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Tectonic faults slip in a variety of modes that range from earth-
quakes with strong shaking to transient slow slip and aseismic 
creep1–7. The mechanics of earthquakes are well described by 

frictional instability and fracture propagation with attendant elas-
tic radiation8,9. Aseismic fault creep is also reasonably well under-
stood as stable frictional shear driven by stress relaxation. However, 
seismic tremor and other modes of slow slip that include transient 
acceleration and self-driven propagation, known collectively as slow 
earthquakes, are not well understood, despite the large and rapidly 
growing number of observations that now extend to nearly every 
major tectonic fault system on Earth6,10–12. Central questions about 
the mechanics of slow earthquakes include (1) the mechanism(s) 
that limit fault slip speed and rupture propagation velocities during 
quasi-dynamic, self-propagating rupture13, (2) the physics that allow 
earthquakes and slow slip events on the same fault segment10,11, 
(3) how slow slips can precede and possibly trigger dynamic rup-
ture10,11,14 and (4) whether there exists a continuum of slip modes or 
whether rupture velocities are quantized1,2,15.

Here, we address the question of whether slow and fast slip 
modes share similar mechanisms by studying acoustic signals ema-
nating from laboratory faults. Our recent work shows that machine 
learning approaches can predict the timing of stick–slip failure16 
and the stress state in sheared layers of glass beads17. Here, we apply 
machine learning to investigate realistic fault zone material and a 
range of slip modes from fast to slow, and attempt to infer whether 
slow and fast earthquakes share similar mechanisms throughout 
the laboratory seismic cycle of loading and failure. We investigate 
whether seismic waves emanating from laboratory fault zones con-
tain information about the duration and magnitude of an upcoming 
failure event and whether machine learning can also estimate the 
fault displacement history. Our experiments use fault gouge com-
posed of quartz powder, which is similar in composition and par-
ticle size to natural, granular fault gouge. We find that laboratory  

slow earthquakes, which do not radiate high-frequency energy 
during slip, are preceded by a cascade of micro-failure events that 
radiate elastic energy throughout the seismic cycle and foretell cata-
strophic failure. For both slow and fast earthquakes, we find a map-
ping between fault strength and statistical attributes of the elastic 
radiation emitted throughout the seismic cycle. These data provide 
a method for reading the internal state of a fault zone, which can be 
used to predict earthquake-like failure for a spectrum of slip modes.

We analyse data from experiments conducted in the double-
direct shear (DDS) geometry using a biaxial testing apparatus18–20. 
Two layers of simulated fault gouge are sheared simultaneously at 
constant normal load (in the range 1–10 MPa) and prescribed shear 
velocity (Fig. 1d). Details of the apparatus and testing procedures 
are provided in the Supplementary Information. The laboratory 
faults fail in repetitive cycles of stick and slip that mimic the seismic 
cycle of loading and failure on tectonic faults (Fig. 1). We vary the 
fault normal stress and loading stiffness, following recent works21–23, 
to achieve a range of failure event rates corresponding to the spec-
trum of tectonic fault slip rates. Failure event durations and peak 
fault slip velocities range from 0.1 s and 0.1 m s−1, for fast events, to 
> 1 s and 1 ×  10−5 m s−1, for slow events, consistent with observations 
for tectonic faulting.

Our experiments include continuous records of fault zone elastic 
radiation from piezocrystals embedded in the forcing blocks of the 
DDS assembly20,24. The piezosensors are capable of resolving acous-
tic signals in the frequency band 0.02–2 MHz. We record acoustic 
emission signals throughout the seismic cycle for both fast and slow 
slip events. Faster events are associated with impulsive acoustic wave 
energy, whereas slow failure events are preceded by low-amplitude 
tremor. In both cases, the acoustic energy appears to be essentially fea-
tureless during the early stages of the laboratory seismic cycle (Fig. 1c).

We sheared layers of quartz powder at constant fault normal 
stress and prescribed slip velocities from 1 μ m s−1 to 30 μ m s−1. Our 
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experiments followed the procedures developed for a study of the 
spectrum of fault slip modes21. The ratio of loading stiffness to the 
critical frictional weakening rate (K/Kc) is close to 1, which pro-
duces a complex range of stick–slip and creep–slip failure modes21,22.

We use machine learning techniques to analyse the acoustic 
emission records, following the approach of Rouet-Leduc and col-
leagues16,17. This approach uses a gradient boosted trees25 algorithm, 
based on decision trees. We find that the timing, duration and mag-
nitude of slow and fast laboratory earthquakes can be predicted 
with high fidelity.

Acoustic emissions predict fault friction and slip
Our analysis starts by using machine learning to estimate the fric-
tional strength and slip behaviour of aperiodic stick–slip modes  
(Fig. 2). We rely exclusively on the continuous seismic signals 
recorded during shear, with the goal of inferring fault shear stress, 
shear displacement and gouge thickness. Model inputs consist of 
~100 statistics of the seismic data calculated over a small, moving 
time window. Outputs are fault properties (stress, displacement, 
gouge thickness) over the same time window (see Supplementary 
Information for details). Model estimates are therefore instan-
taneous, as they do not make use of past or future signal history. 
One time window corresponds to ~5% of the average duration 

of one seismic cycle. This window is subdivided into two non- 
overlapping windows, and statistics of the seismic data are com-
puted over both subwindows. We analyse two full experiments, 
with hundreds of slip events, and draw from several closely related 
experiments. One experiment contains both fast and slow events 
(p4679) and one contains only slow events (p4678). We build the 
machine learning model using the first half of each experiment 
(training set), and evaluate it on the remaining data (testing set), 
using the coefficient of determination R2 as an evaluation metric. 
We build different models for each of the two experiments and 
each of the labels (stress, displacement and fault zone thickness). 
Hyperparameters are set using Bayesian optimization, by fivefold 
cross-validation. Details regarding statistical features of the acoustic 
data, model construction and model specifications are in Methods 
and the Supplementary Information.

We started using the full suite of statistical features for the 
machine learning model and then simplified our approach after 
the key features were identified. Figure 2a shows machine learn-
ing estimates of stress during a series of laboratory seismic cycles 
that include slow and fast events during aperiodic stick–slip (the 
most aperiodic suite of events we could find that includes slow 
slips: inter-event times vary from 3.1 s to 7 s), using all the sta-
tistical features. The top curve is the shear stress data, and the 
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Fig. 1 | Laboratory experiments. a, Shear stress as a function of shear displacement for a complete experiment (p4679). Left inset, detail of shear stress, 
shear displacement and fault slip velocity (see the grey box in the main plot). Right insets, example failure events for this experiment (upper plot) and 
another experiment (p4678) with slower slip events (lower plot). b, Stress drop versus duration for all events. Stress drop decreases systematically with 
slip duration. c, Acoustic amplitude (in arbitrary units (a.u.)) and shear stress for two events, with zooms during load-up and for fast and slow failure. 
Elastic waves exhibit both tremor-like and impulsive signals for different slip modes. d, DDS configuration sheared at constant velocity ̇u, gouge layers and 
piezoceramic sensors (PZTs) used to record elastic waves from acoustic emissions.
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machine learning estimations (blue line) are shown at the same 
scale directly below, plotted over the shear stress data (red dashed 
line) for easy comparison. The machine learning estimations of 
stress derived from the seismic signal are generally noisier than 
the stress data themselves and overestimate stress in the early 
stages of the seismic cycle, immediately after failure, but match 
the stress well during both small and large events (Fig. 2a).  
Note that the machine learning model improves as the time to 
failure approaches.

Because we rely on an explicit machine learning algorithm (the 
algorithm makes explicit decisions on the basis of the values of the 
features), we can probe models to identify the most important fea-
tures (see Methods). The full machine learning model estimates 
are more accurate, but in an effort to illuminate the underlying 
mechanics without the complexity of algorithmic details, we also 
discuss machine learning results obtained using only these best fea-
tures. For estimates of shear stress (Fig. 2a) and fault zone strain 
(Fig. 2c,d), the best feature by far corresponds to the variance of the 
acoustic signal within a time window—that is, the acoustic power, 
consistent with our previous analyses of stick–slip in glass bead lay-
ers16,17. It is straightforward to rebuild a machine learning model 
from this single feature.

Figure 2b shows the relation between acoustic power and shear 
stress. The red dashed line is the mean shear stress over a cycle for 
the series of events shown in Fig. 2a, with the shaded region cor-
responding to 0.5 s.d. in stress. The alternating sets of slow and fast 
laboratory earthquakes define distinct loop patterns in this acous-
tic power versus stress space. The peaks in acoustic power occur 
roughly half-way through the failure events and correspond to the 
maximum fault slip velocity, followed by deceleration and the end of 

a laboratory earthquake. Note that the acoustic power is systemati-
cally lower for slower events, as indicated by the smaller loop. Faster 
events correspond to the larger loops.

Continuous seismic waves can also be used to determine fault 
slip and volumetric strain during the laboratory seismic cycle  
(Fig. 2c,d). Here, we show machine learning estimates (using all 
the features) of the detrended fault displacement history and layer 
thickness as a function of time for the failure events of Fig. 2a.  
In each case, we show relative changes in position, with positive val-
ues indicating slip in the shear direction (Fig. 2c) and layer compac-
tion (Fig. 2d), respectively. The fault zone dilates during the loading 
portion of the stick–slip cycle and compacts during failure (Fig. 2d). 
For both measurements, the machine learning model matches the 
data well, although the displacements are small.

These results indicate that the continuous measurement of elas-
tic energy emanating from the fault zone is imprinted with precise 
information regarding the current state of the fault. At any time 
during the laboratory seismic cycle, the acoustic signal can be used 
to estimate the stress state (Fig. 2a,b) and the fault displacement  
history (Fig. 2c,d).

Early signals contain a signature of the impending slip mode
Machine learning identifies specific patterns in the time series of 
acoustic power that enable precise estimates of the fault zone stress 
state and strain history during cycles of loading and failure. We fur-
ther probe this connection by looking at the correlation between 
acoustic power early in the seismic cycle and the character of the 
impending failure event. Plotting the acoustic power during the first 
10% of the seismic cycle versus the duration of the impending event 
shows a robust correlation (Fig. 3b). The acoustic signal generated 
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in the early stages of what will be larger, faster laboratory earth-
quakes is systematically larger than that for slow slip events with 
smaller stress drop (Fig. 3b). If the stress cycle starts at a high (low) 
acoustic power, the cycle is likely to lead to a fast (slow) earthquake. 
The correlation holds for a broad spectrum of intermediate slip 
durations, providing supporting evidence for a continuum between 
fast and slow earthquakes that is associated with similar underly-
ing physical processes. These initial values seem to be connected 
to the stress drop and energy release of the previous slip event (see 
Supplementary Information). The evolution of acoustic power over 
the seismic cycle exhibits a memory effect, such that fast events 
(with large stress drop and energy release) are followed by cycles 
that start with low acoustic power, whereas cycles following a slow 
event start at higher acoustic power (Fig. 2a). We hypothesize that 
high seismic energy early in the seismic cycle reflects a more locked 
and potentially unstable fault zone structure, with stronger asperity 
junction contacts and a granular texture, that is more likely to fail 
abruptly than other configurations.

In short, the fault emits characteristic seismic signals that tell 
us early on whether the system is heading toward a slow slip event 
or a fast earthquake. This signature exists for a broad range of slip 
behaviours, supporting the existence of a continuum between slip 
modes from fast failure to slow slip events.

Predicting failure time and magnitude
Previous work shows that the time to failure can be estimated from 
the continuous acoustic emission generated in a sheared layer 
of glass beads16. Here, we show that failure timing as well as the 

duration and magnitude of the complete spectrum of laboratory 
earthquakes, from slow to fast, can be predicted from machine 
learning using the elastic waves generated within the fault zone. 
Figure 4a shows data for a series of fast and slow laboratory earth-
quakes with bimodal stress drops. Also plotted are predictions of 
the time remaining before the next failure for this set of events, 
which include the full range of aperiodic slow slip events. The 
machine learning predictions of laboratory earthquake failure 
times are highly accurate, with R2 =  0.88. Note that the model cor-
rectly predicts the time remaining before failure for both small and 
large stress drop events, and predicts well the two small outliers 
(at approximately 4,408 s and 4,415 s). Here again, each point of 
the prediction curve is derived from only a single small window 
of continuous seismic data, using the machine learning algorithm. 
The machine learning algorithm identifies acoustic power as the 
most important feature for predicting laboratory earthquakes  
(Fig. 4) and for estimating the fault stress, shear displacement and 
layer thickness (Fig. 2).

The machine learning predictions of failure event durations dis-
tinguish long- from short-duration events and thus slow versus fast 
laboratory earthquakes. Because the energy of the seismic signals 
contains quantitative information regarding the frictional stress 
at all times, the machine learning model is able to determine the 
fault’s timing in the earthquake cycle. This provides the means to 
infer failure times and event durations long before the slip occurs  
(Figs. 3b and 4b).

We quantify these relations by plotting the measured versus 
predicted start of failure and end of failure for our entire suite of 
laboratory earthquakes (Fig. 4c). In addition, the measured versus 
predicted laboratory earthquake durations are shown in Fig. 4c, 
which demonstrates that the machine learning approach can predict 
the timing and duration of a broad range of laboratory earthquakes.

The accuracy of the failure time predictions also enables us to 
estimate future laboratory earthquake ‘magnitudes’ (Fig. 4d). We 
use the predicted inter-event times, the predicted durations of slip 
events, the acoustic power and the magnitudes of the preceding slip 
as features for a further machine learning analysis. Event amplitude 
prediction is more difficult than the failure time prediction, as the 
associated database is much smaller than the database built from 
scanning the continuous seismic signal (a few dozen versus sev-
eral thousand data points when scanning the seismic signal—see 
Supplementary Information for more details).

We constructed 50 different machine learning models for both 
experiments; the average R2 for the first experiment was 0.73 (for 
about 50 data points), and for the second experiment 0.42 (for about 
30 data points). The predicted slip inter-event time and the pre-
dicted slip duration (as we may expect) seem to be the most impor-
tant variables to make these predictions. For slow, long duration 
events, the energy release is lower, consistent with lower stress drop 
(Fig. 1b). As applied in nature, the predictions of acoustic energy 
release during laboratory earthquakes would correspond to predic-
tions of maximum ground velocity associated with the passage of 
seismic events. Our data are consistent with observations showing 
that more highly stressed faults release greater seismic energy early 
in the seismic cycle, and it is interesting to speculate whether a simi-
lar correlation exists for tectonic faults.

Discussion and application to tectonic faulting
We study elastic radiation from laboratory fault zones and show that 
stick–slip failure can be predicted for a broad range of slip modes 
corresponding to the spectrum of tectonic faulting. For the labora-
tory seismic cycle, both slow and fast earthquakes are preceded by 
a cascade of micro-failure events that radiate elastic energy with a 
signature that foretells catastrophic failure. We show that acous-
tic emission signals generated from quartz fault gouge can be 
used to predict the timing, duration and magnitude of laboratory  
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earthquakes. The laboratory slow earthquakes reach peak slip 
velocities of 10–100 μ m s−1, consistent with tectonic slow slip.

Acoustic signals generated before failure, early in the laboratory 
seismic cycle, are systematically different for larger, faster laboratory 
earthquakes than for slow slip events with smaller stress drop. Our 
work shows that a spectrum of frictional failure modes share com-
mon mechanisms and can be predicted from elastic energy emanat-
ing from the fault zone before failure.

Our recent work on episodic slow slip and tremor in Cascadia 
suggests that similar signals may also occur in Earth26. This analy-
sis shows that the surface displacement of the Cascadia subduction 
zone can be estimated from continuous seismic data, in a way very 
similar to the displacement analysis presented here. Challenges for 
the application of our methodology to real data include dealing with 
much noisier data, and signals potentially coming from multiple 
faults. Future work will test whether catastrophic earthquake failure 
in Earth is also preceded by similar signals.

Online content
Any methods, additional references, Nature Research reporting 
summaries, source data, statements of data availability and asso-
ciated accession codes are available at https://doi.org/10.1038/
s41561-018-0272-8.
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Methods
Experimental apparatus. We use a biaxial deformation machine to shear fault 
zones at constant normal stress27. The DDS configuration consists of two granular 
layers (each layer is constructed to be precisely 3 mm thick, with nominal contact 
area of 10 cm ×  10 cm) sandwiched in a three-block assembly. We use quartz 
powder (MIN-U-SIL-40, US Silica) to simulate granular fault gouge and rough, 
steel forcing blocks. A block of poly(methylmethacrylate) is placed in series with 
the central block of the DDS configurations to match the fault system stiffness 
with the critical frictional weakening rate, so that K/Kc ≈  1. The central block is 
15 cm high so that the frictional area remains constant throughout shear. The steel 
forcing blocks of the DDS assembly have 0.8-mm-deep and 1-mm-wide teeth 
perpendicular to the shear direction, to prevent sliding along the bounding surface. 
Cellophane tape is used to contain the layer during sample construction. A thin 
rubber sleeve is placed at the base of the DDS assembly to contain the layer and 
minimize loss of material during geometric spreading as an experiment proceeds28. 
Normal stress is applied to the nominal frictional area and maintained by 
servohydraulic control, while the central forcing block is driven at a constant shear 
velocity. Horizontal and vertical forces are measured using strain gauge load cells 
with resolution of ± 10 N, while the corresponding displacements are measured 
with direct-current displacement transducers with ± 0.1 μ m precision. Elastic waves 
are recorded using broadband piezoelectric sensors (~0.02–2 MHz frequency 
bandwidth) embedded in each side forcing block of the DDS configuration. The 
piezoceramic sensors (PZTs) are close to the gouge layers (~2 mm). Forces and 
displacements are continuously recorded at 1 kHz, while seismic activity is recorded 
at 4 MHz. Important data sets for our use here include the continuous seismic data, 
the shear stress, the normal stress and the shear and normal components of the 
layer strain. The bulk friction is obtained from shear and normal stress. The shear 
stress signal is used in the training procedure of the seismic signal to mark where 
a slip event occurs. During the machine learning testing procedure, the algorithm 
sees only acoustical data that it has not seen before.

We focus on two experiments, p4678 and p4679, and a series of supporting 
runs that are closely related to an extensive set of tests reported earlier21. We study a 
broad range of conditions using many stick–slip events.

Conditions for p4678 were: normal stress: 5 MPa; average shear stress: 3.6 MPa; 
average inter-event time: 12.1 s.

Conditions for p4679 were: normal stress: 7 MPa; average shear stress: 5 MPa; 
average inter-event time: 5.3 s. This experiment exhibits a range of stick–slip 
behaviours including dual behaviour, with alternating slower (smaller stress 
magnitude of the stress drop) and faster (larger) events. Figure 1 shows steady-
state frictional shear transitions to stick–slip sliding at shear displacement of 
13.8 mm (shear strain of 5.7). Spikes in stress at 23 mm and 46 mm are transient 
strengthening caused by brief pauses in shear loading. The shear loading rate is  
10 μ m s−1 until 37 mm and then drops to 5 μ m s−1 and 3 μ m s−1; note the 
corresponding increase in stress drop magnitude for lower velocity. In general, 
higher normal stress and lower driving velocity produces failure events with 
larger stress drop and shorter duration (Fig. 1b). For conditions near the stability 
boundary defined by K/Kc =  1, we observe aperiodic failure and dual behaviour 
with alternating smaller and larger events (Fig. 2). Fault slip velocity during failure 
scales with stress drop, and thus the dual behaviour: sequences represent alternating 
faster and slower events. We chose to focus on the acoustic emission data from these 
events because they correspond to the most complex conditions, with aperiodic 
stick–slip cycles and a range of stress drop magnitudes and slip modes.

Step-by-step description of data analysis and machine learning methods. 
 (1) Preparing the data for machine learning analysis. This first step consists of 

transforming the data into a format easy to compute features on. The raw 
experimental data are in a binary format, with acoustic data and mechanical 
data (stress, layer thickness, displacement) separated. Therefore, we begin by 
creating files of acoustic data and mechanical data with a common time base. 
As the acoustic and mechanical data have different sampling rates, we create 
files of 1.33 s duration with both acoustic and mechanical data.

 (2) Defining the features of the acoustic data. This step is critical, as it extracts the 
characteristics (features) of the acoustic data that the machine learning model 
will use. Here, each file of acoustic data is scanned through moving time 
windows. The length of one time window corresponds to ~5% of the labora-
tory seismic cycle (0.3 s for p4679, 0.5 s for p4678). These time windows are 
further subdivided into two non-overlapping contiguous subwindows (each 
subwindow therefore represents ~2.5% of the average slip cycle). We chose to 
use two subwindows because many features are symmetric in the slip cycle. 
With the information from two subwindows, the algorithm is able to dif-
ferentiate between the loading and the slipping part of the cycle. We compute 
machine learning features for each of these subwindows. These time windows 
thus become a list of statistical features that describe the data in a condensed 
manner (see Supplementary Information for a detailed list of features).

 (3) Preparing the labels. The machine learning model will be tasked to find a 
mapping between characteristics of the acoustic data and a bulk physical 
property of the fault (stress, displacement, time to failure, which we refer 
to as labels). In this step, we prepare the time series of these bulk physical 
properties such that each time window of acoustic data can be labelled with 

the corresponding bulk physical properties. Each time window of acoustic 
data is thus labelled with the average shear stress (or layer thickness, displace-
ment) during the same time window as the file of acoustic data. Alternatively, 
the acoustic files can be labelled with the time remaining before the next slip 
event: we use the PeakUtils Python library on the shear stress data to pick the 
failure times, and we label each time window of acoustic data with the time 
remaining before the next pick.

 (4) Creation of a machine-learning-friendly database. This step puts the data in 
a format that will actually be used by the models. Each line of the database 
contains the features describing each time window of acoustic data, and the 
corresponding average stress (or other label) during the same time. Each line 
i is therefore a list … …x x x x x x y{ , , , , , , , , }i i

D
i i i

D
i i

1,1 1,2 1, 2,1 2,2 2, , with x j
i
1,  the jth 

feature of the first half (first subwindow) of the ith time window of acoustic 
data, x j

i
2,  the jth feature of the second half of the ith time window of acoustic 

data, D the total number of features and yi the average stress (or other label) 
during this time window.

 (5) Overlapping the time windows. Each time window overlaps by 90% with the 
previous time window. Thus, we scan the data in increments corresponding to 
10% of the window size, while building features and the corresponding labels, 
and then add the resulting list of labelled features to the database at each time 
increment.

 (6) Train–test split. The database built as described above is a time series of fea-
tures of the acoustic data and a corresponding average bulk physical property 
of the system. As such, the train–test split must be of two contiguous pieces, 
owing to the autocorrelation of the system: one line of our database (the 
features of a time window of acoustic data and corresponding label) is similar 
to the following window, especially considering that the windows overlap. 
Therefore, a random train–test split is not appropriate at all. For each of the 
two experiments, we use the first contiguous half of the data for training and 
the second contiguous half of the data for testing.

 (7) Tuning the hyperparameters of the model. Before actually creating a model 
relating features of the acoustic data to the corresponding bulk property of 
the fault, we have to determine the space of functions that will be explored as 
possible models. This is done by tuning the hyperparameters of our model. 
These hyperparameters control how vast the explored function space will be 
during training, typically by setting how smooth the explored functions are. 
In the case of the gradient boosted trees models used here, the hyperparam-
eters determine the power of expression of the trees that constitute the model 
(see ‘Hyperparameter optimization’ in the Supplementary Information for 
details). The hyperparameters of the model are determined to maximize the 
performance of trial models in cross-validation: a set of hyperparameters is 
used to model a subset of the training data and evaluated on its performance 
on the rest of the training data.

 (8) Model training. With a training database at hand and the complexity of our 
model determined (the hyperparameters), we can train our final model. Model 
training consists of obtaining best fits of the training data, given the complexity 
of the model. The previous step of optimizing this complexity on subsets of the 
training data ensures that this best model will not overfit the data. Indeed, too 
complex a model (prone to overfitting) would do poorly in cross-validation. 
Our final model is an ensemble of decision trees, formed from a series of yes/
no decisions based on a given list of features, to arrive at a modelled (predicted) 
label. We give more details on decision trees and our particular implementa-
tion, gradient boosted trees (XGBoost), in the Supplementary Information.

 (9) Assessing our final model. The performance of the final model is assessed 
using the testing set, the second half of the data. The metric used here, R2, 
compares the squared errors of the model with the squared errors of the null 
model, a model that always predicts the average value of the label. The same 
metric is used during the cross-validation step above, and provided the data 
are similar in training and testing (they follow the same distribution), the 
performance in cross-validation is a good proxy for the performance in test-
ing. A different model is made for each bulk physical property (shear stress, 
time to failure and so on).

 (10) Feature importance. Once we have an accurate final model, we can look for 
the best features identified by our model, to try to understand how the model 
reached its estimations.

Code availability. We are unable to make the computer code associated with this 
paper available at this point, but we aim to make it available in the future. Please 
contact C.H. for details.

Data availability
The data are available from the Penn State Rock Mechanics laboratory  
(www3.geosc.psu.edu/~cjm38/).
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Supplementary Information9

Signal and noise in experimental apparatus10

We studied the influence of noise as part of an effort to 1) verify that our signals were not contaminated by noise11

associated with the acoustic sensors or testing machine, and 2) to assess the extent to which the lab results might12

extend to tectonic faults with additional complexity and noise. We note that the lab data contain several of the13

same types of noise sources encountered in Earth. That is, electrical noise in the analog signals, noise in the analog14

to digital conversion, and noise associated with fluctuations in control conditions (stress, shear rate) and small AE15

events. In addition, we tested the hypothesis that our measurements are contaminated by noise in the acoustic16

sensors and/or noise that derives from the testing machine by comparing the signals for 1) active shearing under17

full servo control (our typical conditions during the experiment), 2) when the machine is running and normal stress18

is applied but shearing is stopped, and 3) when the machine is running but both loading rams are locked, so there19

is neither servo control on the normal stress nor motion of the ram that applies shearing. We found that machine-20

related noise, from cases 2 and 3 does not have predictive ability to estimate friction nor layer thickness, and thus21

we rejected this hypothesis.22

Feature construction23

Feature extraction follows the description given above and in previous work,1 in which a moving time window24

is used to analyze the continuous seismic data. We rely on features with useful physical meaning to make our25

predictions. The features can be separated into three main categories:26

• signal energy: we use several higher order moments of the acoustic data to capture the evolution of the27

signal’s energy. Within each time window we compute the signal 1-4 moments, as well as the variance, skewness28

and kurtosis (centered moments).29

• precursors: during slow slip and fast lab earthquakes, the system enters a critical state when close to failure,30

where fault zones emit relatively strong acoustic emissions, compared to earlier in the lab seismic cycle. We rely31

on thresholds to capture precursory activity before each laboratory event.32
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• Fourier analysis: we build several features based on Fourier analysis in order to analyze the frequency content33

of the signal (Figure S4). These features correspond to integrals of the power spectrum over different frequency34

bands.35

Feature selection: once the features are constructed for ML, we perform feature selection in order to select36

the most promising variables. This is useful in particular when there are several acoustic sensors and therefore37

several channels of acoustic data to analyze in this case the total number of features can become very large. We38

use recursive feature elimination (RFE), based on another decision tree approach, to select a sub-set of features39

that we use as input to the ML analysis. RFE has been shown to be particularly robust in presence of correlated40

predictors.241

Hyperparameter optimization:42

Hyperparameters determine the parameter space that will be explored as possible models, i.e. they control how vast43

the explored function space will be during training. For instance, a model with large tree depth, able to split the44

data into many partitions, will be more complex than a model with small tree depth. The choice of the complexity45

of the model is crucial for our final performance: if it is too complex, we may overfit the data and end up with a46

poor performance in testing; a model too simple may also perform poorly. However, we do not know beforehand47

which complexity is good for a given dataset. We need to evaluate this by building and comparing many different48

models during the training phase. Models are compared by cross-validation: they are iteratively built on subsets49

of the training data, and evaluated on the remaining training data. They are then compared, the best model is50

identified, and its hyperparameters are selected for the final model.51

52

XGBoost is characterized by a large number of hyper-parameters to tune, and the performance of the models is53

heavily dependent on these hyperparameters. Therefore we rely on an optimization procedure to tune these hyper-54

parameters. More specifically, we rely on the gp minimize function from textitskopt to do so, that implements the55

EGO Bayesian optimization procedure.356

The algorithm proceeds as following. The main idea is to approximate the function textitf that relates the57
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value of the hyper-parameters to the performance of the model. This function is approximated through Gaus-58

sian processes (GP) - i.e. by choosing a Gaussian process prior. At first, several points are drawn randomly:59

hyper-parameters are drawn at random, the corresponding XGBoost regressions are built, and their associated per-60

formance is saved. Performance is measured by 5-fold cross-validation on the training set. Once these random61

points are built, they serve as initial database, and a first GP model is created that relates the hyper-parameters to62

the performance of the regression.63

The choice of the following hyperparameters to try is guided by this GP model in an intelligent fashion. With

x+

t the best point obtained so far (associated to the highest performance), the choice of the next candidate point x

to try is given by maximizing the expected improvement in performance EI:

xt+1

= argmax

x

EI(x)

with EI the expected increase in performance:

EI(x) = E[f(x)� f(x+

t )]

Once a new datapoint is tried in this way, it is added to the database and improves the approximation of the function64

textitf. The procedure continues until a maximum number of iterations is reached; the best point, and therefore the65

best hyper-parameters found, is returned. Then these hyperparameters can be used to build a final model on the66

training set, and evaluate it on the testing set. Note that any optimization procedure could be used to tune the hyper-67

parameters, but we chose the EGO method because it is efficient in high-dimensions, is not prone to getting stuck68

in local optima, and requires few iterations to converge. An alternative standard procedure is to to a grid-search, but69

this is prohibitive for a high number of hyper-parameters. The Bayesian optimization loop optimizes the following70

hyperparameters of the XGBoost models: max depth (maximum depth of a tree), learning rate (step size shrink-71

age), n estimators (number of trees), gamma (minimum loss reduction to create new partition), min child weight72

(minimum leaf weight), subsample (ratio to bootstrap dataset), colsample by tree (ratio of features to consider),73

reg alpha (weight of the l
1

penalization), reg lambda (weight of the l
2

penalization). Following the hyperparameter74

optimization, the hyperparameters of each of the models presented in the main text are the following:75
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• exp. p4679, stress: max depth:16, learning rate:0.0610953, n estimators:365, gamma:0, min child weight:2,76

subsample:0.4384717, colsample by tree:0.8308638, reg alpha:0.1, reg lambda:0.1.77

• exp. p4679, displacement: max depth:1, learning rate:0.3814755, n estimators:24, gamma:0, min child weight:3,78

subsample:0.2613578, colsample by tree:0.9119756, reg alpha:0, reg lambda:0.79

• exp. p4679, layer thickness: max depth:2, learning rate:0.1084846, n estimators:337, gamma:0, min child weight:2,80

subsample:0.57292082, colsample by tree:0.6349378, reg alpha:0.1, reg lambda:0.0581

• exp. p4679, time remaining before the beginning of the next event: max depth:20, learning rate:0.0443410,82

n estimators:113, gamma:0, min child weight:4, subsample:0.3354982, colsample by tree:0.6588662, reg alpha:0.1,83

reg lambda:0.1.84

• exp. p4679, time remaining before the end of the next event: max depth:8, learning rate:0.0804079, n estimators:268,85

gamma:0, min child weight:4, subsample:0.2265177, colsample by tree:0.8962034, reg alpha:0.05, reg lambda:0.86

• exp. p4678, time remaining before the beginning of the next event: max depth:14, learning rate:0.0101759,87

n estimators:489, gamma:0, min child weight:4, subsample:0.4561674, colsample by tree:0.8059474, reg alpha:0,88

reg lambda:0.1.89

• exp. p4678, time remaining before the end of the next event: max depth:15, learning rate:0.04142359, n estimators:254,90

gamma:0, min child weight:4, subsample:0.7138402, colsample by tree:0.76217941, reg alpha:0, reg lambda:0.91

• exp. p4679, amplitude predictions: max depth:13, learning rate:0.6374797, n estimators:57, gamma:0, min child weight:4,92

subsample:0.5498936, colsample by tree:0.2368331, reg alpha:67, reg lambda:62.93

• exp. 4678, amplitude predictions: max depth:14, learning rate:0.3857817, n estimators:240, gamma:0, min child weight:2,94

subsample:0.2569217, colsample by tree:0.5476946, reg alpha:5, reg lambda:3.95

Training a model96

We tried several machine learning algorithms on this problem. The results that we report here rely on gradient97

boosted trees (and in particular the XGBoost library4), because this approach led to the best performance.98

99

During the training phase, the algorithm has access to both the statistical features derived from the seismic100
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signal and the label (fault friction, displacement rate or time remaining before failure), and attempts to build a101

model relating the two. Features are exclusively constructed from a small moving window scanning the continuous102

seismic data.103

Once the model is built, it is evaluated in the testing phase, over data that the algorithm has never seen (testing104

set). In this phase, the algorithm has access only to the statistical features derived from the seismic signal, and105

never sees the regression label also measured during the experiment (friction, displacement rate, or time remaining106

before failure). This label is only used to evaluate the performance of the model estimates.107

The training phase corresponds to building the structure of our decision trees. The following describes how108

this structure is found, and how it can be used afterwards in the testing phase.109

• Decision trees110

Here we give a brief overview of regression trees,5 as we will rely exclusively on regressions in what follows.111

A decision tree is built by sequentially, creating nodes that partition the data. To generate each node, the data112

available at this current node are split into two subsets corresponding to right/left branches. Choosing a branch113

direction corresponds to determining the feature Xm and the associated threshold c used to partition the data into114

these two subsets. This corresponds to selecting the split that partitions the data available at the current node j into115

two subsets that are maximally dissimilar to each other with respect to the label of the regression (here the label is116

either the time remaining before the next failure, or the magnitude of the next event).117

In more simple terms, one decision tree is created on the training set as follows: at first, we consider the whole118

training dataset, and try to partition it in two by selecting a threshold over one of the features - one threshold119

corresponds to one decision in the tree. For instance: is the variance higher than 10? This creates a split, i.e.120

two branches in the tree. If the answer is no, go to the left branch of the tree; if yes, go to right branch. This121

corresponds to the first node of the tree. At this point, each of the two partitions are also divided in two, again122

by selecting a threshold over one of the features: e.g. is the kurtosis higher than 3? The procedure continues123

iteratively, until a criteria is reached (maximum depth of the tree, minimum number of samples within each of the124

final partitions, etc.). These final partitions are the leaves of the tree. From these, we can get an estimation of the125
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label (friction, displacement, time remaining before failure). In the training set, we have access to the values of the126

label. A regression tree associates one label value to each of the leaves; for one leaf, this value corresponds to the127

average of the labels associated to all the datapoints that fall in that leaf. This is the end of the training phase for128

one tree. Now the structure of the tree is fixed (i.e. the final partitions, and their associated label value), and it can129

be evaluated on the testing set. For this purpose, the testing data is divided in the same partitions, following the130

same suite of yes/no branch decisions. In the testing data, we do not have the values of the label. But according131

to which leaves the datapoints fall on, they will be assigned the value associated to that given leaf at the end of the132

training phase; this corresponds to the model’s estimates.133

The construction of the tree structure boils down to how to create a split (a decision): at each iteration, which134

is the best feature to select, and what threshold value of that feature best partitions the data? The criteria used for135

this purpose is the maximum reduction in (empirical) variance between the data available at the current node, and136

the two subsets of data partitioned by the split. More specifically, with j the current node of the tree, Sj the labels137

of the subset of data available at the current node, Nj the number of data points in Sj , Nj,L and Nj,R the number138

of data points in the left and right subsets Sj,L and Sj,R generated by the split, the criterion for a possible split s is:139

�Var(s, j) = Var(S

j

)� N

j,L

N

j

Var(S

j,L)�
N

j,R

N

j

Var(S

j,R) (1)

The split selected is the split that maximizes this variance reduction criterion. This criterion ensures that the data140

within each of the two subsets generated by the split are as homogeneous as possible, while these two subsets are141

as heterogeneous as possible one from another. Different thresholds are tried for each of the features, based on a142

histogram. The best feature and the best threshold value are used to create the node.143

• Brief overview of gradient boosted trees144

One single decision tree is an estimator with high variance - which means that two different trees built from145

the same data may end up with very different models and performances, and that a few new datapoints may have146

a large impact on one model. To alleviate this issue, ensembles of decision trees are often considered rather than147

single trees. In ensembles, many trees are built together, and their individual estimations are combined into one148

single model. By doing so, we obtain a more robust estimator with lower variance. Several ensemble tree methods149
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can be used: random forests, extra trees, gradient boosted trees, etc.. For the results presented here, we use gradient150

boosted trees. Gradient boosted trees rely on many decision trees. The trees are built sequentially. We start by151

building one single tree as described above; the resulting model is probed, and a new tree is built to minimize152

the error of this first model. The procedure goes on, and each new tree is built to minimize the errors of all the153

preceding trees taken together. Once this procedure is finished, the model is a combination of all the estimates of154

the individual trees, with weights associated to each tree.155

More specifically, each new tree is added to the ensemble such that the error is minimized:

(ht, ↵t) = argminh,↵

nX

i=1

l (yi, Ht�1

(xi) + ↵h(xi)) = argminh,↵l(y,Ht�1

+ ↵h)

with ht the new tree at step t, ↵t its coefficient in the ensemble, Ht�1

=

Pt�1

j=1

↵jhj the ensemble at step t � 1,156

and l the loss function, the squared error in our case.157

We rely on the XGBoost implementation of gradient boosted trees.4 The performance of this algorithm is158

very sensitive to the choice of hyper-parameters. Therefore, instead of relying on a simple grid search to set159

the hyperparameters, we rely on a more sophisticated approach based on Bayesian optimization, described in the160

paragraph above. We use this method to optimize hyper-parameters based on 5-fold cross-validation.161

Assessing the model’s performance:162

Once a model is built on the training set, and evaluated on the testing set, we need to assess how good these

estimates are. At the end of the testing phase, we end up with a series of estimated labels (stress, displacement,

time remaining before failure, etc.), associated to each of the datapoints that belong to the testing set. We need to

compare these estimated labels ŷi to the true labels yi, i = 1, ..., Ntest, with Ntest the size of the testing dataset.

For this purpose, we rely on the coefficient of determination, R2:

R2

= 1�
P

i(yi � ŷi)
2

P
i(yi � ȳ)2

,

where ȳ denotes the average of y. A perfect model would have an R2 of 1. A model that would always predict the163

average label would have an R2 of 0. A model with a negative R2 would perform worse than always predicting the164
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average label. Therefore a model that has and R2 score above 0 learned something about the data; the closer the165

score is to 1, the better.166

Feature importance:167

The use of an ensemble method based on decision trees allows us to report the most important features in our168

model and therefore enables us to gain physical understanding for this problem - which, besides their higher169

performance, was one of the primary reasons behind our choice of relying on these particular models. We use the170

gradient boosted trees F-score to measure the importance of each feature, which represents the number of times171

a given feature was selected at a tree node by the algorithm. When building a node in a tree, a random subset of172

features is given to the algorithm. Among this subset of features, the algorithm picks the best possible one to make173

a split (build a node), by looking at how well this given feature partitions the data. A good feature will result in a174

large reduction in empirical variance (as described above). Therefore, if the same feature is chosen many times, it175

means that it is crucial to build the final model. The F score counts how many times each feature was chosen to176

create a node in the model; this gives a ranking criterion for the importance of the features. The importance of the177

most predictive features identified by the algorithm to estimate failure times is shown in Figure S1. The evolution178

of these most important features in time is shown in Figure S2.179

Important features:180

The features identified by the algorithm as most important for generating these predictions are systematically the181

same. To show this, we ran 100 iterations of the algorithm on each experiment, selecting hyper-parameters via the182

EGO procedure using a random seed. This allows us to build 100 different models, each one generating highly183

accurate predictions. Figure S1 summarizes the 3 strongest features identified by the algorithm for each of these184

100 models.185

For both experiments, and whether we predict the beginning or the end of the slip event, the strongest features186

remain the same. In particular, the variance of the acoustic signal during the current window (window N) is by187

far the best feature identified. Other strong features include the variance in the previous non-overlapping window188
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(window N-10), and the kurtosis of the signal (windows N and N-10). In two models out of 400, the algorithm189

also relies on the frequency content of the signal to make its predictions. Because higher order moments are tightly190

linked to the energy of the signal, the fact that the algorithm mostly relies on the variance and kurtosis for its191

predictions shows that this energy follows a very precise pattern during the stress cycle. In particular, the variance192

increases progressively faster as failure approaches, and decreases once the end of the slip is near (c.f., Figures 3193

and 4 of the main text). By using the variance in the current window, and in the previous non-overlapping window,194

the algorithm is able to distinguish between the loading and slipping parts of the cycle. The evolution in time of the195

strongest features is shown in Figure S2. This very specific pattern is what allows us to make accurate predictions196

for both the beginning and the end of the slip event.197

Estimations of fault displacement and gouge thickness:198

When a model of fault displacement and layer thickness is built from only acoustic power (in a way similar to199

Figure 2 for shear stress in the main text), similar loop patterns emerge (Figure S3). Here again these patterns200

are different for slow and fast earthquakes; the smaller loops correspond to slow slip events, while the larger201

ones correspond to fast events. Starting from the end of a large event, the red shaded regions trace out a counter202

clockwise pattern, with low acoustic power early in the seismic cycle and an increase when failure begins and203

stress begins to drop (Figure 2 and S3). The first peak in acoustic power begins at higher stress and is smaller in204

amplitude, corresponding to the smaller stress drop events. This is followed by another cycle, with increasing stress205

and low acoustic signal power until stress reaches a peak and the acoustic signal strength increases dramatically206

to define the larger cycle in Figure 2. The loop trajectories for stress, displacement, and layer thickness, are built207

as follows. First, we cut the time series of acoustic power, such that each piece corresponds to one slip cycle. We208

then resample these pieces such that they all have the same number of datapoints. It is then straightforward to209

compute the mean trajectory (and standard deviation) in time for the slip cycles that correspond to fast and slow210

events. Because the algorithm has access to two sub-windows of acoustic power to make one estimation, it is able211

to differentiate between the loading and slipping phases of the cycle. Moreover, the variance builds up at a lower212

pace for slow than for fast slip events, which allows it to distinguish between slow and fast slip cycles.213
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Magnitude predictions:214

Once the time predictions are completed, we build a new database to predict the lab earthquake magnitude. This215

database only includes one line of data per slip event, and therefore is much smaller than the database used to216

predict slip timing and duration constructed by scanning the acoustic data (a few tens of data values vs tens of217

thousands) which makes the analysis harder. The database includes several simple statistics (mean, variance, min,218

max) of the predicted inter-event slip time, the predicted time duration, and the variance of the acoustic signal,219

calculated at around half of the stress cycle when the predictions start to become very accurate. It also includes the220

magnitude of the last slip event. Therefore our magnitude predictions for the next slip event rely on predicted times221

and acoustic data at around half of the current stress cycle, which allows us to predict magnitude a few seconds in222

advance (one cycle typically lasts from 3 to 14 seconds depending on the experiment). Specifically, we predict the223

maximum half-peak amplitude of the absolute value of the acoustic signal for the next event, A = max(abs(ac)),224

which can be used in turn to calculate magnitude. These predictions are made roughly at the middle of the current225

slip cycle. We rely on another gradient boosted trees regression to make the predictions. Figure 6 shows predictions226

for two sets of slow slip events. The red circles correspond to the true experimental amplitudes and the blue squares227

show the predicted values. Event magnitude M can be obtained from M = log(A), with A the maximum half228

peak amplitude. Because we are measuring the signal adjacent to the fault zone we do not account for the distance229

from the source. We use the first 70% of data as training set, and the last 30% as testing set. We rely on a similar230

approach as for time predictions, using reinforcement learning to set the gradient boosted trees’ hyperparameters.231

We do not perform feature selection in this case, as the number of features is already small.232
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Figure S1. Strongest features for failure timing, identified by building 100 different models. For each plot, the y
axis shows the number of models (among the 100) in which a particular feature was identified as the most predic-
tive, 2nd most predictive, and 3rd most predictive. The area of each circle represents the feature importance, as
measured by the gradient boosted trees’ F-score. Plots on the left show the models built to predict the beginning of
the slip event, and plots on the right those built to predict the end of the slip event. Panels (A) and (B) correspond to
the two different experiments. The most important features identified in all of these models remain systematically
the same.
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Figure S2. Evolution of the three most predictive features identified by the machine learning algorithm, over five
stress cycles. The variance (power) of the acoustic signal increases slowly at the beginning of the stress cycle,
takes off at the beginning of the slip event, then decreases precipitously near the end of the slip event. In contrast,
the kurtosis increases near the end of the slip event, and decreases as a slip approaches. Peaks in the kurtosis often
occur near failure, linked to increased precursory activity. This shows that the energy of the acoustic signal follows
a very precise pattern during the stress cycle. Panels (A) and (B) correspond to the two different experiments.
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Figure S3. Illustration of the ‘loop’ patterns followed by the acoustic power when plotted against displacement
and layer thickness (respectively A and B, right). Again, we see smaller loops associated to the slow events, and
larger loops associated to the fast events. The left hand-side plots show the associated estimations of the models
using all features (same as Figure 3 of the manuscript). The scatter plots on the right hand-side (right axis) show
the estimations using only the acoustic power. Here too, these estimation become better and better as failure gets
closer (scatter plot colors correspond to time remaining before failure: brighter means imminent failure).
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Figure S4. Connection between acoustic power early in the slip cycle, and the stress drop and duration of the
previous event.
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Figure S5. Model uncertainty reduces as the end of the current event approaches. The estimation intervals shown
are for a random forest model, that allows us to easily compute such a measure. The estimation interval shown
here means that 90% of the trees that compose the forest made an estimate within the blue shaded region. For both
experiments, the models have greater confidence in their estimations of failure times when failure gets closer.
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