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Abstract—In this paper, the design of robust linear precoders
for the massive multi-input multi-output (MIMO) downlink with
imperfect channel state information (CSI) is investigated. The
imperfect CSI for each UE obtained at the BS is modeled as
statistical CSI under a jointly correlated channel model with both
channel mean and channel variance information, which includes
the effects of channel estimation error, channel aging and spatial
correlation. The design objective is to maximize the expected
weighted sum-rate. By combining the minorize-maximize (MM)
algorithm with the deterministic equivalent method, an algorithm
for robust linear precoder design is derived. The proposed
algorithm achieves a stationary point of the expected weighted
sum-rate maximization problem. To reduce the computational
complexity, two low-complexity algorithms are then derived. One
for the general case, and the other for the case when all the
channel means are zeros. For the later case, it is proved that
the beam domain transmission is optimal, and thus the precoder
design reduces to the power allocation optimization in the beam
domain. Simulation results show that the proposed robust linear
precoder designs apply to various mobile scenarios and achieve
high spectral efficiency.

Index Terms—Massive multi-input multi-output (MIMO),
minorize-maximize (MM) algorithm, deterministic equivalents,
robust linear precoders, imperfect CSI.

I. INTRODUCTION

Massive multiple-input multiple-output (MIMO) [1], [2] has
been one of the key technologies of fifth generation (5G)
wireless networks. It provides huge potential capacity gains by
employing a large number of antennas at a base station (BS)
and supports multi-user MIMO (MU-MIMO) transmissions on
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the same time and frequency resource. With massive antenna
arrays at the BS, it is also possible to achieve high energy
efficiency. To alleviate the multi-user interference and improve
the sum-rate performance, the precoders for all the UEs at the
BS should be properly designed. In this paper, we focus on
the precoder designs for massive MIMO downlinks.

Massive MIMO is an extension of conventional multi-user
MIMO. The precoder design for multi-user MIMO has seen
significant attention in different forms over many years [3]–
[16]. There exists two types of precoders: nonlinear precoders
and linear precoders. Although nonlinear precoders such as
DPC [5] can achieve optimal performance, they are not
suitable to massive MIMO due to the high complexity. For
practical consideration, we investigate linear precoder designs
for massive MIMO in this paper. The precoder designs are
based on the available channel state information (CSI) at the
BS. When the BS has perfect CSI of all UEs, there exists
the widely used regularized zero forcing (RZF) precoder [4],
the signal to leakage noise ratio (SLNR) precoder [6], and
the classic iterative weighted minimum mean square error
(WMMSE) method [8], [10]. Among the three precoders,
the WMMSE precoder is designed according to the sum-
rate maximization criterion. Thus, the WMMSE precoder can
achieve better performance than the RZF precoder and the
SLNR precoder.

In massive MIMO systems, there exists many practical
challenge, such as power amplifier nonlinearities [17], [18],
transceiver I/Q imbalance [19] and quantization errors [20].
In this paper, we concern the impacts of the imperfect CSI.
In practical massive MIMO systems, perfect CSI at the BS
are usually not available due to channel estimation error,
channel aging, etc. Furthermore, different users usually have
different moving speeds. Thus, we need to model the channel
uncertainty first. In the literature [9], [15], [21], [22], the
channel uncertainty are often be constructed as a complex
Gaussian random matrix with independent and identically
distributed (i.i.d.), zero mean and unit variance entries. In this
paper, we propose to use a more realistic channel model for
practical systems. To describe the channel in practical systems
more precisely, we consider the impacts of channel estimation,
use the jointly correlated channel model to represent the
spatial correlation, and the widely used Gauss-Markov process
[23]–[25] to model the time evolution of the channel. We
consider a massive MIMO downlink where the a priori CSI
for each UE available at the BS before channel estimation
is expressed as a jointly correlated channel model [26] with
only channel covariance information. After channel estimation,
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we model the a posteriori CSI for each UE at the BS as
statistical CSI under a jointly correlated channel model with
both channel mean and channel covariance information. With
the established model, we are able to describe the channel
uncertainty more precisely. On this basis, we investigate the
precoder design for massive MIMO downlink transmission
robust to the imperfect CSI at the BS.

If all the users are quasi-static, the established model
reduces the case that the perfect CSI are known. When all the
users move fast, the BS only has channel covariance infor-
mation. In such case, there exists the beam division multiplex
access (BDMA) transmission [13] and the joint spatial division
and multiplexing (JSDM) approach [12] that are designed by
maximizing the sum-rate. In the BDMA transmission, the BS
serves multiple users via different beams simultaneously. In
the JSDM approach, the users are partitioned into groups with
approximately the same channel covariance eigenspace. In
conclusion, to maximize the sum-rate, the iterative WMMSE
method can be used to design linear precoders for massive
MIMO downlinks when the channel of all users are quasi-
static. On the contrary, when all users are in medium or
high mobility scenarios, the BDMA transmission or the JSDM
approach can be used. It is natural to ask whether there exist
any unified linear precoding method which is robust against
imperfect CSI and maximize the sum-rate for massive MIMO
downlinks. The goal of this paper is to answer this important
question.

When the BS has imperfect CSI, the widely used RZF
precoder can be extended to the robust RZF [27]. However,
the performance of the robust RZF, especially at the high
speed scenario, is still far from optimal. In this paper, we
combine the MM (minorize-maximize) algorithm [28], [29]
and the deterministic equivalent method [30], [31] to solve the
problem of maximizing the expected weighted sum-rate over
the proposed channel model. The MM algorithm is a widely
used method to find the stationary points of complicated
optimization problems. It substitutes a simple optimization
problem for a difficult optimization problem. Inspired by
the weighted WMMSE method, we find a convex quadratic
minorizing function of the objective function which can be
used to apply the MM algorithm. The optimal solution of the
surrogate problem needs calculating the expected values of
several random matrices with respect to the channel matrices
based on the established a posteriori channel model. However,
the expected values of the random matrices are rather difficult
to compute. To avoid this issue, we use the deterministic
equivalent method, which can be used to compute the ap-
proximations of the matrix expectations needed. Based on
the obtained approximations, we propose an algorithm for
robust linear precoder design. Furthermore, we derive two
low-complexity algorithms by reducing the number of large
dimensional matrix inversions and avoiding large dimensional
matrix inversions, respectively.

The rest of this article is organized as follows. The system
model and problem formulation are presented in Section II.
The robust linear precoder designs based on the deterministic
equivalents are shown in Section III. Simulation results are
provided in Section IV. The conclusion is drawn in Section V.

Proofs of Theorems are provided in Appendices.
Notations: Throughout this paper, uppercase and lowercase

boldface letters are used for matrices and vectors, respectively.
The superscripts (·)∗, (·)T and (·)H denote the conjugate,
transpose and conjugate transpose operations, respectively.
E{·} denotes the mathematical expectation operator. In some
cases, where it is not clear, subscripts will be employed
to emphasize the definition. The operators tr(·) and det(·)
represent the matrix trace and determinant, respectively. The
operator ⊗ denotes the kronecker product. The Hadamard
product of two matrices A and B of the same dimensions is
represented by A�B. The N ×N identity matrix is denoted
by IN . The (i, j)-th entry of the matrix A is denoted by [A]ij .

II. SYSTEM MODEL AND PROBLEM FORMULATION

A. System Model

We consider a massive MIMO system with block flat fading
channels, where the channel coefficients remain constant for a
coherence interval of T symbol periods. The system consists
of one BS and K UEs. The number of antennas at the BS
is Mt. The k-th UE is equipped with Mk antennas, and∑K
k=1Mk = Mr. We divide the time resources into slots and

each time slot contains Nb blocks. In this paper, we focus on
the case where the considered massive MIMO system operates
in time division duplexing (TDD) mode. However, the results
of this paper can be extended to the system operating in fre-
quency division duplexing (FDD) mode easily. For simplicity,
we assume that there only exists the uplink training phase
and the downlink transmission phase. At each slot, the uplink
training sequences are sent once at the first block. The second
block to the Nb-th block are used for downlink transmission.
The length of the uplink pilot sequences is T symbols, i.e.,
the length of each block. Furthermore, the uplink training
sequences assigned to different antennas are orthogonal to each
other (Mr ≤ T ). For illustration purpose, we plot the time slot
structure in Fig. 1.

We restrict our considerations to stationary channels and
use the jointly correlated channel model to describe the spatial
correlations of each channel. Specifically, the channel matrix
Hkn from the BS to the k-th UE at the nth block of slot m
has the following structure [26], [32]

Hkn = Uk(Mk �Wkn)VH
k (1)

where Uk and Vk are deterministic unitary matrices, Mk

is an Mk × Mt deterministic matrix with nonnegative ele-
ments, and Wkn is a complex Gaussian random matrix with

symbol ... ##1 #2 #3 #4

slot #... ...

UL/DL

UL/DL
...block #1 ## ...

DL TransmissionUL Training DL Transmission DL Transmission DL Transmission

UL/DL

Fig. 1. Time slot structure.
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independent and identically distributed (i.i.d.), zero mean and
unit variance entries. For brevity, we have omitted m in the
subscript. In this paper, we assume that uniform linear arrays
(ULAs) are employed in the BS. In such case, the covariance
matrix E{HH

knHkn} is a Toeplitz matrix under a wide sense
stationary scattering environment. When the number of the
antennas at the BS grows large, the Toeplitz covariance matrix
can be well approximated by a circulant matrix. Thus, each Vk

is closely approximated by a discrete Fourier transform (DFT)
matrix. Further, the channel model in (1) can be rewritten as

Hkn = Uk(Mk �Wkn)VH
Mt

(2)

where VMt
denotes the Mt ×Mt DFT matrix. The channel

model in (2) can be seen as an a priori model of the channels
before channel estimation. To model the time variation of the
channel from block to block, we use the widely used first
order Gauss-Markov process as in [23]–[25]. Then, the channel
matrix on the n+ 1-th block can be represented as

Hk(n+1) = αkHkn+
√

1− α2
kUk(Mk�Wk(n+1))V

H
Mt

(3)

where αk is the temporal correlation coefficient which is
related to the moving speed. An often used metric for αk in
the literature [24] is related to Jakes’ autocorrelation model,
i.e., αk = J0(2πvkfcT/c), where J0(·) is the zero-th order
Bessel function of the first kind, vk is the moving speed of
the k-th user, fc is the carrier frequency and c is the speed of
light.

We define the channel power matrices Ωk as Ωk = Mk �
Mk and assume the BS knows Uk and Ωk through a channel
sounding process. Exploiting channel reciprocity, the channel
state information of the downlink channels can be obtained
from uplink training signals [33].

Let YBS
1 ∈ CMt×T denote the received matrix at the BS

on the first block of slot m. It can be written as

YBS
1 =

K∑
k=1

HT
k1X

UE
k1 + ZBS

1 (4)

where XUE
k1 ∈ CMk×T denotes the uplink training matrix sent

by the k-th user on the first block of slot m, and ZBS
1 ∈

CMt×T is a noise random matrix whose elements are i.i.d.
complex Gaussian entries with zero mean and variance σ2

BS.
In the following, we model the a posteriori CSI for each

UE at the BS given YBS
1 as statistical CSI under a jointly

correlated channel model with both channel mean and channel
covariance information. Vectorizing the received matrix YBS

1 ,
we obtain

vec(YBS
1 )=

K∑
k=1

(
(XUE

k1 )T ⊗ IMt

)
vec(HT

k1) + vec(ZBS
1 ).(5)

Let Kk1 denote the covariance matrix of vec(HT
k1). From (2),

we then obtain

Kk1= E{vec(HT
k1)vec(HT

k1)H}
= (Uk ⊗V∗Mt

)diag(vec(ΩT
k ))(UH

k ⊗VT
Mt

). (6)

Let ĤT
kn denote the MMSE estimator of HT

kn given YBS
1 ,

we have that Ĥkn is the conditional mean of HT
kn given

YBS
1 , i.e., ĤT

kn = E{HT
kn|YBS

1 }. Since the pilot sequences
assigned to transmitted antennas are orthogonal, we obtain
XUE
k1 (XUE

k1 )H = IMk
and XUE

l1 (XUE
k1 )H = 0 for l 6= k. From

these conditions, (2), (3) and (5), we then obtain

vec(ĤT
kn)= αn−1k (Kk1 + σ2

BSI)−1

Kk1

(
(XUE

k1 )∗ ⊗ IMt

)
vec(YBS

1 ). (7)

Substituting (6) into (7), we obtain

vec(ĤT
kn)

= αn−1k (Uk ⊗V∗Mt
)(diag(vec(ΩT

k )) + σ2
BSI)−1

diag(vec(ΩT
k ))
(
UH
k (XUE

k1 )∗ ⊗VT
Mt

)
vec(YBS

1 ). (8)

Let ∆k denote the matrix whose entries are defined by

[∆k]ij =
[Mk]2ij

[Mk]2ij + σ2
BS

. (9)

Then, (8) can be re-expressed as

vec(ĤT
kn)= αn−1k (Uk ⊗V∗Mt

)diag(vec(∆T
k ))(

UH
k (XUE

k1 )∗ ⊗VT
Mt

)
vec(YBS

1 ). (10)

From (2), (3), (5) and (10), we obtain the posterior distribution
of the random vector vec(HT

kn) is a multivariate Gaussian
distribution, and its conditional covariance matrix is given by

E{(vec(HT
kn)− vec(ĤT

kn))(vec(HT
kn)− vec(ĤT

kn))H |YBS
1 }

= (Uk ⊗V∗Mt
)diag(vec(ΞT

kn �ΞT
kn))(UH

k ⊗VT
Mt

) (11)

where the square of the elements in Ξkn ∈ CMk×Mt are
computed by

[Ξkn]2ij = [Mk]2ij − α
2(n−1)
k

[Mk]4ij
[Mk]2ij + σ2

BS

. (12)

Finally, we obtain the a posteriori model of Hkn given YBS
1

as
Hkn = Ĥkn + Uk(Ξkn �Wkn)VH

Mt
(13)

where Ĥkn is obtained from (10) as

Ĥkn = αn−1k Uk(∆k �UH
k (XUE

k1 )∗(YBS
1 )TVMt

)VH
Mt

(14)

and Wkn is a complex Gaussian random matrix with i.i.d.,
zero mean and unit variance entries. With (13), the available
imperfect CSI for each UE obtained at the BS is modeled
as statistical CSI under a jointly correlated channel model
with both channel mean and channel variance information,
which includes the effects of channel estimation error, channel
aging and spatial correlation. The channel model is obtained
by assuming that Uk, Ωk, αk, σ2

BS are known. The a pos-
teriori model described in (13) is a generic model for the
available imperfect CSI obtained by the BS in the massive
MIMO system under various mobile scenarios. When αk is
very close to 1, it is suitable for the quasi-static scenario.
When αk becomes very small, it is used to describe high
speed scenario. By setting the values of the αks according
to their moving speeds, we are able to describe the channel
uncertainties in various typical channel conditions. Based on
this channel model, we investigate the precoder design robust
to the imperfect CSI at the BS in this work.
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B. Problem Formulation

We now consider the downlink transmission for slot m. Let
xkn denote the Mk × 1 transmitted vector to the k-th UE at
the n-th block of slot m. The covariance matrix of xkn is the
identity matrix Idk . The received signal ykn at the k-th UE
for a single symbol interval at the n-th block of slot m can
be written as

ykn = HknPknxkn + Hkn

K∑
l 6=k

Plnxln + zkn (15)

where Pkn is the Mt × dk precoding matrix of the k-th UE,
and zkn is a complex Gaussian noise vector distributed as
CN (0, σ2

zIMk
).

We assume that the UEs obtain the perfect CSI of their
corresponding effective channel matrices HknPkn from the
training signals as in the BDMA transmission [13]. The
DL training phase is included in the DL data transmission
and omitted in the slot structure for simplicity. At each
UE, we treat the aggregate interference-plus-noise z′kn =

Hkn

∑K
l 6=k Plnxln + zkn as Gaussian noise. Let Rkn denote

the covariance matrix of z′kn, we have that

Rkn = σ2
zIMk

+
K∑
l 6=k

E{HknPlnPH
lnHH

kn} (16)

where the notation E{·} denotes the expectation with respect
to Hkn according to the long-term statistics of the channel
matrices at the user end. Owing to the channel reciprocity, the
long-term channel statistics at the user end are the same as
that of the BS, which have been provided in the a posteriori
model in (13). Thus, the expectation E{·} can be computed
according to (13). We assume the covariance matrix Rkn is
known at the k-th UE. In such case, the expected rate of the
k-th user at the n-th block of slot m is given by

Rkn= E{log det(Rkn + HknPknPH
knHH

kn)}
− log det(Rkn)

= E{log det(IMk
+ R−1knHknPknPH

knHH
kn)} (17)

In this paper, we are interested in finding the precoding matri-
ces P1n,P2n, · · · ,PKn that maximize the expected weighted
sum-rate. The optimization problem can be formulated as

P�1n,P
�
2n, · · · ,P�Kn

= arg max
P1n,··· ,PKn

K∑
k=1

wkRkn

s.t.

K∑
k=1

tr(PknPH
kn) ≤ P (18)

where wk are the weights to ensure fairness among users and
P denotes the total power budget.

III. ROBUST LINEAR PRECODER DESIGN BASED ON
DETERMINISTIC EQUIVALENTS

A. MM Algorithm for Precoder Design

In this subsection, we present the MM algorithm for
precoder design. The expected weighted sum-rate is a very

complicated function of the precoding matrices, and thus also
very difficult to be optimized directly. In the following, we use
the MM algorithm to find a stationary point of the optimization
problem (18).

Let f denote the objective function
∑K
k=1 wkRkn in the

optimization problem (18). Let P
(d)
1n ,P

(d)
2n , · · · ,P

(d)
Kn be a

fixed family of the precoding matrices at the d-th iteration
and let

g(P1n,P2n, · · · ,PKn|P(d)
1n ,P

(d)
2n , · · · ,P

(d)
Kn)

represent a real-valued continuous function of the precoders
P1n,P2n, · · · ,PKn whose form depends on the fixed precod-
ing matrices P

(d)
1n ,P

(d)
2n , · · · ,P

(d)
Kn. The function g is said to

minorize f at P
(d)
1n ,P

(d)
2n , · · · ,P

(d)
Kn provided that [28]

g(P1n,P2n, · · · ,PKn)≤ f(P1n,P2n, · · · ,PKn) (19)

where the equality holds at P
(d)
1n ,P

(d)
2n , · · · ,P

(d)
Kn. When both

the functions g and f are continuously differentiable with
respect to the precoders, the conditions in (19) ensures

∂g

∂P∗kn

∣∣∣∣
Pkn=P

(d)
kn

=
∂f

∂P∗kn

∣∣∣∣
Pkn=P

(d)
kn

, k = 1, · · · ,K. (20)

The key of the MM algorithms for the considered problem
is to obtain a surrogate function which minorize the objective
function at any point. When we find a good minorizing
function, we will maximize it rather than the original function.
Let P

(d+1)
1n ,P

(d+1)
2n , · · · ,P(d+1)

Kn denote the maximizer of g
under the constraint. From the condition (19), we obtain

f(P
(d+1)
1n ,P

(d+1)
2n , · · · ,P(d+1)

Kn )

≥ f(P
(d)
1n ,P

(d)
2n , · · · ,P

(d)
Kn). (21)

From (20) and (21), we observe that the sequence will con-
verge to a local maximum of the original function f . The
proof of the convergence depends on the condition (19) and
has been provided in the literature [34], [35]. Thus, we omit
it here.

Let R
(d)
kn and Ř

(d)
kn be defined as

R
(d)
kn= σ2

zIMk
+

K∑
l 6=k

E{HknP
(d)
ln (P

(d)
ln )HHH

kn} (22)

Ř
(d)
kn= R

(d)
kn + HknP

(d)
kn (P

(d)
kn )HHH

kn. (23)

With the previous definitions, we obtain the following theorem.

Theorem 1. Let g1 be a function defined as

g1=
K∑
k=1

wkc
(d)
kn +

K∑
k=1

wktr(A
(d)
knPkn(P

(d)
kn )H)

+
K∑
k=1

wktr(A
(d)
knP

(d)
knPH

kn)−
K∑
k=1

tr(D
(d)
knPknPH

kn)(24)
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where c(d)kn is a constant provided in (85) and

A
(d)
kn= E{HH

kn(R
(d)
kn )−1Hkn} (25)

B
(d)
kn= E{HH

kn((R
(d)
kn )−1 − (Ř

(d)
kn )−1)Hkn} (26)

C
(d)
kn= E{HH

kn((R
(d)
kn )−1 − E{(Ř(d)

kn )−1})Hkn} (27)

D
(d)
kn= wkB

(d)
kn +

K∑
l 6=k

wlC
(d)
ln . (28)

Then, it is a minorizing function of f at P
(d)
1n ,P

(d)
2n , · · · ,P

(d)
Kn.

Proof: The proof is provided in Appendix A.
Theorem 1 provides a minorizing function g1 of the objec-

tive function. Using the minorizing function g1, we update the
precoding matrices sequence by

P
(d+1)
1n ,P

(d+1)
2n , · · · ,P(d+1)

Kn

= arg max
P1n,··· ,PKn

g1(P1n,P2n, · · · ,PKn)

s.t.
K∑
k=1

tr(PknPH
kn) ≤ P. (29)

The limit point of the sequence provided by (29) is a stationary
point of (18). The optimization problem in (29) is a concave
quadratic optimization problem. Its optimal solution can be
found by using the Lagrange multiplier methods. We define
the Lagrangian as

L(µ,P1n,P2n, · · · ,PKn)

= −g1 + µ(

K∑
k=1

tr(PknPH
kn)− P ) (30)

where µ is the Lagrange multiplier. From the first order
optimal conditions of (30), we obtain

P
(d+1)
kn = (D

(d)
kn + µ?IMt)

−1wkA
(d)
knP

(d)
kn . (31)

Similar to that in [10], the function
∑K
k=1 tr(PknPH

kn) is
a monotonically decreasing function of µ. Thus, if µ? = 0

and
∑K
k=1 tr(P

(d+1)
kn (P

(d+1)
kn )H) ≤ P , we have obtained the

optimal solution P
(d+1)
kn = (D

(d)
kn )−1wkA

(d)
knP

(d)
kn . Otherwise,

we can obtain µ? by using a bisection method.
When the CSI is perfect known at the BS, the precoder

obtained in (31) reduces to the iterative WMMSE precoder.
Observing (31), we find the precoder P

(d)
kn is first enhanced by

wkA
(d)
kn and then filtered by (D

(d)
kn +µ?IMt

)−1. From (25), we
find A

(d)
kn can be seen as the expected weighted outer products

of the channel column vectors of the k-th user, and D
(d)
kn is

dominated by the expected weighted outer products of the
channel column vectors of the interference users. Thus, A

(d)
kn

includes the information about the spatial directions that can be
used to transmit the signal for the k-th user, whereas D

(d)
kn +

µ?IMt
includes the information about the spatial directions

that will cause interference. Furthermore, when Ĥkn = 0,
A

(d)
kn reduces to the weighted channel covariance matrix of

the k-th user, and D
(d)
kn is dominated by the expected weighted

channel covariance matrices of the interference users. Using
(31), we can obtain the precoders that guarantee the gains of
the signal and keep the interference small at the same time.

To calculate the optimal solution in (31), we need to
calculate A

(d)
kn , B

(d)
kn and C

(d)
kn using (25), (26) and (27). Let

H̃kn denote Uk(Ξkn �Wkn)VH
Mt

. We define

ηkn(C̃)= EH̃kn
{H̃knC̃H̃H

kn} (32)

η̃kn(C)= EH̃kn
{H̃H

knCH̃kn}. (33)

Then, we obtain

E{HknC̃HH
kn}= ĤknC̃ĤH

kn + ηkn(C̃) (34)
E{HH

knCHkn}= ĤH
knCĤkn + η̃kn(C). (35)

From (22) and (34), we obtain

R
(d)
kn= σ2

zIMk
+

K∑
l 6=k

ĤknP
(d)
ln (P

(d)
ln )HĤH

kn

+
K∑
l 6=k

ηkn(P
(d)
ln (P

(d)
ln )H) (36)

From (25) and (34), we obtain A
(d)
kn as

A
(d)
kn = ĤH

kn(R
(d)
kn )−1Ĥkn + η̃kn((R

(d)
kn )−1). (37)

Equation (26) shows the first part of B
(d)
kn can be obtained

similarly as A
(d)
kn . However, the second part of B

(d)
kn is very

complicated and it is rather difficult to obtain a closed-
form expression. Similarly, the computation of C

(d)
kn also has

no closed-form expression. In the next subsection, we will
provide the approximations of B

(d)
kn and C

(d)
kn by using the

deterministic equivalent method.

B. Linear Precoder Design based on Deterministic Equiva-
lents

In this subsection, we provide a linear precoder design by
using the deterministic equivalent method. Observing (26) and
(27), we find that B

(d)
kn and C

(d)
kn are closely related to the

derivatives of Rkn with respect to PknPH
kn and PlnPH

ln, l 6=
k. Thus, to derive the deterministic equivalents of B

(d)
kn and

C
(d)
kn , we begin from the deterministic equivalent of Rkn. The

channel model provided in (13) is a jointly correlated channel
model with a nonzero mean. For such model, the deterministic
equivalent of Rkn has been provided in [31] and [36]. Using
the results from [31], we obtain the deterministic equivalent
of Rkn as

Rkn= log det(IMt
+ ΓknPknPH

kn) + log det(Φ̃kn)

− tr(ηkn(PknGknPH
kn)R

−1/2
kn G̃knR

−1/2
kn ) (38)

or

Rkn= log det(IMk
+ Γ̃knR−1kn ) + log det(Φkn)

− tr(PknGknPH
knη̃kn(R

−1/2
kn G̃knR

−1/2
kn )) (39)

where Γkn and Γ̃kn are given by

Γkn= η̃kn(R
−1/2
kn G̃knR

−1/2
kn )

+ ĤH
knR

−1/2
kn Φ̃

−1
knR

−1/2
kn Ĥkn (40)

Γ̃kn= ηkn(PknGknPH
kn) + ĤknPknΦ−1knPH

knĤH
kn (41)
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and Φkn, Φ̃kn, Gkn and G̃kn are obtained by the iterative
equations

Φkn= Idk + PH
knη̃kn(R

−1/2
kn G̃knR

−1/2
kn )Pkn (42)

Φ̃kn= IMk
+ R

−1/2
kn ηkn(PknGknPH

kn)R
−1/2
kn (43)

Gkn= (Idk + PH
knΓknPkn)−1 (44)

G̃kn= (IMk
+ R

−1/2
kn Γ̃knR

−1/2
kn )−1. (45)

From the two deterministic equivalents, we can obtain the
derivatives of Rkn with respect to PknPH

kn and PlnPH
ln,

l 6= k, respectively. With the obtained derivatives, we then
obtain the deterministic equivalents of B

(d)
kn and C

(d)
kn in the

following theorem.
Theorem 2. The deterministic equivalents of B

(d)
kn and C

(d)
kn

are

B
(d)

kn= ĤH
kn(R

(d)
kn )−1Ĥkn + η̃kn((R

(d)
kn )−1)

− (IMt
+ ΓknP

(d)
kn (P

(d)
kn )H)−1Γkn (46)

C
(d)

kn= ĤH
kn((R

(d)
kn )−1 − (R

(d)
kn + Γ̃kn)−1)Ĥkn

+ η̃kn((R
(d)
kn )−1 − (R

(d)
kn + Γ̃kn)−1). (47)

Proof: The proof is provided in Appendix B .
With the deterministic equivalents of B

(d)
kn and C

(d)
kn pro-

vided in Theorem 2, the update step in (31) using the mi-
norizing function g1 becomes

P
(d+1)
kn = (D

(d)

kn + µ?IMt)
−1wkA

(d)
knP

(d)
kn (48)

D
(d)

kn = wkB
(d)

kn +
K∑
l 6=k

wlC
(d)

ln . (49)

From the computation of A
(d)
kn in (37), the computation of

B
(d)

kn and C
(d)

kn in Theorem 2 and the precoder in (48), it can be
seen that the proposed method is directly derived from the a
posteriori channel mean and channel covariance information.
A relevant research, the stochastic weighted MMSE approach,
can be find in [37]. It was extended from the iterative WMMSE
method to maximize the ergodic sum rate for a MIMO
interference channel. It is an sample average approximation
(SAA) method [38], [39], which use a sample average problem
to approximate the original optimization problem.

We now present an algorithm for the design of the robust
linear precoder using the minorizing function g1 with Ĥkn,
Ξkn, Uk and σ2

z as inputs.

Algorithm 1: Linear precoder design using the minorizing
function g1

Step 1: Set d = 0. Randomly generate the precoders
P

(d)
1n ,P

(d)
2n , · · · ,P

(d)
Kn and normalize them to satisfy

the power constraint.
Step 2: Calculate R

(d)
kn according to (36).

Step 3: Calculate Γkn and Γ̃kn according to (40) and (41).
Step 4: Compute A

(d)
kn , B

(d)

kn , C
(d)

kn and D
(d)

kn according to
(37), (46), (47) and (49).

Step 5: Update P
(d+1)
kn by (48). Set d = d+ 1.

Repeat Step 2 through Step 5 until convergence or until a
pre-set target is reached.

For very large Mt, the computational complexity of Al-
gorithm 1 is dominated by the number of Mt ×Mt matrix
inversions. Observing Algorithm 1, we find there are an
Mt×Mt inversion (IMt

+ ΓknP
(d)
kn (P

(d)
kn )H)−1 in each com-

putation of B
(d)

kn and an Mt×Mt inversion (D
(d)

kn +µ?IMt)
−1

in each computation of P
(d+1)
kn . Thus, there are total 2K

Mt×Mt matrix inversions per iteration and the computational
complexity of Algorithm 1 is of order O(KM3

t ) per iteration.

C. Low-Complexity Linear Precoder Designs

In this subsection, we present two low-complexity algo-
rithms for linear precoder designs. The first algorithm is based
on an alternative minorizing function modified from g1. The
second algorithm is designed for the case when Ĥkn = 0.

We begin with the first low-complexity algorithm. As shown
in the previous subsection, the computational complexity of
Algorithm 1 per iteration is dominated by 2K large dimen-
sional matrix inversions. The first K large dimensional matrix
inversions in Algorithm 1 can be avoid by rewriting them as

(IMt + ΓknP
(d)
kn (P

(d)
kn )H)−1Γkn = Γkn

− ΓknP
(d)
kn (Idk + (P

(d)
kn )HΓknP

(d)
kn )−1(P

(d)
kn )HΓkn (50)

where the equality is due to the matrix inversion lemma. The
second K large Mt×Mt matrix inversions (D

(d)

kn +µ?IMt)
−1

can be reduced to one matrix inversion. For this purpose, we
provide the following theorem which presents an alternative
minorizing function modified from the minorizing function g1.

Theorem 3. Let g2 be a function defined as

g2= c(d)n +
K∑
k=1

tr((wkA
(d)
kn + F

(d)
kn )Pkn(P

(d)
kn )H)

+
K∑
k=1

tr((wkA
(d)
kn + F

(d)
kn )P

(d)
knPH

kn)

−
K∑
k=1

tr((D
(d)
kn + F

(d)
kn )PknPH

kn) (51)

where F
(d)
kn is any positive semidefinite matrix and c

(d)
n is a

constant provided in (96). Then, it is also a minorizing function
of f at P

(d)
1n ,P

(d)
2n , · · · ,P

(d)
Kn.

Proof: The proof is provided in Appendix C.
The minorizing function g2 can be used to reduce the

complexity of the solutions of the surrogate optimization
problem. Let F

(d)
kn be defined as

F
(d)
kn= wkC

(d)
kn − wkB

(d)
kn (52)

which is obviously a positive definite matrix, then we have

D
(d)
kn + F

(d)
kn =

K∑
k=1

wkC
(d)
kn (53)
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which is the same for all k. For brevity, we define D
(d)
n =∑K

k=1 wkC
(d)
kn . From (46) and (47), we obtain the determin-

istic equivalents of D
(d)
n and F

(d)
kn as

D
(d)

n =
K∑
k=1

wkC
(d)

kn (54)

F
(d)

kn = wkC
(d)

kn − wkB
(d)

kn (55)

where the computation of B
(d)

kn becomes

B
(d)

kn= ĤH
kn(R

(d)
kn )−1Ĥkn + η̃kn((R

(d)
kn )−1)− Γkn

+ΓknP
(d)
kn (Idk +(P

(d)
kn )HΓknP

(d)
kn )−1(P

(d)
kn )HΓkn.(56)

The process of using the minorizing function g2 to obtain a
stationary point is similar to that of using g1. For brevity, we
omit the details and give the solution directly as

P
(d+1)
kn = (D

(d)

n + µ?IMt
)−1(wkA

(d)
kn + F

(d)
kn )P

(d)
kn . (57)

The above equation is still similar to that of (31). Thus, it also
can achieve a good performance.

We now present an algorithm for the design of the robust
linear precoder using the minorizing function g2 with Ĥkn,
Ξkn, Uk and σ2

z as inputs.

Algorithm 2: Linear precoder design using the minorizing
function g2

Step 1: Set d = 0. Randomly generate the precoders
P

(d)
1n ,P

(d)
2n , · · · ,P

(d)
Kn and normalize them to satisfy

the power constraint.
Step 2: Calculate R

(d)
kn according to (36).

Step 3: Calculate Γkn and Γ̃kn according to (40) and (41).
Step 4: Compute A

(d)
kn , B

(d)

kn , D
(d)

n and F
(d)

kn according to
(37), (56), (54) and (55).

Step 5: Update P
(d+1)
kn by (57). Set d = d+ 1.

Repeat Step 2 through Step 5 until convergence or until a
pre-set target is reached.

For Algorithm 2, there only need one Mt × Mt matrix
inversion per iteration and its computational complexity is
of order O( 1

2M
3
t ) per iteration. Thus, the complexity of

Algorithm 2 is reduced compared with that of Algorithm 1 for
very large Mt. To further reduce the computational complexity,
the truncated conjugate gradient (CG) method can be used to
solve (57).

In the following, we introduce another low-complexity
algorithm for a special case. When αn−1k is small, the elements
in the a posteriori channel mean Ĥkn are also small. In such
case, knowing Ĥkn can not bring much performance gain. To
reduce complexity, we can assume αn−1k = 0 and only use
the a priori channel information in (2), which is equivalent to
Ĥkn = 0 and Ξkn = Mk. Then, we obtain

A
(d)
kn= η̃kn((R

(d)
kn )−1) (58)

B
(d)

kn= η̃kn((R
(d)
kn )−1)

− (IMt + ΓknP
(d)
kn (P

(d)
kn )H)−1Γkn (59)

C
(d)

kn= η̃kn((R
(d)
kn )−1)− Γkn (60)

where the last equation is obtained by using the formula Γkn =

η̃kn((R
(d)
kn + Γ̃kn)−1). Furthermore, the computations of Γkn

and Γ̃kn become

Γkn= η̃kn(R
−1/2
kn G̃knR

−1/2
kn ) (61)

Γ̃kn= ηkn(PknGknPH
kn) (62)

and Φ̃kn,Φkn,Gkn and G̃kn are now obtained by the iterative
equations from (42) to (45) by setting Ĥkn = 0. Let Λkn(C̃)
and Λ̃kn(C) be two diagonal matrix valued functions defined
as

[Λkn(C̃)]ii =

Mt∑
j=1

[Ωk]ij [V
H
Mt

C̃VMt
]jj (63)

[
Λ̃kn(C)

]
ii

=

Mk∑
j=1

[Ωk]ji[U
H
k CUk]jj . (64)

Then, we obtain

ηkn(C̃)= UkΛkn(C̃)UH
k (65)

η̃kn(C)= VMtΛ̃kn(C)VH
Mt
. (66)

In such case, we observe from Algorithms 1 and 2 that once
the left singular vector matrix of P

(d)
kn is VMt right multiplying

a permutation matrix, it will remain the same forever. Thus, we
obtain that VMt

right multiplying a permutation matrix must
be the left singular vector matrix for Pkn at certain stationary
points. In the following, we will show that this conclusion
actually holds for all stationary points.

Let f(P1n,P2n, · · · ,PKn) denote
∑K
k=1 wkRkn the de-

terministic equivalent of f . According to (61) and (66), Γkn
can be written as

Γkn = VMtΣ
2
knVH

Mt
(67)

where Σ2
kn is a diagonal matrix whose value depends on

P1n,P2n, · · · ,PKn. Then, we obtain the following theorem.

Theorem 4. Assume Ĥkn = 0. Then, the left singular vector
matrix of the linear precoders at the stationary points of the
optimization problem

max
P1n,··· ,PKn

f(P1n,P2n, · · · ,PKn)

s.t.
K∑
k=1

tr(PknPH
kn) ≤ P (68)

can be written as

UPkn
= VMt

Πkn (69)

where Πkn is a permutation matrix.
Proof: The proof is provided in Appendix D.

Theorem 4 proves the optimality of the beam domain
transmission when Ĥkn = 0 and the objective function of
the optimization problem (18) is replaced by its determinis-
tic equivalent. Although the optimality of the beam domain
transmission for single user MIMO has been well established
in the literature [40], [41], the optimality of the beam domain
transmission for multi-user MIMO still needs further investi-
gation. In [13], the optimality of beam domain transmission



8

for massive MIMO is proved under optimization an upper
bound of the sum-rate. In this paper, we prove the optimality
of the beam domain transmission when the weighted sum-rate
is replaced by its deterministic equivalent.

Using Theorem 4, we obtain that the optimal precoders can
be written as

Pkn = VMt
ΠknSknVH

kn (70)

where Skn are Mt×dk matrices with nonzero elements on the
main diagonal and zeros elsewhere, and VH

kn are any dk × dk
unitary matrices. Since VH

kn has no impact on the expected
weighted sum-rate, it can be set to a fixed unitary matrix. For
brevity, we set VH

kn = Idk . Then, the optimal precoders can
be rewritten as

Pkn = VMt
ΠknSkn. (71)

To achieve an algorithm with a complexity lower than Algo-
rithm 2, we also set each Πkn to a fixed permutation matrix.
Let ak be an Mt × 1 row vector defined as

[ak]j =

Mk∑
i=1

[Ωk]ij . (72)

The permutation matrix Πkn is set to make the elements
in akΠkn are of descending order. Then, we only need to
optimize Skn and the precoder design reduces to the power
allocation optimization in the beam domain. Using the optimal
structures of the precoders with fixed permutation matrices
and the condition Ĥkn = 0, we obtain the following power
allocation algorithm with lower complexity. The inputs needed
are Ωk, Uk and σ2

z .
Algorithm 3: Linear precoder design when Ĥkn = 0

Step 1: Set d = 0. Initialize all the S
(d)
kn with ones along the

main diagonal and zeros elsewhere, and normalize
them to satisfy the power constraint.

Step 2: Calculate R
(d)
kn according to

R
(d)
kn= σ2

zIMt

+
K∑
l 6=k

ηkn(VMt
ΠlnS

(d)
ln (S

(d)
ln )HΠlnVH

Mt
).

Step 3: Calculate Γkn and Γ̃kn according to (61) and (62).
Step 4: Compute Λ

A
(d)
kn

, Λ
C

(d)
kn

and Λ
F

(d)
kn

according to

Λ
A

(d)
kn

= Λ̃kn((R
(d)
kn )−1)

Λ
C

(d)
kn

= Λ̃kn((R
(d)
kn )−1)−Σ2

kn

Λ
F

(d)
kn

= Σ2
kn

− (IMt
+ Σ2

knΠknSknSHknΠH
kn)−1Σ2

kn.

Step 5: Update S
(d+1)
kn by

S
(d+1)
kn = (Λ

D
(d)
n

+ µ?IMt
)−1

(wkΛA
(d)
kn

+ Λ
F

(d)
kn

)S
(d)
kn

where Λ
D

(d)
n

=
∑K
k=1 wkΛC

(d)
kn

. Set d = d+ 1.

Repeat Step 2 through Step 5 until convergence or until
a pre-set target is reached. Then the optimal precoders are
obtained as P?

kn = VMtΠknS?kn.

In Algorithm 3, we have used the commutativity of the
permutation matrices with the diagonal matrices to simplify
the formulas. Since Λ

D
(d)
n

is a diagonal matrix, the Mt ×Mt

matrix inversion (Λ
D

(d)
n

+ µ?IMt)
−1 in Algorithm 3 can be

implemented element-wisely. Thus, the computational com-
plexity are further reduced when Ĥkn = 0. In Algorithm 3,
left multiplying VMt

can be realized as several FFT opera-
tions. From (63) and (65), we obtain that the FFT operations
VMt

ΠlnS
(d)
ln in ηkn(VMt

ΠlnS
(d)
ln (S

(d)
ln )HΠlnVH

Mt
) do not

need to be performed. The only left multiplying VMt
need

to be performed is that in P?
kn = VMtΠknS?kn, and its

complexity is of order O( 1
2KMkMt log(Mt)). For simplicity,

we have assumed Mt = 2n, where n is an integer. The
computational complexity of the rest operations is of order
O(KMkMt) per iteration. When KMk is not small, the
overall complexity of Algorithm 3 is not larger than that of
RZF precoder which is of order O((KMk)2Mt+

1
2 (KMk)3).

IV. SIMULATION RESULTS

In this section, we provide simulation results to show the
performance of the proposed algorithms. We use the 3GPP
stochastic channel model (SCM) [42] to generate Uk and
the channel power matrices Ωk as follows. Denote by S the
number of samples, and by Hk(s) the s-th sample of Hk. The
sample average of Hk is zero. From the sample covariance
matrix Rr,k = 1

S

∑S
s=1 Hk(s)(Hk(s))H and its eigenvalue

decomposition Rr,k = UkΣr,kU
H
k the eigen-matrix Uk is

obtained. Then, the coupling matrices Ωk is computed as [26]

Ωk =
1

S

S∑
s=1

(
UH
k Hk(s)VMt

)
�
(
UT
kHk(s)∗V∗Mt

)
. (73)

The scenario used is “urban marco”. The antenna arrays used
at the BS and the UEs are both ULAs with 0.5λ spacing. The
shadow fading and path loss are not considered. The users in
the cell are random uniformly distributed. In all simulations,
we set P = 1, wk = 1, dk = Mk and Nb = 7. The Mk

for all the users are set to be the same. For simplicity, we
set σ2

BS = σ2
z . The signal-to-noise ratio (SNR) is given by

SNR= 1
σ2
z

.
We first investigate the performance of the three proposed

algorithms. We consider a massive MIMO downlink system
with Mt = 64,Mk = 4 and K = 10. The values of
α1 − α5 are set as 0.999 and the values of α6 − α10 are
set as 0.9. It indicates that the channels of the first 5 users
are quasi-static, and that the other 5 users move slowly. Let
Ns denote the number of time slots used in the simulations.
Fig. 2 shows the simulation results of the average sum-rate
performance of the three algorithms for this massive MIMO
downlink over Ns = 100 time slots. The number of iterations
is set to 30. From Fig. 2, we see that the average sum-rates
of the three algorithms increase almost linearly as the SNR
increases. Furthermore, we see that the differences between
the performance of Algorithms 1 and 2 are negligible. The
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Fig. 2. Average sum-rate performance of the three proposed algorithms for
a massive MIMO downlink with Mt = 64,Mk = 4, K = 10, α1 − α5 =
0.999 and α6 − α10 = 0.9.
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Algorithm 1, Simulation Results
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Algorithm 3, Simulation Results

Algorithm 3, Deterministic Equivalents

Fig. 3. Average sum-rate performance of the three proposed algorithms for
a massive MIMO downlink with Mt = 64,Mk = 4, K = 10 and the αs
presented in Table I.

performance gaps between Algorithm 3 and that of Algorithms
1 and 2 increase as the SNR increases. At SNR=20dB, the
performance loss of Algorithm 3 is about 25 percent. This is
because Algorithm 3 is designed for the case when the channel
means of all users equal zeros, and thus does not exploit the
full benefits of the available statistical CSI at the BS. We also
present in Fig. 2 the deterministic equivalents of the average
sum-rate to show the accuracy of the deterministic equivalents.
The deterministic equivalent results of all three algorithms are
very accurate.

To investigate the performance of the three proposed algo-
rithms when high speed users exist. We keep Mt = 64,Mk =

TABLE I
THE VALUES OF αkS IN SCENARIO 2.

α1, α2 α3, α4 α5, α6 α7, α8 α9, α10

0.999 0.9 0.5 0.1 0
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Fig. 4. Average sum-rate performance of Algorithm 1 for a massive MIMO
downlink with Mt = 64,Mk = 4, K = 10 for variant αs.

4, K = 10 and Ns = 100, but change the values of αks to
those presented in Table I. Fig. 3 show the simulation results
of the average sum-rate performance of the three algorithms
for this scenario. From Fig. 3, we see that the average
sum-rates of the three algorithms are still increase almost
linearly as the SNR increases, and that the differences between
the performance of Algorithms 1 and 2 are also negligible.
Furthermore, the performance gaps between Algorithm 3 and
that of Algorithms 1 and 2 are become smaller. At SNR=20dB,
the performance loss of Algorithm 3 is around 15 percent.
This is because the difference between the statistical CSI that
Algorithm 3 used and the available statistical CSI at the BS
become smaller at this scenario. The deterministic equivalents
of the average sum-rates are also presented in Fig. 3 to show
their accuracy. In this scenario, the deterministic equivalent
results of all three Algorithms are also very accurate.

By observing Fig. 2 and Fig. 3, we realize that αks affect
the sum-rate performance. To show the influence of αks on
the system performance, we set all the αks to be the same α
and simulate the average sum-rate performance of Algorithm
1. The αs used in the simulation are 0.999, 0.99, 0.95, 0.9, 0.8
and 0. The simulated results for a massive MIMO downlink
with Mt = 64,Mk = 4, K = 10 are plotted in Fig. 4.
From the simulation results, we observe that the sum-rate
performance decreases as α becomes smaller. This indicates
that the system performance will degrade when the users
move faster. Compared with that of α = 0.999, the sum-rate
performance loss of α = 0 is about 40 percent at SNR= 20dB.
Furthermore, the performance gap is relatively small between
the sum-rate performance of α = 0.8 and α = 0. Thus,
knowing the channel mean information can not bring much
performance gain than only knowing the channel covariance
information when α is smaller than 0.8. Since the value of α is
important to the performance, we also show how sensitive the
proposed precoder scheme is to the errors in the α in Fig. 5.
The true values of α are 0.95, 0.9 and 0.8. From Fig. 5, we
observe that the performance obtained when overestimate α is
generally worse than that obtained by underestimate α.
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Fig. 5. Average sum-rate performance of Algorithm 1 for a massive MIMO
downlink with Mt = 64,Mk = 4, K = 10 at SNR= 20dB for mismatched
αs.
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Fig. 6. Convergence trajectories of the three proposed algorithms for a
massive MIMO downlink with Mt = 64,Mk = 4, K = 10 and the αs
presented in Table I.

We then study the convergence behavior of the three pro-
posed algorithms. The considered massive MIMO downlink
is still that with Mt = 64,Mk = 4 and K = 10, and the
values of αks are those presented in Table I. As shown in
Step 1 in each algorithm, we use random initializations for
Algorithms 1 and 2, whereas the initializations for Algorithm
3 are fixed. Fig. 6 shows the convergence behaviors of the
three proposed algorithms at the second block of the first
time slot for the massive MIMO downlink at two different
SNRs. The expected sum-rate results presented in Fig. 6 are
the deterministic equivalent results. From Fig. 6, we see that
all three algorithms quickly converge at SNR= 0 dB and
SNR= 10dB. We also observe that all three algorithms take
more iterations to converge as the SNR increases. At SNR= 0
dB, only 5 iterations are need to obtain a good performance,
whereas 15 iterations are needed at SNR= 10 dB. Algorithm
3 only need to be performed once when the a priori statistical
CSI changes. Thus, the number of the iterations needed to
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Algorithm 1, Previous Block Initial

Algorithm 2, Previous Block Initial

Algorithm 1, Random Initial

Algorithm 2, Random Initial

Fig. 7. Convergence trajectories of Algorithms 1 and 2 using different initials
at the third block of the first time slot for a massive MIMO downlink at
SNR= 10dB with Mt = 64,Mk = 4, K = 10 and the αs presented in
Table I.

TABLE II
THE VALUES OF αkS IN SCENARIO 3.

α1, α2 α3, α4 α5 α6 α7, α8 α9, α10

Case 1 0.999 0.999 0.999 0.999 0.999 0.999
Case 2 0.999 0.999 0.999 0.9 0.9 0.9
Case 3 0.999 0.9 0.5 0.5 0.1 0

make Algorithm 3 converge is not a problem. On the contrary,
Algorithms 1 and 2 are performed once for each block. Thus,
the number of the iterations needed to make Algorithms 1
and 2 converge is an issue. To reduce the number of the
iterations used in Algorithms 1 and 2, we can use the resulting
precoders from the previous block as initials instead of random
initials at each block (not the first data block). Fig. 7 plots the
convergence behaviors of Algorithms 1 and 2 at the third block
of the first time slot using two different initials for the same
massive MIMO downlink as that of Fig. 6 at SNR= 10dB.
From Fig. 7, we see that the resulting precoders from the
previous block are very good initials, and thus only a few
iterations are needed to achieve good performance and the
computational complexity can be further reduced.

Then, we investigate the performance of Algorithm 1 for
massive MIMO downlinks with single antenna users. We
compare Algorithm 1 with the RZF, the SLNR and the iterative
WMMSE precoders. For the precoders except Algorithm 1,
we use the perfect CSI from block one for all blocks at each
slot. We consider a massive MIMO downlink with Mt = 64,
Mk = 1 and K = 20. The αks used in the simulations are the
same α with α = 0.99, 0.95 and 0.8. Fig. 8 plots the average
sum-rate performance of four algorithms over Ns = 100 time
slots. From the simulation results, we observe that Algorithm
1 can achieve much better performance than those of other
precoderes at all three cases. Furthermore, the performance
gain becomes more significant as the CSI becomes more
inaccurate. Thus, Algorithm 1 is more effective in improving
the sum-rate performance for massive MIMO with imperfect
CSI than the other precoders.
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Fig. 8. Average sum-rate performance of Algorithm 1, the RZF precoder,
the SLNR precoder and the iterative WMMSE precoder for a massive MIMO
downlink with Mt = 64,Mk = 1 and K = 20.
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Fig. 9. Average sum-rate performance of Algorithm 1 and the robust RZF
precoder for a massive MIMO downlink with Mt = 64,Mk = 1 and K =
10.

Finally, we compare the sum-rate performance of Algorithm
1 with that of the robust RZF precoder. We consider a massive
MIMO downlink with Mt = 64 transmit antennas at the
BS and K = 10 single antenna users. The αks used in the
simulations are presented in Table II. Fig. 9 plots the average
sum-rate performance of Algorithm 1 and the robust RZF for
the considered scenario over Ns = 100 time slots. As shown in
Fig. 9, Algorithm 1 can achieve much better performance than
that of the robust RZF precoder at all three cases. Furthermore,
we observe that the performance gains are small at low
SNR, but become significant as SNR increases. The reason
behind the performance gain of the proposed precoder is as
follows. While the robust RZF are designed by minimizing and
maximizing the average MSE, the proposed precoder of one
user is obtain iteratively by considering how the precoder will
affect the rate performance of other users when their precoders
are known. To put it simply, the proposed design iteratively
adjust the interference to each other to improve the sum-rate

performance directly.

V. CONCLUSION

In this paper, we investigated the design of robust linear pre-
coders for the massive MIMO downlink with imperfect CSI.
The available imperfect CSI for each UE obtained at the BS is
modeled as statistical CSI under a jointly correlated channel
model with both channel mean and channel variance informa-
tion, which includes the effects of channel estimation error,
channel aging and spatial correlation. We derived an algorithm
for the linear precoder design by using the MM algorithm.
The derived algorithm can achieve a stationary point of the
expected weighted sum-rate maximization problem. We then
used the deterministic equivalent method to compute the ap-
proximations of several key matrices used in the robust linear
precoder design. Then, we proposed an algorithm for robust
linear precoder design based on the deterministic equivalent
method. The proposed algorithm needs 2K large dimensional
matrix inversions per iteration. To reduce the computational
complexity, we then derived two low-complexity algorithms,
one for the general case, and the other for the case when all the
channel means are zeros. For the late case, we also proved the
optimality of the beam domain transmissions and the precoder
design reduced to power allocation optimization in the beam
domain. Simulation results showed that the proposed robust
linear precoder designs apply to various mobile scenarios and
achieve high spectral efficiency.

We conclude this paper by providing two possible topics
for future research of this work. The channel model of this
paper is established by assuming that the ULA antenna is
used. In practical massive MIMO systems, uniform planar
array (UPA) antennas are also widely used. Thus, an extension
of this work would be to consider the massive MIMO with
a UPA antenna. In this paper, we focused on the precoder
design for TDD massive MIMO systems. Another extension
of this work would be to consider also the impact of limited
feedback, which is essential in FDD massive MIMO systems.
Consider an example when the channel feedback is obtained
from quantization on the Grassmann manifold. From the
finite feedback of the channels, we can obtain a probability
distribution of the channels on the Grassmann manifold. Using
statistics on Riemannian manifold [43] to replace the statistics
computed from the established channel model in the proposed
methods, it might be able to obtain a precoder design which
is robust to quantization error induced by limited feedback.

APPENDIX A
PROOF OF THEOREM 1

Let the matrix Ekn be defined as Ekn = (Idk +
PH
knHH

knR−1knHknPkn)−1. Then, the ergodic rate of the k-
th user can be rewritten as Rkn = E{log det(E−1kn )}. The
function E{log det(E−1kn )} is a convex function of Ekn on
Sn++. Let E

(d)
kn be defined as

E
(d)
kn= (Idk + (P

(d)
kn )HHH

kn(R
(d)
kn )−1HknP

(d)
kn )−1. (74)
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Using the first order condition of convex functions, we obtain

E{log det(E−1kn )}≥ E{log det((E
(d)
kn )−1)}

− E{tr((E(d)
kn )−1(Ekn −E

(d)
kn ))}

= c′kn − E{tr((E(d)
kn )−1Ekn)} (75)

where c′kn = E{log det((E
(d)
kn )−1)} + tr(Idk) is a constant.

The step in equation (75) is inspired by [44]. The item
−E{tr((E(d)

kn )−1Ekn)} is still not a simple function of the
precoding matrices. Inspired by [10], let GH

kn denote the linear
receiver of the k-th user. The mean-square error (MSE) matrix
of the k-th estimate x̂kn = GH

knykn is given by

Θkn= E{(x̂kn − xkn)(x̂kn − xkn)H}
= (Idk −GH

knHknPkn)(Idk −GH
knHknPkn)H

+GH
kn

K∑
l 6=k

E{HknPlnPH
lnHH

kn}Gkn + σ2
zG

H
knGkn.(76)

From (76), we observe that the function tr((E
(d)
kn )−1Θkn)

is a convex function of Gkn and its global minimum is
achieved when (G?

kn)H is the linear minimum mean-square
error (MMSE) receiver, i.e., (G?

kn)H = PH
knHH

kn(Rkn +
HknPknPH

knHH
kn)−1. Substituting G?

kn into (76), we obtain
Θkn|Θkn=G?

kn
= Ekn. Thus, we have

E{tr((E(d)
kn )−1Ekn)} ≤ E{tr((E(d)

kn )−1Θkn)} (77)

for any Gkn. From (75) and (77), we obtain

E{log det(E−1kn )}≥ c′kn − E{tr((E(d)
kn )−1Θkn)}. (78)

To make the equality in (78) hold at P
(d)
1n , · · · ,P

(d)
Kn, we set

Gkn = G
(d)
kn , which is defined by

(G
(d)
kn )H

= (P
(d)
kn )HHH

kn(R
(d)
kn + HknP

(d)
kn (P

(d)
kn )HHH

kn)−1.(79)

When Gkn = G
(d)
kn , we obtain from (76) that

−E{tr((E(d)
kn )−1Θkn)}

= −c′′kn + tr((A
(d)
knP

(d)
kn )HPkn) + tr(A

(d)
knP

(d)
knPH

kn)

− tr(B
(d)
knPknPH

kn + C
(d)
kn

K∑
l 6=k

PlnPH
ln). (80)

where c′′kn, A
(d)
knP

(d)
kn , B

(d)
kn and C

(d)
kn are defined as

c′′kn = E{tr((E(d)
kn )−1)}

− σ2
zE{tr((E

(d)
kn )−1(G

(d)
kn )HG

(d)
kn )} (81)

(A
(d)
knP

(d)
kn )H= E{(E(d)

kn )−1(G
(d)
kn )HHkn} (82)

B
(d)
kn = E{HH

knG
(d)
kn (E

(d)
kn )−1(G

(d)
kn )HHkn} (83)

C
(d)
kn = E{HH

knE{G
(d)
kn (E

(d)
kn )−1(G

(d)
kn )H}Hkn}.(84)

Furthermore, we define

c
(d)
kn= c′kn − c′′kn. (85)

From (78), (80) and (85) to (84), we obtain

E{log det(E−1kn )}
≥ c(d)kn + tr(A

(d)
knPkn(P

(d)
kn )H) + tr(A

(d)
knP

(d)
knPH

kn)

− tr(B
(d)
knPknPH

kn + C
(d)
kn

K∑
l 6=k

PlnPH
ln). (86)

where the equality can be achieve at the fixed precoding
matrices P

(d)
1n ,P

(d)
2n , · · · ,P

(d)
Kn.

Substituting (74) and (79) into (82), we obtain

A
(d)
kn= E{(HH

kn(Ř
(d)
kn )−1Hkn}

+ E{HH
kn(R

(d)
kn )−1(Ř

(d)
kn −R

(d)
kn )(Ř

(d)
kn )−1Hkn}.(87)

From (87), we then obtain the expression of A
(d)
kn in (25).

Similarly, we obtain the expression of B
(d)
kn in (26) and the

expression of C
(d)
kn in (27). Let D

(d)
kn be defined as D

(d)
kn =

wkB
(d)
kn+

∑K
l 6=k wlC

(d)
ln . Recall that f(P1n,P2n, · · · ,PKn) =∑K

k=1 wkE{log det((Ekn)−1)}. From (86) we obtain the
function g1 defined in (24) is a minorizing function of the
objective function.

APPENDIX B
PROOF OF THEOREM 2

Using methods similar to that in the proof of Theorem 4 in
[31], we obtain

∂Rkn
∂(PknPH

kn)

∣∣∣∣
Pkn=P

(d)
kn

= (IMt
+ ΓknP

(d)
kn (P

(d)
kn )H)−1Γkn. (88)

From (17), we obtain the gradient of Rkn with respect to
PknPH

kn as

∂Rkn
∂(PknPH

kn)

∣∣∣∣
Pkn=P

(d)
kn

= E{HH
kn(Ř

(d)
kn )−1Hkn}. (89)

Since Rkn is the deterministic equivalent of Rkn, we obtain
from (88) and (89) that the matrix B

(d)

kn provided in (46) is
the deterministic equivalent of B

(d)
kn .

Similarly, we can obtain the gradient of Rkn with respect
to Rkn from (39) as

∂Rkn
∂Rkn

= −R−1kn (IMk
+ Γ̃knR−1kn )−1Γ̃knR−1kn . (90)

The gradients of Rkn with respect to PlnPH
ln, l 6= k, are then

obtained from the above equation. Using a method similar to
that in Lemma 4 of [45], we then obtain

∂Rkn
∂(PlnPH

ln)

∣∣∣∣
Pln=P

(d)
ln

= E{HH
kn((R

(d)
kn + Γ̃kn)−1 − (R

(d)
kn )−1)Hkn}

= −C
(d)

kn . (91)
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From (17) and the chain rule, we then obtain

∂Rkn
∂(PlnPH

ln)

∣∣∣∣
Pln=P

(d)
ln

= E{HH
kn(E{(Ř(d)

kn )−1} − (R
(d)
kn )−1)Hkn}

= −C
(d)
kn . (92)

From (91) and (92), we obtain C
(d)

kn is the deterministic
equivalent of C

(d)
kn . Thus, (47) holds.

APPENDIX C
PROOF OF THEOREM 3

We first rewrite the minorizing function g1 provided by
Theorem 1 as

g1=
K∑
k=1

wkc
(d)
kn +

K∑
k=1

wktr(A
(d)
knPkn(P

(d)
kn )H)

+
K∑
k=1

wktr(A
(d)
knP

(d)
knPH

kn)

−
K∑
k=1

tr((D
(d)
kn + F

(d)
kn )PknPH

kn)

+
K∑
k=1

tr(F
(d)
knPknPH

kn). (93)

The fourth item on the RHS of the equality of (93) is a convex
quadratic function of the precoding matrices. Using the first
order condition of convex functions, we obtain

K∑
k=1

tr(F
(d)
knPknPH

kn) ≥
K∑
k=1

tr(F
(d)
knP

(d)
kn (P

(d)
kn )H)

+
K∑
k=1

tr(F
(d)
kn (Pkn −P

(d)
kn )(P

(d)
kn )H)

+
K∑
k=1

tr(F
(d)
knP

(d)
kn (Pkn −P

(d)
kn )H). (94)

From (93) and (94), we then obtain

g1≥ c(d)n +
K∑
k=1

tr((wkA
(d)
kn + F

(d)
kn )Pkn(P

(d)
kn )H)

+
K∑
k=1

tr((wkA
(d)
kn + F

(d)
kn )P

(d)
knPH

kn)

−
K∑
k=1

tr((D
(d)
kn + F

(d)
kn )PknPH

kn). (95)

where c(d)n is defined as

c(d)n =
K∑
k=1

wkc
(d)
kn −

K∑
k=1

tr(F
(d)
knP

(d)
kn (P

(d)
kn )H). (96)

Let g2 be defined as in (93). From (95), we have

g2(P1n,P2n, · · · ,PKn) ≤ g1(P1n,P2n, · · · ,PKn).(97)

Furthermore, it is easy to verify that the equality is achieved at
P

(d)
1n ,P

(d)
2n , · · · ,P

(d)
Kn. Thus, g2 is also a minorizing function

of the objective function.

APPENDIX D
PROOF OF THEOREM 4

Since f denotes
∑K
k=1 wkRkn, we obtain

∂f

∂P∗kn
= (IMt + ΓknPknPH

kn)−1ΓknPkn

−
K∑
l 6=k

η̃ln(R−1ln − (Rln + Γ̃ln)−1)Pkn. (98)

We define the Lagrangian as

L(µ,P1n,P2n, · · · ,PKn)

= −f + µ(
K∑
k=1

tr(PknPH
kn)− P ). (99)

From the first order optimal conditions of (99), we obtain

−wk(IMt + ΓknPknPH
kn)−1ΓknPkn

+
K∑
l 6=k

wlη̃ln(R−1ln − (Rln + Γ̃ln)−1)Pkn

+ µPkn = 0. (100)

From (66), we obtain
K∑
l 6=k

wlη̃ln(R−1ln − (Rln + Γ̃ln)−1) = VMtΣ̃
2

knVH
Mt

(101)

where Σ̃
2

kn is a diagonal matrix. Then, the first order condi-
tions in (100) become

wk(IMt
+ ΓknPknPH

kn)−1ΓknPkn

= VMt
Σ̃

2

knVH
Mt

Pkn + µPkn. (102)

When Ĥkn = 0, we have Γkn = VMtΣ
2
knVH

Mt
. We define

Tkn = µIMt
+ VMt

Σ̃
2

knVH
Mt

, Γ′kn = T
−1/2
kn ΓknT

−1/2
kn and

P′kn = T
1/2
kn Pkn. Then, the conditions in (102) become

wkΓ
′
knP′kn(IMt + (P′kn)HΓ′knP′kn)−1 = P′kn. (103)

Right multiplying both sides of (103) by the item (IMt +
(P′kn)HΓ′knP′kn)(P′kn)H , we obtain

wkΓ
′
knP′kn(P′kn)H

= P′kn(IMt
+ (P′kn)HΓ′knP′kn)(P′kn)H . (104)

Thus, we obtain Γ′knP′kn(P′kn)H = P′kn(P′kn)HΓ′kn, which
indicates P′kn(P′kn)H commutes with Γ′kn. From Theorem
9-33 of [46] we then obtain P′kn(P′kn)H and Γ′kn have the
same eigenvectors. From Γ′kn = T

−1/2
kn ΓknT

−1/2
kn , we have

that the eigenvectors of Γ′kn and Γkn are the same. Thus,
the left singular vector matrix of P′kn can be written as
UP′

kn
= VMtΠ

′
kn, where Π′kn is a permutation matrix. From

Pkn = T
−1/2
kn P′kn and UP′

kn
= VMt

Π′kn, we obtain (69)
holds finally.
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and C. Schneider. (2005, Jan.) MATLAB implementation of the
3GPP spatial channel model (3GPP TR 25.996). [Online]. Available:
http://www.tkk.fi/Units/Radio/scm/

[43] X. Pennec, “Intrinsic statistics on Riemannian manifolds: Basic tools for
geometric measurements,” Journal of Mathematical Imaging and Vision,
vol. 25, no. 1, pp. 127–154, 2006.

[44] M. Razaviyayn, M. Hong, and Z.-Q. Luo, “A unified convergence
analysis of block successive minimization methods for nonsmooth
optimization,” SIAM Journal on Optimization, vol. 23, no. 2, pp. 1126–
1153, 2013.

[45] C. Xiao, Y. R. Zheng, and Z. Ding, “Globally optimal linear precoders
for finite alphabet signals over complex vector Gaussian channels,” IEEE
Trans. Signal Process., vol. 59, no. 7, pp. 3301–3314, 2011.

[46] S. Perlis, Theory of matrices. Courier Corporation, 1991.



15

An-An Lu (S’11-M’17) received the B.E., M.E.
and Ph.D. degree in electronic engineering from
Southeast University, Nanjing, China, in 2006, 2012
and 2017, respectively.

Dr. Lu is a lecturer at the National Mobile Com-
munications Research Laboratory, Southeast Uni-
versity, Nanjing, China. From November 2014 to
February 2016, he visited Missouri University of
Science and Technology, Rolla, MO, USA. From
2006 to 2008, he was with the Research Department,
Hejian Technology Co., Ltd., Suzhou, China. His

research interests include information theory and wireless communications.

Xiqi Gao (S’92–AM’96–M’02–SM’07–F’15) re-
ceived the Ph.D. degree in electrical engineering
from Southeast University, Nanjing, China, in 1997.

Dr. Gao joined the Department of Radio Engi-
neering, Southeast University, in April 1992. Since
May 2001, he has been a professor of information
systems and communications. From September 1999
to August 2000, he was a visiting scholar at Mas-
sachusetts Institute of Technology, Cambridge, MA,
USA, and Boston University, Boston, MA. From
August 2007 to July 2008, he visited the Darmstadt

University of Technology, Darmstadt, Germany, as a Humboldt scholar. His
current research interests include broadband multicarrier communications,
MIMO wireless communications, channel estimation and turbo equalization,
and multirate signal processing for wireless communications. From 2007
to 2012, he served as an Editor for the IEEE Transactions on Wireless
Communications. From 2009 to 2013, he served as an Editor for the IEEE
Transactions on Signal Processing. From 2015 to 2017, he served as an Editor
for the IEEE Transactions on Communications.

Dr. Gao received the Science and Technology Awards of the State Education
Ministry of China in 1998, 2006, and 2009, the National Technological
Invention Award of China in 2011, and the 2011 IEEE Communications
Society Stephen O. Rice Prize Paper Award in the field of communication
theory.

Wen Zhong received the B.S.E. degree in 1990
from the Department of Radio Engineering, Nanjing
Institute of Technology, Nanjing, China, and the
M.S.E. and Ph.D. degrees in 1993 and 2000, respec-
tively, from the Department of Radio Engineering,
Southeast University, China.

Since 2002, she has been an Associate Professor
with the National Mobile Communication Research
Laboratory, Southeast University. Her research in-
terests are in the area of wireless communications
systems, including channel parameter estimation,

spacetime codes, and statistical signal processing

Chengshan Xiao (M’99–SM’02–F’10) received a
Bachelor of Science degree in electronic engineering
from the University of Electronic Science and Tech-
nology of China in 1987, a Master of Science degree
in electronic engineering from Tsinghua University
in 1989, and a Ph.D. in electrical engineering from
the University of Sydney in 1997.

Dr. Xiao is the Chandler Weaver Professor and
Chair of the Department of Electrical and Computer
Engineering at Lehigh University. He is a Fellow of
the IEEE and a Fellow of the Canadian Academy of

Engineering. Previously, he served as a Program Director with the Division of
Electrical, Communications and Cyber Systems at the USA National Science
Foundation. He was a senior member of scientific staff with Nortel Networks,
Ottawa, Canada, a faculty member at Tsinghua University, Beijing, China,
the University of Alberta, Edmonton, Canada, the University of Missouri-
Columbia, MO, and Missouri University of Science and Technology, Rolla,
MO. He also held visiting professor positions in Germany and Hong Kong.
His research interests include wireless communications, signal processing,
and underwater acoustic communications. He is the holder of several patents
granted in USA, Canada, China and Europe. His invented algorithms have
been implemented into Nortel’s base station radio products after successful
technical field trials and network integration.

Dr. Xiao is the Awards Committee Chair and elected Member-at-Large of
Board of Governors of IEEE Communications Society. Previously, he served
on the IEEE Technical Activity Board (TAB) Periodical Committee, he was an
elected Member-at-Large of Board of Governors, a member of Fellow Evalu-
ation Committee, Director of Conference Publications, Distinguished Lecturer
of the IEEE Communications Society, and Distinguished Lecturer of the IEEE
Vehicular Technology. He also served as an Editor, an Area Editor and the
Editor-in-Chief of the IEEE Transactions on Wireless Communications, an
Associate Editor of the IEEE Transactions on Vehicular Technology, and the
IEEE Transactions on Circuits and Systems-I. He was the Technical Program
Chair of the 2010 IEEE International Conference on Communications, Cape
Town, South Africa, a Technical Program Co-Chair of the 2017 IEEE Global
Communications Conference, Singapore. He served as the founding Chair
of the IEEE Wireless Communications Technical Committee. He received
several distinguished awards including 2014 Humboldt Research Award, 2014
IEEE Communications Society Joseph LoCicero Award, 2015 IEEE Wireless
Communications Technical Committee Recognition Award, and 2017 IEEE
Communications Society Harold Sobol Award.

Xin Meng (S’12–M’16) received his Ph.D. degree
from the National Mobile Communications Research
Laboratory, Southeast University, Nanjing, China, in
2016. From September 2014 to August 2015, he was
a visiting scholar at the Department of Electrical
and Computer Engineering, University of Delaware,
Newark, DE, USA. He is now a research engineer
at Huawei Technologies Co., Ltd., Shanghai, China.
His current research interests include communica-
tions and information theory.


