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a b s t r a c t

Relations between discrete quantities such as people, genes, or streets can be described
by networks, which consist of nodes that are connected by edges. Network analysis
aims to identify important nodes in a network and to uncover structural properties of
a network. A network is said to be bipartite if its nodes can be subdivided into two
nonempty sets such that there are no edges between nodes in the same set. It is a
difficult task to determine the closest bipartite network to a given network. This paper
describes how a given network can be approximated by a bipartite one by solving a
sequence of fairly simple optimization problems. The algorithm also produces a node
permutation which makes the possible bipartite nature of the initial adjacency matrix
evident, and identifies the two sets of nodes. We finally show how the same procedure
can be used to detect the presence of a large anti-community in a network and to
identify it.

© 2019 Elsevier B.V. All rights reserved.

1. Introduction

Networks describe how discrete quantities such as genes, people, proteins, or streets are related. They arise in many
applications, including genetics, epidemiology, energy distribution, and telecommunication; see, e.g., [1,2] for discussions
on networks and their applications. Networks are represented by graphs G = {V, E,W}, which are determined by a set
of vertices (nodes) V = {vi}

n
i=1, a set of edges E = {ek}mk=1, and a set of positive weights W = {wk}

m
k=1. Here ek = (ik, jk)

represents an edge from vertex vik to vertex vjk . The weight wk is associated with the edge ek; a large value of wk > 0
indicates that edge ek is important. For instance, in a road network, the weight wk may be proportional to the amount
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of traffic on the road that is represented by the edge ek. In this paper, we consider connected undirected graphs without
self-loops and multiple edges. In particular, all edges represent ‘‘two-way streets’’, i.e., if (ik, jk) is an edge, then so is (jk, ik).
The weights associated with these edges are assumed to be the same. In unweighted graphs all weights are set to one.

We will represent a graph G with n nodes by its adjacency matrix A = [ai,j]ni,j=1, where

ai,j =

{
wk, if there is an edge ek between the nodes vi and vj with weight wk,

0, otherwise.

Since G is undirected and the weights associated with each direction of an edge are the same, the matrix A is symmetric.
The largest possible number of edges of an undirected graph with n nodes without self-loops is n2

− n, but typically the
actual number of edges, m, of such graphs that arise in applications is much smaller. The adjacency matrix A, therefore,
is generally very sparse.

A graph G is said to be bipartite if the set of vertices V that make up the graph can be partitioned into two disjoint
nonempty subsets V1 and V2 (with V = V1 ∪ V2), such that any edge starting at a vertex in V1 points to a vertex in V2,
and vice versa. This, in particular, excludes the presence of self-loops in a bipartite graph.

Bipartivity is an important structural property. It has been studied also as the 2-coloring problem [3]. In fact
determining if a graph can be colored with 2 colors is equivalent to determining whether or not the graph is bipartite,
and thus testing if a network is bipartite or not is computable in linear time using breadth-first or depth-first search
algorithms. It is therefore interesting to determine a bipartite approximation of a non-bipartite graph, or measure the
distance of a non-bipartite graph from being bipartite. We say that a splitting of the set of vertices V of a weighted
undirected graph G into two disjoint nonempty subsets V1 and V2 (with V = V1 ∪ V2), is a best bipartization of G if the
sum of the weights wk associated with edges ek = (i, j) that point from vertices vi in Vℓ (ℓ = 1, 2) to vertices vj in the same
set Vℓ is minimal. Such edges ek are called ‘‘frustrated’’, and computing the minimum number of edges whose deletion
makes the graph bipartite is an NP-hard optimization problem [4]. We remark that the above definition is analogous to
the definition of a best bipartization of an undirected unweighted graph proposed by Estrada and Gómez–Gardeñes [5],
where the spectral bipartivity index of a network with adjacency matrix A is defined as

bs =
trace(exp(−A))
trace(exp(A))

. (1.1)

This measure also can be applied to the weighted graphs considered in the present paper.
The problem of discovering approximately bipartite structures in graphs and networks has been considered by various

authors. Most popular approaches are based on the eigendecomposition of the Laplacian and signless Laplacian matrices.
Other spectral approaches consider the adjacency matrix associated to the graph. In the case of a symmetric bipartite
adjacency matrix, the signs of the entries of an eigenvector associated with the smallest eigenvalue can be used to
partition the graph, i.e., nodes that correspond to positive entries belong to one set, and nodes that correspond to negative
entries belong to the other set; see [6]. In case the smallest eigenvalue is multiple, the splitting of the nodes may vary
according to the considered vector in the associated eigenspace. In [7] the presence of ± pairs in the spectrum of the
adjacency matrix of a bipartite graph is exploited in order to identify approximate bipartite structures within protein–
protein interaction undirected networks; see also [8] for a spectral approach that can be used to discover approximately
bipartite substructures in directed graphs.

We are interested in developing a numerical method for determining a ‘‘good’’ bipartization (V1,V2), i.e., a bipartization
for which the sum of the weights wk associated with the edges ek = (i, j) that point from a vertex vi in V1 to a vertex vj
in V2, or vice versa, is fairly small. The algorithm is approximate, or ‘‘heuristic’’, in the sense that it does not necessarily
produce the best possible bipartization.

As it will be made clear in the following, the same bipartization method may be used for the identification of a large
anticommunity. A community is a group of nodes which are highly connected among themselves, but are less connected
to the rest of the network, or isolated from it. Conversely, an anti-community is a node set that is loosely connected
internally, but has many external connections [9]; see [10], where a spectral method is used to detect communities and
anti-communities. Community and anti-community detection in networks is an important problem with applications in
various fields, including physics, computer science, and social sciences [11–15]. Although the identification of communities
is predominant in the investigation of meso-scale structures in networks, the detection of the so-called core–periphery
structures, whose most popular notion was developed by Borgatti and Everett [16], attracts a continuing interest also in
the mathematical community; see also [17]. For our purposes, the identification of a single large anti-community can be
understood as that of a core–periphery structure in the given network.

This paper is organized as follows. Section 2 discusses some properties of bipartite graphs and Section 3 describes an
algorithm for determining a ‘‘good’’ bipartization. An application of the bipartization method to the identification of a
large anticommunity is discussed in Section 4. Finally, Section 5 presents computed examples and two case studies, while
Section 6 contains concluding remarks.
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2. Approximating the spectral structure of a bipartite graph

This section discusses some properties of the adjacency matrix for an undirected bipartite graph. Some inequalities
that are useful for the design of our bipartization method also will be introduced. The discussion in the first part of the
section assumes that the vertices are suitably ordered. Subsequently, we will describe how to achieve such an ordering.

Assume for the moment that the undirected graph G = {V, E,W} is bipartite, i.e., its vertex set V can be split into two
disjoint nonempty subsets V1 and V2 with n1 and n2 nodes, respectively, such that there are no edges between the nodes
in V1 and between the nodes in V2. We may assume that n1 ≥ n2, otherwise we interchange the sets V1 and V2.

Let the vertices in the set V be ordered so that the first n1 of them belong to the set V1 and the remaining n2 vertices
belong to V2. Then the adjacency matrix for the graph G is of the form

AB =

[
On1 C
CT On2

]
, (2.1)

where Ok denotes the k× k zero matrix, and C = [ci,j] ∈ Rn1×n2 with ci,j > 0 if the node vi in V1 is connected to the node
vn1+j in V2; otherwise ci,j = 0.

We adapt to our notation a known result in graph theory; see, e.g., [18, Theorem 3.14].

Proposition 2.1. Let G be an unweighted graph with n nodes. Then G is bipartite and the adjacency matrix can be partitioned
as in (2.1) if and only if the spectrum of the adjacency matrix is symmetric with respect to the origin, i.e.,

σ (AB) = {λ1, . . . , λn2 , 0, . . . , 0  
n1−n2

, −λn2 , . . . ,−λ1}, (2.2)

for some integers n1 ≥ n2 and non-negative numbers λ1 ≥ λ2 ≥ · · · ≥ λn2 . The claim holds true also for weighted graphs, as
long as the weights are positive.

Proof. For the sake of clarity, we give a quick sketch of the proof. The necessary condition is straightforward. The sufficient
condition can be proved by noting that, for k = 0, 1, . . ., trace(A2k+1

B ) = 0 if the spectrum is symmetric. Then, the positivity
of the weights implies that (A2k+1

B )i,i = 0, that is, the graph is bipartite since it does not contain odd cycles. □

Remark 2.2. Under the assumption of Proposition 2.1, it is immediate to verify that if λ is a nonzero eigenvalue of AB
and q =

[ x
y
]
, with x ∈ Rn1 and y ∈ Rn2 , is an associated eigenvector, then

(
−λ,

[ x
−y

])
is an eigenpair, too. This implies

that λ is a singular value of the block C in (2.1), while x and y are its left and right singular vectors, respectively, if scaled
to be of unit length.

Let n = n1+n2 with n1 ≥ n2 ≥ 1. Then, the above observation gives us the possibility to describe the spectral structure
of AB in terms of the singular value decomposition of C; see also [19, Section 8.6.1]. Let C = XD̃Y T be a singular value
decomposition of C , where D̃ ∈ Rn1×n2 has D = diag(λ1, . . . , λn2 ) as its upper block, and X = [X1, X2] ∈ Rn1×n1 and
Y ∈ Rn2×n2 are orthogonal matrices with X1 ∈ Rn1×n2 . Introduce the diagonal matrix

D = diag(D,On1−n2 , −D),

and the orthogonal matrix

Q =

[
U1 U2 U1
V On2,n1−n2 −V

]
, (2.3)

where U1 =
1

√
2
X1, U2 = X2, and V =

1
√
2
Y , with UT

1 U1 = V TV =
1
2 In2 and UT

2 U2 =
1
2 In1−n2 . Then, the spectral factorization

AB = QDQ T , (2.4)

takes the form[
U1 U2 U1
V On2,n1−n2 −V

]
diag(D,On1−n2 , −D)

[
U1 U2 U1
V On2,n1−n2 −V

]T

. (2.5)

In the special case when n1 = n2, the submatrices of (2.3) with n1−n2 columns disappear, and the spectral factorization
(2.5) simplifies to

AB =

[
U1 U1
V −V

][
D 0
0 −D

][
U1 U1
V −V

]T

,

with U1UT
1 = VV T

=
1
2 In1 .

Now, let A be an adjacency matrix of an undirected graph. We would like to approximate the graph by a bipartite
one, and therefore seek to approximate A by a matrix of the form AB. We do this in several steps and first show some
inequalities that are applicable to diagonal eigenvalue matrices.
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Proposition 2.3. Let α1 ≥ α2 ≥ · · · ≥ αℓ be a nonincreasing real sequence and let β1, β2, . . . , βℓ be another real sequence.
The distance between these sequences measured in the least squares sense,( ℓ∑

i=1

(αi − βi)2
)1/2

, (2.6)

is minimal if and only if the βi are in nonincreasing order, i.e., if β1 ≥ β2 ≥ · · · ≥ βℓ.

Proof. Assume that both sequences are in nonincreasing order and that the distance can be reduced by changing the
order of the βi. Consider the pairs (α1, β1) and (α2, β2). Then

(α1 − β2)2 + (α2 − β1)2 ≤ (α1 − β1)2 + (α2 − β2)2

is equivalent to

α2(β1 − β2) ≥ α1(β1 − β2).

Assume β1 > β2. Then α2 ≥ α1, which is a contradiction unless α1 = α2. If the βj are ordered arbitrarily, then we can
reorder these coefficients pairwise until they form a nonincreasing sequence. Each pairwise swap reduces (2.6). □

In our application of Proposition 2.3, we let α1 ≥ α2 ≥ · · · ≥ αn be the eigenvalues of the adjacency matrix A ∈ Rn×n.
The graph associated with this matrix might not be bipartite. We would like the sequence of eigenvalues of the matrix
AB ∈ Rn×n, given by (2.1), to be close to the sequence α1, α2, . . . , αn and appear in ± pairs. By Proposition 2.3, we know
that the eigenvalues β1, β2, . . . , βn of AB should be in nonincreasing order, and by Proposition 2.1 they vanish or appear
in ± pairs. We know from (2.5) that at least n1 − n2 eigenvalues of AB should be zero.

Proposition 2.4. Let {αj}
n
j=1, with n = n1 + n2 and n1 ≥ n2, be a real nonincreasing sequence. Then the sequence {βj}

n
j=1

with elements

βj =

⎧⎪⎪⎨⎪⎪⎩
1
2
(αj − αn−j+1), j = 1, 2, . . . , n2,

0, j = n2 + 1, . . . , n1,

−βn−j+1, j = n1 + 1, . . . , n,

(2.7)

is the closest sequence to {αj}
n
j=1 in the least squares sense consisting of at least n1−n2 zeros and nonvanishing entries appearing

in ± pairs.

Proof. The sequence {βj}
n
j=1 consists of n1 − n2 zero values and n2 ± pairs. Indeed, we have

βj − βj+1 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
2
(αj − αj+1) +

1
2
(αn−j − αn−j+1), 1 ≤ j ≤ n2 − 1,

1
2
(αn2 − αn1+1), j = n2,

0, n2 + 1 ≤ j ≤ n1 − 1,
βn2 , j = n1,

βn−j − βn−j+1, n1 + 1 ≤ j ≤ n − 1,

and it follows that the sequence is nonincreasing. It remains to establish that the βj defined by (2.7) are the best possible.
Consider the minimization problems{

minβ

(
(αj − β)2 + (αn−j+1 + β)2

)
, 1 ≤ j ≤ n2,

minβ (β2), n2 + 1 ≤ j ≤ n1.
(2.8)

The solution sequence {βj}
n
j=1 is given by (2.7). Thus, the βj form a nonincreasing sequence consisting of n1 − n2 zero

values and n2 ± pairs. It is the closest such sequence to the sequence {αj}
n
j=1 in the sense that it solves the minimization

problems (2.8). □

We would like to determine an approximation of the matrix A by a matrix of the form (2.1), where we allow row and
column permutations of the latter matrix. Define the spectral factorization

AB = WBΛBW T
B , ΛB = diag(λ(B)

1 , λ
(B)
2 , . . . , λ(B)

n ),

where WB is an orthogonal matrix and the eigenvalues are ordered according to

λ
(B)
1 ≥ λ

(B)
2 ≥ · · · ≥ λ(B)

n .

We remark that only the first n1 eigenvalues are ordered as in (2.4).



A. Concas, S. Noschese, L. Reichel et al. / Journal of Computational and Applied Mathematics 373 (2020) 112306 5

Let us initially assume that the nonzero eigenvalues are distinct. If the eigenvectors are made unique, e.g., by making
their first component positive, a comparison with (2.5) shows that

WB =

[
U1 U2 U1Z
V O −VZ

]
, ΛB =

[D O O
O On1−n2 O
O O −ZDZ

]
, (2.9)

where Z is the flip matrix

Z =

⎡⎣O 1

. .
.

1 O

⎤⎦ ∈ Rn2×n2 .

In the presence of multiple nonzero eigenvalues, the corresponding eigenvectors are not uniquely determined, so the
spectral factorization (2.9) is only one of several possible distinct factorizations.

Let

A = WΛW T , Λ = diag(λ1, λ2, . . . , λn), (2.10)

be a spectral factorization of A with an orthogonal eigenvector matrix W and the eigenvalues ordered according to

λ1 ≥ λ2 ≥ · · · ≥ λn. (2.11)

Partition the eigenvector matrix W conformally with the eigenvector matrix WB of AB, i.e.,

W =

[
W11 W12 W13
W21 W22 W23

]
.

We would like to approximate the eigenvector matrix W of A by the eigenvector matrix WB of AB. This suggests that
we solve the minimization problem

min
UT
1 U1=VT V=

1
2 In2

UT
2 U2=

1
2 In1−n2

[
U1 U2 U1
V O −V

]
−

[
W11 W12 W13Z
W21 W22 W23Z

]
F
, (2.12)

where ∥·∥F denotes the Frobenius norm. This problem splits into the three independent problems

min
UT
1 U1=

1
2 In2

{∥U1 − W11∥
2
F + ∥U1 − W13Z∥

2
F }, (2.13)

min
V T V=

1
2 In2

{∥V − W21∥
2
F + ∥V + W23Z∥

2
F }, (2.14)

min
UT
2 U2=

1
2 In1−n2

{∥U2 − W12∥
2
F }. (2.15)

Problem (2.13) can be written as

min
XT
1 X1=In2

{X1 −
√
2W11

2

F
+

X1 −
√
2W13Z

2

F

}
. (2.16)

The following result shows how we can easily solve this problem.

Proposition 2.5. The solution of problem (2.16) can be determined by computing the singular value decomposition of
W11 + W13Z and setting all singular values to one.

Proof. Consider the problem

min
XT X=I

∥X − W∥
2
F .

It can be written as

min
XT X=I

{trace(XTX) − 2 trace(XTW ) + trace(W TW )}.

The first and last terms are independent of X . Therefore we obtain the equivalent linear minimization problem

min
XT X=I

{− trace(XTW )}.

Similarly, the linear problem associated to the minimization problem (2.16) is given by

min
XT
1 X1=In2

{− trace(XT
1 (W11 + W13Z))}. (2.17)
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Hence, the problem (2.16) is equivalent to determining the closest orthogonal matrix in the Frobenius norm to the matrix
W11 + W13Z . The solution is given by computing the singular value decomposition PΣQ T of W11 + W13Z and setting
X1 = PQ T ; see [20, Theorem 4.1] for a proof of the latter statement. □

The minimization problems (2.14) and (2.15) are solved similarly. This gives the eigenvector matrix in the spectral
factorization (2.5).

Remark 2.6. We note that if PΣQ T denotes the singular value decomposition of W11 + W13Z , then we can express its
polar decomposition by

W11 + W13Z = (PQ T )(QΣQ T ).

Since the first factor PQ T is the minimizer of (2.17), the deviation of QΣQ T from the identity matrix measures the quality
of the approximation.

Remark 2.7. If some of the nonzero eigenvalues of A in (2.10) are multiple, the corresponding columns of W11, W21, W13,
and W23, are not uniquely determined. Anyway, when approximating W11 + W13Z by X1, and W21 − W23Z by Y , those
columns contain linear combinations of the previous ones, and so they belong to the same space. Then, the approximations
X1 and Y will make factorization (2.9) valid.

3. A spectral bipartization method

We give here an outline of a spectral bipartization method, based on the above results. It exploits the spectral structure
(2.5) of a bipartite graph to determine a node permutation that separates the two sets V1 and V2, and to construct a
bipartite approximation to a connected undirected graph G, having a perturbed bipartite structure. The algorithm is exact
whenever the input is the adjacency matrix of a bipartite graph, however it has to be considered ‘‘heuristic’’, as we were
not able to prove a complete convergence result for it, apart from the spectrum approximation theorems in Section 2.

There are three problems at hand: estimating the cardinality of the sets V1 and V2, suitably ordering the nodes in G,
and, finally, approximating the adjacency matrix by a matrix of the form (2.1). Let A be the adjacency matrix of G, and
assume the spectral factorization

A = WDW T , D = diag(λ1, λ2, . . . , λn),

is available, where W is an orthogonal matrix and the eigenvalues are ordered by increasing absolute value.

1. The first step of our algorithm consists of finding the cardinality n1 and n2 of the two disjoint node sets V1 and
V2, unless they are known in advance. We do this by identifying the number of eigenvalues that are approximately
zero. In principle, this could be done by detecting how many eigenvalues have absolute value larger than a fixed
tolerance, but this process is extremely sensitive to the choice of the tolerance. In our numerical experimentation,
we found it to be more reliable to detect the largest gap between ‘‘small’’ and ‘‘large’’ eigenvalues.
To do this, we compute the ratios

ρi =
|λi+1|

|λi|
, i = 1, 2, . . . , n − 1. (3.1)

Then, for suitably chosen constants R and τ , we consider the index set

J = {i ∈ {1, 2, . . . , n − 1} : ρi > R and |λi+1| > τ } . (3.2)

In our experiments, we set R = 102 and τ = 10−8. An index i is in J if there is a significant gap between λi and
λi+1 (ρi > R), and λi+1 is numerically nonzero (|λi+1| > τ ). If the set J is empty, then we are not able to identify
a partition of the nodes, and we consider the cardinality of the sets V1 and V2 to be the same. On the contrary, we
let k be the index defined by

ρk = max
i∈J

ρi,

and set

n2 =

⌈
n − k
2

⌉
, n1 = n − n2,

where ⌈x⌉ denotes the closest integer to the real number x.
The above approach is clearly not completely robust. It is easy to trick it by constructing particular numerical
examples, for example by letting C in (2.1) have singular values that decay to zero exponentially, or by introducing
large gaps in the spectrum of the adjacency matrix. Nevertheless, we found the procedure quite accurate on
networks stemming from real-world applications; see, e.g., Figs. 6 and 8 in Section 5.
In order to avoid overflow, it may be preferable to use the reciprocal ratios ρ−1

i . This is not required in our Matlab
implementation, given the features of the programming language.
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2. The subsequent step is to find the sets V1 and V2, and reorder the nodes. Assume that G is bipartite, but that the
adjacency matrix A corresponds to a random ordering of the nodes, so that

A = ΠABΠ
T ,

for a permutation matrix Π and a matrix AB of the form (2.1). In this case, the spectral factorization (2.4) becomes

A = (ΠQ )D(ΠQ )T ,

i.e., the rows of the eigenvector matrix are permuted. In order to recover the structure of the eigenvectors, let us
partition the eigenvector matrix as in

W := ΠQ =
[
W1 W2 W3

]
, (3.3)

with W1,W3 ∈ Rn×n2 and W2 ∈ Rn×(n1−n2).
Assume first that n1 > n2 ≥ 1 and consider the matrix block W2. For (2.9) to be valid, the last n2 rows of W2 must
vanish. Sorting in descending order the 1-norms of its rows concentrates the smallest entries in the lower block
of W2. Applying the corresponding permutation σ to the rows of W brings this matrix to the form (2.9) and the
adjacency matrix to the form (2.1), with the block C possibly permuted. When n1 = n2 the block W2 is empty, so
we consider the matrix W1 − W3Z . As its first n1 rows should be exactly zero, we sort the 1-norms of its rows in
ascending order, and apply the obtained permutation σ to the rows of W . After the reordering, the first n1 nodes
are in the set V1, and the remaining n2 are in the set V2. We note that applying the permutation σ to the rows and
columns of the initial adjacency matrix A highlights the presence in the graph of an approximate bipartite structure.

3. To finally obtain an approximation of the matrix (2.1) by the computed spectral factorization, we first approximate
the eigenvector matrix WB by solving problem (2.12), and then approximate the eigenvalues in (2.10) by scalars
that appear in ± pairs using Proposition 2.4. Specifically, we let the αj in the proposition be the eigenvalues (2.11).
The βj defined in the proposition are the eigenvalues of the matrix D in (2.5), in the same order.

Algorithm 1 Spectral bipartization algorithm.
Require: adjacency matrix A of size n, the user may optionally provide the cardinalities n1 and n2 of V1 and V2
Ensure: permutation σ which reorders the nodes, adjacency matrix AB of the approximate bipartite graph
1: compute the spectral factorization A = WDW T , with λ1 ≥ · · · ≥ λn

{Step 1 of the algorithm}
2: if n1, n2 are not provided then
3: sort the eigenvalues by increasing absolute value
4: compute ρi, i = 1, . . . , n − 1 by (3.1)
5: construct set J by (3.2)
6: if J = ∅ then
7: n1 = ⌈n/2⌉, n2 = n − n1
8: else
9: k = argmaxi∈J ρi

10: n2 = ⌈(n − k)/2⌉, n1 = n − n2
11: end if
12: end if

{Step 2 of the algorithm}
13: partition W =

[
W1 W2 W3

]
as in (3.3)

14: if n1 > n2 then
15: find the permutation σ which sorts the 1-norms of the rows of W2 decreasingly
16: else
17: find the permutation σ which sorts the 1-norms of the rows of W1 − W3Z increasingly
18: end if
19: apply the permutation σ to the rows of W

{Step 3 of the algorithm}
20: approximate the eigenvectors of A by minimizing (2.12)
21: approximate the eigenvalues of A by ± pairs βi, by Proposition 2.4
22: set D = diag(β1, . . . , βn)
23: construct the adjacency matrix AB = WDW T of the bipartite graph

The above procedure, outlined in Algorithm 1, determines the eigenvectors and eigenvalues of a matrix AB with the
block structure

AB =

[
O C
CT O

]
, (3.4)
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where the matrix C has real entries. The matrix AB may have a different number of nonzero entries than A. In fact, not
all nonzero entries may be positive. We can handle this issue in several ways:

• Allow AB to be an adjacency matrix for a weighted graph with both positive and negative weights.
• Allow AB to be an adjacency matrix for a weighted graph with positive weights. We achieve this by replacing the

matrix C in (3.4) by the closest matrix, C+, in the Frobenius norm with nonnegative entries. The matrix C+ is obtained
from C by setting all negative entries to zero.

• Require AB to represent an unweighted graph. The closest such matrix in the Frobenius norm to the matrix (3.4) is
obtained by setting every entry of C to the closest member of the set {0, 1}.

The last procedure is the one adopted in the numerical experiments presented in Section 5.
Algorithm 1 can be applied only to small to medium sized problems, i.e., when it is possible to compute a full spectral

factorization of A. For larger problems, one may reduce the complexity of the computation by renouncing the third step
of the algorithm. Indeed, when n1 −n2 is not too large, a partial spectral factorization may lead to constructing a basis for
the null space of A, that is, to obtaining the matrix W2. This would allow one to generate the permutation σ that takes
the adjacency matrix to an almost bipartite form, identifying the two sets V1 and V2.

4. Anti-communities

Let us consider a symmetric matrix A of size n = n1 + n2 with a zero leading square block of size n1. Then, A may be
considered the adjacency matrix of a network with an anti-community of n1 nodes. The matrix has the form

A =

[
On1 C
CT B

]
, (4.1)

with C of size n1 ×n2 and B a square matrix of order n2. In the following, we denote by N (C) the null space of C , by R(C)
its range, and by B|N (C) the restriction of the submatrix B to N (C).

Theorem 4.1. Let A be as in (4.1) and let x =
[ x1
x2

]
be partitioned consistently with A. Then the equation

Ax = 0 (4.2)

has ν = dimN (CT ) linearly independent solutions with x2 = 0. Moreover, if

d = dim
(
R(B|N (C)) ∩ R(CT )

)
≥ 1,

then there are also d linearly independent solutions to Ax = 0 with x2 ̸= 0, so that dimN (A) = d + ν.

Proof. Let k = rank(C) and consider the case n1 > n2 = k. Let us search for vectors x such that Ax = 0. Then we have

A
[
x1
x2

]
=

[
On1 C
CT B

][
x1
x2

]
=

[
Cx2

CTx1 + Bx2

]
. (4.3)

Since C is of full rank and n1 > n2, it follows from Cx2 = 0 that x2 = 0 and, hence, CTx1 = 0. The latter implies that
x1 is in the null space of CT , which has dimension n1 − n2. Thus, the matrix A admits the following linearly independent
eigenvectors corresponding to the eigenvalue λ = 0,

x(i) =

[
un2+i
0

]
, i = 1, 2, . . . , n1 − n2,

where ui, i = 1, 2, . . . , n1, are the left singular vectors of C . Hence, λ = 0 has multiplicity n1 − n2 = dimN (CT ).
Let us now assume that k = n1 < n2. Then A may or may not have zero eigenvalues. Indeed, for A to have a vanishing

eigenvalue, the vector x2 ∈ Rn2 that appears in (4.3) has to belong to the null space of C , which has dimension n2 − n1.
Then, there will be zero eigenvalues if and only if the system

CTy = −Bx2

has a solution.
If instead k = n1 = n2, i.e., if C is nonsingular, then λ = 0 implies that both x1 = 0 and x2 = 0. Hence, x =

[ x1
x2

]
= 0,

and all the eigenvalues of A are different from zero.
We finally turn to the case when the submatrix C is rank deficient, that is, k < min{n1, n2}. The right-hand side of

(4.3) is equivalent to

x2 ∈ N (C), CTx1 = −Bx2.

Let x be a nontrivial solution of (4.2). When x2 = 0, there has to be a vector x1 ̸= 0 with CTx1 = 0. Since in this case the
null space of CT has dimension n1 − k, there are n1 − k linearly independent solutions of (4.2) with x2 = 0.
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The existence of a solution x of (4.2) with a nonzero subvector x2 is equivalent to

dim
(
R(B|N (C)) ∩ R(CT )

)
≥ 1.

This condition does not hold for most matrix pairs (B, C). □

Remark 4.2. We note that if B = 0, then the equation Ax = 0 has exactly

dimN (C) + dimN (CT ) = n − 2 rank(C)

linearly independent solutions.

Theorem 4.1 shows that if a network has a large anti-community (n1 > n2), the spectral decomposition A = WDW T

has the form

W =

[
E U2 F
G On2,n1−n2 H

]
, D =

[D1 O O
O On1−n2 O
O O D2

]
.

The structures of W and D are very similar to those of WB and ΛB in (2.9), respectively. For this reason, the bipartization
algorithm described in Section 3, is able to detect the presence of a large anti-community and to order the nodes so
that the adjacency matrix takes the form (4.1). In case a group of nodes is only approximately an anti-community, the
algorithm produces an adjacency matrix that approximates (4.1).

To summarize, when n1 > n2, if a network is either bipartite or contains a large anti-community, its adjacency matrix
has zero eigenvalues; the converse is not true. If A has a multiple zero eigenvalue, then we can recognize the presence of
one of the two above cases by observing the structure of the eigenvector matrix.

5. Computed examples

In the following numerical experiments, we fix the integers n1 and n2, and construct a random matrix A of the form
(2.1), with a sparse block C with density ξ . The matrix is first perturbed, by replacing its (1,1) and (2,2) blocks by sparse
matrices of appropriate size and density η, and then ‘‘scrambled’’, by applying the same random permutation to its rows
and columns.

We apply the algorithm of Section 2 to the matrix A either by supplying the cardinality of the two sets V1 and V2 (this
approach is referred to as specbip-n), or letting the method estimate n1 and n2 from the data; we refer to the latter
approach as specbip. Since the block (1,2) of the matrix returned by the method is generally permuted with respect
to the initial test matrix, the rows and columns are reordered according to the original sequence of the nodes. The final
reordering allows us to compare the resulting matrix AB to the test matrix A.

Our results are compared to the ones obtained by red–black ordering using the MatlabBGL library [21], a Matlab
package implementing graph algorithms. A matrix has a red–black ordering if the corresponding graph is bipartite. To find
a bipartite ordering, this software uses a breadth first search algorithm, starting from an arbitrary vertex. The partition of
the nodes is determined by forming a group containing all the vertices having even distance from the root, and another
group with the vertices at odd distance from the root. This procedure is designed to bipartite networks, not to produce
an approximation when the bipartization is not exact.

Fig. 1 displays the results for a test matrix with (n1, n2) = (512, 256), sparsity ξ = 10−2, and perturbation η = 10−4.
In particular, it reports in the upper row a spy plot of the original test matrix, the perturbed version, with random arcs
in the (1,1) and (2,2) blocks, and the permuted matrix that is fed to the bipartization methods. The bottom row shows
the reconstructed networks. The specbip-n1 approach, which receives the information about the cardinality of the node
sets, produces the matrix closest to the original. The general algorithm estimates the cardinalities (ñ1, ñ2) = (492, 276),
according to the number of ‘‘small’’ eigenvalues; see Fig. 2, where the absolute values of the eigenvalues are displayed
in nondecreasing order. This algorithm produces a slightly less accurate approximation than the previous one, which is
anyway much better than the matrix produced by the red-black ordering.

Fig. 3 shows the results for a test matrix similar to the previous one, but with a larger perturbation η = 10−3.
The estimation of (n1, n2) is inaccurate, but the approximation produced by the specbib methods is quite close to the
unperturbed matrix, while the red-black ordering matrix is far from it.

Now, let

E = A − AB =

[
E11 E12
E21 E22

]
,

where E11 and E22 are square matrices of size n1 and n2, respectively, and let |M| denote the number of nonzero elements
of M . To evaluate the quality of the results, we consider the following three indices

IB = 1 − bs, EB =
|E11|
n2
1

+
|E22|
n2
2

, EA =
|E12|
|C |

.
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Fig. 1. (n1, n2) = (512, 256), (ñ1, ñ2) = (492, 276), ξ = 10−2 , η = 10−4 .

Fig. 2. (n1, n2) = (512, 256), (ñ1, ñ2) = (492, 276), ξ = 10−2 , η = 10−4 .

Fig. 3. (n1, n2) = (512, 256), (ñ1, ñ2) = (396, 372), ξ = 10−2 , η = 10−3 .
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Table 1
Results for ξ = 10−2 , η = 10−4 .
(256,128) specbip-n1 specbip Red–black

IB 1.22e−16 1.89e−16 2.33e−03
EB 5.46e−04 6.74e−04 3.72e−03
EA 2.80e−01 2.79e−01 –
EN 1.45e−01 1.58e−01 2.76e−01
T 4.94e−02 5.05e−02 3.15e−04

(512,256) specbip-n1 specbip Red–black

IB 1.11e−17 1.11e−17 2.98e−03
EB 1.13e−04 1.50e−04 3.39e−03
EA 4.84e−02 6.27e−02 –
EN 3.36e−02 5.96e−02 2.97e−01
T 2.77e−01 2.95e−01 4.94e−04

(1024,512) specbip-n1 specbip Red–black

IB 7.77e−17 0.00e+00 4.17e−02
EB 9.92e−05 2.11e−04 4.75e−03
EA 1.06e−01 1.80e−01 –
EN 3.62e−02 1.15e−01 2.75e−01
T 1.92e+00 1.94e+00 8.67e−04

Table 2
Results for ξ = 10−2 , η = 10−5 .
(256,128) specbip-n1 specbip Red–black

IB 1.11e−17 7.77e−17 1.68e−06
EB 6.68e−04 8.79e−04 3.36e−03
EA 2.70e−01 2.68e−01 –
EN 1.23e−01 1.49e−01 2.58e−01
T 4.39e−02 4.70e−02 1.01e−03

(512,256) specbip-n1 specbip Red–black

IB 0.00e+00 2.22e−17 1.40e−04
EB 3.05e−05 1.91e−05 8.81e−04
EA 3.88e−02 2.38e−02 –
EN 1.87e−02 1.93e−02 3.16e−01
T 2.72e−01 2.77e−01 5.12e−04

(1024,512) specbip-n1 specbip Red–black

IB 0.00e+00 0.00e+00 4.04e−03
EB 1.91e−07 1.03e−05 1.07e−03
EA 1.73e−04 9.49e−03 –
EN 9.77e−05 9.47e−03 3.25e−01
T 1.91e+00 1.89e+00 9.52e−04

The first two indices measure the distance of AB from the adjacency matrix of a bipartite graph; see (1.1) for the definition
of bs. The third index measures the approximation error with respect to the starting bipartite network (2.1). To better
evaluate the error in the bipartition, we introduce the fourth index EN = ẼN/n1, where ẼN is the number of nodes from
the set V1 that were incorrectly ascribed to the set V2.

Tables 1, 2, and 3 report the average values of the above four quality indices over 10 realizations of the random test
networks. Three different pairs (n1, n2) are considered; each table refers to different densities ξ and η; T stands for the
execution time in seconds.

A comparison of the tables shows that the spectral bipartization algorithm is always more accurate than the red–black
ordering method. At the same time, it is much slower than the MatlabBGL function, as in our experiments we compute
the whole spectrum of the adjacency matrix, without exploiting its sparsity. To be competitive with existing methods for
large-scale problems, the spectral method should be modified in order to perform its task by suitable iterative methods,
in order to take advantage of the structure of the adjacency matrix.

From the tables, it can also be observed that knowing in advance the cardinality of the two sets V1 and V2 leads in
some cases to a substantial improvement in the quality of the results.

To further investigate the behavior of the bipartition error, we construct a matrix A of the form (2.1), letting n1 = 512
and n2 = 256, with a sparse random block C having density ξ = 10−2. After randomly permuting the rows and columns,
we apply our algorithms to this matrix, as well as to those perturbed by replacing the (1,1) and (2,2) blocks by a sparse
matrix with density η = 10−6, 10−5, . . . , 10−3. The graph on the left of Fig. 4 shows the value of the bipartization error
EN obtained when the three methods are applied to an unweighted graph, the one on the right corresponds to a weighted
graph. All values are averaged over 10 realizations of the random matrices. Both graphs show that the bipartization
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Table 3
Results for ξ = 10−1 , η = 10−4 .
(256,128) specbip-n1 specbip Red–black

IB 0.00e+00 0.00e+00 7.71e−02
EB 0.00e+00 5.83e−04 1.35e−02
EA 2.43e−02 4.24e−02 –
EN 0.00e+00 2.58e−02 3.18e−01
T 5.56e−02 6.05e−02 3.07e−03

(512,256) specbip-n1 specbip Red–black

IB 0.00e+00 0.00e+00 1.44e−01
EB 0.00e+00 8.19e−04 8.01e−03
EA 8.02e−03 5.19e−02 –
EN 0.00e+00 4.47e−02 3.31e−01
T 2.77e−01 2.76e−01 1.08e−03

(1024,512) specbip-n1 specbip Red–black

IB 0.00e+00 0.00e+00 2.60e−01
EB 0.00e+00 1.04e−03 6.54e−03
EA 2.33e−03 9.04e−02 –
EN 0.00e+00 8.71e−02 3.28e−01
T 2.02e+00 2.07e+00 3.99e−03

Fig. 4. Bipartition error ẼN for (n1, n2) = (512, 256); on the left unweighted random graphs, on the right weighted random graphs, both with
ξ = 10−2 , as a function of η = 0, 10−6, 10−5, . . . , 10−3 .

Fig. 5. Bipartition error ẼN for (n1, n2) = (512, 256); on the left unweighted random graphs, on the right weighted random graphs, both with
η = 10−2 , as a function of ξ = 10−3, 10−2, 10−1, 1.

determined by our approaches is closer to the correct one, with respect to red–black ordering, with specbip-n1 producing
slightly better results. The performance of all algorithms degrades as the perturbation becomes less sparse.

In Fig. 5, we display the value of EN for the same examples, for a fixed η = 10−2, and letting the density ξ of the block
C take values in [10−3, 1]. The red–black ordering method is more accurate than the specbip algorithm for very sparse
networks, while providing the correct cardinality of the set V1 to specbip-n1 produces the best results.
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Fig. 6. Spectrum of the reduced adjacency matrix for the NDyeast network.

5.1. The NDyeast network

We illustrate the performance of the spectral bipartization algorithmwhen applied to the detection of anti-communities
by analyzing a case study. The NDyeast network describes the protein interaction network for yeast, each edge
representing an interaction between two proteins [22]. The data set is available at [23]. In this section we analyze this
network, testing the presence of a bipartization or of a large anti-community.

The NDyeast network has 2114 nodes. There are 74 self-loops (nodes connected only to themselves) and 268 nodes
disconnected from the network. The adjacency matrix resulting by removing both the self-loops and the isolated nodes
has size n = 1846, and it has 149 connected components. They were identified by the getconcomp function from the
PQser Matlab toolbox [24].

In the case of a reducible adjacency matrix, the spectral bipartization algorithm should treat each single connected
component one at a time. Since most of the components in the NDyeast network are very small, often just 2 or 3 nodes,
we consider the only component with more than 10 nodes, which has 1458 nodes. We process the reduced adjacency
matrix A with our bipartization method.

The algorithm determines n0 = 564 zero eigenvalues (see Fig. 6) and identifies two sets of nodes with cardinalities
n1 = 1011 and n2 = 447.

The starting adjacency matrix is displayed in the top-left spy plot of Fig. 7. The top-right plot shows the same matrix
after the ordering produced by the spectral bipartization algorithm is applied to its rows and columns. This graph clearly
displays that there is a large group of nodes in the NDyeast network that do not communicate much among themselves,
that is, an anti-community. In the same graph we show the bipartization detected by the algorithm by means of red lines.

Our algorithm can also be applied by supplying the values of (n1, n2), rather than estimating them from the number
of zero eigenvalues. If we do this by setting ñ1 = 800 and ñ2 = 658, we obtain the bottom left graph in the same figure.
It shows that in the group of the first 800 proteins, only four of them directly interact.

The bottom-right graph of Fig. 7 displays the result of the red–black ordering method, which does not supply any
useful information.

We remark that a data set similar to NDyeast (but different) is available at [23]. It is called simply yeast, it consists of
2361 nodes, and it refers to the paper [25]. By processing this data set with our spectral algorithm, we obtain results very
similar to the ones displayed in Fig. 7.

5.2. The geom network

We also applied the spectral bipartization algorithm to a weighted graph, namely, the geom network, It is extracted
from the Computational Geometry Database geombib by B. Jones (version 2002). Nodes represent authors; the value of
the entry (i, j) of the adjacency matrix is the number of papers coauthored by authors i and j. The data set is available
at [23].

The geom network has 7343 nodes and 11898 edges. After removing 1185 isolated nodes, the network presents 875
connected components, the largest of which has 3621 nodes. We applied the bipartization method to the adjacency matrix
associated to this component.

The eigenvalues are displayed in Fig. 8: 533 of them are detected as being numerically zero, and the cardinalities of
the two node sets are n1 = 2077 and n2 = 1544. The left graph of Fig. 9 reports the spy plot of the original adjacency
matrix; the graph on the right shows the matrix reordered by the spectral bipartization algorithm. The graph highlights
the presence of an anti-community of about 1000 authors, who did not collaborate with each other when writing papers.



14 A. Concas, S. Noschese, L. Reichel et al. / Journal of Computational and Applied Mathematics 373 (2020) 112306

Fig. 7. Analysis of the NDyeast network: top-left, the starting adjacency matrix; top-right, the node reordering produced by the spectral algorithm;
bottom-left, the reordering induced by the choice (ñ1, ñ2) = (800, 658); bottom-right, the output of the red–black ordering method.

Fig. 8. Spectrum of the reduced adjacency matrix for the geom network.

6. Conclusion

This paper describes how an approximate bipartization of a given graph can be determined by solving a sequence
of simple optimization problems. The technique can also be applied to detect anti-communities. Computed examples
illustrate the performance of the method described.
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Fig. 9. Analysis of the geom network: on the left, the starting adjacency matrix; on the right, the node reordering produced by the spectral algorithm.
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