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We describe a computational method for parameter estimation in linear regression, that is 
capable of simultaneously producing sparse estimates and dealing with outliers and heavy-
tailed error distributions. The method used is based on the image restoration method 
proposed in Huang et al. (2017) [13]. It can be applied to problems of arbitrary size. The 
choice of certain parameters is discussed. Results obtained for simulated and real data are 
presented.

© 2020 IMACS. Published by Elsevier B.V. All rights reserved.

1. Introduction

Linear regression is one of the basic tools of Statistics (see, e.g., [30]). The classical theory, based on ordinary least squares 
(OLS) estimates, has a long history and is well understood; however, it has important limitations. Two of those limitations 
are the requirement for non-collinear predictors and sensitivity to outliers.

Regularization has been used in Statistics, under different names, for a few decades. The goals have been diverse, but 
concentrated on three aspects: improving the stability of estimates, improving generalizability and prediction accuracy, 
and model selection. In linear regression, regularization has been successful in dealing with collinear predictors, producing 
“shrunken” and even sparse coefficient estimates (see, e.g., [29]).

Outliers can strongly affect parameter estimates in OLS; this is also true in regularized methods that use quadratic 
loss for the fidelity (fitness) term. In multiple regression, manual outlier identification can be particularly challenging, as 
several outliers can mask each other (see, e.g., [14]). This makes it imperative to use methods that can deal with outliers 
automatically.

In this article we propose a method for parameter estimation capable of simultaneously producing sparse estimates in 
the presence of collinearity and dealing with outliers and heavy-tailed error distributions. Our method is based on solving 
a non-convex optimization problem, and our algorithm can be applied to the solution of small and large problems.

The minimization method described has previously been applied to image reconstruction problems [13,17]. It is the 
purpose of the present paper to explore its application to regression problems and compare its performance under different 
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parameter choices. We therefore present the method with notation that is commonly used in discussions on regression 
problems, which varies slightly from the notation in image reconstruction.

Remarks about notation. Throughout this paper, we define ‖z‖p =
(∑m

j=1 |z j|p
)1/p

for z = [z1, z2, . . . , zm]T ∈ Rm and p > 0. 
The function z �→ ‖z‖p is a norm for p ≥ 1; we will be particularly interested in the situation when 0 < p < 1, and will, for 
convenience, abuse terminology and refer to ‖z‖p as a norm also for the latter values of p, even though this is not a norm 
for p < 1. The superscript T denotes transposition.

2. Formulation of the estimation criterion

2.1. The regression problem

Consider the linear regression problem

y = Xβ + ε, with E(ε) = 0 and Var(ε) = σ 2 In, (1)

where X = [x1, . . . , xn]T ∈Rn×m contains the values of the m covariates on the n observations, y ∈Rn is the response, and 
In denotes the identity matrix of order n.

The OLS estimator, given by

β̂OLS = arg min
β∈Rm

||y − Xβ||22, (2)

has several desirable properties that have made it extremely popular: it is the best linear unbiased estimator (BLUE) for model 
(1) by the Gauss-Markov Theorem (here “best” means minimum variance). Moreover, it coincides with the maximum likeli-
hood estimator if the errors are Gaussian. In this case, the solution easily can be computed by QR factorization or singular 
value decomposition of the matrix X . The solution β̂OLS is unique only if rank(X) = m, which, in particular, implies that 
m ≤ n. Furthermore, the estimate becomes unstable (numerically) and highly variable (statistically) if X is badly conditioned 
due to approximate multiple collinearity among the covariates.

It is often of interest to find a solution to the regression problem also in situations when m > n, or when the covariates 
are highly correlated and exhibit multiple collinearity [29]. One approach is to get rid of some covariates until X becomes 
better conditioned, but this can involve an arduous selection problem. Regularized regression offers a way to obtain useful 
solutions to the regression problem and sometimes provides a method for model selection, i.e., selection of a subset of 
covariates to be included in the model.

Regularized regression can be understood as constraining the possible solutions β . By Lagrangian relaxation, it results 
in the addition of a penalty term, multiplied by a regularization parameter. It can sometimes also be recast as a Bayesian 
approach, by imposing a prior distribution on β . In general, these methods produce biased estimates, and one of the goals 
is to trade the increase in bias for a reduction in variance. Two important and popular methods are ridge regression [11]
and Lasso [28].

Ridge regression [11] consists in adding a penalty term based on the �2-norm. Instead of (2), we consider the optimization 
problem

β̂ridge(λ) = arg min
β∈Rm

{
||y − Xβ||22 + λ||β||22

}
, (3)

for some λ > 0. The solution can be expressed as

β̂ridge(λ) = (X T X + λI)−1 X T y.

Adding a positive multiple of the identity I to X T X is a straightforward way to obtain an invertible matrix even if X T X is 
singular. In the context of ill-posed problems, this approach is known as Tikhonov regularization [10]. The effect of the ridge 
penalty is to shrink the estimates towards zero; the shrinkage is larger when λ is larger.

Lasso [28] is a regularized regression method based on the optimization problem

β̂ lasso(λ) = arg min
β∈Rm

{
||y − Xβ||22 + λ||β||1

}
(4)

for λ > 0. The Lasso solution β̂ lasso(λ) tends to be sparse, i.e., it tends to have entries exactly equal to zero (larger values of 
λ lead to greater sparsity). This property has been exploited as a method for model selection. However, the minimization 
(4) also shrinks the non-zero components of the solution. A larger value of λ results in more shrinkage. Achieving the 
appropriate level of sparseness might lead to excessive shrinkage and bias [20].
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Fig. 1. Level curves of the fitness (red) and penalty (blue) terms, in a penalized regression setting. A solution to the optimization problem (5) is obtained 
when level curves meet and are tangent to one another (by the Lagrange multipliers method); the center of the fitness term level curves corresponds to 
the non-penalized solution: OLS for p = 2 and LAD (least absolute deviations) for p = 1. The top left picture corresponds to ridge regression, while the top 
right corresponds to Lasso. The bottom two figures use an �1-fidelity term (p = 1), producing non-ellipsoidal level curves; the sharper spikes in the penalty 
level curves obtained with q < 1 increase the chance of obtaining zero entries in β̂ , even when the fitness level sets are non-ellipsoidal. (For interpretation 
of the colors in the figure(s), the reader is referred to the web version of this article.)

2.2. �p-�q estimation

This estimation method encompasses (3) and (4) as particular cases (rescaling λ if necessary). We define the �p -�q

estimator for β as the solution to the optimization problem

β̂ lplq(p,q,λ) = arg min
β∈Rm

{
1

p
||y − Xβ||p

p + λ

q
||β||qq

}
, (5)

where p, q, and λ are positive constants. The first term inside the argmin function is referred to as the fidelity term and the 
second as the regularization term. We are primarily interested in minimization problems (5) with q < 1 and 1 ≤ p ≤ 2. Note 
that when q < 1 or p < 1, the minimization problem is non-convex.

2.3. Geometric intuition

Fig. 1 shows the geometric intuition behind �p -�q regularized estimation, including ridge regression and Lasso. By the 
Lagrange multiplier method, a solution to the optimization problem (5) is found where level curves for the fitness term and 
level curves for the penalty term meet in an “osculatory manner”. This includes the cases when one of the curves has a 
“spike” or a sharp point at the intersection. Since p < 2 leads to non-ellipsoidal level sets, the sharper spikes appearing on 
the level sets of the penalty term when q < 1 help increase the probability of zeros appearing in the solution vector, i.e., 
the solution being at the tip of a spike.

2.4. Bayesian justification

The definition of β̂ lplq(p,q,λ) in (5) can be justified with a Bayesian argument by using the generalized error distribu-
tion (GED) and maximum-a-posteriori estimation. The GED, first studied by Subbotin [1,27], is a location-scale family of 
distributions with density function
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ξν,μ,σ (x) = cν,σ exp

(
−|x − μ|ν

νσ ν

)
.

It includes the Gaussian and Laplacian (or double exponential) distributions as particular cases, for ν = 2 and ν = 1, respec-
tively. When ν < 2, we obtain distributions with heavier tails than the Gaussian distribution. This makes the GED useful for 
modeling situations in which the error term has a propensity for outliers [1].

We now set up a GED-based Bayesian version of the regression model (1). Assume that β = [β1, β2, . . . , βm]T is a random 
vector with prior distribution

β j
i.i.d∼ fβ = fq,0,σβ

, j = 1,2, . . . ,m,

that x1, x2, . . . , xn are either fixed or independent of β , and that the conditional density for y = [y1, y2, . . . , yn]T is f y|β,x =
ξp,xT β,σy

.
After observing independent samples y1, y2, . . . , yn with corresponding covariate vectors x1, x2, . . . , xn , the prior density 

for β is updated to the posterior as follows:

fβ|y,X ∝ exp

(
− 1

pσ
p
y

n∑
i=1

|yi − xT
i β|p

)
exp

⎛
⎝− 1

qσ q
β

m∑
j=1

|β j|q
⎞
⎠

= exp

(
− 1

pσ
p
y

||y − Xβ||p
p − 1

qσ q
β

||β||qq
)

.

Then the maximum-a-posteriori estimate for β is obtained by minimizing

1

p
||y − Xβ||p

p + σ
p
y

σ
q
β

1

q
||β||qq,

which is the optimization problem (5) with λ = σ
p
y /σ

q
β .

2.5. �p-�q regularization and thresholding

Notice that both the prior and posterior for β are continuous distributions in Section 2.4, and therefore assign proba-
bility zero to the event of having any component of β exactly equal to zero. However, the use of maximum-a-posteriori 
estimation results in a positive probability for such an outcome whenever q ≤ 1, since the objective function in (5) is not 
differentiable, as illustrated by the contour plots in Fig. 1. The following example, extremely simple as it is, clarifies this 
point and establishes a connection with thresholding functions.

Consider this simple situation: Let y = β + ε, with β ∼ ξq,0,λ and ε ∼ ξp,0,1, independently. The maximum-a-posteriori 
estimate for β given y corresponds to the �p -�q estimate for a regression problem with intercept but no covariates, and 
only one observation: the objective function in (5) is

g y(β) = 1

p
|y − β|p + λ

1

q
|β|q,

and the posterior distribution of β given y is proportional to exp(−g y(β)).
We now describe the behavior of g y(β) and its minimizer β̂lplq = β̂lplq(p,q,λ,y) , and how that behavior changes with y. 

Fig. 2 shows the behavior of the function g y for different values of p and q. Without loss of generality, we may assume 
that y > 0 (the case y < 0 is symmetric). The function g y has no critical points for β < 0 or β > y. If q ≤ 1, then g y is not 
differentiable at β = 0, and if p ≤ 1, then it is not differentiable at β = y, while for 0 < β < y, we have

g′
y(β) = −(y − β)p−1 + λβq−1.

If either p, q > 1 or p, q < 1, so that p − 1 and q − 1 have the same sign, then there is a unique critical point of g y in (0, y): 
when p, q > 1, it is the global minimizer, but when p, q < 1, it is a local maximum, and the global minimizer is found at 
either 0 or y; see Fig. 2, Panels A, B, and C.

When p = 2 and q = 1 (the Lasso case), we have g′
y(β) > 0 for all β ∈ (0, y) (resulting in β̂lplq = 0) whenever y < λ, 

and β̂lplq = y − λ whenever y > λ. In other words, y �→ β̂lplq is the soft thresholding function with threshold λ, defined by 
y �→ max{0, |y| − λ} · sign(y); see Fig. 3, Panel C.

The case 0 < q < p ≤ 1 produces the following behavior: For y < (λp/q)1/(p−q) , we obtain β̂lplq = 0, while for y >
(λp/q)1/(p−q) , we have β̂lplq = y. That is, y �→ β̂lplq is the hard thresholding function, with threshold (λp/q)1/(p−q) defined by 
y �→ y × 1{y>threshold} .

The situation when p ≤ q ≤ 1 does not seem to be useful, as the result is either a reversed hard thresholding (zero for 
large values of y), constant equal to either 0 or y (depending on the value of λ), or undefined because of multiple global 
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Fig. 2. Plots of the objective function gy(β) from the simple example in Section 2.5 for different values of p, q, and y. Vertical dotted lines mark local 
minima (other than at β = 0). Panels D, E, and F correspond to the situation of most interest when 0 < q < 1 < p ≤ 2: Small values of |y| result in the 
minimum being attained at 0; larger values of |y| lead to the appearance of another local minimum (Panel E). Finally, even larger values of |y| make that 
local minimum become the global minimum.

minima. The case 1 < q ≤ p ≤ 2 results in functions that “shrink” y, with more shrinkage for small values of y if q < p
(see Fig. 3, Panels A and B), but without inducing sparsity. In general, p < q does not lead to useful results, as we obtain a 
function that expands small values of y, or the reverse hard thresholding function mentioned above.

The case of main interest is 0 < q < 1 < p ≤ 2. (See Fig. 2, Panels D, E, and F, and Fig. 3, Panels D, E, and F.) There 
is an inflection point for g y between 0 and y; as y grows, the inflection point becomes a critical point, and immediately 
generates a local maximum (closer to 0) and a local minimum (closer to y). As y keeps growing, the value of g y at that 
local minimum eventually becomes smaller than g y(0), becoming the global minimum. That is, β̂lplq as a function of y has 
a jump discontinuity. The following proposition summarizes the results for this case.

Proposition 1. Assume 0 < q < 1 < p ≤ 2, and consider the function U : y �→ β̂lplq , as above.

(1) There exists t > 0 (which depends on p, q, and λ), such that U is identically equal to zero for |y| < t.
(2) U has jump discontinuities at −t and t.
(3) For |y| > t, U (y) has the same sign as y, and |U (y)| < |y|.
(4) A lower bound for t is λ1/(p−q) .
(5) An upper bound for t is (λp/q)1/(p−q) .
(6) As |y| → ∞, |y − U (y)| = |y| − |U (y)| → 0.

Proof. Without loss of generality, we may assume that y > 0. Then g y is decreasing on (−∞, 0] and increasing on [y, ∞). 
Notice that limβ→0+ g′

y(β) = +∞. Therefore any local minimum in (0, y) is away from zero. For small values of y, g y is 
increasing on (0, y): If there is a 0 < β < y such that g′

y(β) = 0, that is, (y − β)p−1 = λβq−1, then yp−1 > λyq−1, from 
which we conclude that y > λ1/(p−1) . Taking

t = sup{y : U (y′) = 0,∀y′ ∈ (0, y)}
shows (1) and (4). For (5), y = (λp/q)1/(p−q) is the value for which g y(y) = g y(0), which implies that the global minimum 
was achieved at a value 0 < β̂lplq < y, since g′

y(y) > 0. This also shows (2), since t < ∞, and (3). For (6), notice first that 
g′′

y has at most one zero and, therefore, there are at most two critical points. Now let ε > 0. Since q − 1 < 0, if y is large 
enough, then λ(y − ε)q−1 < εp−1. This implies that g′

y(y − ε) < 0, and it follows that the global minimum is achieved at a 
value β̂lplq > y − ε . �

Fig. 3 shows a few thresholding and shrinkage functions for different combinations of values of p and q.
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Fig. 3. Plots of the threshold functions U (y) from Section 2.5 for p = 2 and different values of q. The diagonal dashed line is the identity. Panel A 
corresponds to ridge regression and gives shrinkage by a scalar factor. Panel C corresponds to lasso. The function U in this case gives soft thresholding. 
Panel B shows an intermediate function that shrinks small values more, but not all the way to zero. The Panels D, E, and F correspond to the situation of 
most interest when 0 < q < 1 < p ≤ 2: vertical dotted lines mark the theoretical bounds (lower and upper) for the threshold t from Proposition 1. As q gets 
closer to 0, the thresholding function approaches the hard thresholding function h(y) = y1{|y|≥t} .

3. Numerical methods

This section outlines the method for the solution of the minimization problem (5) that is used for the computed exam-
ples in Sections 4 and 5. Further details can be found in [13]. The minimization problem (5) can be written in more general 
form as

min
β∈Rm

J (β), J (β) = 
fid(β) + λ
reg(β), (6)

where 
fid(β) and 
reg(β) are referred to as the fidelity term and the regularization term, respectively, and the parameter 
λ > 0 controls the trade-off between these terms; see [4,5] for a discussion on how to determine λ in the context of ill-
posed inverse problems. For the subsequent analysis, it is convenient to write the fidelity and regularization terms in the 
form


fid(β) = 1

p

n∑
i=1

φp
(
(Xβ − y)i

)
, 
reg(x) = 1

q

m∑
j=1

φq
(
(β) j

)
, (7)

with the function φz :R →R+ ∪ {+∞} given by

φz(t) = |t|z, z ∈R , (8)

where 0 < p, q ≤ 2. We remark that the minimization problem discussed in [13] allows a regularization matrix L in the 
regularization term, but the application discussed in the present paper does not require this generality.

We note that the model (6)–(8) is convex and smooth when 1 < p, q ≤ 2, but nonconvex and nonsmooth when 0 < p < 1
or 0 < q < 1. Minimization problems of the type (6)-(8) appear in many applications in different areas, including numerical 
linear algebra [2,33], compressive sensing [6–9,19], and image restoration [8,13,17,18,25].

In the setting of linear regression, the matrix X in general is not square, and contains the covariate data. While in 
classical linear regression X is required to have linearly independent columns, in modern statistical applications that often 
fails, and often there are more columns than rows.

We remark that the structure of the matrices X that arise in linear regression is quite different from the structure 
encountered in image processing applications [4,5,13,17], where X is the discretization of a blurring operator. For instance, 
if the blur is space invariant, then the matrix X is square with a Toeplitz-type structure, which however may be modified 
due to boundary conditions. We found that models (6)–(8), that arise from linear regression, often are more difficult to 
solve than models from image restoration, in the sense that it is more important for the former models that a good initial 
approximate solution be available. We compute a suitable initial solution by solving a convex �2-�1 minimization problem.
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Fig. 4. (a) Plots of the penalty function φz(t) defined in (8) for some z-values, and (b) of the associated smoothed functions φz,ε(t) defined in (9) with 
ε = 0.1.

One of the most popular and effective methods for the solution of �p -�q minimization problems of the form (6)–(8), 
when 0 < p, q ≤ 2 with pq < 4, is the iteratively reweighted norm (IRN) algorithm [23], also known as the iteratively 
reweighted least-squares (IRLS) algorithm [31]. This solution approach is equivalent to the (multiplicative) half-quadratic 
method [8] and to the gradient linearization iterative procedure [21]. The IRN method solves a sequence of penalized 
weighted least-squares problems that differ from each other by diagonal weighting matrices. Each one of these least-squares 
problems is solved by the conjugate gradient (CG) algorithm; see [23,24].

Based on the observation that the weighting matrices generated by the IRN method do not change very quickly dur-
ing the iterations, two alternative approaches have recently been proposed in [13,17]. They extend the generalized Krylov 
subspace (GKS) method proposed in [16] for the case p = q = 2 to the situation when 0 < p, q ≤ 2 and pq < 4. Instead of 
solving each least-squares problem generated independently by the conjugate gradient method, these methods use a gen-
eralized Krylov subspace determined by solving previously generated least-squares problems to solve the new least-squares 
problem at hand. Computed examples in [17] illustrate that this approach may require significantly fewer matrix-vector 
product evaluations than the IRN scheme described in [23,24].

The GKS methods in [13,17] are majorization-minimization (MM) methods. They replace the original, possibly noncon-
vex, �p-�q problem (6)-(8) by a sequence of simple convex weighted least-squares problems. The kth iteration of the MM 
approach consists of two steps: A majorization step, that generates a surrogate convex quadratic functional that majorizes 
the �p-�q functional, and a minimization step that finds a minimizer of the majorant. Two quadratic majorization techniques 
are described in [13], one of them is the “adaptive aperture” method, which we will outline. It is used in the computed 
examples of this paper.

Other solution methods for solving the problem (6)-(8) have been described in the literature; see, e.g., [7,12,22,32,33]. 
It is outside the scope of the present paper to compare these methods. Here we only note that the method used allows 
flexibility in the choice of p and q, which makes it attractive for many problems.

We describe the construction of quadratic majorants. Further details can be found in [13].

Definition 1. Let G(β) : Rm → R be a continuously differentiable function. Then the function Q(β, γ ) : Rm × Rm → R is 
said to be a quadratic tangent majorant for G(β) if for any γ ∈Rm the following conditions hold:

c1) Q(β, γ ) is quadratic in β ,
c2) Q(γ , γ ) = G(γ ),
c3) ∇βQ(γ , γ ) = ∇βG(γ ),
c4) Q(β, γ ) ≥ G(β) for all β ∈Rm ,

where ∇β denotes the gradient with respect to the variable β .

The determination of quadratic tangent majorants requires the function G to be continuously differentiable; cf. condition 
c3) above. We therefore smooth the functional J (β) when 0 < p ≤ 1 or 0 < q ≤ 1. A popular smoothed version of φz is 
given by

φz,ε(t) =
(√

t2 + ε2
)z

with

{
ε > 0 for 0 < z ≤ 1,

ε = 0 for 1 < z ≤ 2.
(9)

To allow quadratic majorization, we replace the possibly nonsmooth original �p -�q minimization problem (6)-(8) by the 
smoothed minimization problem

min
β∈Rm

Jε(β), Jε(β) = 1

p

n∑
φp,ε

(
(Xβ − y)i

) + λ

q

s∑
φq,ε

(
(β) j

)
, (10)
i=1 j=1
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where a common value ε > 0 of the smoothing parameter is used for the penalty functions in the fidelity and regularization 
terms. Figs. 4(a)-(b) show the original and smoothed penalty functions φz and φz,ε , respectively, for several values of the 
parameter z of interest in this paper. Note that the function φz is not smoothed when 1 < z ≤ 2.

One can show that the quadratic functional

Q(β,β(k)) = 1

2

∥∥∥(W (k)

fid )1/2(Xβ − y)

∥∥∥2

2
+ λ

2

∥∥∥(W (k)
reg)

1/2Lβ
∥∥∥2

2
+ c,

is a tangent majorant for Jε(β) at β = β(k) . All terms that are independent of β are collected in the term c, and the 
matrices W (k)

fid and W (k)
reg are defined by

W (k)

fid = diag(w(k)

fid ), w(k)

fid =
((

Xβ(k) − y
)2 + ε2

)p/2−1

,

W (k)
reg = diag(w(k)

reg), w(k)
reg =

((
Lβ(k)

)2 + ε2
)q/2−1

,

where all the operations are meant element-wise; see [13] for details.
The minimization step in the kth iteration of the MM-GKS method can be written as

β(k+1) = arg min
β∈Rm

[∥∥∥(W (k)

fid )1/2(Xβ − y)

∥∥∥2

2
+ λ

∥∥∥(W (k)
reg)

1/2β
∥∥∥2

2

]
.

This minimization problem has a unique solution if

Ker
(

X T W (k)

fid X
)

∩ Ker
(

W (k)
reg

)
= {0}, (11)

where Ker(M) denotes the null space of the matrix M . This requirement generally is satisfied. The MM method is shown in 
[13] to determine a stationary point of the functional (10) when condition (11) holds.

4. Simulations

This section describes a simulated numerical experiment to show the performance of the minimization method of Sec-
tion 3. We apply the method to minimization problems with synthetic data and compare its performance to the Lasso 
method.

We first describe how we generated the data. The matrix X ∈R200×250 is determined by using independent draws from 
the standard normal distribution. The vector β ∈R250 is such that 10 entries are chosen randomly with uniform distribution 
with standard deviation 1, while the remaining 240 entries are set to zero. Starting from X and β , we computed y according 
to

y = Xβ + εGED + εGauss,

where εGED is a GED variable with p = 1.5 and σ = 1, and εGauss is such that each entry is the realization of a Gaussian 
variable with 0 mean and scaled such that ‖εGauss‖2 = 0.01‖Xβ‖2.

To generate random numbers from the GED, we exploit the following property: If S ∼ U ({−1, 1}) and Y ∼ Gamma(1/ν,

1/ν) are independent, then σ SY 1/ν + μ has a GED distribution with parameters (μ, ν, σ). This is easy to prove; the result 
also can be found in [1, Eq. (4.2)].

Since the noise is a mixture of Gaussian and GED noise with p = 1.5, we set p = 1.8 and q = 0.5, and use cross validation 
to select the parameter λ; we refer to Stone [26] for a discussion on cross validation and to [5] for an application of cross 
validation to �p-�q minimization in the context of image reconstruction. The smoothing parameter in (10) is ε = 10−3. We 
will set all entries of the computed solutions that are smaller than ε in magnitude to zero.

Since q < 1, the functional (10) is non-convex. Therefore, the computed solution may depend on the initial guess. To 
ensure that the initial guess is not too far from a desirable stationary point, we use the solution of the Lasso minimization 
as initial guess for the MM method.

Fig. 5 and Table 1 compare the method of Section 3 to the Lasso method and �2-�q minimization. Fig. 5 displays the 
computed vectors β and a scatter plot, i.e., the graphs obtained by plotting the magnitude of the computed coefficients 
against the magnitude of the exact ones. Visual comparison of the computed coefficients shows that Lasso fails to recognize 
as 0 most of the zero entries of β , while both the �p -�q and �2-�q minimization methods are able to better identify the zero 
elements of β . However, the �2-�q method does not recognize as zeros 6 entries that are supposed to be nonvanishing and 
sets to 0 one nonzero entry of β , while �p-�q only recognize 2 additional nonzero entries and does not fail to identify any 
nonzero entry of β . The scatter plot shows that, due to the use of the 1-norm in Lasso, this method shrinks the nonzero 
coefficients. Shrinkage also can be observed in the solution computed by the �2-�q method, but to a lesser extent. The 
method of Section 3 is able to impose sparsity without shrinkage.
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Fig. 5. Reconstructions and scatter plots. Panels (a) and (b) report the reconstructions obtained with the �p -�q method, and associated scatter plots. Panels 
(c) and (d) report reconstruction determined by the �2-�q method and the corresponding scatter plot. Panels (e) and (f) report the reconstruction and the 
scatter plot obtained with Lasso. The exact solution is displayed as a dotted line, while the solid line represents the computed approximate solution.
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Table 1
Comparison of the results obtained with Lasso, �2-�q , and �p -�q in the com-
puted example. For each method we report the number of non-zero entries 
(NNZ), the relative restoration error (RRE), and the residual error.

Method NNZ RRE Residual error

�p -�q 12 0.10434 0.11604
�2-�q 15 0.15308 0.15538
Lasso 118 0.19842 0.20427

Table 1 shows the number of non-zero entries identified in each computed solution. Recall that we consider any entry 
of the computed solution that is of magnitude smaller than ε as zero. The table also shows the relative reconstruction error

RRE(β̂) =
∥∥∥β − β̂

∥∥∥
2

‖β‖2
,

where β denotes the exact solution of the problem and β̂ the computed one. Finally, Table 1 displays

Residual error(β̂) = ‖Xβ − Xβ̂‖2

‖Xβ‖2
.

Moreover, we consider the errors of type I and II, the first one is the percentage of nonzero entries of β that are set to 0
in the reconstruction and the latter is the percentage of nonzero entries in the reconstruction that are actually zero in the 
exact β .

Table 1 shows the �p -�q method of Section 3 to give more accurate approximations β̂ of the desired solution β in terms 
of error β − β̂ and of residuals.

5. Example with real data: genomic association study for liver metabolites in mice

In this section, we use a real data set of fairly large size to illustrate the combined effect of using q < 1 for sparsity 
and p < 2 for dealing with outliers. The data are part of a genomic study in mice [15]. A total of 246 males, from 99 
strains of inbred and recombinant inbred mice, were assayed using microarrays to measure the expression level of 22,716 
genes/transcripts. Separately, the levels of 283 metabolites were also measured for those mice, with the goal of establishing 
associations between gene expression levels and metabolite levels.

For our example, we use only one of the metabolites, pyridoxate, which produced the strongest association result in the 
original study. Rather than performing 22,716 tests of association, as is customary, we use a single large-scale regression. 
Thus, our regression problem has 246 observations and 22,716 covariates, resulting in a design matrix X of size 246 ×
22, 717 (including the intercept).

As expected from the discussion in Section 2.5, the results for p < 1 are highly variable and often non-optimal. This 
difficulty does not arise when we set q < 1. In this example, we used values of p between 1.25 and 2.

We fitted 392 �p -�q models, using all combinations of values for p, q, and λ in Table 2. After fitting the model with 
p = q = 2 and λ = 0.8 (this corresponds to ridge regression), subsequent fits used available computed solutions with the 
closest p- q- and λ-values as starting points for the iterations. Note that, differently from the simulated case of Section 4, 
we do not use cross validation to determine the value of λ. In this way we are able to show the robustness of the proposed 
approach with respect to the choice of this parameter.

All the models identified aldehyde oxidase 3 (Aox3) as the gene whose expression is most strongly associated to pyridoxate 
levels, in agreement with the original study. Results for the other genes vary.

Fig. 6 shows residuals-versus-fitted-values plots for four models that illustrate the effect of using p < 2. All models 
were fitted with q = 0.75 to encourage sparseness of the computed solution. The models A and C were fitted using p = 2, 
while the models B and D used p = 1.25. In order to make meaningful comparisons, the values of λ were chosen so that 
the computed solutions for models B and C have similar residuals of about the same �1-norm (expressed here as Mean 
Absolute Deviation, MAD), while at the same time model A has the same level of sparsity as model B (about 89 non-zero 
coefficients), and model D has the same level of sparsity as C (about 125 non-zero coefficients). Notice that for the same 
level of sparsity, p = 1.25 results in reduced MAD; similarly, for the same MAD, p = 1.25 results in greater sparseness. 
Table 3 summarizes the results.

Examination of the outliers in the plots suggests that the improvements obtained with p = 1.25 result from allowing the 
outliers to be farther from the predicted value, while fitting better the bulk of the data points. In this case, the bulk of the 
data have fitted values between −0.5 and 1.5, while a number of outliers are spread to the left. It is visible that, for the 
same sparsity, the models with p = 1.25 allow for the outliers to settle farther from the horizontal axis, while keeping the 
bulk of the points more tightly bound to the axis.
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Table 2
Values for p, q, and λ used in the computations. The values of p < 1 led to highly variable and 
suboptimal results.

p 2.00 1.75 1.50 1.25 1.00 0.75 0.50
q 2.00 1.75 1.50 1.25 1.00 0.75 0.50
λ 0.80 0.69 0.59 0.48 0.37 0.26 0.16 0.05

Fig. 6. Plots of residuals vs. fitted values, for four models (these are the same models in Table 3). All models were fitted with q = 0.75; models A and C have 
p = 2, while B and D use p = 1.25. The values of λ were chosen so that B and C have similar residual �1 norm (expressed here as Mean Absolute Deviation, 
MAD), A has the same level of sparsity as B (about 89 non-zero coefficients), and D the same level of sparsity as C (about 125 non-zero coefficients). Notice 
that for the same level of sparsity, p = 1.25 results in reduced MAD; similarly, for the same MAD, p = 1.25 results in greater sparseness. Examination of 
the outliers in the plots suggests that the improvements obtained with p = 1.25 result from allowing the outliers to be farther from the predicted value, 
while fitting better the bulk of the data points.

Table 3
Models in Fig. 6. All models were fitted with q = 0.75. Models A and C have p = 2, while 
B and D use p = 1.25. The values of λ were chosen so that B and C have similar residual 
�1-norm (expressed here as Mean Absolute Deviation, MAD), A has the same level of sparsity 
as B (about 89 non-zero coefficients), and D the same level of sparsity as C (about 125 non-
zero coefficients). Notice that for the same level of sparsity, p = 1.25 results in reduced MAD; 
similarly, for the same MAD, p = 1.25 results in greater sparseness.

p q λ MAD β̂ non-zeros

Model A 2.00 0.75 0.82 0.271 88
Model B 1.25 0.75 0.81 0.185 89
Model C 2.00 0.75 0.42 0.185 122
Model D 1.25 0.75 0.63 0.126 127

6. Discussion

We considered the use of loss functions based on �p -(quasi)norms, in which, for fixed p, q > 0, we define the regression 
optimization problem by setting the fitness term to be the �p -(quasi)norm of the residual vector, and the penalty term to be 
the �q-(quasi)norm of the coefficient vector, possibly transformed by a linear transformation L, and scaled by a regularization 
parameter λ > 0.

The use of loss functions for the fitness term that penalize outliers to a lower degree than �2 has been studied for a long 
time in the robustness literature [14]. The use of �1 for the penalty term has become a standard tool in Statistics [28], while 
the use of non-convex penalties has been studied much less [20]. In this article we combined both approaches, together 
with a numerical algorithm for fitting the models.

Values of q < 1 lead to more sparsity in the vector β̂ of estimated coefficients, with similar residual �1-loss, compared 
with q ≥ 1. Correspondingly, for similar levels of sparsity, q < 1 results in less shrinkage of the nonzero coefficients, and a 
correspondingly reduced residual �1-loss.

While we have found that q < 1 is useful and produces stable results, using p < 1 often results in unstable and/or 
suboptimal fits, likely due to local minima in the optimization landscape. One possible explanation is that using p < 1
encourages sparseness of the residuals, which is not a worthwhile goal since it means that the regression surface will 
interpolate a few of the data points, while paying little attention to the rest of the points; in this situation, it is not 
surprising to have many suboptimal local minima. The discussion in Section 2.5 suggests that choosing p < q is not useful.
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However, choosing 1 ≤ p < 2 proved helpful in reducing the effect of outliers, improving fit for the bulk of the data, and 
providing a better trade-off between sparseness and fit than when p = 2.

Part of the power of �p -�q minimization resides in its ability to deal with large problems by reducing them to smaller 
problems through the use of generalized Krylov subspaces. In practice, this means that one can fit regression models with 
many covariates (the example in Section 5 has over 22 thousand variables). This approach is useful for variable selection 
when the number of variables is large, and the data is contaminated by outliers.

The introduction of constraints in the problem (see, e.g., [3]) will be subject of future research.
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