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Abstract—In this paper, the design of robust linear precoders
for the massive multi-input multi-output (MIMO) downlink with
imperfect channel state information (CSI) is investigated. The
imperfect CSI for each UE obtained at the BS is modeled as
statistical CSI under a jointly correlated channel model with both
channel mean and channel variance information, which includes
the effects of channel estimation error, channel aging and spatial
correlation. The design objective is to maximize the expected
weighted sum-rate. By combining the minorize-maximize (MM)
algorithm with the deterministic equivalent method, an algorithm
for robust linear precoder design is derived. The proposed
algorithm achieves a stationary point of the expected weighted
sum-rate maximization problem. To reduce the computational
complexity, two low-complexity algorithms are then derived. One
for the general case, and the other for the case when all the
channel means are zeros. For the later case, it is proved that
the beam domain transmission is optimal, and thus the precoder
design reduces to the power allocation optimization in the beam
domain. Simulation results show that the proposed robust linear
precoder designs apply to various mobile scenarios and achieve
high spectral efficiency.

Index Terms—Massive multi-input multi-output (MIMO),
minorize-maximize (MM) algorithm, deterministic equivalents,
robust linear precoders, imperfect CSI.

I. INTRODUCTION

Massive multiple-input multiple-output (MIMO) [1], [2] has
been one of the key technologies of fifth generation (5G)
wireless networks. It provides huge potential capacity gains by
employing a large number of antennas at a base station (BS)
and supports multi-user MIMO (MU-MIMO) transmissions on
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the same time and frequency resource. With massive antenna
arrays at the BS, it is also possible to achieve high energy
efficiency. To alleviate the multi-user interference and improve
the sum-rate performance, the precoders for all the UEs at the
BS should be properly designed. In this paper, we focus on
the precoder designs for massive MIMO downlinks.

Massive MIMO is an extension of conventional multi-user
MIMO. The precoder design for multi-user MIMO has seen
significant attention in different forms over many years [3]-
[16]. There exists two types of precoders: nonlinear precoders
and linear precoders. Although nonlinear precoders such as
DPC [5] can achieve optimal performance, they are not
suitable to massive MIMO due to the high complexity. For
practical consideration, we investigate linear precoder designs
for massive MIMO in this paper. The precoder designs are
based on the available channel state information (CSI) at the
BS. When the BS has perfect CSI of all UEs, there exists
the widely used regularized zero forcing (RZF) precoder [4],
the signal to leakage noise ratio (SLNR) precoder [6], and
the classic iterative weighted minimum mean square error
(WMMSE) method [8], [10]. Among the three precoders,
the WMMSE precoder is designed according to the sum-
rate maximization criterion. Thus, the WMMSE precoder can
achieve better performance than the RZF precoder and the
SLNR precoder.

In massive MIMO systems, there exists many practical
challenge, such as power amplifier nonlinearities [17], [18],
transceiver I/Q imbalance [19] and quantization errors [20].
In this paper, we concern the impacts of the imperfect CSI.
In practical massive MIMO systems, perfect CSI at the BS
are usually not available due to channel estimation error,
channel aging, etc. Furthermore, different users usually have
different moving speeds. Thus, we need to model the channel
uncertainty first. In the literature [9], [15], [21], [22], the
channel uncertainty are often be constructed as a complex
Gaussian random matrix with independent and identically
distributed (i.i.d.), zero mean and unit variance entries. In this
paper, we propose to use a more realistic channel model for
practical systems. To describe the channel in practical systems
more precisely, we consider the impacts of channel estimation,
use the jointly correlated channel model to represent the
spatial correlation, and the widely used Gauss-Markov process
[23]-[25] to model the time evolution of the channel. We
consider a massive MIMO downlink where the a priori CSI
for each UE available at the BS before channel estimation
is expressed as a jointly correlated channel model [26] with
only channel covariance information. After channel estimation,



we model the a posteriori CSI for each UE at the BS as
statistical CSI under a jointly correlated channel model with
both channel mean and channel covariance information. With
the established model, we are able to describe the channel
uncertainty more precisely. On this basis, we investigate the
precoder design for massive MIMO downlink transmission
robust to the imperfect CSI at the BS.

If all the users are quasi-static, the established model
reduces the case that the perfect CSI are known. When all the
users move fast, the BS only has channel covariance infor-
mation. In such case, there exists the beam division multiplex
access (BDMA) transmission [13] and the joint spatial division
and multiplexing (JSDM) approach [12] that are designed by
maximizing the sum-rate. In the BDMA transmission, the BS
serves multiple users via different beams simultaneously. In
the JSDM approach, the users are partitioned into groups with
approximately the same channel covariance eigenspace. In
conclusion, to maximize the sum-rate, the iterative WMMSE
method can be used to design linear precoders for massive
MIMO downlinks when the channel of all users are quasi-
static. On the contrary, when all users are in medium or
high mobility scenarios, the BDMA transmission or the JSDM
approach can be used. It is natural to ask whether there exist
any unified linear precoding method which is robust against
imperfect CSI and maximize the sum-rate for massive MIMO
downlinks. The goal of this paper is to answer this important
question.

When the BS has imperfect CSI, the widely used RZF
precoder can be extended to the robust RZF [27]. However,
the performance of the robust RZF, especially at the high
speed scenario, is still far from optimal. In this paper, we
combine the MM (minorize-maximize) algorithm [28], [29]
and the deterministic equivalent method [30], [31] to solve the
problem of maximizing the expected weighted sum-rate over
the proposed channel model. The MM algorithm is a widely
used method to find the stationary points of complicated
optimization problems. It substitutes a simple optimization
problem for a difficult optimization problem. Inspired by
the weighted WMMSE method, we find a convex quadratic
minorizing function of the objective function which can be
used to apply the MM algorithm. The optimal solution of the
surrogate problem needs calculating the expected values of
several random matrices with respect to the channel matrices
based on the established a posteriori channel model. However,
the expected values of the random matrices are rather difficult
to compute. To avoid this issue, we use the deterministic
equivalent method, which can be used to compute the ap-
proximations of the matrix expectations needed. Based on
the obtained approximations, we propose an algorithm for
robust linear precoder design. Furthermore, we derive two
low-complexity algorithms by reducing the number of large
dimensional matrix inversions and avoiding large dimensional
matrix inversions, respectively.

The rest of this article is organized as follows. The system
model and problem formulation are presented in Section II.
The robust linear precoder designs based on the deterministic
equivalents are shown in Section III. Simulation results are
provided in Section IV. The conclusion is drawn in Section V.

Proofs of Theorems are provided in Appendices.

Notations: Throughout this paper, uppercase and lowercase
boldface letters are used for matrices and vectors, respectively.
The superscripts (-)*, (-)7 and (-)¥ denote the conjugate,
transpose and conjugate transpose operations, respectively.
E{-} denotes the mathematical expectation operator. In some
cases, where it is not clear, subscripts will be employed
to emphasize the definition. The operators tr(-) and det(-)
represent the matrix trace and determinant, respectively. The
operator ® denotes the kronecker product. The Hadamard
product of two matrices A and B of the same dimensions is
represented by A ©® B. The NV x N identity matrix is denoted
by In. The (i, j)-th entry of the matrix A is denoted by [A];;.

II. SYSTEM MODEL AND PROBLEM FORMULATION
A. System Model

We consider a massive MIMO system with block flat fading
channels, where the channel coefficients remain constant for a
coherence interval of T' symbol periods. The system consists
of one BS and K UEs. The number of antennas at the BS
is M. The k-th UE is equipped with M} antennas, and
Zle My, = M,.. We divide the time resources into slots and
each time slot contains N, blocks. In this paper, we focus on
the case where the considered massive MIMO system operates
in time division duplexing (TDD) mode. However, the results
of this paper can be extended to the system operating in fre-
quency division duplexing (FDD) mode easily. For simplicity,
we assume that there only exists the uplink training phase
and the downlink transmission phase. At each slot, the uplink
training sequences are sent once at the first block. The second
block to the Np-th block are used for downlink transmission.
The length of the uplink pilot sequences is 7' symbols, i.e.,
the length of each block. Furthermore, the uplink training
sequences assigned to different antennas are orthogonal to each
other (M, < T). For illustration purpose, we plot the time slot
structure in Fig. 1.

We restrict our considerations to stationary channels and
use the jointly correlated channel model to describe the spatial
correlations of each channel. Specifically, the channel matrix
H,.,, from the BS to the k-th UE at the nth block of slot m
has the following structure [26], [32]

Hy, = U, (M © Wy, ) VH (D

where U and Vj are deterministic unitary matrices, My
is an My x M, deterministic matrix with nonnegative ele-
ments, and Wy, is a complex Gaussian random matrix with
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Fig. 1. Time slot structure.



independent and identically distributed (i.i.d.), zero mean and
unit variance entries. For brevity, we have omitted m in the
subscript. In this paper, we assume that uniform linear arrays
(ULAs) are employed in the BS. In such case, the covariance
matrix E{H¥ H,,,} is a Toeplitz matrix under a wide sense
stationary scattering environment. When the number of the
antennas at the BS grows large, the Toeplitz covariance matrix
can be well approximated by a circulant matrix. Thus, each V,
is closely approximated by a discrete Fourier transform (DFT)
matrix. Further, the channel model in (1) can be rewritten as

Hy,, = Up(My, © Wy, ) VL )

where V), denotes the M; x M; DFT matrix. The channel
model in (2) can be seen as an a priori model of the channels
before channel estimation. To model the time variation of the
channel from block to block, we use the widely used first
order Gauss-Markov process as in [23]-[25]. Then, the channel
matrix on the n + 1-th block can be represented as

Hyni1) = axHpn+1/1 — 22U (My©OWy(i1)) Vi, 3)

where «y, is the temporal correlation coefficient which is
related to the moving speed. An often used metric for oy, in
the literature [24] is related to Jakes’ autocorrelation model,
ie, ar = Jo(2mvyf.T/c), where Jy(-) is the zero-th order
Bessel function of the first kind, vy is the moving speed of
the k-th user, f. is the carrier frequency and c is the speed of
light.

We define the channel power matrices €2 as Q; = My ©
My, and assume the BS knows Uy and €2, through a channel
sounding process. Exploiting channel reciprocity, the channel
state information of the downlink channels can be obtained
from uplink training signals [33].

Let YPS € CM:xT denote the received matrix at the BS
on the first block of slot m. It can be written as

K
Y=Y HEXEP + 278 “
k=1

where XJF € CM*T denotes the uplink training matrix sent
by the k-th user on the first block of slot m, and ZPS ¢
CMexT is a noise random matrix whose elements are i.i.d.
complex Gaussian entries with zero mean and variance 0.

In the following, we model the a posteriori CSI for each
UE at the BS given YP% as statistical CSI under a jointly
correlated channel model with both channel mean and channel
covariance information. Vectorizing the received matrix Y5,
we obtain

K
vee(YP9)= 3 (XUP)T @ Lg,) vec(HE,) + vee(ZP%).(5)
k=1

Let K denote the covariance matrix of vec(HY, ). From (2),
we then obtain

K= E{vec(HY, )vec(H}, )7}
= (Uy, @ Vi, )diag(vec(Q)) (U @ Vi), (6)

Let I:I;‘fn denote the MMSE estimator of H;}Fn given Y}13S,
we have that Hp,, is the conditional mean of H{n given

YPS, ie, HY,, = E{H] [Y}PS}. Since the pilot sequences
assigned to transmitted antennas are orthogonal, we obtain
XUE(XVEVE = 1), and XHE(XYE)H? = 0 for | # k. From
these conditions, (2), (3) and (5), we then obtain

vec(Hf,, )= af ™ (Ki1 + ogsT) ™

Kii (XPE)* @ Ing,) vee(YTS). (D)
Substituting (6) into (7), we obtain
vec(HT )

= o (Ui ® Vi, ) (diag(vec(27)) + o) ™

diag(vec(€2)) (UF (XEE)" @ Vi, ) vee(YT®). (8)
Let Ay denote the matrix whose entries are defined by

(M,

[Arlij = e ©)
! [Mk]gj + U%S
Then, (8) can be re-expressed as
vec(HE )= o (U V*Mt)diag(vec(Af))
(U (Xi1)* @ Vi, ) vee(YT®).  (10)

From (2), (3), (5) and (10), we obtain the posterior distribution
of the random vector vec(HY ) is a multivariate Gaussian
distribution, and its conditional covariance matrix is given by

E{(vec(Hf,) — vec(HJ,,)) (vec(Hf,) — vec(H, )" [YT}
= (Uk ® Vi, )diag(vec(Eg, © Et,))(Uf @ Vi) (1)

where the square of the elements in Zj, € CM+*M: are
computed by

[Mk];lj

[M)2, — 2" 0
b [Mk]?j + s

[Ekn]z?j = ij (12)
Finally, we obtain the a posteriori model of Hy,, given Y5
as

Hy,, = Hyy, + Up(Epn © Wi) VL (13)

where I:I;m is obtained from (10) as
Hy, = af 7 'Uk (A © U (XPE) (YP) Vg )V, (14)

and Wy, is a complex Gaussian random matrix with i.i.d.,
zero mean and unit variance entries. With (13), the available
imperfect CSI for each UE obtained at the BS is modeled
as statistical CSI under a jointly correlated channel model
with both channel mean and channel variance information,
which includes the effects of channel estimation error, channel
aging and spatial correlation. The channel model is obtained
by assuming that Uy, Qf, oy, 0]235 are known. The a pos-
teriori model described in (13) is a generic model for the
available imperfect CSI obtained by the BS in the massive
MIMO system under various mobile scenarios. When oy is
very close to 1, it is suitable for the quasi-static scenario.
When «aj, becomes very small, it is used to describe high
speed scenario. By setting the values of the ajs according
to their moving speeds, we are able to describe the channel
uncertainties in various typical channel conditions. Based on
this channel model, we investigate the precoder design robust
to the imperfect CSI at the BS in this work.



B. Problem Formulation

We now consider the downlink transmission for slot m. Let
Xk, denote the M x 1 transmitted vector to the k-th UE at
the n-th block of slot m. The covariance matrix of xy,, is the
identity matrix I, . The received signal y, at the k-th UE
for a single symbol interval at the n-th block of slot m can
be written as

K
Yin = HynPrnXpn + Higp Z PinXin + Zkn

£k
where Py, is the M; X di precoding matrix of the k-th UE,
and zy, is a complex Gaussian noise vector distributed as

We assume that the UEs obtain the perfect CSI of their
corresponding effective channel matrices Hy,, P, from the
training signals as in the BDMA transmission [13]. The
DL training phase is included in the DL data transmission
and omitted in the slot structure for simplicity. At each
UE, we treat the aggregate interference-plus-noise zj, =
H;, Z#k Pi.xin + 2z, as Gaussian noise. Let Ry,, denote
the covariance matrix of z/ kn> W€ have that

15)

K
Ryn =0 IMk + Z ]E{HknPl’LPlnHkn}
I#k
where the notation E{-} denotes the expectation with respect
to Hy,, according to the long-term statistics of the channel
matrices at the user end. Owing to the channel reciprocity, the
long-term channel statistics at the user end are the same as
that of the BS, which have been provided in the a posteriori
model in (13). Thus, the expectation E{-} can be computed
according to (13). We assume the covariance matrix Ry, is
known at the k-th UE. In such case, the expected rate of the
k-th user at the n-th block of slot m is given by

Rin=E{logdet(Ry, + H;mPknP H )}
—log det(Ryy)
= E{log dCt(IMk + RanknPknPkn kn,)} (17

(16)

In this paper, we are interested in finding the precoding matri-
ces Pi1,,Po,, -+, Pk, that maximize the expected weighted
sum-rate. The optimization problem can be formulated as

< <& <&
P1n> 2ns " " 9t Kn
K

= argmax g Wi Rin
Pin, o Prn

K

st. » tr(Pp,Pf,) <P
k=1

(18)

where wy, are the weights to ensure fairness among users and
P denotes the total power budget.

III. ROBUST LINEAR PRECODER DESIGN BASED ON
DETERMINISTIC EQUIVALENTS

A. MM Algorithm for Precoder Design

In this subsection, we present the MM algorithm for
precoder design. The expected weighted sum-rate is a very

complicated function of the precoding matrices, and thus also
very difficult to be optimized directly. In the following, we use
the MM algorithm to find a stationary point of the optimization
problem (18).

Let f denote the objective function Z 1 WREyn in the
optimization problem (18). Let Pgi?, P(zi vt P%L be a
fixed family of the precoding matrices at the d-th iteration
and let

PKn\P(d) (d)

d
g(Pl'ruPZm ’ in > 2n7"' 7Pg(31)

represent a real-valued continuous function of the precoders

Pi,,Poy, -, Pg, whose form depends on the fixed precod-
ing matrices Pgi), Péﬁ?, . P(d) The function ¢ is said to
minorize f at Pgn),Péi), P( ) +, provided that [28]

Q(le P2na e 7PKn)§ f(Plna P2na e

where the equality holds at Pgn) , Pgi)7 . ,Pg?;. When both
the functions g and f are continuously differentiable with
respect to the precoders, the conditions in (19) ensures

Pry) (19)

dg _of

k=1,
oP;., oP;, Prn—=P@

LK. (20)
Py, =P7

The key of the MM algorithms for the considered problem
is to obtain a surrogate function which minorize the objective
function at any point. When we find a good minorizing
function, we will maximize it rather than the original function.
Let Pg‘fjl) P(dﬂ) ,P(I?II) denote the maximizer of g
under the constraint. From the condition (19), we obtain

FEEED P L pldin)y
> P Py P, @1)

From (20) and (21), we observe that the sequence will con-
verge to a local maximum of the original function f. The
proof of the convergence depends on the condition (19) and
has been provided in the literature [34], [35]. Thus, we omit
it here.

Let jo«? and Rﬁ) be defined as

K

R{)= oy, + Y E{H,Pl (PW)THI} (22)
£k

R =R + H,,PY P THL. (23)

With the previous definitions, we obtain the following theorem.

Theorem 1. Let g1 be a function defined as
K K
G1= Zwkcgi) + Z wktr(A( )P;m(P(d)) )

K
—|—Zw tr(AYPYPH ) Z (DYP,, P )(24)
k=1 k=1



(d)

where ¢, is a constant provided in (85) and

AY=E{H] (RY)H,,.} 25)
d d)\ — =~ (d)\ —
BY=E{H (R)"' - RY) HHL)  (26)

c\=E{H], <<R§Jf3>-1 ~E{RY)"'HH) @D

D= w;, B + Z wCLY. (28)

I#k
Then, it is a minorizing function of f at Pgi), Pgi), e ,Pg?;.
Proof: The proof is provided in Appendix A. ]

Theorem 1 provides a minorizing function g; of the objec-
tive function. Using the minorizing function g;, we update the
precoding matrices sequence by

Pg‘fj—l)v ngj—l)v e ,szl)
= argmax ¢i1(P1p,Pop,--- ,Pxyp)

Pin,- . Pkn

K
s.t. Ztr(PknPan) <P (29)
k=1

The limit point of the sequence provided by (29) is a stationary
point of (18). The optimization problem in (29) is a concave
quadratic optimization problem. Its optimal solution can be
found by using the Lagrange multiplier methods. We define
the Lagrangian as

‘C(,ua Plna P2n; T aPKn)

K

= —g1+u(>_ tr(PrnPi,) — P) (30)
k=1

where o is the Lagrange multiplier. From the first order

optimal conditions of (30), we obtain

P (DY + ) AP 1

Similar to that in [10], the function Zszl tr(Pr,PH ) is
a monotonically decreasing function of u. Thus, if ©* = 0
and Y5, tr(P,(jfl)(ngjl))H) < P, we have obtained the
optimal solution P,(jj_l) = (D;jl))*lka,(;i)P,(;Q. Otherwise,
we can obtain p* by using a bisection method.

When the CSI is perfect known at the BS, the precoder
obtained in (31) reduces to the 1terat1ve WMMSE precoder.
Observmg (31), we find the precoder P ) is first enhanced by
kaEc and then filtered by (D,(gd) —|—,u*IM,) L. From (25), we

find A kd) can be seen as the expected weighted outer products
of the channel column vectors of the k-th user, and ijz

dominated by the expected weighted outer products of the
channel column vectors of the interference users. Thus, A;jl)
includes the information about the spatial directions that can be
used to transmit the signal for the k-th user, whereas D,(m) +
w*Iys, includes the information about the spatial directions
that will cause interference. Furthermore, when I:I;m =0,
A;jl) reduces to the weighted channel covariance matrix of
the k-th user, and Df;? is dominated by the expected weighted
channel covariance matrices of the interference users. Using
(31), we can obtain the precoders that guarantee the gains of

the signal and keep the interference small at the same time.

n

To calculate the optimal solution in (31), we need to
calculate A'?, B{" and C\¥) using (25), (26) and (27). Let
H;.,, denote Ui (Egn © W;m)VM We define

TIkn(C): E" {HknCHkn} (32)
ﬁkn(c): Eﬁ {H CHkn} (33)
Then, we obtain
E{H,,CHZ \= H,,,CHY + 1;,,(C) (34)
E{Hk-nCHkn}: HknCHk:n + nkn(c)- (35)
From (22) and (34), we obtain
R oLy, + 3, P (P,
1#£k
+ ann P (P (36)
£k
From (25) and (34), we obtain A,(;i) as
AW — a1 R Hy + i (R, 37)

Equation (26) shows the first part of B,(;i) can be obtained
similarly as A,(;i). However, the second part of B,(Ci) is very
complicated and it is rather difficult to obtain a closed-
form expression. Similarly, the computation of C,Ei) also has
no closed-form expression. In the next subsectlon, we will
provide the approximations of B( and C( by using the

deterministic equivalent method.

B. Linear Precoder Design based on Deterministic Equiva-
lents

In this subsection, we provide a linear precoder design by
using the deterministic equivalent method. Observing (26) and
(27), we find that B,(ffl) and C,(Ci) are closely related to the
derivatives of Ry, with respect to P;mPan and P;,, P {

k. Thus, to derive the deterministic equivalents of B, nj and
C,(:Q, we begin from the deterministic equivalent of Rkn. The
channel model provided in (13) is a jointly correlated channel
model with a nonzero mean. For such model, the deterministic
equivalent of Ry, has been provided in [31] and [36]. Using

the results from [31], we obtain the deterministic equivalent
of Ry, as

Rin=logdet(Ins, + TrnPrnP ) + log det(®ry)
— tr(Nen (PrnGien PR 2GraR?)  (38)

or
Rin= logdet(Ins, + TrnRy)) + log det(®p,,)
— t2(PnGrn P L iikn Ry GrnRit /%)) (39)
where I'g,, and f‘;m are given by
Tin=1kn(Ry, 2GR _1/2)
+ H,mR 125 RV, (40)
Crn=Mn(PenGrn P2 ) + Hpn Prn® . PE HE  (41)



and ®y,, ®pn, Grn and Gi, are obtained by the iterative
equations

®pn= 14, + P it (R 2GR P, (42)
®1,= Lus, + Ry 1 (PrnGrn PR, (43)
Gin= Iy, + PH T}, Pr,) 7! (44)
Gin= (T, + R,/ *TpnR, %)~ 45)

From the two deterministic equivalents, we can obtain the
derivatives of Ry, with respect to PknPan and PlnPf,I,,
l # k, respectively. With the obtained derivatives, we then
obtain the deterministic equivalents of B;:fl) and C,(;i) in the
following theorem.

Theorem 2. The deterministic equivalents of B](:Q and Cgffl)
are

=(d) d)\ 193 - 4y -
Bkn: Han(R,(c)) 1Hkn+77kn((Rl(cn)) 1)

n

— (L, + PP (P T 46)
=@ _ p d)\— d) | T =1\
C = HEL (R ™ — (R + Dw) ™) Hi,
i (RYG) ™ = (R} + ) ). (47)
Proof: The proof is provided in Appendix B . ]

With the deterministic equivalents of ng and C,(C‘i) pro-

vided in Theorem 2, the update step in (31) using the mi-
norizing function g; becomes

—(d . _
P = (D)) + 1 Ty) w AP 48)
K
—d —(d —(d
Dy, =wBj, + > wCyy . (49)

1#k
From the computation of Az(jz)
Egi) and 65;2 in Theorem 2 and the precoder in (48), it can be
seen that the proposed method is directly derived from the a
posteriori channel mean and channel covariance information.
A relevant research, the stochastic weighted MMSE approach,
can be find in [37]. It was extended from the iterative WMMSE
method to maximize the ergodic sum rate for a MIMO
interference channel. It is an sample average approximation
(SAA) method [38], [39], which use a sample average problem
to approximate the original optimization problem.
We now present an algorithm for the design of the robust
linear precoder using the minorizing function g; with I:I;m,

Ein, Uy, and o2 as inputs.

in (37), the computation of

Algorithm 1: Linear precoder design using the minorizing
function ¢;

Step 1: Set d = 0. Randomly generate the precoders
PYQ, Pgi?7 D ,Pg?gl and normalize them to satisfy

the power constraint.
Calculate joz according to (36).
Calculate I'y,, and f;m according to (40) and (41).
Compute Aéi), Egﬁ, CEJQ
(37), (46), (47) and (49).
Step 5: Update P\“*") by (48). Set d = d + 1.
Repeat Step 2 through Step 5 until convergence or until a
pre-set target is reached.

Step 2:
Step 3:

Step 4: and D;,, according to

For very large M;, the computational complexity of Al-
gorithm 1 is dominated by the number of M; x M; matrix
inversions. Observing Algorithm 1, we find there are an
M, x M, inversion (I, + T P\ (P{Y)#)=1 in cach com-

putation of Eﬁjf and an M; x M, inversion (ﬁki) +u*Ipy,) 7t

in each computation of P,(:LH). Thus, there are total 2K
M, x M, matrix inversions per iteration and the computational

complexity of Algorithm 1 is of order O(K M}) per iteration.

C. Low-Complexity Linear Precoder Designs

In this subsection, we present two low-complexity algo-
rithms for linear precoder designs. The first algorithm is based
on an alternative minorizing function modified from g;. The
second algorithm is designed for the case when H;, = 0.

We begin with the first low-complexity algorithm. As shown
in the previous subsection, the computational complexity of
Algorithm 1 per iteration is dominated by 2K large dimen-
sional matrix inversions. The first K large dimensional matrix
inversions in Algorithm 1 can be avoid by rewriting them as

(IJM,, + I‘knpgjl) (P](C(Q)H)ilrkn = I‘kn
~ TPl (L, + (PL) 1T, P~ (P2 1Ty, (50)

n

where the equality is due to the matrix inversion lemma. The

second K large M; x M; matrix inversions (ﬁgﬁ +u*Ip,) 7t

can be reduced to one matrix inversion. For this purpose, we
provide the following theorem which presents an alternative
minorizing function modified from the minorizing function g;.

Theorem 3. Let go be a function defined as

K
g2= i + 3" tr((wi ALY + Fio )Py, (PIO)T)

k=1
K
+ 3 tr((wp A+ F)PIPE)
k=1
K
— > (D) + FL)PPL) (5D
k=1
(d) . .. . . . (d) .
where ¥~ is any positive semidefinite matrix and ¢y’ is a

constant provided in (96). Then, it is also a minorizing function

of far PO PY ... P
Proof: The proof is provided in Appendix C. [ ]

The minorizing function g» can be used to reduce the
complexity of the solutions of the surrogate optimization
problem. Let Ff:g be defined as

F9— w,Cl? -y, BY (52)

which is obviously a positive definite matrix, then we have

K
DY +F =3 w,Cl (53)
k=1



Wthh is the same for all k. For brevity, we define D,sfl ) =
Z he1 wkC kn From (46) and (47), we obtain the determin-

istic equivalents of D(d) and F,(m

K
D=3 w,ClY

k=1

(54)

=(d)

=(d)
Fkn

kckn — kakn (55)

where the computation of E,m becomes

7@

B, = HE (RY) ' Hy + ik (RY) 1) = Ty

d d d)\— d
+ TPy (L + (P T P L) T (P T (56)

The process of using the minorizing function g to obtain a
stationary point is similar to that of using g;. For brevity, we
omit the details and give the solution directly as

d —=(d) * d d
P DV + 1) (ALY + FOPD . (57)

The above equation is still similar to that of (31). Thus, it also
can achieve a good performance.

We now present an algorithm for the design of the robust
linear precoder using the minorizing function g, with ﬂkn,
Ekn, Uk and o2 as inputs.

Algorithm 2: Linear precoder design using the minorizing
function go

Step 1: Set d = 0. Randomly generate the precoders
g‘f},ngB, . ,Pg?; and normalize them to satisfy

the power constraint.
Calculate R}ci) according to (36).
Calculate I'y,, and f‘;m according to (40) and (41).
Compute Agff,) R ngl), ﬁ (@)
(37), (56), (54) and (595).
Step 5: Update P,(Ciﬂ) by (57). Set d = d + 1.
Repeat Step 2 through Step 5 until convergence or until a
pre-set target is reached.

Step 2:
Step 3:

Step 4: and Fki) according to

For Algorithm 2, there only need one M; x M; matrix
inversion per iteration and its computational complexity is
of order O($M}) per iteration. Thus, the complexity of
Algorithm 2 is reduced compared with that of Algorithm 1 for
very large M;. To further reduce the computational complexity,
the truncated conjugate gradient (CG) method can be used to
solve (57).

In the following, we introduce another low-complexity
algorithm for a special case. When az_l is small, the elements
in the a posteriori channel mean ﬂkn are also small. In such
case, knowing Hj,,, can not bring much performance gain. To
reduce complexity, we can assume azfl = 0 and only use
the a priori channel information in (2), which is equivalent to
I:I;m = 0 and Ej,, = M. Then, we obtain

Ap)= nn((Ré‘f,’) b (58)
Bj = k(R 1)

— (T, +I‘knP(d)(P,(j2)H)‘1I‘kn (59)
Ch= i (RY) 1) = T (60)

where the last equation is obtained by using the formula ', =
ﬁkn(gR,(jL) +T'x,)~1). Furthermore, the computations of Ty,
and I';,, become

Fkn: ﬁkn( gk”
rkn: Nkn (Pkngk’nPkn)

and <I>;m, Py, Gy and Grn are now obtained by the iterative
equations from (42) to (45) by setting H;, = 0. Let A;m(C)
and Ay, (C) be two diagonal matrix valued functions defined
as

R, %) 61)

(62)

M,
[Akn(C)lii = D[] [VE, CVarlj (63)

=1
A (O)] = lul,Uf CUL,;. (64)

j=1

Then, we obtain

i (C)= Ur A (C)UY (65)
ikn (C)= V1, Agn (C) V3, (66)

In such case, we observe from Algorithms 1 and 2 that once
the left singular vector matrix of P,(f,fl is Vpy, right multiplying
a permutation matrix, it will remain the same forever. Thus, we
obtain that V), right multiplying a permutation matrix must
be the left singular vector matrix for Py, at certain stationary
points. In the following, we will show that this conclusion
actually holds for all stationary points.

Let f(P1n,Pay, -+ ,Pxy,) denote Zle wiRyn the de-
terministic equivalent of f. According to (61) and (66), Ty,
can be written as

Tin =V, 30, VL (67)

where 37, is a diagonal matrix whose value depends on
Py, Py, -+ ,Pgy,. Then, we obtain the following theorem.

Theorem 4. Assume Hy,, = 0. Then, the left singular vector
matrix of the linear precoders at the stationary points of the
optimization problem

Pln{n"a?lgkn f(P1n7 P2n7 e 7PKn)
> (P PR) < P (68)
can be written as

Up,, = VI, (69)

where 11y, is a permutation matrix.
Proof: The proof is provided in Appendix D. [ ]
Theorem 4 proves the optimality of the beam domain
transmission when Hy,, = 0 and the objective function of

the optimization problem (18) is replaced by its determinis-
tic equivalent. Although the optimality of the beam domain
transmission for single user MIMO has been well established
in the literature [40], [41], the optimality of the beam domain
transmission for multi-user MIMO still needs further investi-
gation. In [13], the optimality of beam domain transmission



for massive MIMO is proved under optimization an upper
bound of the sum-rate. In this paper, we prove the optimality
of the beam domain transmission when the weighted sum-rate
is replaced by its deterministic equivalent.

Using Theorem 4, we obtain that the optimal precoders can
be written as

Pin = Va, 111, Sk, Vi, (70)

where Sy, are M; x d;, matrices with nonzero elements on the
main diagonal and zeros elsewhere, and V,ZL are any dj X dy,
unitary matrices. Since V,f; has no impact on the expected
weighted sum-rate, it can be set to a fixed unitary matrix. For
brevity, we set V=1, . Then, the optimal precoders can
be rewritten as

Pk:n = V]\/ItHankn- (71)

To achieve an algorithm with a complexity lower than Algo-
rithm 2, we also set each Iy, to a fixed permutation matrix.
Let a; be an M; x 1 row vector defined as

My,

lakl; = > [l

i=1

(72)

The permutation matrix Ilg, is set to make the elements
in a;Ily, are of descending order. Then, we only need to
optimize S, and the precoder design reduces to the power
allocation optimization in the beam domain. Using the optimal
structures of the precoders with fixed permutation matrices
and the condition Hj,, = 0, we obtain the following power
allocation algorithm with lower complexity. The inputs needed
are Q, Uy, and o2.

Algorithm 3: Linear precoder design when H;, =0

Step 1: Set d = 0. Initialize all the S,(jl) with ones along the
main diagonal and zeros elsewhere, and normalize
them to satisfy the power constraint.

Calculate Rsz according to

R\Y =01y,

K
d d
+ Z Nkn (VJW,, Hlnsl(n) (Sl(n))HHan]\H/[t )
I#£k
Calculate I'y,, and f‘;m according to (61) and (62).
Compute A, (4), A=@ and A—w according to
Akn Ckn Fkn

Step 2:

Step 3:
Step 4:

A d)\—
N (L
A d)\—
A=A (R ™) - 57,
Agn = Tin
— (Tag, + 23, Men S STLITE,) T 25,
Step 5: Update ngffl) by
StV = (Ag + 1 Ta,) ™!
(g + Ag)Si

K
where Aﬁild) = Ek:l w’fAéid,f Setd=d+1.

Repeat Step 2 through Step 5 until convergence or until
a pre-set target is reached. Then the optimal precoders are
obtained as P}, = V., I1;,S},..

In Algorithm 3, we have used the commutativity of the
permutation matrices with the diagonal matrices to simplify
the formulas. Since Aﬁ(d) is a diagonal matrix, the M; x M,
matrix inversion (Aﬁm)n—&— Iy, )"t in Algorithm 3 can be
implemented element-nwisely. Thus, the computational com-
plexity are further reduced when H;, = 0. In Algorithm 3,
left multiplying Vs, can be realized as several FFT opera-
tions. From (63) and (65), we obtain that the FFT operations
Var ISt in 04 (Var i Si2 (SL2)H 11, VE, ) do not
need to be performed. The only left multiplying Vs, need
to be performed is that in P}, = Vj;,1I;,S7,, and its
complexity is of order O (5K Mj, M, log(M,)). For simplicity,
we have assumed M; = 2™, where n is an integer. The
computational complexity of the rest operations is of order
O(KMiM,) per iteration. When KM} is not small, the
overall complexity of Algorithm 3 is not larger than that of
RZF precoder which is of order O((K Mj,)2M; + 1 (K M;)?).

IV. SIMULATION RESULTS

In this section, we provide simulation results to show the
performance of the proposed algorithms. We use the 3GPP
stochastic channel model (SCM) [42] to generate U and
the channel power matrices €2 as follows. Denote by S the
number of samples, and by Hy(s) the s-th sample of Hy. The
sample average of Hj is zero. From the sample covariance
matrix R, = %Zle Hy.(s)(Hx(s))" and its eigenvalue
decomposition R, = UkEnkUkH the eigen-matrix Uy, is
obtained. Then, the coupling matrices §2j, is computed as [26]

138
Q= > (U HL(s)Var,) © (UTHR(s)" Vi) -

s=1

(73)

The scenario used is “urban_marco”. The antenna arrays used
at the BS and the UEs are both ULAs with 0.5\ spacing. The
shadow fading and path loss are not considered. The users in
the cell are random uniformly distributed. In all simulations,
we set P =1, wy = 1, dp. = My and N, = 7. The M
for all the users are set to be the same. For simplicity, we
set 04 = o2. The signal-to-noise ratio (SNR) is given by
SNR= ;.

We first investigate the performance of the three proposed
algorithms. We consider a massive MIMO downlink system
with M; = 64,M; = 4 and K = 10. The values of
a1 — as are set as 0.999 and the values of ag — ag are
set as 0.9. It indicates that the channels of the first 5 users
are quasi-static, and that the other 5 users move slowly. Let
N, denote the number of time slots used in the simulations.
Fig. 2 shows the simulation results of the average sum-rate
performance of the three algorithms for this massive MIMO
downlink over N, = 100 time slots. The number of iterations
is set to 30. From Fig. 2, we see that the average sum-rates
of the three algorithms increase almost linearly as the SNR
increases. Furthermore, we see that the differences between
the performance of Algorithms 1 and 2 are negligible. The
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Fig. 2. Average sum-rate performance of the three proposed algorithms for
a massive MIMO downlink with M; = 64, M = 4, K =10, a1 — a5 =
0.999 and ag — a9 = 0.9.
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Fig. 3. Average sum-rate performance of the three proposed algorithms for
a massive MIMO downlink with M; = 64, M = 4, K = 10 and the as
presented in Table I.

performance gaps between Algorithm 3 and that of Algorithms
1 and 2 increase as the SNR increases. At SNR=20dB, the
performance loss of Algorithm 3 is about 25 percent. This is
because Algorithm 3 is designed for the case when the channel
means of all users equal zeros, and thus does not exploit the
full benefits of the available statistical CSI at the BS. We also
present in Fig. 2 the deterministic equivalents of the average
sum-rate to show the accuracy of the deterministic equivalents.
The deterministic equivalent results of all three algorithms are
very accurate.

To investigate the performance of the three proposed algo-
rithms when high speed users exist. We keep M; = 64, M}, =

TABLE 1
THE VALUES OF ;S IN SCENARIO 2.

oy, a2

a3, 04

a5, X6

a7, g

@9, @10

0.999

0.9

0.5

0.1

0
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Fig. 4. Average sum-rate performance of Algorithm 1 for a massive MIMO
downlink with My = 64, M = 4, K = 10 for variant as.

4, K = 10 and Ns; = 100, but change the values of ays to
those presented in Table I. Fig. 3 show the simulation results
of the average sum-rate performance of the three algorithms
for this scenario. From Fig. 3, we see that the average
sum-rates of the three algorithms are still increase almost
linearly as the SNR increases, and that the differences between
the performance of Algorithms 1 and 2 are also negligible.
Furthermore, the performance gaps between Algorithm 3 and
that of Algorithms 1 and 2 are become smaller. At SNR=20dB,
the performance loss of Algorithm 3 is around 15 percent.
This is because the difference between the statistical CSI that
Algorithm 3 used and the available statistical CSI at the BS
become smaller at this scenario. The deterministic equivalents
of the average sum-rates are also presented in Fig. 3 to show
their accuracy. In this scenario, the deterministic equivalent
results of all three Algorithms are also very accurate.

By observing Fig. 2 and Fig. 3, we realize that ays affect
the sum-rate performance. To show the influence of s on
the system performance, we set all the ays to be the same «
and simulate the average sum-rate performance of Algorithm
1. The as used in the simulation are 0.999, 0.99,0.95,0.9,0.8
and 0. The simulated results for a massive MIMO downlink
with M; = 64,M; = 4, K = 10 are plotted in Fig. 4.
From the simulation results, we observe that the sum-rate
performance decreases as o becomes smaller. This indicates
that the system performance will degrade when the users
move faster. Compared with that of v = 0.999, the sum-rate
performance loss of a = 0 is about 40 percent at SNR= 20dB.
Furthermore, the performance gap is relatively small between
the sum-rate performance of a = 0.8 and = 0. Thus,
knowing the channel mean information can not bring much
performance gain than only knowing the channel covariance
information when « is smaller than 0.8. Since the value of « is
important to the performance, we also show how sensitive the
proposed precoder scheme is to the errors in the « in Fig. 5.
The true values of « are 0.95,0.9 and 0.8. From Fig. 5, we
observe that the performance obtained when overestimate « is
generally worse than that obtained by underestimate .
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Fig. 6. Convergence trajectories of the three proposed algorithms for a
massive MIMO downlink with M; = 64, M = 4, K = 10 and the as
presented in Table I.

We then study the convergence behavior of the three pro-
posed algorithms. The considered massive MIMO downlink
is still that with M; = 64, M, = 4 and K = 10, and the
values of ays are those presented in Table I. As shown in
Step 1 in each algorithm, we use random initializations for
Algorithms 1 and 2, whereas the initializations for Algorithm
3 are fixed. Fig. 6 shows the convergence behaviors of the
three proposed algorithms at the second block of the first
time slot for the massive MIMO downlink at two different
SNRs. The expected sum-rate results presented in Fig. 6 are
the deterministic equivalent results. From Fig. 6, we see that
all three algorithms quickly converge at SNR= 0 dB and
SNR= 10dB. We also observe that all three algorithms take
more iterations to converge as the SNR increases. At SNR= 0
dB, only 5 iterations are need to obtain a good performance,
whereas 15 iterations are needed at SNR= 10 dB. Algorithm
3 only need to be performed once when the a priori statistical
CSI changes. Thus, the number of the iterations needed to
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Fig. 7. Convergence trajectories of Algorithms 1 and 2 using different initials
at the third block of the first time slot for a massive MIMO downlink at
SNR= 10dB with M; = 64, M} = 4, K = 10 and the as presented in

Table 1.

TABLE I
THE VALUES OF ;S IN SCENARIO 3.
a1, 2 a3z, 0y as a6 a7, a8 a9, X10
Case 1 0.999 0.999 0.999 | 0.999 0.999 0.999
Case 2 0.999 0.999 0.999 0.9 0.9 0.9
Case 3 0.999 0.9 0.5 0.5 0.1 0

make Algorithm 3 converge is not a problem. On the contrary,
Algorithms 1 and 2 are performed once for each block. Thus,
the number of the iterations needed to make Algorithms 1
and 2 converge is an issue. To reduce the number of the
iterations used in Algorithms 1 and 2, we can use the resulting
precoders from the previous block as initials instead of random
initials at each block (not the first data block). Fig. 7 plots the
convergence behaviors of Algorithms 1 and 2 at the third block
of the first time slot using two different initials for the same
massive MIMO downlink as that of Fig. 6 at SNR= 10dB.
From Fig. 7, we see that the resulting precoders from the
previous block are very good initials, and thus only a few
iterations are needed to achieve good performance and the
computational complexity can be further reduced.

Then, we investigate the performance of Algorithm 1 for
massive MIMO downlinks with single antenna users. We
compare Algorithm 1 with the RZF, the SLNR and the iterative
WMMSE precoders. For the precoders except Algorithm 1,
we use the perfect CSI from block one for all blocks at each
slot. We consider a massive MIMO downlink with M; = 64,
M;, =1 and K = 20. The «ays used in the simulations are the
same o with o = 0.99,0.95 and 0.8. Fig. 8 plots the average
sum-rate performance of four algorithms over N, = 100 time
slots. From the simulation results, we observe that Algorithm
1 can achieve much better performance than those of other
precoderes at all three cases. Furthermore, the performance
gain becomes more significant as the CSI becomes more
inaccurate. Thus, Algorithm 1 is more effective in improving
the sum-rate performance for massive MIMO with imperfect
CSI than the other precoders.
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Fig. 9. Average sum-rate performance of Algorithm 1 and the robust RZF
precoder for a massive MIMO downlink with My = 64, M, = 1 and K =
10.

Finally, we compare the sum-rate performance of Algorithm
1 with that of the robust RZF precoder. We consider a massive
MIMO downlink with M; = 64 transmit antennas at the
BS and K = 10 single antenna users. The ajs used in the
simulations are presented in Table II. Fig. 9 plots the average
sum-rate performance of Algorithm 1 and the robust RZF for
the considered scenario over Ny = 100 time slots. As shown in
Fig. 9, Algorithm 1 can achieve much better performance than
that of the robust RZF precoder at all three cases. Furthermore,
we observe that the performance gains are small at low
SNR, but become significant as SNR increases. The reason
behind the performance gain of the proposed precoder is as
follows. While the robust RZF are designed by minimizing and
maximizing the average MSE, the proposed precoder of one
user is obtain iteratively by considering how the precoder will
affect the rate performance of other users when their precoders
are known. To put it simply, the proposed design iteratively
adjust the interference to each other to improve the sum-rate

performance directly.

V. CONCLUSION

In this paper, we investigated the design of robust linear pre-
coders for the massive MIMO downlink with imperfect CSI.
The available imperfect CSI for each UE obtained at the BS is
modeled as statistical CSI under a jointly correlated channel
model with both channel mean and channel variance informa-
tion, which includes the effects of channel estimation error,
channel aging and spatial correlation. We derived an algorithm
for the linear precoder design by using the MM algorithm.
The derived algorithm can achieve a stationary point of the
expected weighted sum-rate maximization problem. We then
used the deterministic equivalent method to compute the ap-
proximations of several key matrices used in the robust linear
precoder design. Then, we proposed an algorithm for robust
linear precoder design based on the deterministic equivalent
method. The proposed algorithm needs 2K large dimensional
matrix inversions per iteration. To reduce the computational
complexity, we then derived two low-complexity algorithms,
one for the general case, and the other for the case when all the
channel means are zeros. For the late case, we also proved the
optimality of the beam domain transmissions and the precoder
design reduced to power allocation optimization in the beam
domain. Simulation results showed that the proposed robust
linear precoder designs apply to various mobile scenarios and
achieve high spectral efficiency.

We conclude this paper by providing two possible topics
for future research of this work. The channel model of this
paper is established by assuming that the ULA antenna is
used. In practical massive MIMO systems, uniform planar
array (UPA) antennas are also widely used. Thus, an extension
of this work would be to consider the massive MIMO with
a UPA antenna. In this paper, we focused on the precoder
design for TDD massive MIMO systems. Another extension
of this work would be to consider also the impact of limited
feedback, which is essential in FDD massive MIMO systems.
Consider an example when the channel feedback is obtained
from quantization on the Grassmann manifold. From the
finite feedback of the channels, we can obtain a probability
distribution of the channels on the Grassmann manifold. Using
statistics on Riemannian manifold [43] to replace the statistics
computed from the established channel model in the proposed
methods, it might be able to obtain a precoder design which
is robust to quantization error induced by limited feedback.

APPENDIX A
PROOF OF THEOREM 1

Let the matrix Eg, be defined as Ey, = (I, +
PanHgleinnPkn)*l. Then, the ergodic rate of the k-
th user can be rewritten as Ry, = E{logdet(E;,.)}. The
function E{logdet(E, )} is a convex function of Ej, on
S% .. Let Egi) be defined as

E\Y= (I, + (PY)TH] (RY)'H,, P~ (74)

n



Using the first order condition of convex functions, we obtain

l)}> E{log det(E{) 1)}
— E{tr((B{Y) ! (Er, — EY))}
= Chn — E{tr((E}) " Exn)}

n

E{log det(E

(75)

where ¢},, = E{logdet((E E! )) B} + tr(Iy,) is a constant.
The step in equation (75) is inspired by [44]. The item

—E{tr((E d)) YEgn)} is still not a simple function of the
precoding matrices. Inspired by [10], let G ,, denote the linear
receiver of the k-th user. The mean-square error (MSE) matrix
of the k-th estimate Xj,, = GanYkn is given by

ekn: E{(f{kn - an)(f(kn - an)H}

= Iy, — G HpuPrpn)(La, — G2 Hy Prp)?
K
G E{Hu PP H{ Y Gy + 602G, G (76)
Ik

From (76), we observe that the function tr((E (d)) '@k,
is a convex function of Gy, and its global minimum is
achieved when (G7,,) is the linear minimum mean-square
error (MMSE) receiver, ie., (Gf,)? = PHEHI (R, +
H;, Py, P2 HI )~1. Substituting G}, into (76), we obtain
Oknley,=c;, = Egn. Thus, we have

E{tr(E{Y) 'Ex,)} < E{tr(E{)'@1)) (77
for any Gy,,. From (75) and (77), we obtain
E{log det(Ey1)}> ¢, — E{tr(B{Y)'©1.)}.  (78)

To make the equality in (78) hold at ng?, e ,Pgl, we set
Grn = G,(:Q, which is defined by
(@)

= (PYHYTHE (R + H,, P (PL)THE ) L. (79)

When Gy, = G\, we obtain from (76) that

d)\ —
~E{tr((E})) ' Orn)}
= —cfl, + tr((A,SfBP<d>>HP n) + tr(AL PP

— tr(BL P, P + “”ZPMPM (80)
14k
where ¢/, , A,(C‘QP;‘Q, B,(;? and C(d) are defined as
d)\ —
n = E{tr((B]}) 1>}
- ZE{u((B) GG @D
(AL PN = B{(E{))~ (Gé‘i?)HHkn} (82)
B =E{HILG(E) G H,) 83

)™
cy) =E{HIE{G)(E) (G 1H,,}.84)

Furthermore, we define

(d) %

Chn = ckn Ckn- (85)

From (78), (80) and (85) to (84), we obtain

E{logdet(E,})}
> 9 4 tr(AYP, (P )+tr(A(d)P(d)Pan)

d
- tr(Bgcn)Pk”Pkn + Ckn Z Pl”Pln
I#k

(86)

where the equaht¥ can be achieve at the fixed precoding
matrices P{?, P{*

., pld
In>+ 2n> Kn*
Substituting (74) and (79) into (82), we obtain

d =~ (d)\ —
AD—E{(H],RY) " H, )

d)\ — = (d d =~ (d)\ —
+E{HI (R TR — R (R T H, }.(87)

From (87), we then obtain the expression of A;C‘i) in (25).
Similarly, we obtain the expression of B;jl) in (26) and the
expression of C in (27). Let D,(jl) be defined as D,(;i) =
ka +Zl¢k wlC .Recall that f(P1,,,Pon, - ,Pgn) =
S 1wkIE{logdet((E;m) 1)}, From (86) we obtain the
function g; defined in (24) is a minorizing function of the
objective function.

APPENDIX B
PROOF OF THEOREM 2

Using methods similar to that in the proof of Theorem 4 in
[31], we obtain

aﬁkn
G(P;mPgl)

Py, =P,

= (I, + i PP @Y1y, (88)

From (17), we obtain the gradient of Ry, with respect to
P., P iom, a8

6Rkn

AT T+ H = H R (d) —1

Since Ry, is the deterministic equivalent of Ry, we obtain
from (88) and (89) that the matrix E;:Q provided in (46) is
the deterministic equivalent of B(d)

Similarly, we can obtain the gradient of Ry, with respect
to R, from (39) as

8ﬁkn
aRkn

=Ry (In, + Ten R IR (90)

The gradients of Ry, with respect to P;,, P ln, l # k, are then
obtained from the above equation. Using a method similar to
that in Lemma 4 of [45], we then obtain

aﬁkn
PP |p, =P
= E{H[L(R{Y + Tp) ' — (R) ™) Hy, }
- —Cp. 1)



From (17) and the chain rule, we then obtain

aRkn
OPuPI)|p, _pw
— B{H, E{RY) ) - RY) ) Hy,}
cl®. (92)

From (91) and (92), we obtain C( ) is the deterministic
equivalent of C,(m) Thus, (47) holds.

APPENDIX C
PROOF OF THEOREM 3

We first rewrite the minorizing function g; provided by
Theorem 1 as

K K
g1= Z wkc,(jz + Z wktr(A,(;i)

+Zw tr(AYPYPH)

n n
k=1

Ztr

+Ztr FDP,,PHL).

d
P, (P

DY L F)p, pH )

93)

The fourth item on the RHS of the equality of (93) is a convex
quadratic function of the precoding matrices. Using the first
order condition of convex functions, we obtain

Z tr
+ Z tr(F (P
k=1
K
+y° tr(FYP (P
k=1

From (93) and (94) we then obtain

d d
DpPH) >Ztr Dpld) (pdyH)
k=1

d d
i — PP

P, (94)

g1> P + Z tr( ka(d) (d))Pkn(Pé‘Q)H)

k=1
K

+ Z tr((ka(d)

k=1

3"t (DY) + F) Py, PI).
k=1

(d))P(d)Pk )

95)

@ is defined as

D) _Zwkc(d) Zt (FOPD (p@)H),

Let g5 be defined as in (93). From (95), we have
QQ(Plna Py, - aPKn) < gl(leu Poy, - 7PKn)-(97)

Furthermore, it is easy to verify that the equality is achieved at

Pg‘fl), Pgi)7 e PE?ZL. Thus, g» is also a minorizing function

of the objective function.

where ¢,

(96)

APPENDIX D
PROOF OF THEOREM 4

Since f denotes Zle wi Rin, We obtain

of

——= (I, + DinPinPf) ' Thn Py
apP;, (Inr, + TrnPrnPy,) kntk
—Zmn R, — (Rin +Tin) " )Prn.  (98)
1k
We define the Lagrangian as
£(,u7 PlTL7 P2na e 7PK77,)
B K
= —F+ud_tr(PpPf) — P). (99)
k=1

From the first order optimal conditions of (99), we obtain

_wk(IMt + TinPen PR ) ' ThnPrn

+ Z wlnln ln (Rln + Fln) 1)Pk:n
Ik
+ uPy, = 0. (100)
From (66), we obtain
K
> Wi Ry — Rin + Ti) ™) = Vag, 25, VE, (101)
Ik

where f)in is a diagonal matrix. Then, the first order condi-
tions in (100) become

wi(Ing, + TrnPrn P2 ) ' Trn P,

=V, S0 VI Pry + 1Py, (102)

When I:I,m =0, we have Ty, = VM,Z VH We define

Tin = plas, + Var, B3, VI T, = T,m/ I‘knT /2 and
P, = Tl/ 2Pkn Then, the conditions in (102) become

wk‘rknPkn(IJVIt +( i )HF i )71 = kn (103)

Right multiplying both sides of (103) by the item (I, +
(P;Cn)Hl—‘knP;cn)(P;cn)Ha we obtain

=Py, (I, + (P,) T,

Thus, we obtain T}, P (P} )7

o) Pl )™

~ P}, (P},)'T},. which
indicates P}, (P}, )" commutes with I‘ﬁm. From Theorem
9-33 of [46] we then obtain P/, (P} ) and I}, have the
same eigenvectors. From I‘kn = T,;;/2I‘;mT 1/2 , we have
that the eigenvectors of T}, and T, are the same. Thus,

the left singular vector matrix of P}, can be written as

(104)

Up, =V, IT},,, where IT},, is a permutation matrix. From
P, = T,°P} and Up, = Vy,II},, we obtain (69)
holds ﬁnally
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