with m ≥ 2. The
index g(c) of a codeword c ∈ Cm,x is derived from c itself
according to the following equation:

g(c) =
1

2

[
am−1N(m,x) +

m−2∑
i=0

aiN(i− x+ 1, x)

]
. (7)

Here, we use the abbreviated notation g(c) for simplicity.

Proof: We use Lemma 1 to prove Theorem 2 by induction.
See [14].

The value of Theorem 2 is that it provides the foundation for
the practical encoding and decoding algorithms of our LOCO
codes via lexicographic indexing. In particular, this theorem
introduces a simple one-to-one mapping from g(c) to c, which
is the encoding, and a simple one-to-one demapping from c to
g(c), which is the decoding. In summary, Theorem 2 provides
the encoding-decoding rule for LOCO codes.

Example 3. We illustrate Theorem 2 by applying (7) to two
codewords in C6,1 given in Table I. The first codeword is the
one with the index 9. This codeword has cm−1 = 0; thus,

g(c) =
1

2

[
0 +

4∑
i=0

aiN(i, x)

]
=

1

2
[N(0, 1) +N(3, 1) +N(4, 1)] = 9.

The second codeword is the one with the index 24. This
codeword has cm−1 = 1; thus,

g(c) =
1

2

[
N(6, 1) +

4∑
i=0

aiN(i, 1)

]
=

1

2
[26 +N(1, 1) +N(2, 1) +N(3, 1) +N(4, 1)] = 24.

Example 3 shows how the index, which implies the original
message, can be recovered from the LOCO codeword.

Remark 3. Lexicographically-ordered RLL (LO-RLL) codes
can be constructed via the ideas in [1]. Define the binary
difference vector v of a codeword c in a LOCO code Cm,x,
m ≥ 2, as v , [vm−2 vm−3 . . . v0], with vi , ci+1 + ci, for
all i. Thus, a (d,∞) LO-RLL code with d = x and length m−1
can also be derived from the LOCO code Cm,x by computing
the difference vectors for all the codewords in Cm,x starting
with 0 from the left (the remaining difference vectors will be
repeated because of symmetry). Consequently, the cardinality
of a (d,∞) LO-RLL code with d = x and length m − 1 is
given by:

NRLL(m− 1, d) =
1

2
N(m,x), d = x, (8)

which is consistent with the results in [1] (see [14]).

IV. RATE DISCUSSION AND ALGORITHMS

We first discuss bridging patterns. Consider the following
scenario. The codeword at transmission (writing) instance t
is ending with 00 from the right, while the codeword at
instance t + 1 is starting with 10 from the left. The stream
containing the two codewords will then have the pattern 010,
which is a forbidden pattern for any LOCO code. Bridging

patterns prevent forbidden patterns from appearing across two
consecutive codewords. If the patterns in Tx are prevented
(Condition 3 in Definition 1 is satisfied), any two consecutive
transitions will be separated by at least x + 1 successive bit
durations. Transitions are either from 0 to 1, i.e, −A to +A,
or from 1 to 0, i.e., +A to −A.

Define the symbol z as the no transmission (no writing)
symbol. Define also the notation zr to represent a run of r con-
secutive z symbols. Our method of bridging is simply to add
the bridging pattern zx between each two consecutive LOCO
codewords. Bridging patterns are ignored at the decoding.

Remark 4. In the case of Flash systems, transitions are either
from 0 to 1, i.e, E to +A, or from 1 to 0, i.e., +A to E.
Moreover, the no writing symbol z represents the state when
the cell is programmed to a charge level about the mid point
between E and +A.

An important requirements in constrained codes is self-
clocking [2], [5]. In particular, the receiver should be capable
of retrieving the clock of the transmitter from the signal itself.
This requires avoiding long runs of 0’s (−A’s) and long runs
of 1’s (+A’s). Thus, we construct the following code.

Definition 2. A self-clocked LOCO (C-LOCO) code Cc
m,x is

the code resulting from removing the all 0’s and the all 1’s
codewords from the LOCO code Cm,x. In particular:

Cc
m,x , Cm,x \ {0m,1m}, (9)

where m ≥ 2. The cardinality of Cc
m,x is given by:

N c(m,x) = N(m,x)− 2. (10)

Now, there exists at least one transition in each codeword
in Cc

m,x. Define kc
eff as the maximum number of successive

bit durations without a transition in a stream of C-LOCO
codewords that belong to Cc

m,x, with each two consecutive
codewords separated by a bridging pattern. For the sake of
abbreviation, we here use the format “codeword at t − bridging
pattern − codeword at t+ 1”. The scenarios under which kc

eff
is acheieved, using our bridging method, are:

10m−1 − zx − 0m−11 and 01m−1 − zx − 1m−10.

Consequently, we get:

kc
eff = 2(m− 1) + x. (11)

We are now ready to discuss the rate of C-LOCO codes. A
C-LOCO code Cc

m,x, with x bridging symbols associated to
each codeword, has rate:

Rc
LOCO =

blog2N c(m,x)c
m+ x

=
blog2 (N(m,x)− 2)c

m+ x
, (12)

where N(m,x) is obtained from the recursive relation (3). The
numerator, which is blog2 (N(m,x)− 2)c, is the length of the
messages Cc

m,x encodes.
Observe that a C-LOCO code Cc

m,x consists of all codewords
of length m, with the exception of the two codewords 0m

and 1m, that do not contain any of the forbidden patterns in
Tx. Moreover, the number of added symbols for bridging is
function of x only, and thus does not grow with m. There-
fore, it follows that C-LOCO codes are capacity-achieving
constrained codes.

Example 4. Consider again the LOCO code C6,1 in Table I.
From (11), the C-LOCO code Cc

6,1 derived from C6,1 has:

kc
eff = 2(6− 1) + 1 = 11.

2019 IEEE Information Theory Workshop (ITW)

Authorized licensed use limited to: Duke University. Downloaded on September 10,2020 at 21:29:05 UTC from IEEE Xplore.  Restrictions apply. 



TABLE II
RATES AND ADDER SIZES OF C-LOCO CODES Cc

m,x FOR DIFFERENT
VALUES OF m AND x. THE CAPACITY IS 0.6942 FOR x = 1 AND 0.5515

FOR x = 2.

Values of m and x Rc
LOCO Adder size

m = 8, x = 1 0.6667 6 bits
m = 18, x = 1 0.6842 13 bits
m = 31, x = 1 0.6875 22 bits
m = 44, x = 1 0.6889 31 bits
m = 54, x = 1 0.6909 38 bits
m = 90, x = 1 0.6923 63 bits
m = 6, x = 2 0.5000 4 bits
m = 13, x = 2 0.5333 8 bits
m = 24, x = 2 0.5385 14 bits
m = 33, x = 2 0.5429 19 bits
m = 42, x = 2 0.5455 24 bits
m = 91, x = 2 0.5484 51 bits

Moreover, the length of the messages Cc
6,1 encodes is

blog2 (N(6, 1)− 2)c = blog2 24c = 4. From (12), the rate
of Cc

6,1 is:

Rc
LOCO =

blog2 24c
6 + 1

=
4

7
= 0.5714.

Table II shows the rates of C-LOCO codes Cc
m,x for different

values of m and for x ∈ {1, 2}. Table II demonstrates that
C-LOCO codes have rates up to 0.6923 (resp., 0.5484) for
the case of x = 1 (resp., x = 2) with moderate code lengths.
From the literature, the capacity of a Tx-constrained code with
x = 1 (resp., x = 2) is 0.6942 (resp., 0.5515) [4], [5]. The
table shows that the rate of the C-LOCO code Cc

90,1 (resp.,
Cc
91,2) is within only 0.3% (resp., 0.6%) from the capacity. In

fact, these rates even increase with an informed increase in the
value of m until they reach the capacity.

From the definition of a LOCO code, an RLL code with
parameter d has similar performance to a LOCO code with
parameter x. Because of their practicality, we focus on RLL
codes generated via finite state machines (FSMs), and decoded
via sliding window decoders [2], [4], [5]. For d = x, there
are three main advantages of LOCO codes over FSM-based
RLL codes: 1) LOCO codes achieve higher rates. 2) LOCO
codes are immune against error propagation from a codeword
to another. 3) Balancing LOCO codes is not only simple, but
also incurs a very limited rate loss (see [14, Section VI]).

As for the rate advantage, a practical FSM-based RLL code
with d = 1 (resp., d = 2) typically has a rate of 0.6667
(resp., 0.5000) [2], [4], [5]. The rate gain of moderate-length
C-LOCO codes over practical FSM-based RLL codes, where
d = x, is up to 10% as shown in Table II.

We introduce now the encoding and decoding algorithms
of our C-LOCO codes, which are based on Theorem 2. The
encoding algorithm is [14, Algorithm 1], and the decoding
algorithm is Algorithm 1. An example on how the encoding
algorithm works is [14, Example 5]. Example 3 in Section III
already showed how the decoding algorithm works.

The size of the adders used to perform different encoding
and decoding tasks is log2 the maximum value g(c) can take
that corresponds to a message, and it is given by:

sc = blog2 (N(m,x)− 2)c . (13)

Table II links the rate of a C-LOCO code with its encoding and
decoding complexity through the size of the adders to be used.
For example, for a C-LOCO code with x = 1 (resp., x = 2),
if a rate of 0.6842 (resp., 0.5333) is needed, adders of size 13
(resp., 8) bits should be used. Note that the multiplication by
1
2 is just a right shift by one unit in binary, and it can be done
only once at the beginning of the encoding-decoding.

Algorithm 1 Decoding C-LOCO Codes
1: Inputs: Incoming stream of binary C-LOCO codewords,

in addition to m, x, and sc.
2: Use (2) and (3) to compute N(i, x), i ∈ {2, 3, . . . ,m}.
3: for each incoming codeword c of length m do
4: Initialize g(c) with 0.
5: if cm−1 = 1 then
6: g(c)← g(c) + 1

2N(m,x).
7: end if
8: for i ∈ {m− 2,m− 3, . . . , 0} do
9: if ci = 1 then

10: g(c)← g(c) + 1
2N(i− x+ 1, x).

11: end if
12: end for
13: Compute b = binary(g(c) − 1), which has length sc.

(decimal to binary)
14: Ignore the next x bridging symbols.
15: end for
16: Output: Outgoing stream of binary messages.

Remark 5. Observe that (8) in Remark 3 shows that LOCO
codes are more efficient compared with LO-RLL codes in the
finite-length regime. The reason is that from (8) and (3), the
difference between the cardinalities of a LOCO code Cm,x and
a (d,∞) LO-RLL code with d = x and length m is:

N(m,x)−NRLL(m, d) = N(m,x)− 1

2
N(m+ 1, x)

=
1

2
[N(m,x)−N(m− x, x)] . (14)

Thus, if the same number of bits is used for bridging, the
LOCO code can achieve higher rates at the same code length
or lower complexities at the same rate (see [14]).

V. DENSITY GAINS IN MR SYSTEMS

The details of our MR system model are in [14, Section V].
An LDPC encoder is followed by a LOCO encoder, which
encodes only the parity bits of a spatially-coupled (SC) LDPC
codeword via a C-LOCO code to significantly increase their
reliability. NRZ signaling is adopted. The MR channel effects
are ISI, jitter, and electronic noise. The channel density,
which is the ratio of the read-head pulse duration at half the
amplitudes to the bit duration, is swept to generate the plots.
The SNR is 13.00 dB. The PR equalization target is [8 14 2].
Observe that this PR target behaves in a way similar to the
channel impulse response [6], which is an important reason
why we are here adopting the set Tx of symmetric forbidden
patterns. Detection is performed via a BCJR detector. There is
an outer looping between the detector, a LOCO decoder, and
an LDPC decoder at the receiving end. The LDPC decoder
is a fast Fourier transform based q-ary sum-product algorithm
(FFT-QSPA) LDPC decoder, with q being set to 2 here.

Lemma 2 gives the overall rate of the LDPC-LOCO coding
scheme applied in our system.

Lemma 2. Consider the following LDPC-LOCO coding
scheme. A C-LOCO code of rate Rc

LOCO is used to encode only
the parity bits of an LDPC code of rate RLDPC. The overall
rate of this scheme is:

Rov ≈
RLDPCR

c
LOCO

RLDPCR
c
LOCO + (1−RLDPC)

. (15)

Proof: See [14].

2019 IEEE Information Theory Workshop (ITW)

Authorized licensed use limited to: Duke University. Downloaded on September 10,2020 at 21:29:05 UTC from IEEE Xplore.  Restrictions apply. 



1.35 1.4 1.45 1.5 1.55 1.6 1.65 1.7
Density

10-6

10-4

10-2

100

1: Orig. SC
2: Lower rate SC
3: Orig. SC plus C-LOCO

Fig. 1. Density gains achieved by LOCO codes in MR systems.

Lemma 2 demonstrates that the rate loss due to integrating
a C-LOCO code in the MR system the way we do it is limited.

The binary SC codes used in our simulations are con-
structed according to [15], which provides a method to design
high performance SC codes for MR systems. SC Code 1 (resp.,
SC Code 2) has column weight = 4, maximum row weight
= 17 (resp. = 13), circulant size = 37 (resp., = 47), memory
= 1, and coupling length = 6 (resp., = 7). Thus, SC Code 1
(resp., SC Code 2) has block length = 3774 (resp., = 4277)
bits and rate ≈ 0.725 (resp., ≈ 0.648).

The C-LOCO code we use in the simulations is the code
Cc
18,1. This code has m = 18 and x = 1. Thus, from (11), Cc

18,1

has kc
eff = 2(17) + 1 = 35. Moreover, Cc

18,1 has N c(18, 1) =
8362, which means the message length is sc = blog2 8360c =
13. Thus, from (12), the rate of Cc

18,1 is 13
18+1 = 0.6842 since

one symbol z is used for bridging.
We generate three plots, as shown in Fig. 1, for the following

three simulation setups: 1) SC Code 1 (original SC code) is
used for error correction, and no C-LOCO code is applied. 2)
SC Code 2 (lower rate SC code) is used for error correction,
and no C-LOCO code is applied. 3) SC Code 1 is combined
with the C-LOCO code Cc

18,1 such that only the parity bits of
SC Code 1 are encoded via Cc

18,1. The energy per input data bit
in all three setups is the same. For Setup 3, we have Rc

LOCO =
0.6842, overall length = 4258, and overall rate Rov ≈ 0.643
from (15). Thus, the overall length and rate in Setup 3 are
similar to the length and rate of SC Code 2 in Setup 2.

The frame error rate (FER) versus density plots for the three
setups are shown in Fig. 1. The density gain of Setup 3 over
Setup 1 (resp., Setup 2) is about 20% (resp., 16%) at FER
≈ 10−6. The density gain achieved in Setup 3 over Setup 2
implies that exploiting the additional redundancy by applying
a C-LOCO code is significantly more effective compared with
exploiting this redundancy by adding more parity bits. An
intriguing observation from Fig. 1 is that the error floor slope
in Setup 3 is sharper than the slope in the other two setups.

While applying the C-LOCO code to the entire LDPC
codeword provides higher density gains, the overall rate loss
becomes very high since the rate in this case becomes Rov ≈
RLDPCR

c
LOCO. For example, if Cc

18,1 is applied to the entire
codeword of SC Code 1, the overall rate becomes Rov ≈ 0.496,
which is a lot lower than Rov in Setup 3. Additionally, the
density gains achieved diminish gradually with more bits being
encoded via the C-LOCO code. In summary, the proposed idea
in Setup 3 offers a better rate-density gain trade-off.

Setup 3 is motivated by the following intuition. Even though
only a group of bits in the LDPC codeword (the bits encoded

via the LOCO code) have highly reliable LRs while decoding,
the information in these highly reliable LRs will be spread to
all bits during the message passing procedure. Therefore, the
LDPC decoder experiences a better version of the channel,
which results in the decoder, aided by the detector and the
LOCO decoder, kicking-off its operation at higher densities.

VI. CONCLUSION

We introduced LOCO codes, where the combination of
recursive structure and lexicographic indexing of codewords
enables simple mapping-demapping between the index and
the codeword itself. We showed that this mapping-demapping
enables low complexity encoding and decoding algorithms. We
also showed that LOCO codes are capacity achieving, and
that at moderate lengths, they provide a rate gain of up to
10% compared with practical RLL codes that are used to
achieve the same goals. We demonstrated density gains of
about 20% in modern MR systems by integrating a LOCO
code with an LDPC code. We suggest that LOCO codes can
improve the performance in a wide variety of data storage
systems. Ongoing work include asymmetric and non-binary
LOCO codes.

ACKNOWLEDGMENT

This research was supported in part by NSF under grant
CCF 1717602.

REFERENCES

[1] D. T. Tang and R. L. Bahl, “Block codes for a class of constrained
noiseless channels,” Inf. and Control, vol. 17, no. 5, pp. 436–461, 1970.

[2] P. Siegel, “Recording codes for digital magnetic storage,” IEEE Trans.
Magn., vol. 21, no. 5, pp. 1344–1349, Sep. 1985.

[3] B. Vasic and E. Kurtas, Coding and Signal Processing for Magnetic
Recording Systems. CRC Press, 2005.

[4] R. Karabed and P. H. Siegel, “Coding for higher-order partial-response
channels,” in Proc. SPIE 2605, Coding and Signal Process. for Inf.
Storage, Philadelphia, PA, USA, Dec. 1995, pp. 115–127.

[5] K. E. S. Immink, P. H. Siegel, and J. K. Wolf, “Codes for digital
recorders,” IEEE Trans. Inf. Theory, vol. 44, no. 6, pp. 2260–2299, Oct.
1998.

[6] A. Hareedy, B. Amiri, R. Galbraith, and L. Dolecek, “Non-binary LDPC
codes for magnetic recording channels: error floor analysis and optimized
code design,” IEEE Trans. Commun., vol. 64, no. 8, pp. 3194–3207, Aug.
2016.

[7] K. Harada, N. Maeto, A. Yamazaki, and A. Takeo, “Robust modulation
of PWM-based multi-level perpendicular magnetic recording for conven-
tional media,” IEEE Comm. Letters, vol. 22, no. 4, pp. 724–727, Apr.
2018.

[8] K. A. S. Immink, “ Modulation systems for digital audio discs with
optical readout,” in Proc. IEEE Int. Conf. Acoustics, Speech, and Signal
Process. (ICASSP), Atlanta, Georgia, USA, Mar.–Apr. 1981, pp. 587–
589.

[9] A. R. Calderbank and J. E. Mazo, “Baseband line codes via spectral
factorization,” IEEE J. Sel. Areas Commun., vol. 7, no. 6, pp. 914–928,
Aug. 1989.

[10] M. Qin, E. Yaakobi, and P. H. Siegel, “Constrained codes that mitigate
inter-cell interference in read/write cycles for flash memories,” IEEE J.
Sel. Areas Commun., vol. 32, no. 5, pp. 836–846, Apr. 2014.

[11] J. Saadé, A. Goulahsen, A. Picco, J. Huloux, and F. Pétrot, “Low
overhead, DC-balanced and run length limited line coding,” in Proc.
IEEE 19th Workshop on Signal and Power Integrity (SPI), Berlin,
Germany, May 2015, pp. 1–4.

[12] T. Cover, “Enumerative source encoding,” IEEE Trans. Inf. Theory, vol.
19, no. 1, pp. 73–77, Jan. 1973.

[13] K. A. S. Immink, “A practical method for approaching the channel
capacity of constrained channels,” IEEE Trans. Inf. Theory, vol. 43, no.
5, pp. 1389–1399, Sep. 1997.

[14] A. Hareedy and R. Calderbank, “LOCO codes: lexicographically-
ordered constrained codes,” Feb. 2019. [Online]. Available:
https://arxiv.org/abs/1902.10898

[15] A. Hareedy, R. Wu, and L. Dolecek, “A channel-aware combina-
torial approach to design high performance spatially-coupled codes
for magnetic recording systems,” Sep. 2018. [Online]. Available:
https://arxiv.org/abs/1804.05504

2019 IEEE Information Theory Workshop (ITW)

Authorized licensed use limited to: Duke University. Downloaded on September 10,2020 at 21:29:05 UTC from IEEE Xplore.  Restrictions apply. 


