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We consider the solution of linear discrete ill-posed systems of equations with a certain 
tensor product structure. Two aspects of this kind of problems are investigated: They are 
transformed to large linear systems of equations and the conditioning of the matrix of 
the latter system is analyzed. Also, the distance of this matrix to symmetry and skew-
symmetry is investigated. The aim of our analysis is to shed light on properties of linear 
discrete ill-posed problems and to study the feasibility of using Krylov subspace iterative 
methods in conjunction with Tikhonov regularization to solve Sylvester tensor equations 
with severely ill-conditioned coefficient matrices. The performance of several proposed 
algorithms is studied numerically. Applications include color image restoration and the 
solution of a 3D radiative transfer equation that is discretized by a Chebyshev collocation 
spectral method.

© 2020 IMACS. Published by Elsevier B.V. All rights reserved.

1. Introduction

This paper discusses the solution of severely ill-conditioned tensor equations that arise in color image restoration, video 
restoration, and when solving certain partial differential equations in several space-dimensions by collocation methods. A 
tensor is a multidimensional array. The number of indices of its entries is referred to as mode or way. Throughout this 
paper vectors (tensors of order one) and matrices (tensors of order two) are denoted by lower case and upper case letters, 
respectively; Euler script letters stand for tensors of order three or higher. The element (i1, i2, . . . , iN) of an N-mode tensor 
X is denoted by xi1 i2...iN .

Consider the Sylvester tensor equation

X×1 A(1) +X×2 A(2) + . . . +X×N A(N) =D, (1.1)

where the right-hand side tensor D ∈ RI1×I2×...×IN and the coefficient matrices A(n) ∈ RIn×In (n = 1, 2, . . . , N) are known, 
and X ∈ RI1×I2×...×IN is the unknown tensor to be determined. The definition of the n-mode product ×n is the standard 
one, see, e.g., [27]; details are given in Subsection 1.1. Equations of the form (1.1) arise from the discretization of a linear 
partial differential equation in several space-dimensions by finite differences [3–5,7,11] or by spectral methods [5,31,34–36,
45]. We refer the reader to [25] for a survey of tensor numerical methods for the solution of partial differential equations 
in many space-dimensions. Equations of the form (1.1) also arise in the restoration of color and hyperspectral images, see, 
e.g., [6,17,30,43], blind source separation [29], and when describing a chain of spin particles [1].
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Krylov subspace methods are popular solution methods for Sylvester tensor equations (1.1). For the case when the right-
hand side in (1.1) is a tensor of low rank, Krylov subspace methods have been studied by Kressner and Tobler [28]. Ballani 
and Grasedyck [4] implemented the GMRES method with Hierarchical Tucker Format (HTF) tensor truncation and multi-
grid acceleration. Chen and Lu [11] proposed the GMRES method based on tensor format (GMRES−BTF) for solving (1.1) in 
the situation when the right-hand side is not necessarily a low-rank tensor. In [5], the tensor form of the FOM algorithm 
(FOM−BTF) was proposed. Also a nested algorithm for the situation when Eq. (1.1) has nonsymmetric positive definite co-
efficient matrices was examined. We also refer to Fan et al. [16] for a recent discussion on solution methods for Sylvester 
tensor equations (1.1) that arise from the discretization of elliptic partial differential equations in higher space-dimensions.

To the best of our knowledge, the performance of iterative methods tailored for the solution of problems of the form (1.1)
has not received much attention in the literature so far. We are primarily concerned with the situation when the equation 
stems from the discretization of a linear ill-posed problem. Then (1.1) is referred to as a discrete ill-posed problem. Such 
problems arise, e.g., in color image restoration. In this application the right-hand side is typically contaminated by an error 
E, i.e.,

D = D̃+ E, (1.2)

where D̃ denotes the unknown error-free right-hand side. It represents a blurred, but noise-free, image.
We would like to determine the solution, denoted by X̃, of minimum norm (to be defined) of the tensor equation (1.1)

with the right-hand side replaced by D̃, i.e., of the unavailable Sylvester tensor equation

X×1 A(1) +X×2 A(2) + . . . +X×N A(N) = D̃. (1.3)

This equation is assumed to be consistent, but equation (1.1) does not have to be. Since the right-hand side D̃ is not known, 
we may try to determine an approximation of X̃ by solving (1.1) with an available iterative method for the solution of 
Sylvester tensor equations, e.g., one of the methods described in [4,5,11,16,28]. However, when (1.1) is a discrete ill-posed 
problem, the computed solution so obtained is likely to be a poor approximation of X̃ due to severe propagation of the error 
E in D into the computed solution. It is the aim of the present paper to generalize results and techniques in [6,8,38] to 
overcome this difficulty. This leads us to a Tikhonov regularization strategy, in which the problem of solving (1.1) is replaced 
by the solution of a minimization problem of the form

min
X∈RI1×I2×...×IN

⎧⎪⎨⎪⎩
∥∥∥∥∥

N∑
i=1

X×i A(i) −D

∥∥∥∥∥
2

+ λ

∥∥∥∥∥∥
M∑

j=1

X× j L( j)

∥∥∥∥∥∥
2
⎫⎪⎬⎪⎭ , (1.4)

where 1 ≤ M ≤ N and the L( j) ( j = 1, 2, . . . , M) are regularization matrices. The nonnegative constant λ is a regularization 
parameter. Note that N stands for the number of modes in the unknown tensor X. Throughout this paper, we will measure 
a tensor X ∈RI1×I2×...×IN with the norm

‖X‖ :=

√√√√√ I1∑
i1=1

I2∑
i2=1

. . .

IN∑
iN=1

x2
i1 i2...iN

,

which generalizes the matrix Frobenius norm.
It is well-known that (1.1) is equivalent to the following linear system of equations

Ax = b, (1.5)

with x = vec(X), b = vec(D), and

A =
N∑

j=1

I(IN ) ⊗ . . . ⊗ I(I j+1) ⊗ A( j) ⊗ I(I j−1) ⊗ . . . ⊗ I(I1). (1.6)

Here and throughout this paper, “vec” stands for the standard vectorization operator that transforms a tensor to a vector. 
We note that vec(X) is obtained by using the standard vectorization operator with respect to frontal slices of X. Recall that 
for a given tensor X ∈RI1×I2×...×IN , the frontal slices are defined by

X:: . . . :︸ ︷︷ ︸ k

(N−1)-times

∈RI1×I2×...×IN−1 , k = 1,2, . . . , IN ,

which also are known as column tensors of X. The kth frontal slice of X is obtained by setting the last index to k.
We primarily consider the situation when the solution of (1.1) (or equivalently of (1.5)) is an ill-posed problem. Therefore, 

we first investigate the dependence of the condition number of A on the condition numbers of the matrices A( j) in (1.6). 
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We are interested in the behavior of iterative methods applied to the solution of (1.1) (or equivalently to the solution of 
(1.5)). The behavior of iterative methods for the solution of large linear systems of equations (1.5) with a symmetric matrix 
A is better understood than the behavior of iterative methods applied to the solution of linear systems of equations with 
a nonsymmetric matrix. When solving (1.5) by the GMRES iterative method, which is based on the Arnoldi process (to be 
defined below), the distance of A to the set of symmetric and to the set of skew-symmetric matrices is important; see [19]. 
The methods we consider for the solution of (1.1) are based on the Arnoldi process. We are therefore interested in how the 
distance of the matrices A(i) , i = 1, 2, . . . , N , to the sets of symmetric and skew-symmetric matrices affects the behavior 
of the iterative methods considered. We will study this by introducing (fairly) easily computable distance measures for the 
matrix (1.6). A generalization of (1.6) that arises in color image restoration with cross-channel blur also will be discussed.

This paper is organized as follows. In the remainder of this section, we review some basic concepts and introduce 
notation used in later sections. In Section 2, which is motivated by results in [33,42], we derive lower and upper bounds 
for the condition number of A, given by (1.6), in terms of extreme singular values of the matrices A(i) for i = 1, 2, . . . , N . 
Section 3 is concerned with measuring the distance of a matrix with Kronecker structure, that is associated with (1.1), 
to the set of symmetric (positive or negative semi-definite) matrices, or to the set of skew-symmetric matrices. A new 
distance measure is introduced that allows efficient computation. The aim of Section 4 is to present iterative methods based 
on Arnoldi-type processes that exploit the tensor structure to solve (1.4). To this end, we apply results in [5] and extend 
techniques that have been described in [6,8,24,38]. Numerical results that illustrate the results of Sections 2 and 3, as well as 
the effectiveness of the proposed iterative schemes are reported in Section 5. Concluding remarks can be found in Section 6.

1.1. Preliminaries

This subsection briefly reviews some basic definitions and properties that are used in the remainder of the paper. Our 
notation follows [27].

The inner product between two tensors of the same size X, Y ∈RI1×I2×...×IN is defined by

〈X,Y〉 :=
I1∑

i1=1

I2∑
i2=1

. . .

IN∑
iN=1

xi1 i2...iN
yi1i2...iN

.

The n-mode (matrix) product of a tensor X ∈ RI1×I2×...×IN with a matrix U ∈ R J×In is denoted by X ×n U . It is of size 
I1 × . . . × In−1 × J × In+1 × . . . × IN and its elements are given by

(X×n U )i1...in−1 jin+1...iN =
In∑

in=1

xi1i2...iN u jin , j = 1,2, . . . , J .

The n-mode (vector) product of a tensor X ∈RI1×I2×...×IN with a vector v ∈RIn is of order N − 1 and is denoted by X×̄n v , 
where its size is given by I1 × . . . × In−1 × In+1 × . . . × IN .

We will use the �N product between two N-mode tensors X and Y, which is a reformulation of a special case of the 
contracted product. In fact, the product X �N Y is the contracted product of N-mode tensors X and Y along the first N − 1
modes; see [5,12] for further details.

We conclude this subsection with a proposition that can be established by using the definitions of n-mode and contracted 
products. This result is useful for deriving iterative methods in the tensor framework.

Proposition 1.1. Suppose that B ∈RI1×I2×...×IN ×m is an (N + 1)-mode tensor with column tensors B1, B2, . . . , Bm ∈RI1×I2×...×IN

and let z = (z1, z2, . . . , zm)T ∈Rm. For an arbitrary (N + 1)-mode tensor A with N-mode column tensors A1, A2, . . . , Am, we have

A�(N+1) (B×̄N+1z) = (A�(N+1) B)z,

(A×̄N+1z) �(N+1) B= zT (A�(N+1) B).

1.2. Notation

For a real square matrix A with real eigenvalues, λmin(A) and λmax(A) denote the minimum and maximum eigenvalues 
of A, respectively. Further, λ(A) stands for an arbitrary eigenvalue of A, and the set of all eigenvalues of A is denoted by 
σ(A). The identity matrix of order n is denoted by I(n) , and the vector ei stands for the ith column of an identity matrix of 
suitable order.

The symmetric and skew-symmetric parts of a real square matrix A are given by

H(A) := 1
(A + AT ) and S(A) := 1

(A − AT ), (1.7)

2 2
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respectively, where the superscript T denotes transposition. The condition number of a (square) invertible matrix A is 
defined as cond(A) := ‖A‖2‖A−1‖2, where ‖ · ‖2 denotes the matrix spectral norm. We write A 	 0 (A � 0) to indicate that 
the matrix A is symmetric positive (semi-)definite.

Let B be an arbitrary matrix. The maximum and minimum singular values of B are denoted by σmax(B) and σmin(B), 
respectively. The notation Null(B) stands for the null space of B .

The Kronecker product of two matrices X = [xij] ∈Rn×p and Y ∈Rq×l is defined by X ⊗ Y = [xij Y ] ∈Rnq×pl .

2. Conditioning

The Kronecker structure of the matrix A defined by (1.6) makes it difficult to analyze the problem (1.5). In particular, it 
is difficult to approximate the inverse of A for general matrices A(i) already for N = 2. This has recently been pointed out 
by Simoncini [44, Section 9]. Nevertheless, some insight can be gained by investigating the condition number of A. This 
section derives lower and upper bounds for cond(A). The bounds obtained are helpful for discussing the conditioning of 
(1.1).

Let X̃ solve the Sylvester tensor equation with error-free right-hand side (1.3). Shi et al. [42, p. 1443] obtained the 
relative error bound

‖X̃−X‖
‖X̃‖ ≤

N∑
i=1

‖A(i)‖F

N∏
i=1

cond(Ti)

min
λi∈σ (A(i))

|∑N
i=1 λi|

‖D̃−D‖
‖D̃‖ (2.1)

for the case when the matrices A(i) are diagonalizable, i.e., when there are nonsingular matrices Ti and diagonal matrices 
�i such that T −1

i A(i)Ti = �i for i = 1, 2, . . . , N . The norm ‖ · ‖F denotes the Frobenius matrix norm.
Let the matrix A be positive stable, i.e., all of its eigenvalues lie in the open right half plane. Liang and Zheng [33, 

p. 8] considered the case when all the matrices A(i) are equal to the same positively stable matrix A. They established the 
relative error bound

‖X̃−X‖
‖X̃‖ ≤ N‖A‖F ‖A−1‖2

‖D̃−D‖
‖D̃‖ . (2.2)

The bounds (2.1) and (2.2) are valid when there are no perturbations in the coefficient matrices A(i) . The identities

‖X̃−X‖
‖X̃‖ = ‖vec(X̃) − vec(X)‖2

‖vec(X̃)‖2
and

‖D̃−D‖
‖D̃‖ = ‖vec(D̃) − vec(D)‖2

‖vec(D̃)‖2

show that perturbation analysis for (1.1) is closely related to obtaining bounds for the condition number of A.
We would like to derive lower and upper bounds for cond(A) in terms of singular values of the matrices A(i) under 

some sufficient conditions. These kinds of bounds can be cheaply computed since the sizes of the matrices A(i) are small in 
comparison to the size of A. The main challenge is to determine bounds for ‖A−1‖2. Let us first recall the following result, 
which is an immediate consequence of Weyl’s Theorem; see [23, Theorem 4.3.1].

Proposition 2.1. Let A, B ∈Rn×n be symmetric matrices. Then

λmax(A + B) ≤ λmax(A) + λmax(B) and λmin(A + B) ≥ λmin(A) + λmin(B).

We derive a lower bound for the condition number of A by applying bounds for the extreme eigenvalues of AAT . The 
following result will be used to achieve this goal.

Proposition 2.2. Let A ∈Rn×n and B ∈Rm×m. Then

(xT ⊗ yT )H(A ⊗ B)(x ⊗ y) = (xT H(A)x) × (yT H(B)y)

for any vectors x ∈Rn and y ∈Rm.

Proof. From [46], it is known that H(A ⊗ B) = H(A) ⊗ H(B) + S(A) ⊗ S(B). The proof now follows from the fact that 
xTS(A)x = 0 and yT S(B)y = 0. �
Proposition 2.3. Assume that A and A(i) are invertible matrices for i = 1, 2, . . . , N. Then

1

‖A−1‖2
= λmin(AAT ) ≤

(∑N

i=1
σmin(A(i))

)2

(2.3)

2
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and

λmax(AAT ) ≥
N∑

i=1

σ 2
max(A(i)) + 2

N∑
i=1

N∑
j=i+1

(yi ⊗ y j)
T H(A(i) ⊗ A( j))(yi ⊗ y j), (2.4)

where A(i)(A(i))T yi = σ 2
max(A(i))yi with ‖yi‖2 = 1 for i = 1, 2, . . . , N.

Proof. For simplicity, we show the validity of the assertion for N = 3. A similar strategy can be used to show (2.3) and (2.4)
for an arbitrary integer N ≥ 1. For notational convenience, set A(1) = A, A(2) = B , and A(3) = C . Let σ 2

min(A), σ 2
min(B), and 

σ 2
min(C) stand for the minimal eigenvalues of A AT , B BT , and CC T , respectively, and let x, y, and z denote corresponding 

unit eigenvectors.
Let Y = z ⊗ y ⊗ x. Straightforward computations and the Cauchy–Schwartz inequality give

(zT ⊗ yT ⊗ xT )(I ⊗ BT ⊗ A)(z ⊗ y ⊗ x) = ‖z‖2
2 × 〈B y, y〉 × 〈x, Ax〉

= σ 2
min(B)〈y, B−1 y〉 × σ 2

min(A)〈A−1x, x〉
≤ σmin(B)σmin(A). (2.5)

By computing the quadratic form associated with AAT , it can be seen that

Y T AAT Y = 〈A AT x, x〉‖y‖2
2‖z‖2

2 + 〈B BT y, y〉‖x‖2
2‖z‖2

2 + 〈CC T z, z〉‖x‖2
2‖y‖2

2

+ 〈B y, y〉 × 〈x, Ax〉‖z‖2
2 + 〈y, B y〉 × 〈Ax, x〉‖z‖2

2 + 〈z, C z〉 × 〈B y, y〉‖x‖2
2

+ 〈C z, z〉 × 〈y, B y〉‖x‖2
2 + 〈C z, z〉 × 〈x, Ax〉‖y‖2

2 + 〈z, C z〉 × 〈Ax, x〉‖y‖2
2.

Since x, y, z are unit eigenvectors for A AT , B BT and CC T , respectively, with similar computations used for deriving (2.5), 
we obtain

Y T AAT Y ≤ σ 2
min(A) + σ 2

min(B) + σ 2
min(C)

+2σmin(A)σmin(B) + 2σmin(A)σmin(C) + 2σmin(B)σmin(C)

= (σmin(A) + σmin(B) + σmin(C))2 .

As a result, using the fact that λmin(AAT ) ≤ Y TAATY , the validity of (2.3) can be deduced.
We turn to the proof of (2.4). Let σ 2

max(A), σ 2
max(B), and σ 2

max(C) denote the maximum eigenvalues of the matrices A AT , 
B BT , and CC T , respectively, and let x̃, ỹ, and z̃ stand for associated unit eigenvectors. Setting Ỹ = z̃ ⊗ ỹ ⊗ x̃, it can be seen 
that

Ỹ T AAT Ỹ =σ 2
max(A) + σ 2

max(B) + σ 2
max(C) + 2 ỹT H(B) ỹ × x̃T H(A)x̃

+ 2z̃T H(C)z̃ × x̃T H(A)x̃ + 2z̃T H(C)z̃ × ỹT H(B) ỹ.

Using Proposition 2.2 and the fact that λmax(AAT ) ≥ Ỹ TAAT Ỹ , it is not difficult to verify (2.4). �
Remark 2.4. From the proof of the previous proposition, we may immediately conclude that

cond(A) ≥

√∑N
i=1 σ 2

max(A(i)) + 2
∑N

i=1
∑N

j=i+1

(
yT

i H(A(i))yi
)(

yT
j H(A( j))y j

)
N∑

i=1
σmin(A(i))

,

where A(i)(A(i))T yi = σ 2
max(A(i))yi with ‖yi‖2 = 1 for i = 1, 2, . . . , N . By adding some mild conditions to the assump-

tions of Proposition 2.3, we obtain simpler lower bounds for cond(A) in terms of the singular values of the matrices 
A(1), A(2), . . . , A(N) . For instance,

• if all the matrices are equal, i.e., if A(i) = A for i = 1, 2, . . . , N , then

cond(A) ≥ σmax(A)√
Nσmin(A)

;

• if either of the following statements is true:
a) the (possibly nonsymmetric) matrices A(1), A(2), . . . , A(N) are all positive definite, or
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b) the matrices of the form A(i) ⊗ A( j) for i, j = 1, 2, . . . , N and i �= j are positive definite,
then

cond(A) ≥

√
N∑

i=1
σ 2

max(A(i))

N∑
i=1

σmin(A(i))

.

To derive an upper bound for the condition number of A, we require additional conditions on the coefficient ma-
trices A(i) . Specifically, we need a condition that ensures the positive definiteness of the matrices A(i) ⊗ (A( j))T for 
i, j = 1, 2, . . . , N . To this end, we recall the following remark from [46].

Remark 2.5. Let F and G be two nonsymmetric matrices. If

λmin(H(G))λmin(H(F )) + min (−λ(S(G))λ(S(F ))) > 0,

then the symmetric part of G T ⊗ F is positive definite.

We now establish bounds for the extreme eigenvalues of AAT . These bounds will be used to obtain an upper bound for 
cond(A). For notational simplicity, we assume that N = 3 and let A = A(1) , B = A(2) , and C = A(3) . Analogues of the bounds 
(2.6) and (2.7) can be shown in a similar fashion when N is a general positive integer.

Proposition 2.6. Let A = (I ⊗ I ⊗ A) + (I ⊗ B ⊗ I) + (C ⊗ I ⊗ I). Then

λmax(AAT ) ≤ (σmax(A) + σmax(B) + σmax(C))2. (2.6)

Moreover, assume that A is invertible. Then, if B T ⊗ A, C T ⊗ A, and C T ⊗ B are positive definite, we have

1

λmin(AAT )
≤ 1

σ 2
min(A) + σ 2

min(B) + σ 2
min(C)

. (2.7)

Proof. The spectral norm of A = (I ⊗ I ⊗ A) + (I ⊗ B ⊗ I) + (C ⊗ I ⊗ I) and the triangle inequality give (2.6). To show 
(2.7), we first note that C ⊗ I ⊗ AT is congruent to I ⊗ AT ⊗ C . Hence, the positive definiteness of B T ⊗ A, C T ⊗ A, and 
C T ⊗ B implies that the symmetric parts of the matrices I ⊗ B T ⊗ A, C T ⊗ B ⊗ I , and C T ⊗ I ⊗ A are positive definite. Some 
computations and Proposition 2.1 yield

λmin(AAT ) ≥ σ 2
min(A) + σ 2

min(B) + σ 2
min(C) + λmin

(
(I ⊗ BT ⊗ A) + (I ⊗ B ⊗ AT )

)
+λmin

(
(C T ⊗ B ⊗ I) + (C ⊗ BT ⊗ I)

)
+ λmin

(
(C T ⊗ I ⊗ A) + (C ⊗ I ⊗ AT )

)
≥ σ 2

min(A) + σ 2
min(B) + σ 2

min(C).

This completes the proof. �
Remark 2.7. The above proposition shows that

• if the matrices BT ⊗ A, C T ⊗ A, and C T ⊗ B are positive definite, then we can determine an upper bound for cond(A):

cond(A) ≤ σmax(A) + σmax(B) + σmax(C)√
σ 2

min(A) + σ 2
min(B) + σ 2

min(C)

;

• if all the matrices A(i) that define A are all equal, i.e., if A(1) = . . . = A(N) = A, and if A ⊗ AT is positive definite, then

cond(A) ≤
√

Nσmax(A)

σmin(A)
.

The following example reports some numerical experiments that illustrate the bounds of Remarks 2.4 and 2.7.

Example 2.8. Let N = 3 in (1.1) and consider the two cases:
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Table 1
Results for Cases 1 and 2 of Example 2.8.

Case 1 Case 2

n Lower bound cond(A) Upper bound Lower bound cond(A) Upper bound

10 2.54 · 101 7.12 · 101 7.61 · 101 2.91 · 101 8.46 · 101 8.72 · 101

20 9.32 · 101 2.65 · 102 2.79 · 102 1.05 · 102 3.05 · 102 3.16 · 102

30 2.03 · 102 5.57 · 102 6.08 · 102 2.28 · 102 6.60 · 102 6.84 · 102

40 3.54 · 102 1.00 · 103 1.06 · 103 3.97 · 102 1.14 · 103 1.19 · 103

50 5.55 · 102 1.55 · 103 1.63 · 103 −
60 7.75 · 102 2.22 · 103 2.32 · 103 −
70 1.04 · 103 3.00 · 103 3.12 · 103 −

Fig. 1. Lower and upper bounds for cond(A) versus the exact value: Case 1 (left) and Case 2 (Right).

Case 1: All the coefficient matrices are equal to the n × n matrix

A(1) = A(2) = A(3) = M + 2rL + 1

(n + 1)2
In,

where M = tridiag(−1, 2, −1), L = tridiag(0.5, 0, −0.5), and r = 0.01. These matrices are discussed in [46].
Case 2: Regard the Sylvester tensor equation that arises from the discretization of a 3D convection-diffusion partial differen-

tial equation by standard finite differences on a uniform grid for the diffusion term and a second-order convergent 
scheme (Fromm’s scheme) for the convection term. The coefficient matrices A(i) in (1.1) are given in [5, Example 
5.4].

Table 1 shows the bounds of Remarks 2.4 and 2.7. The symbol “−” in the table indicates that the computer used for the 
calculations1 was not capable of computing the condition number of A due to lack of memory. We remark that cond(A)

is computed by using the MATLAB function condest(A). Moreover, the condition number of A could not be computed for 
n ≥ 80 in reasonable time in Case 1. Fig. 1 depicts the computed upper and lower bounds together with the computed 
values of cond(A). The figure shows the lower and upper bounds for n ≤ 130, whereas the values of cond(A) are only 
reported up to the largest value of n for which the condition number of A ∈Rn3×n3

could be evaluated on our computer.

Remark 2.9. The restoration of color images without cross-channel blur requires the solution of linear systems of equations 
(1.5) with a matrix of the form (1.6) with N = 3. The matrices A( j) , j = 1, 2, 3, model within channel blur of channels that 
represent red, blue, and green light. Further details on color image restoration can be found, e.g., in [6]. In the presence of 
cross-channel blur, the matrix in the linear system of equations (1.5) is given by Ã= C ⊗A, where

A = I(3) ⊗ I(2) ⊗ A(1) + I(3) ⊗ A(2) ⊗ I(1) + A(3) ⊗ I(2) ⊗ I(1).

A bound for the condition number of the matrix Ã can be obtained by applying the technique of this section to determine 
a bound for the condition number of A and using the fact that

cond(Ã) = cond(C)cond(A).

The condition number of the small matrix C can be easily computed. Typically, matrices modeling cross-channel blur are 
not very ill-conditioned; see [6, Example 3] for an illustration.

1 See Section 5 for details about the computer system.
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3. Distance to symmetric semi-definiteness

For an arbitrary square matrix A ∈Rl×l , the distances from A to the set of all symmetric positive semi-definite matrices 
and to the set of all negative semi-definite matrices are defined by

δ+(A) := min
{
‖E‖ : E ∈ Rl×l, A + E � 0

}
and

δ−(A) := min
{
‖E‖ : E ∈ Rl×l, A + E � 0

}
,

respectively, where ‖ ·‖ denotes a given matrix norm. Holmes (1974) and Higham (1988) derived expressions for the spectral 
and Frobenius norms, respectively. These expressions are provided in the following two theorems.

Theorem 3.1. [22] Let A ∈Rl×l . Then

δ+
2 (A) = min

{
‖E‖2 : E ∈ Rl×l, A + E � 0

}
= min

{
r ≥ 0 : r2 I + (S(A))2 � 0 and G(r) � 0

}
, (3.1)

where G(r) := H(A) + (r2 I + (S(A)2)1/2 . The matrix P = G(δ+
2 (A)) is a positive semi-definite approximation of A in the spectral 

norm.

Theorem 3.2. [21, Theorem 2.1] Let A ∈Rl×l and let H(A) = U H be a polar decomposition. Then X F = (H(A) + H)/2 is the unique 
best positive approximation of A in the Frobenius norm. Moreover,

δ+
F (A)2 =

∑
λi(H(A))<0

(λi (H(A)))2 + ‖S(A)‖2
F . (3.2)

Remark 3.3. Following a similar approach to the one used in [21, Theorem 2.1], one can show that

δ−
F (A)2 =

∑
λi(H(A))>0

(λi (H(A)))2 + ‖S(A)‖2
F . (3.3)

The aim of this section is to derive expressions for δ+(A) and δ−(A) for a suitable norm in the case when A is given 
in the Kronecker form (1.6). When determining δ±

F (A) by using the coefficient matrices A(i) (i = 1, 2, . . . , N) and applying 
(3.1) and (3.2) (or (3.3)), this tends to be computationally expensive. We therefore propose to use an alternative norm.

Consider the real-valued function ‖ · ‖ss over the set of square matrices,

‖A‖ss = ‖H(A)‖2 + ‖S(A)‖2 ,

where H(A) and S(A) are defined by (1.7). It is immediate to see that ‖ · ‖ss is a norm on the set of square matrices.
We will measure the distance of A ∈Rl×l to the set of positive and negative semi-definite matrices by

δ+
ss(A) = min

{
‖E‖ss : E ∈Rl×l, A + E � 0

}
and

δ−
ss(A) = min

{
‖E‖ss : E ∈Rl×l, A + E � 0

}
,

respectively, because of the relative ease of the computation of these quantities; see below.
We next derive expressions for δ+

ss(A) and δ−
ss(A) in terms of extreme eigenvalues of A. To this end, we first present the 

following result.

Proposition 3.4. Let the matrix B ∈Rl×l be symmetric. Then

B + ‖B‖2 I � 0 and B − ‖B‖2 I � 0.

Proof. Let λ ∈ σ(B). Then |λ| ≤ ‖B‖2 and λ ± ‖B‖2 are eigenvalues of B ± ‖B‖2 I . Therefore, the eigenvalues of B + ‖B‖2 I
are larger than or equal to zero, and the eigenvalues of B − ‖B‖2 I are smaller than or equal to zero. This shows the 
assertion. �
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The proof of the following proposition can be used to provide a simpler proof of [22, Theorem 1].

Proposition 3.5. For any square matrix A, the following statements hold:

δ+
ss(A) = max {0,−λmin(H(A))} + ‖S(A)‖2 and δ−

ss(A) = max {0, λmax(H(A))} + ‖S(A)‖2 .

Proof. We only show the validity of the first equality; the expression for δ−
ss (A) can be shown similarly. For any X � 0, it 

follows from the symmetry of X that

‖A − X‖ss = ‖H(A) − X‖2 + ‖S(A)‖2 ,

which shows that

min
X�0

‖A − X‖ss = min
X�0

‖H(A) − X‖2 + ‖S(A)‖2 .

To complete the proof, it suffices to show that

min
X�0

‖H(A) − X‖2 = min {r ≥ 0 : H(A) + r I � 0} . (3.4)

Let r̃ = ‖H(A) − X‖2, where X � 0 is given. Then H(A) − X + r̃ I � 0 by Proposition 3.4. Therefore,

r̃ ≥ min {r ≥ 0 : H(A) + r I � 0} .

Since the above inequality holds for any X � 0, we conclude that

min
X�0

‖H(A) − X‖2 ≥ min {r ≥ 0 : H(A) + r I � 0} . (3.5)

Now let r̂ = min {r ≥ 0 : H(A) + r I � 0}. We have H(A) + r̂ I � 0 and

min
X�0

‖H(A) − X‖2 ≤ ∥∥H(A) − (H(A) + r̂ I)
∥∥

2

= min {r ≥ 0 : H(A) + r I � 0} .

The preceding inequality together with (3.5) ensure that (3.4) holds. �
Consider the symmetric/skew-symmetric splittings of the coefficient matrices A(i) =H(A(i)) +S(A(i)) for i = 1, 2, . . . , N . 

It is immediate to see that the symmetric and skew-symmetric parts of A have the forms, respectively,

H(A) =
N∑

j=1

I(IN ) ⊗ . . . ⊗ I(I j+1) ⊗H(A( j)) ⊗ I(I j−1) ⊗ . . . ⊗ I(I1)

and

S(A) =
N∑

j=1

I(IN ) ⊗ . . . ⊗ I(I j+1) ⊗ S(A( j)) ⊗ I(I j−1) ⊗ . . . ⊗ I(I1). (3.6)

Proposition 3.6. Let A be defined by (1.6). The following relation holds for the spectral norm of its skew-symmetric part,

‖S(A)‖2 =
N∑

j=1

‖S(A( j))‖2. (3.7)

Proof. It is well known that the skew-symmetric matrix S(A) is a normal matrix and, therefore, it is unitarily diagonaliz-
able. Now, we can conclude the result immediately from (3.6), which provides a relation between eigenvalues of S(A) and 
S(A(i)) for i = 1, 2, . . . , N . �

Our reason for defining distance in terms of the norm ‖ · ‖ss , instead of in terms of the spectral or Frobenius norms, 
is that the quantities δ∓

ss(A) are easier to compute than δ∓
2 (A) and δ∓

F (A) when A is a square matrice with Kronecker 
structure (1.6). This is discussed in the following remark.
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Remark 3.7. The distance of a matrix A with Kronecker structure (1.6) to the set of positive or negative semi-definite 
matrices may be measured by using δ±

2 (A), δ±
F (A), or δ±

ss(A). We obtain from Propositions 3.5 and 3.6 that

δ+
ss(A) = max {0,−λmin(H(A))} +

N∑
j=1

‖S(A( j))‖2

and

δ−
ss(A) = max {0, λmax(H(A))} +

N∑
j=1

‖S(A( j))‖2.

The eigenvalues of a matrix A with Kronecker structure (1.6) are all possible sums of the form λ(1)
i1

+ λ
(2)
i2

+ . . . + λ
(N)
iN

, 
where λ( j)

i j
∈ σ(A( j)) and 1 ≤ i j ≤ I j for j = 1, 2, . . . , N . It is more expensive to compute all positive (or negative) eigenvalues 

of H(A) than to evaluate the extreme eigenvalues only. It follows that the quantities δ±
ss(A) are cheaper to evaluate than 

δ±
F (A).

We also note that ‖S(A)‖F may be much larger than ‖S(A)‖2 for j = 1, 2, . . . , N . In fact,

‖S(A)‖2
F =

N∑
j=1

I1 × . . . × I j−1 × I j+1 × . . . × IN × ‖S(A( j))‖2
F ,

where I0 = 1 and A( j) ∈RI j×I j for j = 1, 2, . . . , N .
For completeness, we note that

‖H(A)‖2 = max{|λmax(H(A))|, |λmin(H(A))|}

= max

{∣∣∣∣∣
N∑

i=1

λmin(H(A(i)))

∣∣∣∣∣ ,
∣∣∣∣∣

N∑
i=1

λmax(H(A(i)))

∣∣∣∣∣
}

.

We turn to a simple test example for which the GMRES−BTF algorithm [11] breaks down after a few steps and produces a 
poor approximate solution of the Sylvester tensor equation that we try to solve. It can be shown that the use of GMRES−BTF 
is mathematically equivalent to the application of GMRES to the solution of the linear system of equations (1.5); see [5]. To 
be able to discuss the cause of breakdown in a simple manner, we consider the equivalent linear system of equations (1.5).

Example 3.8. Consider the Sylvester tensor equation

X×1 A(1) +X×2 A(2) +X×3 A(3) = D, (3.8)

in which the A(i) , for i = 1, 2, 3, are n × n downshift matrices, i.e.,

A(i) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 . . . 0 0
1 0 0 . . . 0 0
0 1 0 . . . 0 0

0
. . .

... 0 0
. . . 0 0

0 1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
∈ Rn×n. (3.9)

Regard the linear system (1.5) corresponding to (3.8), and choose the right-hand side D so that vec(D) = en ⊗en−m+1 ⊗en
for some integer 1 ≤ m < n. Then X∗ with vec(X∗) = en ⊗ en−m ⊗ en is a solution of (3.8). The GMRES−BTF algorithm [11]
applied to the solution of (3.8) with the zero tensor as initial iterate breaks down at step m. In particular, for m = 1, the 
GMRES−BTF algorithm determines the zero tensor as approximate solution when it breaks down at the first step. Thus, 
GMRES−BTF is not a useful solution method for this problem. Related examples when the linear system of equations (1.5)
does not have a tensor structure and the matrix is of the form (3.9) are discussed in [10,19]. We remark that while the 
system (3.8) is artificial, related systems are obtained when seeking to deblur color images that have been contaminated by 
noise and motion blur. A discussion on the deblurring of monochromatic images that have been contaminated by noise and 
motion blur can be found in [13]. Table 2 reports the distance of A in (1.5) to the sets of (skew-)symmetric and positive 
(negative) semi-definite matrices.

The relative distance of A in the present example to the set of symmetric (symmetric positive semi-definite) matrices 
is equal to the distance to the set of skew-symmetric (symmetric negative semi-definite) matrices. This is shown in [19] in 
the situation when A only consists of the matrix (3.9). The proof can be adapted to the present situation. The tensor A
may be considered the “worst” tensor for GMRES−BTF.
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Table 2
Distances to the symmetric positive definite and negative definite tensors for Example 3.8.

n ‖S(A)‖2 ‖H(A)‖2
‖S(A)‖2‖A‖ss

‖H(A)‖2‖A‖ss

δ+
ss (A)

‖A‖ss

δ−
ss (A)

‖A‖ss

100 2.998 2.998 0.5 0.5 1 1
500 2.999 2.999 0.5 0.5 1 1
1000 3 3 0.5 0.5 1 1

Table 3
Relative distances of A in (1.5) to the set of (skew-)symmetric matrices and the performance of GMRES−BTF for (3.10).

α 0 10−9 10−6 10−3 10−1 1 10

‖S(A)‖2 0.5000 0.5000 0.5000 0.5020 0.7000 2.5000 20.4996

‖H(A)‖2 2.5035 · 103 2.5035 · 103 2.5035 · 103 2.5035 · 103 2.5035 · 103 2.5035 · 103 2.5035 · 103

‖S(A)‖2‖A‖ss
1.9968 · 10−4 1.9968 · 10−4 1.9968 · 10−4 2.0048 · 10−4 2.7953 · 10−4 9.9759 · 10−4 0.0081

‖H(A)‖2‖A‖ss
0.9998 0.9998 0.9998 0.9998 0.9997 0.9990 0.9919

‖X̃−X∗‖
‖X∗‖ 0.3151 0.3151 2.2147 · 10−7 1.1073 · 10−7 3.1635 · 10−9 7.9453 · 10−10 2.8813 · 10−10

Iter 4 4 5 6 10 23 165

We conclude this section with an example that includes different matrices in the Kronecker structure (1.6), but their 
distances to the sets of symmetric matrices and skew-symmetric matrices are almost equal. The GMRES−BTF algorithm is 
seen to perform quite differently for one of the mentioned cases.

Example 3.9. Let N = 2, n1 = 500, and n2 = 2. We consider the solution of a Sylvester tensor equations using the 
GMRES−BTF algorithm with the zero tensor as initial iterate. The equation is described by

X×1 Ã(1) +X×2 A(2) =D, (3.10)

with Ã(1) = A(1) + tridiag(−α, 0, α), where the diagonal and off-diagonal entries of A(1) are equal to 8 and 5, respectively. 
Here α is a prescribed nonnegative parameter and

A(2) =
[

0 0
1 0

]
∈R2×2

is the downshift matrix. The right-hand side tensor D is constructed so that X∗ ∈Rn1×2×n1 , with vec(X∗) = en1 ⊗ e1 ⊗ en1 , 
solves the Sylvester tensor equation (3.10).

Let A be the matrix in form (1.6) that corresponds to (3.10). We applied the GMRES−BTF algorithm (without restarting) 
using an implementation based on Givens rotations. The iterations were terminated as soon as the relative norm of the 
residuals became less than 10−11. We remark that residual tensors were not formed explicitly and their norm were com-
puted by using Givens rotations; see [41, Chapter 6].

Table 3 shows the performance of the GMRES−BTF method, as well as the relative distances of the Kronecker structure 
(1.6) to the set of all symmetric and skew-symmetric matrices for different values of α. The matrix X̃ denotes the computed 
approximate solution, and “Iter” stands for the required number of iterations to satisfy the stopping criterion of the algo-
rithm. The GMRES−BTF method can be seen to terminate after four iterations and determines a poor approximate solution 
when α ≤ 10−9.

Notice that for α ≤ 0.001, the relative distances to the set of symmetric matrices are the same to four decimal digits. 
However, the GMRES−BTF algorithm performs much better when α is not too small. This example illustrates that the 
performance of GMRES−BTF does not only depend on the distance of the matrix (1.5) to the set of symmetric matrices and 
the set of skew-symmetric matrices. It is well-known that the performance of GMRES when applied to the solution of a 
linear system of equations with a square nonsingular matrix depends on the eigenvalues and eigenvectors of the matrix, as 
well as on the right-hand side; see Du et al. [14] for a recent discussion.

4. Tikhonov regularization methods based on tensor format

We present several iterative schemes in tensor framework. Two of these methods apply the Arnoldi and generalized 
Arnoldi processes to the approximate solution of the Tikhonov minimization problem (1.4). The corresponding algorithms 
are referred to as the Arnoldi–Tikhonov method based on tensor format (AT−BTF) and the generalized AT−BTF (GAT−BTF) 
method. These algorithms generalize methods discussed by Huang et al. [24] for the situation when there is no exploitable 
tensor structure; see also Bouhamidi et al. [8]. In the situation when all matrices A(i) are symmetric, the AT−BTF method 
reduces to the Lanczos–Tikhonov method based on tensor format (LT−BTF). In addition, we describe a flexible AT−BTF 
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Algorithm 1: The Arnoldi−BTF process [5].

1 Input: Coefficient matrices A(1), A(2), . . . , A(N) , right-hand side D, and initial approximate solution X0.
2 Compute R0 :=D −M(X0), β := ‖R0‖, V1 :=R0/β .
3 for j = 1, 2, . . . , m do
4 W :=M(V j);
5 for i = 1, 2, . . . , j do
6 hij := 〈W,Vi〉 ;
7 W :=W − hijVi ;
8 end
9 h j+1, j := ‖W‖. If h j+1, j := 0, then stop;

10 V j+1 := W/h j+1, j ;
11 end

method, which will be referred to as FAT−BTF. This method is an adaption of the flexible Arnoldi process introduced by Saad 
[41], and more recently discussed by Gazzola and Nagy [18] and Morikuni et al. [37], for the solution of linear systems of 
equations with no tensor structure, to the solution of Sylvester tensor equations. Details of the derivations of the algorithm 
are left to the reader.

4.1. The AT−BTF method

Introduce the linear operator

M :RI1×I2×...×IN → RI1×I2×...×IN ,

X �→ M(X) := X×1 A(1) +X×2 A(2) + . . . +X×N A(N) (4.1)

and define the tensor Krylov subspace

Km(M,D) = span{D,M(D), . . . ,Mm−1(D)}.
The Arnoldi−BTF process, described by Algorithm 1, produces an orthonormal basis for Km(M, D), provided that m is small 
enough so that breakdown does not occur. Let Ṽ� denote the (N + 1)-mode tensor with the column tensors V1, V2, . . . , V�

for 1 ≤ � ≤ m + 1 produced by Algorithm 1. It is not difficult to see that Ṽ� �(N+1) Ṽ� = I� for 1 ≤ � ≤ m. In the sequel, 
the matrix H̄m = [hij] ∈ R(m+1)×m is of upper Hessenberg form; its nontrivial entries are computed in lines 6 and 9 of 
Algorithm 1. The matrix Hm ∈Rm×m is obtained by deleting the last row of H̄m . It is shown in [5, Theorem 3.1] that

W̃m = Ṽm+1 ×(N+1) H̄ T
m, (4.2)

where W̃m is an (N + 1)-mode tensor generated by Algorithm 1, has the column tensors W j := M(V j) for j = 1, 2, . . . , m. 
Moreover, by [5, Proposition 3.2], we have

Ṽm �(N+1) W̃m = Hm (4.3)

and Ṽm+1 �(N+1) W̃m = H̄m .
If the matrices A(1), A(2), . . . , A(N) are symmetric positive definite, then in view of (4.3), the Hessenberg matrix Hm is 

symmetric positive definite and, therefore, tridiagonal. It follows that Algorithm 1 reduces to the Lanczos process based on 
tensor format (Lanczos−BTF), which is described in [5, Algorithm 2].

Having carried out m := k steps with Algorithm 1, we determine an approximate solution Xk ∈ Kk(M, D) of (1.4) as 
follows. Let

Xk =
k∑

i=1

y(i)
k Vi = Ṽk×̄(N+1) yk, where yk = (y(1)

k ; . . . ; y(k)

k ) ∈Rk.

Using (4.2) and Proposition 1.1, we obtain

‖D−M(Xk)‖ = ‖‖D‖ e1 − H̄k yk‖2

and ∥∥∥∥∥∥
M∑

j=1

Xk × j L( j)

∥∥∥∥∥∥
2

= yT
k

(
M̃k �(N+1) M̃k

)
yk,

where
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M̃k =
M∑

j=1

Ṽk × j L( j)

is an (N + 1)-mode tensor. It follows from these relations that (1.4) can be expressed as the Tikhonov minimization problem

min
y∈Rk

{∥∥‖D‖ e1 − H̄k y
∥∥2

2 + λyT
(
M̃k �(N+1) M̃k

)
y
}

(4.4)

with solution y = yk ∈Rk .
The expression (4.4) generalizes a solution method proposed by Huang et al. [24] to equations (1.4) with a tensor 

structure. The matrix

Nk = M̃k �(N+1) M̃k (4.5)

in the regularization term is a Gram matrix and, therefore, positive semi-definite.
Referring to [24, eq. (3.6)], without going into details, let Nk denote the Gram matrix there (which corresponds to the 

matrix Nk introduced above). The quadratic form yT Nk y in [24, eq. (3.6)] is replaced by ‖L̃T
k y‖2

2, where the matrix L̃k has 
to be determined. When Nk is positive definite, Huang et al. [24] let L̃k be the Cholesky factor of Nk; when Nk is singular 
they propose to let L̃T

k = D1/2
k Q T

k , where Nk = Q k Dk Q T
k , Q k ∈Rk×k is an orthogonal matrix and the matrix Dk is diagonal. 

We follow the same strategy for the Gram matrix (4.5) and obtain from (4.4) a Tikhonov minimization problem in general 
form,

min
y∈Rk

{∥∥‖D‖ e1 − H̄k y
∥∥2

2 + λ

∥∥∥L̃T
k y
∥∥∥2

2

}
. (4.6)

In applications of interest to us, k generally is fairly small. We therefore may solve (4.6) by computing the generalized 
singular value decomposition of the matrix pair {H̄k, ̃LT

k }; see, e.g., [15,20]. Another solution approach is to let Ĥk = H̄k L̃−T
k

and express (4.6) as a Tikhonov minimization problem in standard form,

min
z∈Rk

{∥∥∥‖D‖ e1 − Ĥkz
∥∥∥2

2
+ λ‖z‖2

2

}
. (4.7)

This approach is discussed in [24, cf. (3.8) and (3.9)]. Since in many applications the matrix L̃k is not very ill-conditioned, 
the solution of linear systems of equations with the matrix L̃k , which is required when forming Ĥk , is feasible.

It is interesting to investigate when the matrix Nk is invertible. The following result provides sufficient conditions. Using 
a similar technique, one can derive sufficient conditions for nonsingularity of the matrix Nk in [24, Eq. (3.6)].

Theorem 4.1. Assume that k steps of Algorithm 1 have been carried out and let Ṽk be the (N +1)-mode tensor with the column tensors 
V1, V2, . . . , Vk determined by the algorithm. Let M̃k =∑M

j=1 Ṽk × j L( j) . If the matrix

L :=
M∑

j=1

I(IM ) ⊗ . . . ⊗ I(I j+1) ⊗ L( j) ⊗ I(I j−1) ⊗ . . . ⊗ I(I1) (4.8)

is invertible, or if

Null (L) ∩ span {vec(V1), . . . ,vec(Vk)} = {0} ,

then the k × k matrix Nk = M̃k �(N+1) M̃k is nonsingular.

Proof. Since Nk ∈Rk×k is a Gram matrix, we only need to show that the frontal slices of M̃k are linearly independent. This 
ensures the invertibility of Nk . As M ≤ N , we conclude that k frontal slices of the (N + 1)-mode tensor M̃k are given by

M� =
M∑

j=1

V� × j L( j), � = 1,2, . . . ,k.

Suppose that

0 =
k∑

�=1

α�M� =
k∑

�=1

M∑
j=1

α�V� × j L( j) =
M∑

j=1

(
k∑

�=1

α�V�

)
× j L( j)

for some scalars α1, α2, . . . , αk . The above relation is equivalent to
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Algorithm 2: The AT−BTF (LT−BTF) regularization method.

1 Input: The coefficient matrices A(i) , i = 1, 2, . . . , N; the right-hand side tensor D; the regularization matrices L( j) , j = 1, 2, . . . , M , chosen so that 
(4.8) is nonsingular (cf. Remark 4.2); and the parameters δ and η > 1 used in the discrepancy principle (see Appendix A for details).

2 for k = 1, 2, . . . until convergence do
3 Compute Ṽk with the column tensors Vi and H̄k by Algorithm 1 (or by Lanczos−BTF process if all the A(i) are symmetric);

4 Compute column tensors of M̃k by Mi =
M∑

j=1
Vi × j L( j) (i = 1, 2, . . . , k);

5 Compute Nk = M̃k �(N+1) M̃k ;

6 Compute the Cholesky factorization of Nk = L̃k L̃T
k ;

7 Compute Ĥk = H̄k L̃−T
k ;

8 Compute the zero λ > 0 of φ(λ) = ‖‖D‖e1 − Ĥk zλ,k‖2
2 − η2δ2, where δ is a bound for the norm of the error E in D. We comment that the 

vector zλ,k in φ(λ) is written as a (one-variable) function of λ; see Appendix A for more details. After computing the regularization parameter 
λ, determine the vector zλ,k by solving the following (small) least-squares problem

min
z∈Rk

∥∥∥∥[ Ĥk

λ1/2 Ik

]
z −

[ ‖D‖e1

0

]∥∥∥∥2

2

;

Let yk = (y(1)

k ; . . . ; y(k)

k )T := L̃−T
k zλ,k and compute X =

k∑
i=1

y(i)
k Vi = Ṽk×̄(N+1) yk ;

9 end

Algorithm 3: The flexible Arnoldi−BTF process.

1 Input: Coefficient matrices A(1), A(2), . . . , A(N) , right-hand side D, and initial approximate solution X0.
2 Compute R0 = D −M(X0), β := ‖R0‖, V1 :=R0/β , h0,1 = 0, and V0 = 0.
3 for j = 1, 2, . . . , m do
4 Apply two steps of BiCGSTAB−BTF [11] to find Z j as an approximate solution of M(Z j) =V j ;
5 W :=M(Z j);
6 for i = 1, 2, . . . , j do
7 hij := 〈W,Vi〉 ;
8 W :=W − hijVi ;
9 end

10 h j+1, j := ‖W‖. If h j+1, j := 0, then stop;
11 V j+1 := W/h j+1, j ;
12 end

k∑
�=1

α�vec(V�) ∈ Null (L) .

The vectors vec(V1), vec(V2), . . . , vec(Vk) are linearly independent. The assertion therefore follows. �
Remark 4.2. The spectrum of L is given by

σ(L) =
{

M∑
i=1

λi : λi ∈ σ(L(i)) for i = 1,2, . . . , M

}
.

This shows that if all regularization matrices L(i) are symmetric positive semi-definite, with at least one of them positive 
definite, then L is invertible.

The reduced Tikhonov minimization problem in standard form (4.7) is solved by the technique used in [24], where the 
regularization parameter λ is determined with the aid of the discrepancy principle (see Appendix A for further details). 
Algorithm 2 summarizes the computations. The algorithm can be implemented by using the Matlab Tensor Toolbox [2].

4.2. The flexible AT−BTF method

We describe how the flexible Arnoldi process discussed in [18,37,41] can be adapted to the tensor framework. We refer to 
the iterative scheme as the flexible Arnoldi method based on tensor format (FAT−BTF). The computations are summarized 
in Algorithm 3. We remark that we may replace line 4 of the algorithm by other ways for determining a suitable basis 
Z1, Z2, . . . , Zm of the solution subspace. For instance, we may carry out more steps with the BiCGSTAB−BTF method [11]. 
We found the basis determined by Algorithm 3 to perform well for the problems of Section 5.
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Having carried out k steps with Algorithm 3, we can determine an approximate solution Xk of (1.4) of the form

Xk =
k∑

i=1

y(i)
k Zi = Z̃k×̄(N+1) yk, yk = (y(1)

k ; . . . ; y(k)

k ) ∈ Rk, (4.9)

in which Z̃k denotes the (N + 1)-mode tensor with the column tensors Z1, Z2, . . . , Zk . It is not difficult to see that

D−M(Xk) = Ṽk×̄(N+1)(‖D‖ e1 − H̄k yk)

and ∥∥∥∥∥∥
M∑

j=1

Xk × j L( j)

∥∥∥∥∥∥
2

= yT
k

(
M̂k �(N+1) M̂k

)
yk,

where M̂k =
M∑

j=1
Z̃k × j L( j) , and Z̃k denotes the (N + 1)-mode tensor with the column tensors Z1, Z2, . . . , Zk . Using the 

above relations, the Tikhonov minimization problem (1.4) can be reduced to

min
y∈Rk

{∥∥‖D‖ e1 − H̄k y
∥∥2

2 + λyT
(
M̂k �(N+1) M̂k

)
y
}

. (4.10)

This minimization problem can be solved similarly as the corresponding minimization problem of the previous subsection. 
We refer to this solution method as the flexible Arnoldi–Tikhonov method based on tensor format. We will abbreviate it by 
FAT−BTF also.

4.3. The GAT−BTF method

Consider the Tikhonov regularization problem

min
x∈Rn

{
‖Ax − b‖2

2 + λ‖Lx‖2
2

}
,

where A is a severely ill-conditioned matrix and L is a general regularization matrix. A technique for determining an 
approximate solution in a generalized Krylov subspace is described in [38]. This method is based on simultaneously reducing 
the matrices A and L by a generalized Arnoldi process proposed by Li and Ye [32]. The method is extended in [8] to the 
solution of a class ill-posed matrix equation. Here we describe an extension that can be applied to the solution of equation 
(1.4). We refer to the resulting scheme as the GAT−BTF method.

Introduce the linear operator

L : RI1×I2×...×IN → RI1×I2×...×IN ,

X �→ L(X) := X×1 L(1) +X×2 L(2) + . . . +X×M L(M). (4.11)

Algorithm 4, which generalizes the method described in [38], generates generalized Krylov subspaces spanned by elements 
of the form

D,M(D),L(D),M2(D),M(L(D)),L(M(D)),L2(D), . . . . (4.12)

The execution of k steps of this algorithm requires k applications of the operators (4.1) and (4.11). A generalization of the 
algorithm in [38] is described in [40]. The latter algorithm also can be modified to be applicable to the operators (4.1) and 
(4.11).

Let αk and βk stand for the values of � in lines 17 and 27, respectively, of Algorithm 4, and let H̄M,k = [HM(i, j)] ∈
Rαk×k and H̄L,k = [HL(i, j)] ∈ Rβk×k denote the matrices, whose nontrivial entries are computed in lines 10 and 13, and 
in lines 20 and 23, respectively, of the algorithm. In the sequel, suppose that Ṽαk and Ṽβk are (N + 1)-mode tensors, whose 
column tensors Vi are determined by Algorithm 4. It is not difficult to see that Ṽαk �(N+1) Ṽαk = I(αk) and Ṽβk �(N+1) Ṽβk =
I(βk) . With a strategy similar to the one used in [5, Theorem 3.1], it can be shown that

W̃ = Ṽαk ×(N+1) H̄T
M,k and Ŵ = Ṽβk ×(N+1) H̄T

L,k, (4.13)

where W̃ and Ŵ are two (N + 1)-mode tensors with column tensors W̃ j :=M(V j) and Ŵ j :=L(V j) for j = 1, 2, . . . , k.
The following proposition is useful for deriving a Tikhonov regularization problem of low dimension by projecting (1.4)

onto a generalized Krylov subspace spanned by elements of the form (4.12). The proof follows from properties of contracted 
product and straightforward computations. We omit the details.
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Algorithm 4: The GAT−BTF process for operator pairs {M, L}.

1 Input: the coefficient A(i), i = 1, 2, . . . , N; the right-hand side tensor D; the parameter associated with the discrepancy principle η > 1 (see 
Appendix A for more details); and an integer k > 0.

2 Choose the regularization matrices L( j)s for j = 1, 2, . . . , M;
3 Set � = 1 and V1 := D/‖D‖;
4 for j = 1, 2, . . . , k do
5 if j > � then
6 exit;
7 end
8 W :=M(V j);
9 for i = 1, . . . , � do

10 HM(i, j) := 〈W, Vi〉;
11 W =W −HM(i, j)Vi ;
12 end
13 HM(� + 1, j) := ‖W‖;
14 if HM(� + 1, j) > 0 then
15 � = � + 1;
16 V� =W/HM(�, j);
17 end
18 W =L(V j);
19 for i = 1, . . . , � do
20 HL(i, j) := 〈W, Vi〉;
21 W =W −HL(i, j)Vi ;
22 end
23 HL(� + 1, j) := ‖W‖;
24 if HL(� + 1, j) > 0 then
25 � = � + 1;
26 V� =W/HL(�, j);
27 end
28 end

Proposition 4.3. Let Ṽr be an (N + 1)-mode tensor with the column tensors V j , for j = 1, 2, . . . , r, such that Ṽr �(N+1) Ṽr = I(r) . 
Assume that D̃r = Ṽr×̄(N+1)zD with zD = Ṽr �(N+1) D = (〈V1,D〉, . . . , 〈Vr,D〉)T , where D is an N-mode tensor. For all z, d ∈Rr , 
we have

1. 〈Ṽr×̄(N+1)z, Ṽr×̄(N+1)d〉 = 〈z,d〉2 and ‖Ṽr×̄(N+1)z‖ = ‖z‖2 ,

2. 〈Ṽr×̄(N+1)z, D〉 = 〈z, zD〉2 ,

3. ‖D− D̃r‖2 = ‖D‖2 − ‖zD‖2
2 ,

4. ‖Ṽr×̄(N+1)z −D‖2 = ‖z − zD‖2
2 + ‖D‖2 − ‖zD‖2

2 ,

5. if V1 = D/‖D‖, then ‖Ṽr×̄(N+1)z −D‖2 = ‖z − ‖D‖e1‖2
2 .

Here 〈x, y〉2 denotes the standard Euclidean inner product between two real vectors x and y of the same size, i.e., 〈x, y〉2 = xT y.

Consider the subspaces Fk = span {V1,V2, . . . ,Vk} for k = 0, 1, 2, . . . and let Ṽr be an (N + 1)-mode tensor with the 
column tensors Vi , for i = 1, 2, . . . , r, generated by Algorithm 4. After k steps of the algorithm, the GAT−BTF method deter-
mines an approximate solution Xk ∈Fk of the form

Xk =
k∑

i=1

y(i)
k Vi = Ṽk×̄(N+1) yk, yk = (y(1)

k , . . . , y(k)

k )T .

Using (4.13) and Proposition 4.3, one may easily verify that equation (1.4) can be reduced to the low-dimensional problem,

min
yk∈Rk

{
‖H̄M,k yk − ‖D‖e1‖2

2 + λ‖H̄L,k yk‖2
2

}
,

which can be solved by one of the techniques described in Subsection 4.1.
We conclude this section by noting that all of the iterative schemes described in this section can be used to solve 

operator equations of the form S(X) = C, where S(·) is a fairly general linear operator from RI1×I2×...×IN to RI1×I2×...×IN .

5. Numerical experiments

We report results for three test problems to illustrate the performance of the algorithms described. The right-hand side 
tensor D in (1.1) is contaminated by an error tensor E with normally distributed random entries with zero mean and scaled 
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to correspond to a specific noise level ν := ‖E‖/‖D‖. All computations were carried out on a computer with an Intel Core 
i7-4770K CPU @ 3.50 GHz processor and 24 GB RAM using MATLAB R2014a. We used the Tensor Toolbox [2].

The first example stems from the discretization of a dimensionless radiative transfer equation (RTE) by a spectral method. 
This gives rise to an equation of the form (1.1) with dense and severely ill-conditioned matrices A(i) , i = 1, 2, 3. In the second 
test example, we focus on the performances of the proposed iterative methods as a function of the distance of the matrix 
A (given by (1.6)) to the set of symmetric matrices using results from Section 3. The last example is concerned with the 
restoration of a hyperspectral image. For each example, we display the relative error

Err := ‖Xλk,k − X̃‖
‖X̃‖ .

Here X̃ denotes the desired solution of the error-free problem (1.3), and Xλk,k is the kth approximation computed by the 
algorithm used for solving (1.1) with an error-contaminated right-hand side. The regularization parameter λk is determined 
by the discrepancy principle; see below. We terminate the iterations as soon as∥∥Xλk,k −Xλk−1,k−1

∥∥∥∥Xλk−1,k−1
∥∥ ≤ τ

for a specified tolerance τ > 0 (defined in each example), or when the maximum number of iterations kmax = 17 is reached. 
The initial approximate solution in all experiments is the zero tensor. We remark that the quality of the computed solution 
does not change much if we decrease τ or increase kmax; however, the number of iterations may increase. Our choices of 
kmax and τ give computed solutions of (1.1) of near-optimal quality and illustrate the relative performance of the iterative 
solution methods considered.

Under the table headings “Iter” and “CPU–time (sec)”, we report the number of iterations and the CPU-time (in seconds) 
required. The regularization matrices are the tridiagonal matrices L(i) = tridiag(−1, 2, −1) in all examples.

We apply the discrepancy principle (with the user-chosen constant η = 1.01) to determine the regularization parameter 
λ > 0; see Appendix A and [24] for further details. Other methods, such as the L-curve criterion and generalized cross-
validation (GCV) also may be used; see, e.g., [8,26,38] for discussions and references.

Example 5.1. Consider the dimensionless RTE,

1

τL
(� ·∇)G(r∗,�) + G(r∗,�) = (1 − ω)�4(r∗) + ω

4π

∫
4π

G(r∗,�′)�(�,�′)d�′, (5.1)

where G is the dimensionless radiative intensity. The integral in (5.1) and its boundary condition are discretized by a 
Nyström quadrature rule with Chebyshev–Gauss–Lobatto collocation points with the dimensionless radiative intensity ap-
proximated by an interpolation polynomial. The matrix obtained by this discretization of the dimensionless RTE can be 
written in the form of a Sylvester tensor equation

G×1 A(1) + G×2 A(2) + G×3 A(3) = D, (5.2)

where the matrices A(1), A(2) , and A(3) are given in [45, Eqs. (20)-(23)]. We consider the case when A(1) = A(2) = A(3) . 
When constructing these matrices, we choose the physically meaningful parameters τL = 1, μ = η = ξ = 0.1, and m = 2, for 
which the resulting coefficient matrices are nonsymmetric, dense, and highly ill-conditioned2. The right-hand side tensor is 
determined so that (5.2) has the exact solution G̃ = [g̃i jk]n×n×n , where

g̃i jk = (xi − sin2(xi))(y j − sin2(y j))(zk − sin2(zk)),

where the xi , y j , and zk are equidistant nodes in [−1, 1] for i, j, k = 1, 2, . . . , n.
The numerical results show the GAT−BTF method to give more accurate approximate solutions than the AT−BTF and 

FAT−BTF methods; see Table 4. GAT−BTF also requires the most iterations and, therefore, is slower than the other methods. 
The condition numbers reported are computed with the MATLAB command cond(·). Notice that from Remark 2.4, we have 
the lower bound for the condition number

cond(A) ≥ 1√
3

cond(A(1)),

which shows that the matrix A is extremely ill-conditioned. The values determined by the MATLAB function cond might 
not be very accurate, but they show that the matrices are numerically singular for all grid sizes considered.

2 The parameter τL represents optical thickness, and the symbols μ, η, and ξ are, receptively, direction cosines in the x, y, and z directions. The 
parameter m denotes angular direction of radiation; see [45, page 092701–7].
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Table 4
Results for Example 5.1 (with τ = 1 · 10−2).

Grid cond(A(1)) ν Method Iter Err CPU-times (sec)

90 × 90 × 90 4.55 · 1016 0.01 AT−BTF 2 2.48 · 10−1 0.35
FAT−BTF 2 2.75 · 10−1 0.79
GAT−BTF 7 6.52 · 10−2 2.97

0.001 AT−BTF 4 1.05 · 10−1 1.07
FAT−BTF 2 8.81 · 10−2 0.85
GAT−BTF 10 3.62 · 10−2 6.17

120 × 120 × 120 4.86 · 1016 0.01 AT−BTF 6 4.24 · 10−1 3.20
FAT−BTF 13 9.35 · 10−1 20.11
GAT−BTF 12 7.72 · 10−2 24.12

0.001 AT−BTF 2 3.82 · 10−1 0.72
FAT−BTF 7 8.22 · 10−1 6.16
GAT−BTF 10 5.20 · 10−2 17.64

145 × 145 × 145 1.14 · 1017 0.01 AT−BTF 6 6.23 · 10−1 5.42
FAT−BTF 5 9.92 · 10−1 6.52
GAT−BTF 13 4.86 · 10−2 49.78

0.001 AT−BTF 2 5.95 · 10−1 1.15
FAT−BTF 3 9.83 · 10−1 3.41
GAT−BTF 14 3.97 · 10−2 58.61

200 × 200 × 200 8.21 · 1016 0.01 AT−BTF 4 8.94 · 10−1 7.09
FAT−BTF 3 10.57 · 10−1 8.89
GAT−BTF 18 6.03 · 10−2 295.47

0.001 AT−BTF 11 5.90 · 10−1 47.21
FAT−BTF 5 10.55 · 10−1 16.34
GAT−BTF 14 6.01 · 10−2 157.63

Table 5
Distances to symmetry, skew-symmetry, positive (negative) definiteness of A for Example 5.1.

Size(D) ‖S(A)‖2 ‖H(A)‖2
‖S(A)‖2‖A‖ss

‖H(A)‖2‖A‖ss

δ+
ss (A)

‖A‖ss

δ−
ss (A)

‖A‖ss

90 × 90 × 90 65.1847 93.7889 0.4100 0.5900 0.9874 1.0000
120 × 120 × 120 116.5079 166.8792 0.4111 0.5889 0.9929 1.0000
145 × 145 × 145 170.5865 243.8935 0.4116 0.5884 0.9952 1.0000
200 × 200 × 200 325.7488 464.8630 0.4120 0.5880 0.9975 1.0000

Table 4 shows the performance of (F)AT−BTF to deteriorate as the grid size decreases. The following remark discusses 
the distance of matrix A (of the form (1.6)) to the set of symmetric matrices associated with different grid sizes.

Remark 5.2. Let A be the matrix with Kronecker structure (1.6) associated with the Sylvester tensor equation of Exam-
ple 5.1. Table 5 reports the relative distances of A to the sets of all symmetric, skew-symmetric, and positive or negative 
semi-definite matrices. Recall that ‖A‖ss = ‖S(A)‖2 + ‖H(A)‖2, where H(A) and S(A) denote the symmetric and skew-
symmetric parts of A, respectively. The table shows the relative distances of the matrix A to both the sets of symmetric 
and skew-symmetric matrices to converge to 0.5 as the mesh size decreases. This may be a reason for the poor performance 
of the (F)AT−BTF methods in the previous example.

The observation of Remark 5.2 motivated us to further examine the dependence of the performances of the proposed 
algorithms to the distance of A to the set of symmetric matrices. We note that in the previous test problem, equation (1.1)
has a solution of low rank. However, the right-hand side is not a tensor of low-rank since it is contaminated by error. In the 
following test problem, we examine the performances of (F)AT−BTF for the cases when the exact solution is of low rank 
and when it is not. The coefficient matrices A(i) are sparse.

Example 5.3. Consider the Sylvester tensor equation (1.1), in which A(l) = (I + αS)Hl for l = 1, 2, 3. We let S =
tridiag(−1, 0, 1) ∈Rn×n . The matrices Hl = [h(l)

i j ] ∈Rn×n are Toeplitz matrices given by

h(l)
i j =

⎧⎨⎩
1

2r − 1
, |i − j| ≤ r,

0, otherwise,
(5.3)

for l = 1, 2, 3. Note that A ∈Rn3×n3
. We consider two values of n:
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Fig. 2. Outside figure: “cond(A(i))” (left) and “lower bound for cond(A)” (right) versus α; Inside figure: Relative distance of A ∈Rn3×n3
to the symmetric 

matrices versus α for n = 450 (left) and n = 100 (right). (For interpretation of the colors in the figure(s), the reader is referred to the web version of this 
article.)

Fig. 3. Performance of the iterative methods applied to the matrices of Example 5.3; Cases I (top) and II (bottom) for n = 100.

• When n = 100, we set r = 6 for H1, H2, and H3. The noise level was ν = 0.01 and we set τ = 3 · 10−2. We were able 
to compute the lower bound for cond(A) by using Remark 2.4. This bound is reported in Fig. 2.

• When n = 450, we set r = 5 for H1, r = 6 for H2, and r = 5.5 for H3. The noise level was ν = 0.01 and we set 
τ = 6 · 10−2.

For each dimension, Fig. 2 depicts the relative distance of A to the set of symmetric matrices together with information 
about condition numbers. Note that the distance depends on the parameter α. Equations (1.1) with the two exact solutions 
of the associated error-free problem are considered:

Case I: Let x̃ = x̃1 ⊗ x̃2 ⊗ x̃3, where x̃i = rand(n, 1) for i = 1, 2, 3. The MATLAB function rand generates uniformly distributed 
random numbers in the interval [0, 1]. We determine the error-free right-hand side so that X̃, with vec(X̃) =
x̃1 ⊗ x̃2 ⊗ x̃3, is the exact solution of (1.1). Thus, the solution of the error-free equation associated with eq. (1.1) has 
low rank.

Case II: We determine the error-free right-hand side so that X̃ = rand(n, n, n) is the solution of the error-free equation 
associated with (1.1).

Figs. 3 and 4 show the performance of the iterative methods for different values of α. The quality of the computed 
approximate solutions are shown in the right-hand side plots and the required CPU-times in the left-hand side plots. For 
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Fig. 4. Performance of the iterative methods applied to the matrices of Example 5.3; Cases I (top) and II (bottom) for n = 450.

Table 6
Results for Example 5.4 (with τ = 3 · 10−2).

α cond(A(i)) Method Iter Err CPU-times (sec)

0 cond(A(1)) = 2.32 · 1017 LT−BTF 2 4.42 · 10−2 15.07
cond(A(2)) = 1.48 · 1018 FAT−BTF 2 3.49 · 10−2 50.82
cond(A(3)) = 2.96 · 1017 GAT−BTF 2 4.45 · 10−2 27.09

0.001 cond(A(1)) = 1.52 · 1017 AT−BTF 3 5.71 · 10−2 30.79
cond(A(2)) = 9.33 · 1017 FAT−BTF 2 3.84 · 10−2 52.03
cond(A(3)) = 1.58 · 1017 GAT−BTF 2 5.70 · 10−2 28.67

Case I, where the problem has a low-rank solution, the relative performances of the methods agree with the observations 
of Remark 5.2, i.e., poor performance of (F)AT−BTF is observed as the relative distance of A tends to 0.5. The situation for 
matrices of Class II is more complicated. This illustrates that the performance of (F)AT−BTF does depend on the properties 
of the right-hand side and, therefore, on the properties of the desired solution.

Differently from Example 5.1, the AT−BTF and FAT−BTF methods determine approximate solutions of, generally, higher 
quality than the GAT−BTF method for test Examples 5.3 and 5.4.

Example 5.4. The exact solution of this test example is a 1017 × 1340 × 33 tensor that represents a hyperspectral image; 
see [17,30,43] for discussions on hyperspectral image restoration. Each slice of the solution tensor corresponds to an image 
of the same scene measured at a different wavelength. We consider the following Sylvester tensor equation

X×1 A(1) +X×2 A(2) +X×3 A(3) = D,

where A(1) = [a(1)
i j ], A(2) = [a(2)

i j ], and A(3) = [a(3)
i j ] are 1017 × 1017, 1340 × 1340, and 33 × 33 matrices, respectively, in the 

form A(l) = (I + αRl)Hl with Hl given by (5.3), and Rl has uniformly distributed random entries in the interval [0, 1]. The 
dimensions are suitably chosen for l = 1, 2, 3. We set r = 5 for A(1) , and r = 7 for A(2) and A(3) . The condition numbers for 
these matrices are reported in Table 6. When α = 0, the coefficient matrices A(l) reduce to blurring matrices exploited in 
[8].

In Table 6, LT−BTF stands for the method obtained by replacing the Arnoldi process in AT−BTF by the Lanczos process, 
which requires less arithmetic work. This replacement is possible because the matrices A(l) are symmetric for α = 0. We 
remark that also the GAT−BTF method can be simplified when all matrices are symmetric. Since the GAT−BTF method gives 
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Fig. 5. (a) Exact solution, (b) Noisy data, (c) Restored data with GAT−BTF, (d) FAT−BTF and (e) AT−BTF for level of noise ν = 0.01 and α = 0.001.

Table 7
Distances to symmetry, skew-symmetry, positive (negative) definiteness of A for Example 5.4.

α ‖S(A)‖2 ‖H(A)‖2
‖S(A)‖2‖A‖ss

‖H(A)‖2‖A‖ss

δ+
ss (A)

‖A‖ss

δ−
ss (A)

‖A‖ss

0 0 3.4558 0 1 0.2143 1.0000
0.001 0.0272 4.8596 0.0056 0.9944 0.1572 1.0000

restorations of worse quality than LT−BTF, we will not dwell on this simplification. Fig. 5 shows the uncontaminated image 
that we would like to determine, as well as the contaminated image that is assumed to be available. Restorations achieved 
by the AT−BTF, FAT−BTF, and GAT−BTF methods also are displayed in Fig. 5.

We report the distances of the matrices A to the sets of symmetric, skew-symmetric, and positive (negative) definite 
matrices in Table 7. It can be seen that for small α > 0, the matrix A is almost symmetric. For α = 0.001, the coefficient 
matrices are dense and the AT−BTF and GAT−BTF methods perform similarly. The FAT−BTF method produces more accurate 
solutions, but requires more CPU-time than the other methods. The matrices A(l) are sparse and symmetric when α = 0. 
Then the LT−BTF can be applied. This method is faster than the other methods.

6. Conclusions

This paper considers linear systems of equations with a matrix with the structure

A =
N∑

j=1

I(IN ) ⊗ . . . ⊗ I(I j+1) ⊗ A( j) ⊗ I(I j−1) ⊗ . . . ⊗ I(I1). (6.1)

An extension is discussed in Remark 2.9. We first show some bounds for the condition number of the matrix (6.1) and 
discuss ways of measuring the distance of this matrix to the sets of (skew-)symmetric and positive (negative) definite 
matrices. These results are then used to compare several iterative solution methods for very ill-conditioned Sylvester tensor 
equations. These methods are based on the Arnoldi process, the flexible Arnoldi process, or a generalized Arnoldi process. 
Tikhonov regularization is applied. The iterative methods considered generalize methods discussed in [8,24,38], as well as 
the flexible Arnoldi process [41]. Numerical examples with applications to the solution of a radiative transfer equation in 
3D and to color image restoration illustrate that approximate solutions of high quality can be computed with fairly few 
iteration steps and, hence, with fairly little computational effort.
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Appendix A

We briefly describe how the discrepancy principle can be used for determining a suitable value of the regularization 
parameter in the proposed algorithms. We will use the notation of Algorithm 2. The algorithms reduce the minimization 
problem (1.4) to a low-dimensional problem of the form

min
z∈Rk

{∥∥∥‖D‖e1 − Ĥkz
∥∥∥2

2
+ λ‖z‖2

2

}
(A.1)

for some λ > 0. The tensor D is contaminated by an error E; cf. (1.2). Assume that a bound δ > 0 for the norm of E is 
available, i.e.,

‖E‖ ≤ δ.

Then the discrepancy principle can be used to determine the regularization parameter λ. The discrepancy principle pre-
scribes that λ > 0 is chosen so that the solution zλ,k of (A.1) satisfies∥∥∥‖D‖e1 − Ĥkzλ,k

∥∥∥2

2
= η2δ2, (A.2)

where η > 1 is a user-chosen parameter that is independent of δ. The vector zλ,k is known in closed form. Substituting this 
vector into (A.2) and using the singular value decomposition of Ĥk gives a simple equation for λ; see, e.g., [24] for related 
formulas. This equation can be solved quite inexpensively by, e.g., Newton’s method. Other zero-finders are described in 
[9,39].
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