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a b s t r a c t

Linear discrete ill-posed problems arise in many areas of science and engineering. Their
solutions are very sensitive to perturbations in the data. Regularization methods try to
reduce the sensitivity by replacing the given problem by a nearby one, whose solution
is less affected by perturbations. This paper describes how generalized singular value
decomposition can be combined with iterated Tikhonov regularization and illustrates
that the method so obtained determines approximate solutions of higher quality than the
more commonly used approach of pairing generalized singular value decomposition with
(standard) Tikhonov regularization. The regularization parameter is determined with the
aid of the discrepancy principle. This requires the application of a zero-finder. Several
zero-finders are compared.

© 2019 Elsevier B.V. All rights reserved.

1. Introduction

We consider linear least-squares problems of the form

min
x∈Rn

∥Ax − b∥, (1)

where the matrix A ∈ Rm×n has singular values that gradually decay to zero with no significant gap. In particular, A may
be rank deficient. Throughout this paper ∥·∥ stands for the Euclidean vector norm. We will in our discussions assume that
m ≥ n, but this constraint easily can be removed. The data vector b ∈ Rm is assumed to be contaminated by an unknown
error e ∈ Rm that may stem from measurement or discretization inaccuracies. Least-squares problems with a matrix of
this kind are referred to as linear discrete ill-posed problems. They arise, for instance, when discretizing Fredholm integral
equations of the first kind; see [1,2].

Let btrue denote the unknown error-free vector such that

b = btrue + e. (2)

We will assume that the vector btrue is in the range of A and that a bound δ for the error norm,

∥e∥ ≤ δ, (3)

is known. This allows the determination of a regularization parameter with the aid of the discrepancy principle; see below.
However, the method described for solving (1) also can be used, with some modifications, when these requirements are
not satisfied.
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We would like to determine an accurate approximation of the solution xtrue of (1) with b replaced by btrue. It can
be expressed as xtrue = A†btrue, where A† denotes the Moore–Penrose pseudoinverse of A. Due to the error e in b and
the presence of many singular values of A close to the origin, the solution A†b of (1) generally is not a meaningful
approximation of xtrue.

To circumvent this difficulty, one typically replaces the minimization problem (1) by a related problem, whose solution
is less sensitive to the error in b. This replacement is referred to as regularization. Tikhonov regularization replaces (1)
by a penalized least-squares problem of the form

min
x∈Rn

{∥Ax − b∥2
+ µ∥L(x − x(0))∥2

} (4)

for some vector x(0), that may be an available approximation of xtrue. If no approximation of xtrue is known, then one may
choose x(0) = 0. The matrix L ∈ Rp×n is referred to as a regularization matrix. Common choices of L include the identity
matrix I or a discrete approximation of a differential operator. We require that L satisfies

N (A) ∩ N (L) = {0},

where N (M) denotes the null space of the matrix M . Then the Tikhonov minimization problem (4) has the unique solution

xµ = (ATA + µLT L)−1(ATb + LT Lx(0))

for any (fixed) µ > 0. Here and throughout this paper, the superscript T denotes transposition. The regularization
parameter µ > 0 determines the sensitivity of xµ to the error e in b, and how close xµ is to the desired vector xtrue.

Many methods for determining a suitable value of the regularization parameter, including the discrepancy principle,
the L-curve criterion, and generalized cross validation, require repeated solution of (4) for several values of µ; see, e.g.,
[2–5]. When the matrices A and L are of small to moderate size, one therefore often first computes the generalized singular
value decomposition (GSVD) of the matrix pair {A, L}. Substituting this decomposition into (4) transforms the minimization
problem into a problem with diagonal matrices, which makes repeated solution of the transformed problem for a sequence
of µ-values inexpensive, once the GSVD has been computed.

This paper proposes to replace Tikhonov regularization (4) by iterated Tikhonov regularization. The additional com-
putational effort required by iterated Tikhonov regularization is negligible in comparison with the work demanded to
compute the GSVD of the matrix pair {A, L}. Computed results reported in Section 4 show this approach to determine
approximations of xtrue of higher quality than (standard) Tikhonov regularization (4). We remark that iterated Tikhonov
regularization is a well-known regularization technique when L = I; see, e.g., Engl et al. [1]. The method has only recently
been applied and analyzed when L is a more general regularization matrix [6–8]. The latter references are concerned with
large-scale problems. It is the purpose of the present paper to discuss the application of iterated Tikhonov regularization
with a general regularization matrix to problems of small to moderate size, for which it is feasible to compute the GSVD
of the matrix pair {A, L}.

The organization of this paper is as follows. Section 2 describes iterated Tikhonov regularization and the use of
the GSVD to reduce the computational effort in every iteration step. The computation of a value of the regularization
parameter by the discrepancy principle is discussed in Section 3, where also the choice of zero-finders is considered.
Computed examples are presented in Section 4 and concluding remarks can be found in Section 5.

2. Iterated Tikhonov regularization based on the GSVD

Let x(0) = xµ be an available approximation of xtrue, such as a solution of (4) for some µ > 0. Define r (0) = b − Ax(0)
and h = x − x(0). Then (4) can be written as

min
h∈Rn

{∥Ah − r0∥2
+ µ∥Lh∥2

}.

Thus, h provides an approximation of the error xtrue − x0. An improved approximation of xtrue is given by x(1) = x(0) + h.
Repeated application of this process defines the iterated Tikhonov method:
for k = 0, 1, . . . do

1. Compute r (k) = b − Ax(k).
2. Solve

min
h∈Rn

{∥Ah − r (k)∥2
+ µ(k)

∥Lh∥2
}

to obtain h(k).
3. Update x(k+1)

= x(k) + h(k).

In Step 2, µ(0), µ(1), . . . denotes a sequence of positive regularization parameters. Several choices are discussed and
analyzed in [6–9]. A specific choice will be considered in Section 3.

The iterations for the iterated Tikhonov method can be expressed compactly in the form

x(k+1)
= x(k) + (ATA + µ(k)LT L)−1AT (b − Ax(k)), k = 0, 1, . . . . (5)
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The computations required for the iterated Tikhonov method can be simplified by using the GSVD of the matrix pair
{A, L}, which is given by

A = UΣY T , L = VΛY T , (6)

where the matrices U ∈ Rm×m and V ∈ Rp×p are orthogonal, the matrix Y ∈ Rn×n is nonsingular, and

Σ = diag(σ1, σ2, . . . , σp, 1, 1, . . . , 1) ∈ Rm×n,

Λ = (diag(λ1, λ2, . . . , λp), 0, 0, . . . , 0) ∈ Rp×n,

where we assume that 1 ≤ p ≤ n and (0, 0, . . . , 0) represents n − p zero vectors of size p × 1. We comment on below
how this restriction can be removed. Thus, Σ is a diagonal, possibly rectangular matrix, and Λ consists of a leading p× p
diagonal matrix to which n − p columns of zeros are appended. The p first entries of Σ and Λ are ordered according to

0 ≤ σ1 ≤ σ2 ≤ · · · ≤ σp ≤ 1, 1 ≥ λ1 ≥ λ2 ≥ · · · ≥ λp ≥ 0,

and satisfy σ 2
i + λ2

i = 1 for 1 ≤ i ≤ p; see Golub and Van Loan [10, Sections 8.7.4 and 6.1.6] and Bai and Demmel [11,12]
for properties of the GSVD and its computation. Modifications of the GSVD have been described in [13,14]. The quotients
σi/λi, 1 ≤ i ≤ p, are commonly referred to as generalized singular values of the matrix pair {A, L}. They are the singular
values of AL−1 if the matrix L is square and invertible.

For completeness, we briefly discuss the case where L ∈ Rp×n with p > n. Consider the ‘‘reduced’’ QR factorization
L = QR, where Q ∈ Rp×n has orthonormal columns and R ∈ Rn×n is upper triangular. We may then replace L by R in both
Tikhonov and iterated Tikhonov regularization without affecting the computed approximate solutions.

Eq. (5) can be expressed as

(ATA + µ(k)LT L)x(k+1)
= ATb + µ(k)LT Lx(k). (7)

Substituting (6) into (7) yields

(YΣTΣY T
+ µ(k)YΛTΛY T )x(k+1)

= YΣTUTb + µ(k)YΛTΛY T x(k).

Since the matrix Y is nonsingular, we may multiply the above equation from the left by Y−1. Then letting z(k) = Y T x(k)
gives

(ΣTΣ + µ(k)ΛTΛ)z(k+1)
= ΣTUTb + µ(k)ΛTΛz(k),

i.e.,

z(k+1)
= (ΣTΣ + µ(k)ΛTΛ)−1(ΣTUTb + µ(k)ΛTΛz(k)). (8)

In view of that the matrices Σ and Λ are diagonal, the iterations (8) can be carried out inexpensively.

3. The discrepancy principle and zero-finders

The choice of the regularization parameter is important and many methods have been proposed in the literature; see,
e.g., [2–5] and references therein. We will apply the discrepancy principle in the present paper. It prescribes that a value
of the regularization parameter µ(k) be determined such that the associated approximate solution x(k+1) of (7) satisfies

∥Ax(k+1)
− b∥2

= (ηδ)2. (9)

We obtain from (7) that for k ≥ 1 and µ(k) > 0,

x(k+1)
= (ATA + µ(k)LT L)−1(ATb + µ(k)LT Lx(k)).

Substituting this expression for x(k+1) into (9), using the GSVD (6), and letting b̂ = UTb and z(k) = Y T x(k) yield

∥Ax(k+1)
− b∥2

= ∥Σ(ΣTΣ + µ(k)ΛTΛ)−1(ΣT b̂ + µ(k)ΛTΛz(k)) − b̂∥2

≥

p∑
j=1

(
b̂jλ2

j − σjz
(k)
j λ2

j
1

µ(k) σ
2
j + λ2

j

)2

, (10)

where b̂ = [b̂1, . . . , b̂m]
T and z(k) = [z(k)1 , . . . , z(k)n ]

T , and the inequality (10) is obtained by ignoring terms with index j
larger than p.

For reasons explained below, we make the change of variables β = 1/µ(k). The right-hand side of (10) then defines
the function

Φ(β) =

p∑
j=1

(
b̂jλ2

j − σjz
(k)
j λ2

j

βσ 2
j + λ2

j

)2

.
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Thus,

Φ(β) ≤ ∥Ax(k+1)
− b∥2, β = 1/µ(k). (11)

Note that Φ(β) can be evaluated inexpensively for different β-values, because p is of small to moderate size in applications
of interest.

We seek to determine β > 0 so that

Φ(β) = (ηδ)2. (12)

In view of (11) and the fact that Φ(β) is monotonically decreasing, see below, this implies that we possibly over-regularize
slightly, i.e., we determine a parameter µ(k)

= 1/β that may be slightly larger than required to satisfy (9).
It is straightforward to compute the first and second derivatives

Φ ′(β) =

p∑
j=1

−2σ 2
j (b̂jλ

2
j − σjz

(k)
j λ2

j )
2

(βσ 2
j + λ2

j )3
,

Φ ′′(β) =

p∑
j=1

6σ 4
j (b̂jλ

2
j − σjz

(k)
j λ2

j )
2

(βσ 2
j + λ2

j )4
.

Letting β ↘ 0 in the above expressions gives

Φ(0) =

p∑
j=1

(b̂j − σjz
(k)
j )2,

Φ ′(0) =

p∑
j=1

−2σ 2
j (b̂j − σjz

(k)
j )2

λ2
j

,

Φ ′′(0) =

p∑
j=1

6σ 4
j (b̂j − σjz

(k)
j )2

λ4
j

.

Generally, Φ ′(β) < 0 and Φ ′′(β) > 0 for β ≥ 0. It follows that the function Φ(β) is monotonically decreasing and convex.
Therefore, if Eq. (12) has a solution, then the solution is unique. There is a bounded solution when Φ(0) > (ηδ)2, which
is true for most reasonable problems. We remark that the function µ → Φ(1/µ) is not guaranteed to be convex. For this
reason we make the change of variables β = 1/µ.

Algorithm 1. [x, µ] = ITGSVD(A, L, b, ηδ)

Compute the GSVD A = UΣY T and L = VΛY T

β (0)
= 0, x(−1)

= x(0) = 0, z(0) = 0
b̂ = UTb, k = 0
while ∥x(k) − x(k−1)

∥ ≥ ηδ∥x(k−1)
∥ do

Solve Ψi(β) = 0 for β (k). Ψi depends on ηδ and is defined in the text.

z(k+1)
= (ΣTΣ +

1
β (k) Λ

TΛ)−1(ΣT b̂ +
1

β (k) Λ
TΛz(k))

k = k + 1
end while
x = Y−T z(k+1)

µ = 1/β (k)

The proposed GSVD-based iterated Tikhonov method is described by Algorithm 1. After having computed the GSVD of
the matrix pair {A, L}, a sequence of transformed approximate solutions z(1), z(2), . . . of (1) is generated. The regularization
parameter sequence µ(1)

= 1/β (1), µ(2)
= 1/β (2), . . . defined by the algorithm is such that each vector x(k+1)

= Y−T z(k+1)

satisfies

∥Ax(k+1)
− b∥2

≥ Φ(β (k)) ≈ (ηδ)2.

The iterations are terminated when two consecutive iterates are sufficiently close. Therefore, the last relation above is
not guaranteed to be an equality.

We compare three zero-finders for the solution of Φ(β) = (ηδ)2:

(i) Newton’s method applied to determining a zero of Ψ1(β) = Φ(β) − (ηδ)2,
(ii) Newton’s method applied to determining a zero of Ψ2(β) = 1/Φ(β) − 1/(ηδ)2, and
(iii) a cubically convergent zero-finder applied to the solution Ψ1(β) = 0. This zero-finder is described in [15].
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While Newton’s method requires the evaluation of Φ(β) and its first derivative, the zero-finder [15] also demands
computation of the second derivative.

Since the function Ψ1(β) is monotonically decreasing and strictly convex for β > 0, Newton’s method gives monotonic
and quadratic convergence of the iterates β (k) if the initial iterate is smaller than or equal to the solution of (12). Hence,
for β (0)

= 0, the method does not have to be safe-guarded to guarantee convergence. However, computed examples
reported in [15] show that, with this initial iterate, Newton’s method may require fairly many iterations. It therefore may
be beneficial to use a cubically convergent zero-finder. This is illustrated in [15] for standard Tikhonov regularization.
Reinsch [16] points out that Newton’s method applied to the computation of a zero Ψ2 may require fewer steps to satisfy
a convergence criterion than Newton’s method applied to the determination of a zero of Ψ1, because Ψ2 sometimes can
be approximated more accurately by a linear function in the vicinity of the zero than Ψ1. We therefore include Newton’s
method applied to computing a zero of Ψ2 in our comparison.

4. Numerical examples

This section presents a few computed examples. The main goal of this section is to show that iterated Tikhonov
regularization combined with the GSVD is competitive with (standard) Tikhonov regularization based on the GSVD. We
will refer to these methods as ITikGSVD and TikGSVD, respectively. The examples illustrate that the iterations in the
ITikGSVD method do not increase the computing time significantly over the computing time required by TikGSVD, but they
improve the quality of the computed approximation of xtrue. Typically, a few iterations in ITikGSVD suffice to improve the
quality of the computed approximate solution significantly. The examples also show the performance of the zero-finders
described in Section 3. In all examples, we use η = 1.01 in (12) and the initial approximate solution x(0) = 0 for the
iterations. The regularization matrix is the tridiagonal matrix

L =

⎛⎜⎝−1 2 −1
. . .

. . .

−1 2 −1

⎞⎟⎠ ∈ R(n−2)×n, (13)

which is a scaled discretization of the second derivative operator at equidistant points in one space-dimension. The
examples stem from the MATLAB package Regularization Tools by Hansen [17]. All examples are obtained by discretizing
a Fredholm integral equation of the first kind with a square integrable kernel,∫ b

a
K (s, t)x(t)dt = g(s), c ≤ s ≤ d, (14)

where the right-hand side function g and the kernel K are given, and we seek to determine the solution x. Discretization
is carried out by Galerkin or Nystrom methods and yields a linear discrete ill-posed problem (1). MATLAB functions from
[17] determine discretizations A ∈ Rn×n of the integral operators and scaled discrete approximations xtrue ∈ Rn of the
solution x(t) of (14). We let btrue = Axtrue. In all examples we fix n = 400.

The error vector e ∈ R400 is modeled by white Gaussian noise and we refer to the ratio

σ =
∥e∥

∥btrue∥

as the noise level. The error-contaminated right-hand side b is obtained by (2). The relative reconstruction error of the
computed solution xµ(k) is given by

RRE(xµ(k) ) =
∥xµ(k) − xtrue∥

∥xtrue∥
.

Example 4.1. We first consider the problem implemented by the code deriv2 from [17]. The kernel, solution, and
right-hand side of (14) are given by

K (s, t) =

{
s(t − 1), s < t,
t(s − 1), s ≥ t,

x(t) = exp(t),
g(s) = exp(s) + (1 − exp(1))s − 1,

and a = c = 0, b = d = 1. The kernel K is the Green’s function for the second derivative.

Tables 1 and 2 show the RRE to drop significantly by carrying out a few iterations in the ITikGSVD method. The
computing time is dominated by the time required to calculate the GSVD of the matrix pair {A, L}. The ITikGSVD method
is seen to require very little more computing time than the TikGSVD method. Fig. 1 shows the computed solutions
determined by ITikGSVD and TikGSVD. The former is seen to furnish a better approximation of xtrue.
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Table 1
Example 4.1: ITikGSVD results are shown in the first row and results for TikGSVD in the
second row. The column labeled ‘‘Iterations’’ shows the number of iterations required by
ITikGSVD. The times are in seconds. The last column shows the time needed for calculating
the GSVD only. The noise level is σ = 0.001.

Iterations RRE Time Time GSVD

ITikGSVD 5 0.0057 0.194 0.130
TikGSVD 0.0396 0.180 0.130

Table 2
Example 4.1: This table differs from Table 1 in that the noise level is σ = 0.01.

Iterations RRE Time Time GSVD

ITikGSVD 4 0.016 0.185 0.144
TikGSVD 0.039 0.184 0.144

Fig. 1. Example 4.1: The dash-dotted curve shows xtrue , the solid curve displays the approximation calculated by ITikGSVD, and the dashed curve
depicts the approximation determined by TikGSVD.

Example 4.2. The test problem baart from [18] is a discretization of an integral equation (14) with the kernel and
right-hand side function given by

K (s, t) = exp(s cos(t)), g(s) = 2
sin(s)

s
,

and with 0 ≤ s ≤ π/2 and 0 ≤ t ≤ π . The solution is given by x(t) = sin(t).

Using the code baart from [17], we discretize (14) by a Galerkin method with 400 orthonormal box functions as test
and trial functions. This generates the matrix A ∈ R400×400 and the solution xtrue, which is a scaling of x(t). We determine
the right-hand side vector btrue = Axtrue and the error-contaminated right-hand side vector b like in Example 4.1. The
matrix A is numerically singular.

Fig. 2 shows the computed solutions and is analogous to Fig. 1. The ITikGSVD method is seen to give the most accurate
approximation of xtrue. Tables 3 and 4 are similar to the tables shown in Example 4.1. They show the ITikGSVD method
to give more accurate approximations of xtrue than TikGSVD and only require insignificantly more computing time.

Example 4.3. In Examples 4.1 and 4.2, we carried out the computations with Algorithm 1 and computed the zero of
the function Ψ1 by the method in [15]. The present example compares the performance of the zero-finders considered
in Section 3. The problem solved is the same as in Example 4.2, but the noise level differs. For the present example it is
σ = 0.05. Moreover, the computations are carried out on a different computer than the one used for Examples 4.1 and
4.2. Therefore, the timings in Table 5 cannot be compared with those reported in the previous tables. The RRE and the
number of iterations are not affected by the change of computer.

Table 5 compares the zero-finders of Section 3. The number of steps are shown in the columns labeled ‘‘Iterations’’. The
column labeled ‘‘First’’ displays the number of steps required to determine the first regularization parameter, with initial
approximation β (0)

= 0. This is the number of steps required by TikGSVD. The column labeled ‘‘Total’’ shows the total
number of steps of each zero-finder required for all iterations in the ITikGSVD method. The number of iterations of the
ITikGSVD method is displayed in the column ‘‘Tikhonov’’. Since the regularization parameters µ(k), k = 1, 2, . . . are close,
only one or two steps of the zero-finder are required for each iteration with the ITikGSVD method. The column labeled
‘‘RRE’’ shows the relative errors in the computed solutions determined by the ITikGSVD method. The errors are seen to
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Table 3
Example 4.2: ITikGSVD results are shown in the first row and TikGSVD results in the
second row. ‘‘Iterations’’ shows the number of iterations required by ITikGSVD. The times
are in seconds. The last column shows the time required for calculating the GSVD only.
The noise level is σ = 0.001.

Iterations RRE Time Time GSVD

ITikGSVD 3 0.0271 0.149 0.119
TikGSVD 0.0314 0.148 0.119

Table 4
Example 4.2: This table differs from Table 3 in that the noise level is σ = 0.01.

Iterations RRE Time(s) Time(s) GSVD

ITikGSVD 5 0.037 0.142 0.123
TikGSVD 0.255 0.141 0.123

Table 5
Example 4.3: Comparison of zero-finders for computing the regularization parameter.
Zero-finder Iterations Tikhonov RRE(xµ(k) ) Time

First Total

Newton for Ψ1 12 16 4 0.038858 0.2102
Newton for Ψ2 10 12 2 0.038857 0.1831
Method [15] 8 10 3 0.038857 0.1532

Fig. 2. Example 4.2: The dash-dotted curve shows xtrue , the solid curve displays the approximation calculated by ITikGSVD, and the dashed curve
depicts the approximation determined by TikGSVD.

be essentially independent of the zero-finder used. The last column displays the times required. It shows the cubically
convergent zero-finder discussed in [15] to require the fewest iterations and also result in the fastest implementation of
ITikGSVD. For all zero-finders, the most iterations are required to compute the initial regularization parameter used by
ITikGSVD.

Example 4.4. This example illustrates the performance of the ITikGSVD method when applied to the restoration of an
image. We use the MATLAB code blur from [17] with default parameter values band = 3 and sigma = 0.7 to generate
the blurring matrix A ∈ R1024×1024, which models Gaussian blur, and a test image made up of 32 × 32 pixels. The pixels
are stored column-wise in the vector xtrue. The test image is displayed in Fig. 3(a). The vector btrue = Axtrue represents the
blurred, but noise-free image, to which we add 5% Gaussian noise. This yields the blur- and noise-contaminated image
displayed in Fig. 3(b). The vector b in (1) is made up of the pixels, ordered column-wise, of the latter image. Table 6 displays
results for the TikGSVD and ITikGSVD methods applied to this image restoration problem. The restored image determined
by ITikGSVD is shown in Fig. 3(c). The restoration determined by TikGSVD looks almost the same. We therefore do not
show the latter.

Example 4.5. In this example we assume that xtrue is known and choose the regularization parameter µ in the ITikGSVD
method so that the computed solution xµ is close to xtrue. This is not a practical approach to choosing the regularization
parameter. The purpose of this example is to illustrate the quality of the regularization parameter determined by the
discrepancy principle. We consider the baart test problem described in Example 4.2 and generate a sequence of equidistant
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Fig. 3. Blur test problem: (a) Uncontaminated image (32 × 32 pixels), (b) blur- and noise-contaminated image (σ = 0.05), (c) Reconstructed image
by ITikGSVD.

Table 6
Example 4.4: Comparison of the RRE and CPU time in seconds for ITikGSVD and TikGSVD.

Iterations RRE Time(s) Time(s) GSVD

ITikGSVD 4 0.0766 0.932 0.5946
TikGSVD 0.1199 0.925 0.5946

Table 7
Example 4.5: The relative error in computed solutions determined by
the ITikGSVD and ITikGSVDt methods. The former determines the regu-
larization parameter by the discrepancy principle, the latter determines
the regularization parameter using knowledge of xtrue . The noise level is
σ = 0.001.

RRE

ITikGSVD 0.0271
ITikGSVDt 0.0212

regularization parameter values µk, k = 1, 2, . . . , that are centered at the parameter value determined by the discrepancy
principle. We then choose the computed solution xµk that is closest to xtrue. We refer to this approach to compute an
approximation of xtrue as the ITikGSVDt method. Table 7 displays the error in the computed solution determined by
ITikGSVDt as well as the error in the approximate solution determined by ITikGSVD. As can be expected, ITikGSVDt gives
a more accurate approximation of xtrue than ITikGSVD, but the difference in quality is modest. In this example the noise
level is small. For large noise levels neither ITikGSVD nor ITikGSVDt yield accurate approximations of xtrue.

5. Conclusion

This paper develops a new method for the solution of linear discrete ill-posed problems with a system matrix
A and a regularization matrix L of small to moderate size. The method combines the GSVD method with iterated
Tikhonov regularization. Computed examples show the new method to give approximate solutions of higher quality than
the approximate solutions determined by combining GSVD and (standard) Tikhonov regularization. Timings show the
additional computing time required by replacing standard Tikhonov regularization by iterated Tikhonov regularization
to be negligible. The paper determines a regularization by using the discrepancy principle. This requires application of
a zero-finder. A cubically convergent zero-finder described in [15] is compared with two ways to implement Newton’s
method and found to require fewer iterations to determine a zero with comparable accuracy.
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