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Abstract

This paper is concerned with the solution of severely ill-conditioned linear tensor
equations. These kinds of equations may arise when discretizing partial differential
equations in many space-dimensions by finite difference or spectral methods. The
deblurring of color images is another application. We describe the tensor Golub—
Kahan bidiagonalization (GKB) algorithm and apply it in conjunction with Tikhonov
regularization. The conditioning of the Stein tensor equation is examined. These
results suggest how the tensor GKB process can be used to solve general linear tensor
equations. Computed examples illustrate the feasibility of the proposed algorithm.
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1 Introduction

This paper is concerned with the numerical solution of severely ill-conditioned tensor
equations. We are particularly interested in the solution of Sylvester and Stein tensor
equations. The proposed iterative schemes also can be used to solve equations of the
form

L) =1, ey

where £ : RIx<lx.xIy _ RIxhx..xIN js 3 linear tensor operator. Severely ill-
conditioned tensor equations arise in color image restoration, video restoration, and
when solving certain partial differential equations in several space-dimensions by
collocation methods; see, e.g., [3, 21-24]. Throughout this work, vectors and matri-
ces are denoted by lowercase and capital letters, respectively, and tensors of order
three (or higher) are represented by Euler script letters.

Before discussing the problems to be solved, we recall the definition of an n-mode
product from [19]:

Definition 1 The n-mode (matrix) product of a tensor 2~ € RI*2XXIN with a
matrix U € R’*! is denoted by 2~ x,, U. It is of size

I <o x Ly X J X Iny1 X+ X Iy,

and has the elements

I
(L X0 Uy i iy = E Xiyigewin U jiy -

in=1

The n-mode (vector) product of a tensor .2~ € R/ /2% xIN with a vector v € R is
of order N — 1 and is denoted by 2" X, v;its sizeis Iy X ... X I, X L4 X ... x Iy.

The Sylvester and Stein tensor equations are given by
X x1 AV + Zx, AP+ .. .+ 2 xyAN =9 2)

and

X =2 x1 AV 3 AP xy AN = 7, 3)
respectively, where the right-hand side tensors 2, . € RI1*12%-xIN and the coeffi-
cient matrices A® € Riv>I (n = 1,2, ..., N) are known, and 2~ € RItxl2x..xIy
is the unknown tensor to be determined.

Many discretized linear partial differential equations in several space-dimensions
by finite differences [2, 3, 9] or spectral methods [3, 21-23, 27] can be expressed with
the aid of a Sylvester tensor equation. A discussion on the conditioning of (2) under
certain conditions is provided by Najafi et al. [24], who proposed the application of
Tikhonov regularization in conjunction with the global Hessenberg process in tensor
form to solve (2) with a perturbed right-hand side. Some perturbation results for (3)
are provided by Liang and Zheng [20] and by Xu and Wang [28], who solve (3) by
using the tensor forms of the BiCG and BiCR iterative methods. Liang and Zheng
[20] present perturbation results for (3) for the case when N is even and AL =
... = AW = A is Schur stable, i.e., when all eigenvalues of A lie in the open
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unit disc in the complex plane. These results rely on the matrix spectral norm of
- AN ... AD g A(l))—l'

Recently, Huang et al. [16] proposed to apply the global form of well-known itera-
tive methods in their tensor forms to the solution of a class of tensor equations via the
Einstein product. The iterative methods in the present work are well suited to solve
problems discussed in [16] when they are severely ill-conditioned; Huang et al. [16]
do not consider this situation.

This paper first establishes some results on the conditioning of (3) motivated by
[20, 28]. Then the tensor form of the Golub—Kahan bidiagonalization (GKB) process
for the solution of severely ill-conditioned tensor equations is described. In particular,
we consider the solution of severely ill-conditioned tensor equations of the forms
(2) and (3). To this end, we apply results in [3] and generalize techniques described
in [5]. We remark that the results discussed in Section 3 also can be applied to the
solution of severely ill-conditioned problems of the form (1).

The remainder of this section introduces notation used in throughout this paper.
We also recall the concept of the contracted product between two tensors. Section 2
presents some results on the sensitivity of the solution of (3), and in Section 3 we
describe a tensor form of the GKB process and discuss the use of Gauss-type quadra-
ture to determine quantities of interest for Tikhonov regularization. Section 4 presents
some numerical results, and Section 5 contains concluding remarks.

1.1 Notation

Let 2 € RIxDLx=xIN pe an N-mode tensor, and let Xi\iy..iy denote the element
(i1, 02, ..., in) of Z . For a real square matrix A with real eigenvalues, Api, (A) and
Amax (A) stand for its smallest and largest eigenvalues, respectively. The set of all
eigenvalues of A is denoted by o (A). The symmetric and skew-symmetric parts of A
are given by

H(A) = % (A + AT) and  S(A) = % (A — AT) ,

respectively, where the superscript 7 denotes transposition. The condition number of
an invertible matrix A is defined by

cond(A) = | All2lA™" 2,

where || - ||2 stands for the spectral norm. The largest and smallest singular values of
a matrix A are denoted by omax(A) and omin(A), respectively. In particular, for an
invertible matrix it holds

A
cond(A) = %L().
Omin(A)
[
We use the notation @x; := x] ® x2 ® --- ® x¢ for the multi-dimensional Kro-

i=1
necker product. The vector vec(Z") is obtained by using the standard vectorization
operator with respect to frontal slices of .2". The mode-n matricization of a tensor
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Z is denoted by X ,); it arranges the mode-n fibers to be the columns of the result-
ing matrix. Recall that a fiber of a tensor is defined by fixing all indices but one; see
[19] for more details.

1.2 Contracted product

The XV product between two N-mode tensors
2 e RI<BxxInaixIN - and o R11><12><~-><1N_1><1~N
is defined as the Iy x Iy matrix, whose (i, Jj)th entry is given by
(2 &Y D)) = (3{ ®N-1 @,) . N=34,...,
where }
2Ry ="y, 2 eRVDE g R,

and tr(-) denotes the trace of its argument. The )V product is a special case of the
contracted product [10]. Specifically, 2 XV ¢ is the contracted product of the N-
mode tensors .2~ and % along the first N — 1 modes. For .2, % € RI>2xxIy
we have

(X, Yy=uw@ RN %), N=2,3,...,

and |2 = (2 RN 2) = 2 RNVHD 2 for 2 e RI<2x*IN We conclude
this section by recalling the following two results from [3].

Lemma 1 Let 27 € RIv<xtnxxIn A ¢ R gnd y € R, Then

X xq Axpy = X X (ATy).

Proposition 1 Let 8 € RIV2XXINXm b qn (N + 1)-mode tensor with the column

tensors By, Bo, ..., By € RIIXIN gnd 7 = (71,20, ..., zm)T € R™, Then for
an arbitrary (N + 1)-mode tensor < with N-mode column tensors <, b, ..., Sy,
we have

o RNTD (B, 2) = (7 RNTD z)7.

2 Sensitivity analysis of the Stein tensor equation

This section mainly discusses the conditioning of the Stein tensor (3). To this end,

we first consider a linear system of equations that is equivalent to (3), and then derive

lower and upper bounds for the condition number of the matrix of this linear system.
It is well-known that (2) is equivalent to the linear system of equations

Ax = b,
with x = vec(Z"), b = vec(2), and

N
A= Z](IN) R ® 74+ ® AW ® JAUSY) ® - ® 71U
j=1
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Moreover, we have (see [19])
YW =2 x1AV4P . oxyAN) o vy = AVX ANV @ ... @ AD)T,
As a result, it follows that (3) corresponds to the linear system of equations
Avi=(1-AM @ © A® @ AD) vee(2) = vee(F).
We use the tensor norm
1271 = livec(Z)l> -
Therefore, the sensitivity analyses of (2) and (3) are closely related to deriving bounds

for the condition number of the matrices .4 and .A. For linear systems of equations
Ax = b and A(x + Ax) = b 4+ Ab with a non-singular matrix, it is well known that

A Ab
lAxll < cond(A) 141,
llxl2 15112

Moreover, if |A™! ||2 |AA|, < 1, then

’

|Axll, _  cond(A) {||AA||2 ||Ab||2}
=< +
Il = 1 = cond(ay Il LTI il

see, e.g., [13] for further details on perturbation analysis for linear systems of
equations.

Lower and upper bounds for A have been derived in [24] under suitable condi-
tions. Therefore, we limit our discussion to the tensor A, which we will assume to be
invertible. It is shown in [28] that

Max;, co(a®)k=12,..8 |1 = Airhi - iy

cond(A) > —
My, co(a®) k12,8 |1 = Airdiy - iy |

and

14T, 1AD 1,
1 =TT, 1AD ]|,

cond(A) < 4

where the latter bound requires the inequality |[AN @ --- @ A® @ AW, < 1to
hold. The following proposition presents an alternative upper bound.
Proposition 2 Assume that ]_[lN= | Omin(ADY > 1. Then

l_[zN=1 Gmin(A(i)) ( N ) )
cond(A) < (I—[,N:l o A) 1 1+ l—L=1 A, ).
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Proof Define F = AN @ ... @ AW and let p(M) denote the spectral radius of the

matrix M. Then
[All, < 1+ IFll2 =1+ /p (FFT)
N .
=1+ l_[Umax <A(l)>

i=1
N .
— (i)
= 1+][_, 1490 )
Since (I — F) ! = —(I — FH=1F~1 and

Fl= (A(N))il ® - ® (A“)>7] ,

we obtain

17 =TT, 0 (%) 1 = (Hil o <Am>>_l -

and

1
I—=B e <1d=FHY "WLIF  h<ld=FHY )< —ou-—,
II€ )2 = IIC ) 20lF 2 = I ) =1 71

which shows the proposition. [

Remark I We note that the assumption in Proposition 2 differs from the one used in
[28]. Because of the importance of determining upper bounds in perturbation analy-
sis, we report the upper bounds provided by (4) and Proposition 2 for two matrices .A.
The bounds and the exact condition numbers are plotted in Fig. 1. We used the MAT-
LAB function “cond(full(A)).” This allowed us to calculate the condition number of
A for small n only due to lack of computer memory.! When the matrix A is large and
sparse, we can compute an estimate of the condition number with MATLAB function
“condest(A).”

CaseI:  We let the matrices AY, ;i = 1,2, 3, be ill-conditioned “prolate” Toeplitz
matrices. This kind of Toeplitz matrix can be generated with the MATLAB com-
mand A = gallery ('prolate’, n, w), which returns the n-by-n prolate Toeplitz
matrix with parameter w. We set w = 0.11 for AW w = 0.12 for A®, and
w = 0.13 for A®. Then |A® ® A® @ AV || < 1. Notice that A1V, A® and
A® are full matrices. We therefore do not report “condest(A)” for this case.

! All computations for this section were carried out on a 64-bit 2.50-GHz core i5 processor with 8.00-GB
RAM using MATLAB version 9.4 (R2018a).
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-O—upp‘cr boun(i
—o-cond(A)

10'° 102

-o-u‘ppcr ‘boun‘d
—o-cond(A)
H-o-condest(.A)

108 1 10"
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5 10 15 20 25 30 35 5 15 25 35 45 55 65 75 85 95
Fig. 1 Computed bounds versus the exact condition numbers for different values of n; Case I (left) and
Case II (right)

Case II: Fori =1, 2, 3, consider the matrices

2 -1 3-51
-12 -1 13 =51
A =Y - I B R, (6)
%) S m | ;
-12 -1 1 3 =5
-12 13

that are the sum of a symmetric tridiagonal matrix and a banded upper Hessenberg
Toeplitz matrix with v = 0.1,c; = 1,2 =2,c3 =3,and h = 1/(n + 1). It can

3 .
be verified that [] omin(A®) > 1.

i=1

We next derive new bounds for cond(A). This requires the following two
propositions.

Proposition 3 Let AY) € R"*" and x; € R fori =1,2,...,L Then
¢ T ¢ ¢
(®xi> H (A“) A% ®...® A“)) Qi = [[T 1A, (D)
i=1 i=1 i=1

Proof We show the assertion by induction. Let £ = 2. Using the fact that
xI S(AD)x; = 0fori = 1,2, we obtain (7) from the following equality (see [29]):

HAD © AD) = HAD) @ H(AD) +5(AD) © S(A?).

Now assume that (7) holds for £ = k. Let £ = k + 1 and define

(k+1)
Ve =) xi, Vi+1 = x1 ® Wk, Ar=AP @ .. @A,
i=2
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Then
VL HAY @ AP @ @ AXD) Y = (1 @ VT HAD @ A (x1 ® i)
= (] HAD)x1) x ) H(AD VD).
The proposition now follows from the induction hypothesis. O

Proposition4 Let A=1 — AN ®...@ A®D @ AD. Then

N 2 . N .
hmax (AAT) = 1T+ [T oqa(AD) =2 T 3T H(AD)y;

and
N )
hnin(AAT) < 14+ ] oqin(a®) =2 H o HAD)z;,
where the y; and z; are unit eigenvectors such that, fori =1,2,..., N,
ADANT 7 =62 (AD)z; and ADANTy =62 (AD)y;.

Proof Tt is easy to verify that
AAT = (I - Ay ® - @ ANU - AL ® - ® A])
=1+ ANAL ® - ®AIA] —2H(AN ® -~ ® A)). (8)

LetY=(OnN® - Qy1)and Z = (zy ® - - - ® z1). Then it follows from Proposition
3 that

J/TAAT)J=1+1_L]_V O (AT — 2]‘[ yEHAD)y;

and
T 4 AT N 5 N7 ;
ZTAATZ = 14 [ oqin(a® =2 o/ APz
This shows the desired result. O]
Remark 2 If the matrices A®, fori = 1,2, ..., N, are positive definite, then

Anin(AAT) < 14 [T 02 (4®).

We note that the matrices A® are not required to be symmetric. Positive definite-
ness of the matrix A®, i = 1,2,..., N, implies that H(A®) is symmetric positive
definite. Furthermore, if

N .
[T, 02uA?) 2 2T men (A,
then the following upper bound follows from Proposition 4,
1 T 020 (AD) = 2T Aman (H(AD))

JUHTTY 02,(A0)
1

- \/1+1‘[, Lo2 (AD)

cond(A) >
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Under additional assumptions, we can derive an alternative upper bound for the
condition number. To this end, we need the following result, which is a consequence
of Weyl’s Theorem [14, Theorem 4.3.1].

Proposition 5 Let the matrices A, B € R™" be symmetric. Then

Amax(A + B) < Apax(A) + Amax(B),
Amin(A + B) > Amin(A) + Amin(B).

Remark 3 Let F = AN @ ... ® AV and 1 € o (H(F)). Let E denote the set of
non-negative even numbers less than or equal to N. Then

max (H(F) < Y '

MEMy ™" < (Ms + M"Y,
}’651\/ ’

r'(N —r)

where

Ms= max [S(AD), and My = max [HAD)|,.
i=1,2,..., N i=1,2,..., N

The result can be shown by considering the symmetric part of . For simplicity, let
N = 3. Then

H(F) = HAD) @ H(AD) @ H(AD) + H(AD) @ S(AP) ® S(AD)
+S(AP) @ H(AD) @ S(AM) + S(AP) ® S(AP) @ H(AD).

Using Proposition 5, we have

A

3
max(H(F) < JTIHAD) 2 + I1HAPD) [21SAP) 2115 (AD) |12
i=1
HISAN IHAD) 2 IIS(AD) 12
HISAN ISAD) I IHAD) 2
< M3 +3MuM?% < (My + Ms)>.

N .
It follows from the above discussions that if 1+ [ Ur%lin(A(’)) —2(Mgs+ Mp)N > 0,
i=1

then we can derive an upper bound for || A~!||; in the following manner: We obtain
from (8) that

N
dnin(AAT) = 1+ [T ogin(AD) = 22mar (H(F))
i=1
N .
> 1+ [Jomin(AD) —2(Ms + M)
i=1
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Therefore,

_ 1
A7, <

. ©
N

\/ L+ [T 02, (AD) = 2(Ms + Mp)V
i=1

Combining the inequalities (5) and (9) yields

N
1+ l_[ Umax(A(i))
cond(A) < il ) (10)

N
\/1 + [ 02, (AD) — 2(Mg + Mp)N
i=1

_ To illustrate the bound (10), we let AD = A@ — A®) — A, where the matrix
A € R™™" is defined by

100
—1
(n+1)2

vgith M = tridiag(—1, 2, —1) and L = tridiag(0.5, 0, —0.5). We note that the matrix
A is taken from [29-31]. The condition

A=M+2rL +

3

1+ ]_[afﬁn(A(”) —2(Mg+ Mp)* >0
i=l

holds for suitable choices of r and even values of n. Figure 2 displays graphs for the

exact condition number cond(A4) and the bound (10). The computations are carried

out on the same computer as for Fig. 1. In particular, the function cond(-) can be

evaluated for fairly small values of », only.

We conclude this section by considering the situation when all the matrices A®)
are diagonalizable.

- -m - - upper bound

cond(A) \

1200

K 800
f 1000 '

2000 ] ! 700

1500

y
P 400
1000

400 300
500 200

100

Fig. 2 Computed bounds by (10) versus the exact condition numbers for different values of n; r = 70
(left), » = 100 (center), and r = 500 (right)
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Remark 4 Let the matrices A®) be diagonalizable, i.e., there are non-singular matri-
ces S; and diagonal matrices D; such that AD = S,-D,-Si_1 fori =1,2,...,N.
Introduce

A=T-AM®... AD and S=Sy®---® ).
Then A=S(I — Dy Q®---® D))S™ . Hence, if 1 ¢ 60(AN) @ --- @ AD), then
A'=8U-Dy®---®@ D))" 'S

As aresult, we get

N N
IA™ 2 < [TIS7 20 ll2M1.p = [ [ cond(Si) M1 .
i=1 i=1
N N
1A < IS 120Sil2M2.p = [ | cond(Si) M2, p,
i=1 i=l
where
[ o)
M, p = max , s
1= Amin(Dy ® -+ @ D)) |1 = Amax (Dy ® - ® D)
N
Ma, p Zmax{ll_)\min(DN®"‘®Dl)|a|1_)\max(DN®‘"®Dl)|}§1+l_[ I Dill2.

i=1

We obtain the inequality

N
cond(A) < [ (cond($,)* M1, p M p.
i=1
N
Let [ IID; Y2 < 1. Then analogously to the proof of Proposition 2, we have

i=1

N M
cond(A) < [ (cond(5))> —— 22

=! 1= 111D
i=1

N
If [] |1 Dill2 < 1, then

i=1

N M N 2
cond(A) < [ (cond(s,))> + < [ (cond($:))? —
i=1 L=T[ 1Dl =t 1—TI1D;l2
i=1 i=1
Finally, we note that if the matrices D;, i = 1,2, ..., N, are all positive definite,

then

N N
nin(DN @+ @D1) = [ [ Amin(Di)  and  Amax(Dy @+ @ D1) = [ [ Amax (D).

i=1 i=1
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3 The tensor form of GKB and Tikhonov regularization

We first describe the implementation of the Golub—Kahan bidiagonalization (GKB)
process in the tensor framework. Subsequently, we discuss an application of the GKB
process to Tikhonov regularization. For notational simplicity, we introduce the two
linear operators M, M : RIv<2xxIy _ RIxIxxIy defined by

MZ) =2 x1 AV + 2 x2 AP + ..+ 2 xy AN,
MZ) =2 — 2 x1 AD x5 AP  xy AN,

The adjoint operators of M and M are given by

MDY = W 1 (AT 1% 5, (AP 4 4 sy (AT
M*(@) =X — X x4 (A(l))T X1 (A(2))T XN (A(N))T’

for # e RN>12xxIN The tensor equations (2) and (3) can be expressed as

M(Z) =2,
MZ)=Z. (11)

We remark that the results and methods of this section also can be applied to other
linear operators from R/1*/2%xIxn o RIx[2x-xIN For notational convenience, we
discuss in the sequel results and methods for (11).

Consider for the moment the linear system of equations Ax = b with a non-
singular matrix A € R"*". Application of k steps of the GKB process to A with
initial vector b produces the decompositions

AU, = Vin T, ATV =UTT, (12)

where the matrices V41 € R<*k+D) and Uy € R"*k have orthonormal columns,
the matrix Vj is made up of the first k columns of Vi1, the first column of Vj4
is b/||b||2, the matrix Ty € R*+D>k i Jower bidiagonal with all diagonal and sub-
diagonal entries positive, and Ty is the leading k x k submatrix of Ty. We assume
that £ is small enough so that the decompositions (12) with the stated properties
exist. This is the generic situation. Otherwise, the GKB process is said to break
down. In the latter event, the computations simplify. We will not dwell on the
handling of breakdowns. Thorough discussions on the GKB process can be found
in [13, 25].

It is natural to extend the GKB process to tensor equations. Algorithm 1 describes
the application of the GKB process to (11). We refer to the process so defined as the
GKB based on tensor format (GKB_BTF) process.
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Algorithm 1 The GKB_BTF process associated with the linear operator M.

1 Input: Linear operator M, the right-hand side .%, number of steps k.

2 Set By = |.F|, " = ﬁf and % = 0.
3 begin

4 for j =1,2,...,kdo

s U = MV)) = BjUj-1;
6 aj =%l

7 if «; = 0 then

8 | Stop

9 end

10 Uy =U[ay;

u V= MU — a7}

12 Bj+1 = 1171l;

13 if 8j11 = 0 then

14 | Stop

15 end

16 Vit1 =7 /Bj+13

17 end

18 end

Assume that the first k steps of Algorithm 1 can be carried out without breakdown,
i.e., without any coefficients «; and B; vanishing. The analogue of the lower bidi-
agonal matrix T € R&K+DxK jp (12), which we also refer to as T, has the diagonal
entries o1, @2, .. ., a. They are computed in line 6 of Algorithm 1. The subdiagonal
elements B>, B3, ..., Br+1 of Ty, are computed in line 12 of the algorithm. We can
express the matrix T} in the form

_ T,
Ty = .
k (ﬁk+1ekr )

Theorem 1 Let “/7/{, 022k, Vik, and 7/;* be (N + 1)-mode tensors with frontal slices
Vi, U, Wi = M(%;), and 7/]* = M*(¥}), respectively, for j = 1,2,...,k,
computed by Algorithm 1. Then

W = D xvin) TE 4 Bin1 Z xvety Ex = Y1 xvan T (13)
W = U xn+1) Tk, (14)

where % is an (N + 1)-mode tensor with k column tensors 0, ..., 0, ¥y1. The last
column of the matrix E;, = [0,...,0,¢e] € Rk*K is the last column of the identity
matrix of order k.

Proof From lines 11 and 16 of Algorithm 1, we have

MUi—) =a; 1 V21 + B 7. 15)

@ Springer



1548 Numerical Algorithms (2020) 84:1535-1563

Note that the (j — 1)st frontal slice of (13) is given by

k+1
Tt Xvany T ocimny = D V@ j1 = a1 Y1 + B
=1
Equation (13) now follows from (15) and the above relation.
To show (14), we first note that lines 2, 5, and 10 of Algorithm 1 yield

M*(%)Zﬂj%j71+0{j%j, j=12...,

where %) is defined to be zero. Equation (14) now follows by comparing the above
equation and the jth frontal slice of the right-hand side of (14). O

We turn to the situation when the operator M in (11) is severely ill-conditioned
and the right-hand side tensor .% is contaminated by error. Let . denote the unknown
error-free tensor associated with .%, and assume that Z is in the range of M. We
would like to determine the solution of minimal norm, Z , of

MZ) =

Straightforward solution of (11) may not give a meaningful approximation of z
due to a large propagated error in the solution of (11) stemming from the error in
Z. A common way to address this difficulty is to replace (11) by a nearby problem,
whose solution is less sensitive to the error in .%. This replacement is known as
regularization. One of the most popular regularization methods is due to Tikhonov.
This regularization method replaces the solution of (11) by the minimization problem

min NIM@E2) = FP +ul 2 ). (16)
,%ERII xIyx..xIy
The parameter 1 > 0 is referred to as a regularization parameter. Its purpose is to
balance the influence of the first term (the fidelity term) and the second term (the
regularization term).
Let Zk,u, %kx(N+ 1)k, De an approximate solution of (16), where Y is
defined as above. We obtain from (13), by using Lemma 1 and Proposition 1, that

[ M(Ziw0) = 7|

Pt X(N+1) T X (N1 Ve — 9”
= | Y1 X v+ Te Vi — «?H

= [ Fir1 BV (G X vy Tevi g — F) H2

= || (D1 BV A D Ty — Yo ROV 9)‘2

| Tk yi e — Bret |, - (17)

This shows that (16) is equivalent to the following low-dimensional minimization
problem

2
(18)

<[1)y—ﬁ1€1

min {17y = prerf; + wlyi3} = min
ye 2
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The minimization problem on the right-hand side can be solved in only O(k)
arithmetic floating point operations for each value of u© > 0; see Eldén [11] for
details.

We turn to the choice of the regularization parameter and assume that an upper
bound € > O for the norm of the error in the right-hand side .% is explicitly
known. Then the discrepancy principle can be applied to determine the regularization
parameter . The discrepancy principle prescribes that ;& > 0 be chosen so that

|M(Zi ) — Z | = ne (19)

for some parameter n > 1 that is independent of €. This is a non-linear equation for
n > 0; see, e.g., Engl et al. [12] for a discussion on the discrepancy principle. Of
course, other techniques for determining a suitable value of u also can be applied;
see, e.g., Kindermann and Raik [17, 18] for discussions.

It is not advisable to use the normal equations associated with the right-hand side
of (18) in computations. However, the normal equations are convenient to apply when
deriving expressions for determining a value of © > 0 that approximately satisfies
(19). Let yy, denote the solution of (18). Using the normal equations associated with
the right-hand side of (18), yx , can be expressed as

Ve = BT T+ uD) ™' Tl ey (20)
Consequently,
n 2 5 T —15T 2
| Tevep — Brer|; = HﬂlTk(Tk T + ul) T e1 — Bre H2
I _ 2
= | @ T+ DT = Dprer ||
—14 &T —1 2
= | BT+ D7 e
= Biel W' Tk T + D) Per.
Introduce the functions

V() = Bief (W' T T + D7 %en,
Pe(n) = Biel (W' TiT! + D 7%er. 1)
Proposition 6 Let n > 1 and € > 0 be constants, and let the function ¢i (1) be
defined by (21). If u > 0 satisfies
e < () < e, (22)
then the associated solution yy ,, of (18) is such that
€ < || Teywn — Bret |, < ne,
and L = Vi X (N+1) Vi fulfills
€ < |[M(2iw) — F| < ne. (23)

Moreover,

V() = | M (23,0 — 7| (24)
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Proof Tt can be shown that ¢ (1) < ¥ (u) for uw > 0. A proof based on interpreting
¢k (1) as a Gauss quadrature rule and ¥ (1) as a Gauss—Radau quadrature rule with a
fixed node at the origin is provided in [8] in the context of solving large linear systems
of equations with a severely ill-conditioned matrix and an error-contaminated right-
hand side. Equation (24) follows from (17). O]

The following result is easy to show. A proof can be found in [8].

Proposition 7 Let ¢y (1) be defined by (21). Then the function u — ¢r(1/u) is
strictly decreasing and convex for u > 0. Moreover,

Jim @i (1/1) = B

In particular, Newton’s method applied to compute the solution [y of the equation

dr(1/1) = n*e? (25)

with an initial approximate solution po > 0 to the left of the solution converges
monotonically and quadratically. For instance, one may choose puy = 0 when the
Sfunction u — ¢r(1/u) and its derivative are suitably defined at u = 0.

It follows from Proposition 7 that the use of the Newton method to solve (25)
is easy to implement, because the method does not have to be safe-guarded when
starting with g = 0. This is discussed in [8]. However, a cubically convergent zero-
finder described in [26] and applied in [7, 26] requires fewer iterations and less CPU-
time.

The most expensive part of the computations with Algorithm 1 is the evaluation
of M*(¥;) and M(%;) in lines 5 and 11 of the algorithm. With the aim of keeping
the computational effort required by Algorithm 1 as small as possible, we would like
to choose the number of steps, &, of the algorithm small, but large enough to be able
to satisfy (23). To achieve this, we proceed as follows: Carry out a few steps k£ > 0
with Algorithm 1, say k = 2, and compute the solution ;> 0 of ¢ (1/p) = €2. If
Yr(1/ux) < n€?, then (23) holds for

Lieue = W X (N+1) Yk s (26)

where yi ,, is defined by (20) with p = . If, instead, ¥ (1/uy) > n%e2, then we
increase k by one, i.e., we set k = k 4 1 and carry out one more step with Algorithm
1. We increase the number of steps until (23) holds. Typically, only a few steps of
Algorithm 1 are required to satisfy (23). The required number of evaluations of
the expressions M*(¥#;) and M(%;) typically is fairly small. This is illustrated in
Section 4. Algorithm 2 summarizes the computations required for Tikhonov regular-
ization based on the GKB_BTF process.
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Algorithm 2 The GKB_BTF-Tikhonov method for the solution of (16).

Input: Linear operator M, right-hand side .%, bound € > 0 for the error in .%.
Choose > 1 and set k = 2;

Set "1 = Z /117 1;

Determine the orthonormal bases {%; }];=1 and {"//j}’;

AW N =

+

=i of tensors, and the
bidiagonal matrices T and 7 with Algorithm 1;

5 Determine the regularization parameter j¢; such that (22) holds for = .
This may require increasing k. In this case, let k = k + 1 and go to line 4;

6 Determine yy ,, by solving (18) and compute 2% ,, from (26);

This section focused on the solution of equation (11). However, the solution
method described can be applied to the solution of more general tensor (1).

4 Numerical examples

This section shows a few numerical experiments that illustrate the performance of
the method described in Section 3. We limit ourselves to the case N = 3 in (2) and
(3). For notational simplicity, we write (2) and (3) in the form £(Z") = %. The
right-hand side tensor is in all test problems contaminated by an error tensor & with
normally distributed random entries with zero mean. The entries are scaled to yield a
specified noise level
L. el
el
All computations were carried out using the Tensor Toolbox [1] in MATLAB version
R2018b with an Intel Core 17-4770K CPU @ 3.50-GHz processor and 24-GB RAM.
We report the relative errors

o o N2k = 2
121

where 2 denotes the desired solution of the problem with error-free right-hand side
tensor ¢ associated with ¢, and Z .k denotes the kth computed approximation
determined by the algorithms.

In the computations for Tables 1, 5, and 7, the iterations were terminated as soon
as an approximate solution 2, x was found such that the discrepancy principle

|1£(Zu1) = €| < ne, 27)

was satisfied, where n = 1.01 is a user-chosen constant and ¢ is the norm of error in
%, i.e., ¢ = ||&]. Our numerical results illustrate that the performance of the algo-
rithms is not very sensitive to the choice of n(> 1); we illustrate the convergence
behavior of the algorithms for several values of 1 in Example 5. We remark that the
left-hand side of (27) can be computed inexpensively by using (17) with M and .%
replaced by £ and €, respectively. We compare Algorithm 2 of the present paper to
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methods that apply the Hessenberg and flexible Hessenberg processes based on ten-
sor format to reduce the given large problem to smaller ones. These methods are used
together with Tikhonov regularization and are described in [24]. The discrepancy
principle is used to determine the regularization parameter. We refer to the method
that uses the Hessenberg process based on tensor format together with Tikhonov reg-
ularization as the HT_BTF method; when the Hessenberg process based on tensor
format is replaced by the flexible Hessenberg process based on tensor format, the
resulting method is referred to as the FHT_BTF method.

When the coefficient matrices are dense and not very large, the FHT_BTF method
outperforms the other methods in our comparison. However, for large and sparse
coefficient matrices, FHT_BTF requires more CPU time than Algorithm 2. For large
problems, the FHT_BTF method requires many iterations to satisfy the stopping
criterion (27). We therefore for the results reported in Tables 2, 3, 4, 6,8, 9, and 10
used the alternative stopping criterion

Hﬂhx—ﬁﬁbw4H<T
”f%,u.k,l,k—ln -

for a user-specified value of the parameter T > 0. Moreover, at most 300 itera-
tions were allowed. In the FHT_BTF method, we used two steps of the stabilized
biconjugate gradient method based on tensor format (BiICGSTAB_BTF) [9] as inner
iteration; see [24] for further details. Choosing a smaller value of t results in that a
larger number of iteration is required to satisfy (28). We illustrate the performance of
Algorithm 2 for several values of 7 in Example 5.

We report the number of iterations and the CPU-time (in seconds) required by the
methods in our comparison to compute approximate solutions that satisfy the spec-
ified stopping criteria. Section 4.1 discusses the solution of severely ill-conditioned
problems of the form (2) and Section 4.2 considers severely ill-conditioned problems
of the form (3). The blurring matrices used in Section 4.1 can be expressed as

(28)

191 xAV +19AP ®1+AV I,
while the blurring matrices applied in Section 4.2 can be written as
I — A® ® A ® A(l)7
where the A(“) are a Gaussian Toeplitz matrix A = [a;;] given by

1 .2
exp (-2 - i<

aij = o271 202 (29)
0, otherwise,

or a Toeplitz matrix with entries

cli=Jl=r

aij =14 2r—1 (30)

0, otherwise.

We further present some experiments for Sylvester and Stein tensor equations with
the coefficient matrices given in Case II of Remark 1 at the end of each subsection.
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Blurring matrices of type (29) and (30) have been used in the literature to test iterative
schemes for image deblurring; see [4-6, 15].

4.1 Experimental results for severely ill-conditioned Sylvester tensor equations

We consider (2) with coefficient matrices that are dense and very ill-conditioned. This
kind of equation arises from the discretization of a fully three-dimensional microscale
dual-phase lag problem by a mixed-collocation finite difference method; see [21-23]
for details.

Example 1 Consider (2) with the matrices A = [g il e R fort = 1,2,3
defined by
(—D)iti

Rl e

2 i

(). i

where x; = 2ZU=D e “;”L, i,j=1,2,...,n and L = 300. When n is odd,
the coefficient matrices A are well-conditioned and the problem can be solved
successfully with a block iterative method; see [3]. However, when n is even, the
coefficient matrices are very ill-conditioned. This is illustrated in [24, Example 5.4].
The error-free right-hand side of (2) is constructed so that X = randn(n, n, n) is the
exact solution, i.e., 2 has normally distributed random entries with mean zero and
variance one. Table 1 shows the numerical results obtained. Computed approximate
solutions and the exact solution are displayed in Fig. 3.

ajj =

Table 1 Comparison results for Example 1 with respect to stopping criterion (27)

Grid cond(A®) Level of noise (v) Method Iter(k) ex CPU-time (sec)
100 x 100 x 100 1.25-10'® 0.01 Algorithm 2 39 L.11-107' 231
HT_BTF 11 751-1072 3.62
FHT_BTF 5 6.25-1072 0.98
0.001 Algorithm 2 134 4.48-1072 17.53
HT_BTE 24 257-1072 34.84
FHT_BTF 8 233.1072 235
150 x 150 x 150 4.67 - 10'¢ 0.01 Algorithm 2 37 1.18-107" 7.03
HT_BTF 11 7.40-1072 1232
FHT_BTF 5 6.33-1072 3.34
0.001 Algorithm2 178 4.02-1072 36.89
HT_BTF 21 3211072 7295
FHT_BTF 8 261-1072 8.15
180 x 180 x 180 3.28- 106 0.01 Algorithm 2 36 1.19- 107" 11.13
HT_BTF 11 7.55-1072 21.45
FHT_BTEF 5 6.13-107%2 5.66
0.001 Algorithm 2 154  4.18-1072 58.64
HT_BTF 22 2.89-1072 134.51
FHT_BTF 7 291-107% 11.65
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—
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(d)

Fig.3 a Exact solution on grid 180 x 180 x 180, b noisy data with noise level v = 0.01, ¢ restored solution
by HT_BTF, d FHT_BTF, and e Algorithm 2

Table 1 shows the FHT_BTF method to perform better than the other methods.
This is typical for problems with dense coefficient matrices.

We next turn to an image restoration problem, in which the error-free right-hand
side in (2) is constructed so that the exact solution is a hyperspectral image. Here, the
matrices AV, i = 1,2, 3, are sparse and we will see that Algorithm 2 performs the
best.

Example 2 We consider the situation when the exact solution of (2) is a tensor of
order 1019 x 1337 x 33 that represents a hyperspectral image of a natural scene.” The
coefficient matrices AV, A®  and A® are defined by (30) with suitable dimensions
and with r = 2 for AV and A®, and r = 3 for A®. This gives cond(AM) =
5.26 - 10'6, cond(A®) = 1.75 - 10'7, and cond(A®) = 4.75 - 10'6. Thus, all the
coefficient matrices are numerically singular.

As mentioned above, the (F)HT_BTF methods can not be efficiently used with
the stopping criterion (27). Therefore, we used the stopping criterion (28) for all
algorithms. The results are reported in Table 2. Algorithm 2 can be seen to perform
better than the HT_BTF and FHT_BTF methods. Table 7 illustrates that the compu-
tational effort increases as the error in the tensor ¢ decreases. Here, Algorithm 2 was
terminated as soon as (27) was satisfied. The contaminated and restored images are
displayed in Figs. 4 and 5.

Zhttp://personalpages.manchester.ac.uk/staff/d.h.foster

@ Springer


http://personalpages.manchester.ac.uk/staff/d.h.foster

Numerical Algorithms (2020) 84:1535-1563

1555

Table 2 Results for Example 2 using the stopping criterion (28) with t = 2 - 1072

Noise level v Method Tter(k) ek CPU-time (sec)
0.01 Algorithm 2 4 3.85-1072 7.45
HT_BTF 4 6.77-1072 27.01
FHT_BTF 2 6.28 - 1072 26.81
0.001 Algorithm 2 4 3.57 - 1072 7.47
HT_BTF 4 4.40-1072 26.67
FHT_BTF 2 3.85-1072 25.30

(@)

Fig. 4 Example 2. a Exact image, b blurred and noisy image with noise level v = 0.01, and ¢ restored
image by Algorithm 2 using the stopping criterion (27)

Fig.5 Example 2. a blurred and noisy image with noise level v = 0.01, restored images by b HT_BTF, ¢

FHT_BTEF, and d Algorithm 2 using the stopping criterion (28)
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Example 3 Consider the Sylvester tensor equation (2) whose coefficient matrices
AL A® and A® are defined by (30) with r = 30 for AV, r = 20 for A®, and
r =20 for A®). We examine the performance of algorithms for the following cases:

CaseI Let the exact solution of (2) be hyperspectral image of order
1019 x 1337 x 33 in the above example. Here, we have cond(AM) = 1.66- 108,
cond(A@) = 4.13 - 10", and cond(A®) = 5.59 - 10'8,

CaseII Let Z = randn(1000, 500, 100) be the exact solution of (2), i.e., A €
R1000x1000 4 (2) ¢ R300x500 anq AG) ¢ RI00x100 for which cond(AV) = 1.74 -
10!, cond(A®) = 8.07 - 107, and cond(A®) = 3.66 - 10!8.

Results for these cases are reported in Table 3. The table shows Algorithm 2 to
converge faster for Case I. However, the HT_BTF method outperforms the other
approaches for the noise level 0.01 for Case II. We remark that the performance of
the methods when applied to the Stein tensor equation is different when increasing r
in the coefficient matrices; see Example 7 for more details.

We turn to results for the Sylvester tensor equation with the coefficient matrices
given in Case II of Remark 1. This equation arises from the discretisation of a three-
dimensional convection-diffusion equation on a uniform grid using a standard finite
difference for the diffusion term and a second order convergent scheme (Fromm’s
scheme) for the convection term with mesh size h = 1/(n + 1); see [2, 3]. This
problem was examined in [3] for n x n x n grids with n < 110, for which the cor-
responding matrix A is not severely ill-conditioned. However, the condition number
increases with the value of n.

Example 4 Consider the Sylvester tensor equation for N = 3 with the coefficient
matrices A© for ¢ =1, 2, 3 given in the second case of Remark 1. Table 4 shows that
Algorithm 2 is an efficient solver. When the noise level is small, FHT_BTF requires
more CPU-time than HT_BTF and produces slightly more accurate approximate
solutions.

Table 3 Results for Example 3 using the stopping criterion (28) with t = 2 - 1072

Noise level v Mehtod Case I Case 11
Iter(k) ex CPU-time (sec) Iter(k) ex CPU-time (sec)

0.01 Algorithm 2 7 1.02- 107" 41.09 41 7.02- 107" 439.29
HT_BTF 8 9.08-1072 123.69 10 9.03-10~" 221.93
FHT_BTF 7 1.18- 1071 217.22 7 8.65-10"1 24547

0.001 Algorithm 2 8 8.22-1072 49.77 42 6.95-1071 452.10
HT_BTF 8 8.67-1072 123.64 14 8.82-107! 498.97
FHT_BTF 5 6.93-1072 145.75 7 8.63-107! 24585
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Table 4 Results for Example 4 using stopping criterion (28)

Grid 200 x 200 x 200 350 x 350 x 350
(r=1-1073) (t=2-107%

Noise level v Method Iter(k) ex CPU-time (sec) Iter(k) ex CPU-time (sec)

0.01 Algorithm 2 67 436-1072 82.99 44 5.03-1072 221.85
HT_BTF 22 3251072 264.85 17 3.30-1072 647.16
FHT_BTF 20 3.21-1072 205.10 15 3281072 547.81

0.001 Algorithm 2 65 3.88-1072 79.20 44 4.85-1072 222.13
HT_BTF 18 2.16- 1072 142.22 17 2.19-107% 614.08
FHT_BTF 19 1.60- 1072 187.02 16 1.79 - 1072 643.74

4.2 Experimental results for severely ill-conditioned Stein tensor equations

In this subsection, we consider the solution of three severely ill-conditioned problems
of the form (3). For the first two examples, error-free right-hand sides are constructed
so that the exact solutions are color images. The iterations with the algorithms were
terminated with the stopping criteria (27) or (28). We conclude this subsection by
reporting the results for Stein tensor equations with the coefficient matrices given in
Case II of Remark 1.

Example 5 The “exact” image? is represented by a 576 x 787 x 3 tensor and is
displayed in Fig. 6a. The coefficient matrices of (3) are A1), which is defined by
(29), and A® and A®, which are given by (30), and have suitable dimensions. We
setr =7,0 =2for AV andr = 2for A® and A® . Then cond(A(l)) =1.79.10°,
cond(A@®) = 4.05- 10", and cond(A®) = 6.45 . 10*. We found that when using
the stopping criterion (28), the performance of Algorithm 2 is not very sensitive to
small changes in n(> 1) and t; see Fig. 7 for details.

Example 6 Let the exact solution of (3) be of order 1019 x 1337 x 33; it represents
the hyperspectral image shown in Fig. 8. The coefficient matrices A", A®_ and
A® of suitable dimensions are defined by (30) with r = 12 for AV, r =2 for A®),
and r = 6 for A®). Then cond(AV) = 2.05 - 10'8, cond(A@®) = 1.75 - 10'7, and
cond(A®) =2.44 . 10",

Tables 5, 6, 7, and 8 show results for Examples 5 and 6. Algorithm 2 can be seen
to be superior to the other methods examined. The exact, contaminated, and restored
images are shown in Figs. 6, 8, and 9.

Similarly to Example 3, we consider coefficient matrices (30) with larger values
of r. Differently from Sylvester tensor equations, all algorithms perform better when

3The image is available at https://www.hlevkin.com/TestImages/Boats.ppm
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Fig.6 Example 5. a Exact image, b blurred and noisy image with noise level v = 0.01, restored image by
¢ HT_BTF, d FHT_BTF, and e Algorithm 2 using the stopping criterion (27)

n=11
0.18 T T T T - o
T=1le—-2
0.09 = x |
0.08 [ ]
_ _007f 1
s g
5] [
-02) .g 0.06 [ |
8 &
K] &
0.05 1
0.04 1
Iterations Iterations
n=15 n=2

Relative error
Relative error

Iterations Iterations

Fig. 7 Convergence history of Algorithm 2 for Example 5: Relative error versus iteration numbers with
respect to different  and t for noise level 0.01
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(b)

Fig. 8 Example 6. a Exact image, b blurred and noisy image with noise level v = 0.01, and ¢ restored
image by Algorithm 2 using the stopping criterion (27)

Table 5 Results for Example 5 using the stopping criterion (27)

Level of noise (v) Method Iter(k) ex CPU-times(sec)
0.01 Algorithm 2 13 531-1072 0.80
HT_BTF 12 6.46- 1072 8.71
FHT_BTF 5 6.58 - 1072 2.25
0.001 Algorithm 2 52 2.63-1072 3.78
HT_BTF 13 5.97-1072 10.64
FHT_BTF 6 6.41-1072 3.02

Table 6 Results for Example 5 using the stopping criterion (28) with t = 2 - 1072

Noise level v Method Tter(k) ex CPU-time (sec)
0.01 Algorithm 2 6 7.40-1072 0.41
HT_BTF 9 7.88 1072 4.09
FHT_BTF 6 6.54-1072 2.86
0.001 Algorithm 2 6 7321072 0.38
HT_BTF 9 7.84-1072 4.14
FHT_BTF 6 6.42-1072 2.87

Table 7 Results for Algorithm 2 with the stopping criterion (27)

Example 2 Example 6
Noise level v Iter(k) ex CPU-time (sec) Iter(k) er CPU-time (sec)
0.01 6 3.54-1072 1431 18 7.98-1072  58.76
0.001 20 1.72-1072  57.03 31 5.62-1072  96.14
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Table 8 Results for Example 6 using the stopping criterion (28) with t = 3 - 1072

Noise level v Method Tter(k) ek CPU-time (sec)

0.01 Algorithm 2 6 1.39- 107! 17.73
HT_BTF 6 2.61-107" 54.83
FHT_BTF 4 1.40-107! 57.04

0.001 Algorithm 2 6 1.37-1071 17.74
HT_BTF 6 2.44.107! 54.94
FHT_BTF 4 1.38-107! 57.96

increasing the value of 7. For the Stein tensor equation, we note that Algorithm 2 can
be competitive with the (F)HT_BTF method.

Example 7 Consider the Stein tensor (3) with the matrices A given by (30) for
¢=1,2,3.Letr =40 for AV r = 50 for A, and r = 30 for A®). Table 9 reports
results for the following two cases:

CaseI Let the exact solution of (3) be the hyperspectral image of order
1019 x 1337 x 33 mentioned above. We have cond(AV) = 1.18 - 108,
cond(A@) = 4.87- 10!, and cond(A®) = 3.12 - 10114,

Fig. 9 Example 6. a Blurred and noisy image, restored images by b HT_BTF, ¢ FHT_BTF, and
d Algorithm 2 using the stopping criterion (28) with t = 3 - 1072
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Table 9 Results for Example 7 using the stopping criterion (28) with t = 3 - 1072

Noise level v Mehtod Case I Case II
Iter(k) ex CPU-time (sec) Iter(k) eg CPU-time (sec)
0.01 Algorithm 2 6 2021072 4331 4 1.34-1072 24.12
HT_BTE 6 7.40-1073 75.35 3 1.04-1072 28.74
FHT_BTF 3 7.30-1073 103.68 3 1.01-1072 115.28
0.001 Algorithm 2 6 1.06 - 1072 4335 4 1.50- 1073 24.21
HT_BTF 6 1.20- 1073 75.61 3 1.30-1073 28.65
3 3

FHT_BTF 7.32-107% 102.92 1.00- 1073 115.34

CaseII Let 2 = randn(1000, 500, 100) be the exact solution of (3); i.e., A €
RIOOOXIOOO’ A(Z) e RSOOXSOO’ and A(3) e RIOOXIOO. We have COl’ld(A(l)) —248.
10%, cond(A@) = 6.70 - 107, and cond(A®) = 5.70 - 10'8.

The results reported in Table 9 show Algorithm 2 to perform better than (F)HT_BTF
for larger values of r.

We conclude this subsection by reporting results for a Stein tensor equation, whose
coefficient matrices are given by (6).

Example 8 Let Z = randn(n, n, n) be the exact solution of equation (3) and let
the coefficient matrices AV, A®, and A® be defined by (6). We observe that the
(F)HT_BT methods perform less well when increasing the problem size. Therefore,
we used a slightly larger value of v for n = 200. Table 10 shows that HT_BT is
superior to Algorithm 2 for n = 120. When n = 200, Algorithm 2 outperforms
(FHT_BT.

Table 10 Results for Example 8 using the stopping criterion (28)

Noise level v Mehtod n=120(=2-10"% n=200(t=1-1072)
Iter(k) ex CPU-time (sec) Iter(k) ex CPU-time (sec)

0.01 Algorithm 2 212 5.10- 107! 128.95 49 6.21-107" 47.93
HT_BTEF 14 5.70-107" 16.14 22 5741071 24270
FHT_BTF 17 6.01-1071 30.97 24 6.31-1071 336.09

0.001 Algorithm2 192 5.09-10~" 109.50 49 5.93.10"" 47.86
HT_BTF 16 5.48-1071 22.94 21 5.88-10~" 213.60
FHT_BTF 20 3.75-1071 46.99 12 4.08-107" 61.33
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5 Conclusions

This paper first presents some results on the conditioning of the Stein tensor equation.
Then it introduces the Golub—Kahan bidiagonalization process with application to
solving severely ill-conditioned linear tensor equations, such as Sylvester and Stein
tensor equations. The iterative scheme also can be applied to the solution of gen-
eral linear tensor equations with an operator over R"1*"2X Xk We provide new
theoretical results and present some numerical examples with applications to high-
dimensional PDEs and color image restoration to illustrate the applicability and
effectiveness of the proposed iterative method.
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