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a b s t r a c t

Tikhonov regularization is one of the most popular methods for computing approximate
solutions of linear discrete ill-posed problems with error-contaminated data. A regular-
ization parameter, µ > 0, balances the influence of a fidelity term, which measures
how well the data is approximated, and of a regularization term, which dampens the
propagation of the data error into the computed approximate solution. The quality of
the computed solution is affected by the value of the regularization parameter µ. The
discrepancy principle is a popular a-posteriori rule for determining a suitable value of
µ. It performs quite well when a fairly accurate estimate of the norm of the error in the
data is known. A modification of the discrepancy principle, proposed independently by
Gfrerer and Raus, also can be used to determine µ. Analysis of this modification in an
infinite-dimensional Hilbert space setting suggests that it will determine a value of µ that
yields an approximate solution of higher quality than the approximate solution obtained
when using the (standard) discrepancy principle to compute µ. This paper compares these
a-posteriori rules for determining µ when applied to the solution of many linear discrete
ill-posed problems with different amounts of error in the data. Our comparison shows
that in a discrete setting, the discrepancy principle generally gives a value of µ that yields
a computed solution of higher quality than the value of µ furnished by the modified
discrepancy principle.

© 2019 Elsevier B.V. All rights reserved.

1. Introduction

We are concerned with the solution of minimization problems of the form

min
x∈Rn

∥Ax − b∥, (1)

where ∥ · ∥ denotes the Euclidean vector norm, A ∈ Rm×n is an ill-conditioned matrix whose singular values ‘‘cluster’’ at the
origin, and the data vector b ∈ Rm is contaminated by an unknown error e ∈ Rm. The error may, for instance, be caused by
measurement inaccuracies. Least-squares problems of this kind arise inmany areas of science and engineering. They usually
stem from the discretization of a linear ill-posed problem, such as a Fredholm integral equation of the first kind, and are
commonly referred to as linear discrete ill-posed problems.

Let btrue denote the unavailable error-free vector associated with b. Thus,

b = btrue + e. (2)
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We would like to determine the solution xtrue of minimal Euclidean norm of the unavailable linear system of equations

Ax = btrue,

which we assume to be consistent. We determine an approximation of xtrue by computing a suitable approximate solution
of (1). Note that the least-squares solution of minimal norm of (1) typically is a poor approximation of xtrue due to the error
e in b and the presence of tiny positive singular values of A.

Tikhonov regularization is a commonly used technique for determining a useful approximation of xtrue. It is based on
replacing the problem (1) by the penalized least-squares problem

min
x∈Rn

{
∥Ax − b∥2

+ µ∥x∥2} . (3)

The parameter µ > 0 is a regularization parameter that balances the influence of the first term (the fidelity term) and the
second term (the regularization term). The solution of (3) can be expressed as

xµ := (ATA + µI)−1ATb, (4)

where the superscript T denotes transposition. This solution exists for all µ > 0.
The quality of the solution xµ of (3) is affected by the value of µ: A too large value of µ gives an over-smoothed solution

that lacks details that the desired solution xtrue may have, while a too small value of µ > 0 yields a vector xµ that is
unnecessarily, and possibly severely, contaminated by propagated error that stems from the error e in b.

Assume that the norm

ϵ = ∥e∥ > 0, (5)

or an accurate approximation thereof, is known. The discrepancy principle prescribes that µ > 0 be determined so that the
solution xµ of (3) satisfies

∥Axµ − b∥ = ηϵ, (6)

where η > 1 is a user-specified constant independent of ϵ. This is a non-linear equation for µ as a function of ϵ > 0. It has
a unique solution µ = µ(ϵ) for most reasonable values of ϵ. A proof in an infinite-dimensional Hilbert space setting that
xµ(ϵ) → xtrue as ϵ ↘ 0 can be found, e.g., in [1].

The quality of the computed solution xµ(ϵ) is sensitive to the accuracy of ϵ defined by (5):when ϵ ≫ ∥e∥, the regularization
parameter µ determined by (6) is unnecessarily large, and ϵ ≪ ∥e∥ results in a too small value of µ. The sensitivity of µ

and xµ to inaccuracies in an available estimate of ∥e∥ has been investigated by Hämarik et al. [2], who proposed alternatives
to the discrepancy principle when only a poor estimate of ∥e∥ is known. In the present paper, we will assume that a fairly
accurate estimate of ∥e∥ is available. Such an estimate may be known for the problem at hand or can be determined by a
denoising method; see, e.g., [3–5] and references therein for a variety of such methods. The norm of the difference between
the given vector b and a denoised version can be used as an estimate of the norm of the noise in b. This is illustrated in [6].

Introduce the function

φ2(µ) := µ2bT (AAT
+ µI)−2b. (7)

Eq. (6) for µ can be expressed as

φ2(µ) = η2ϵ2
; (8)

see, e.g., [7,8] for details. The function φ2 is monotonically increasing with µ. It may be beneficial to replace µ by ν = 1/µ
before solving Eq. (8) by Newton’s method; see [7,8] for discussions. We will denote the solution of (8) by µ2 and the
associated approximation of xtrue determined by Tikhonov regularization by xµ2 .

In the following variation of the discrepancy principle, which is referred to as the modified discrepancy principle by
Hämarik et al. [2], the function (7) is replaced by

φ3(µ) := µ3bT (AAT
+ µI)−3b, (9)

and Eq. (8) is replaced by

φ3(µ) = η2ϵ2. (10)

We denote the solution by µ3. This approach to determine the regularization parameter was first proposed by Gfrerer [9]
and Raus [10]. Analysis in an infinite-dimensional Hilbert space setting by Gfrerer [9] suggests that the solution xµ3 should
be a more accurate approximation of xtrue than xµ2 . The modified discrepancy principle is discussed by, e.g., Engl et al.
[1, Section 5.1], Hanke and Hansen [8], Hansen [11, Section 7.3], and Neubauer [12].

The function φ3 is monotonically increasing with µ. Therefore (10) has a unique solution for reasonable values of ϵ. We
may compute it, e.g., by Newton’s method.

Proposition 1. Let µj be the unique solution of φj(µ) = η2ϵ2 for j ∈ {2, 3}. Then µ3 ≤ µ2. Generally, the inequality is strict.
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The proposition shows that themodified discrepancy principle typically regularizesmore than the (standard) discrepancy
principle. We present a proof at the end of the following section after having introduced the singular value decomposition
of the matrix A.

It is the purpose of the present paper to compare the quality of the solutions xµ2 and xµ3 when solving linear discrete
ill-posed problems by Tikhonov regularization.

This paper is organized as follows. Section 2 defines the singular value decomposition (SVD) of A. Substituting this
decomposition into (8) and (10) makes the evaluation of these functions easy and fast for each value of µ. However, the
computation of the SVD of a large matrix is expensive. We therefore discuss in Section 3 how to, instead of using the SVD of
A, use a small matrix that is computed by carrying out a few steps of Golub–Kahan bidiagonalization applied to A. Section 4
contains computed examples. Concluding remarks can be found in Section 5.

2. The singular value decomposition

Introduce the SVD of the matrix A ∈ Rm×n. For notational simplicity, we assume that m ≥ n, but this restriction easily
can be removed. Thus,

A = UΣV T , (11)

where the matrices

U = [u1, u2, . . . , um] ∈ Rm×m and V = [v1, v2, . . . , vn] ∈ Rn×n

have orthonormal columns uj and vj, respectively, and

Σ = diag[σ1, σ2, . . . , σn] ∈ Rm×n.

The σj are referred to as singular values and satisfy σ1 ≥ σ2 ≥ · · · ≥ σn ≥ 0. We refer to [13] for details and properties of
the SVD.

Let

b̃ = [̃b1, b̃2, . . . , b̃m]
T

:= UTb.

Substituting the SVD (11) into (7) and (9) gives, for µ > 0,

φp(µ) = µp̃bT (ΣΣT
+ µI)−p̃b =

n∑
j=1

b̃2j
(σ 2

j /µ + 1)p
+

m∑
j=n+1

b̃2j (12)

for p ∈ {2, 3}. The right-hand side of (12) can easily and inexpensively be evaluated for many different values of µ > 0. This
makes fast solution of (8) or (10) possible.

Having solved (8) or (10) for µ = µ2 or µ = µ3, respectively, we compute the associated solutions xµ2 or xµ3 of (3) by
substituting (11) into (4) and letting µ = µ2 or µ = µ3 in

xµ =

n∑
j=1

σj̃bj
σ 2
j + µ

vj

Proof of Proposition 1. The function

p →
b̃2j

(σ 2
j /µ + 1)p

is decreasing. Therefore, for fixed µ > 0, φ3(µ) ≤ φ2(µ). The inequality is strict if b̃jσj ̸= 0. The function

µ →
b̃2j

(σ 2
j /µ + 1)p

also is decreasing. In order for φ2(µ2) = φ3(µ3), we must have µ3 ≤ µ2. The inequality is strict if b̃jσj ̸= 0 for at least one
index 1 ≤ j ≤ n. □

3. Bidiagonalization and quadrature

This section outlines an approach to solve large-scale Tikhonov regularization problem (3). Details of this approach are
described in [7]. It uses the connection between partial Golub–Kahan bidiagonalization of the matrix A and certain Gauss-
type quadrature rules that can be used to bound quantities of interest when determining the regularization parameter µ.
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3.1. Bidiagonalization

It is unattractive to compute the SVD of a large matrix A ∈ Rm×n due to the high computational cost; see [13, p. 493]. A
Tikhonov regularization problem (3) with a large matrix A can be reduced to a fairly small Tikhonov regularization problem
by the application of a variety of Krylov subspace methods; see, e.g., Gazzola et al. [14] for a recent survey. One of the most
popular reduction methods is Golub–Kahan bidiagonalization; see [7,8,13]. Application of ℓ ≤ min{m, n} steps of Golub–
Kahan bidiagonalization to A with initial vector b yields the decompositions

AVℓ = Uℓ+1Cℓ+1,ℓ, ATUℓ = VℓCT
ℓ,ℓ, (13)

where the matrices Uℓ+1 = [u1, u2, . . . , uℓ+1] ∈ Rm×(ℓ+1) and Vℓ = [v1, v2, . . . , vℓ] ∈ Rn×ℓ have orthonormal columns with
u1 = b/∥b∥. The matrix Uℓ is made up of the first ℓ columns of Uℓ+1 and Cℓ+1,ℓ is lower bidiagonal with positive diagonal
and subdiagonal entries,

Cℓ+1,ℓ =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

γ1 0
δ2 γ2

. . .
. . .

δℓ−1 γℓ−1
δℓ γℓ

0 δℓ+1

⎤⎥⎥⎥⎥⎥⎥⎥⎦
∈ R(ℓ+1)×ℓ. (14)

It has leading principal submatrix Cℓ,ℓ ∈ Rℓ×ℓ; see, e.g., [13] for details. In this section, we may have m ≥ n or m < n. We
assume that ℓ is chosen small enough so that the decompositions (13) with the stated properties exist. This is the generic
situation. The value of ℓ used in the application of this paper, generally, is quite small; in particular, it is much smaller than
min{m, n}. Each step of Golub–Kahan bidiagonalization requires the evaluation of onematrix–vector product with A and the
evaluation of one matrix–vector product with AT . When A is large, these matrix–vector product evaluations constitute the
dominating cost of the bidiagonalization process.

The range of Vℓ is the Krylov subspace

Kℓ(ATA, ATb) = span{ATb, (ATA)ATb, . . . , (ATA)(ℓ−1)ATb}. (15)

We seek to compute an approximate solution xµ,ℓ = Vℓyµ,ℓ of (3) in this subspace. Applying a Galerkinmethod to the normal
equations associated with (3) yields

V T
ℓ (A

TA + µI)Vℓyµ,ℓ = V T
ℓ A

Tb,

which, by using the decompositions (13), can be expressed as

(CT
ℓ+1,ℓCℓ+1,ℓ + µI)yµ,ℓ = CT

ℓ+1,ℓe1∥b∥, (16)

where e1 = [1, 0, . . . , 0]T denotes the first axis vector. The solution of (16), by rewriting the equations as an equivalent
least-squares problem, is described in [7].

It remains to determine how many bidiagonalization steps, ℓ, to carry out. The computed solution xµ,ℓ cannot satisfy
the discrepancy or modified discrepancy principles when ℓ is too small, while letting ℓ be large may make the application
of Golub–Kahan bidiagonalization unnecessarily expensive. We will determine upper and lower bounds for the functions
(7) and (9) with the aid of quadrature rules that can be evaluated by using the connection between Gauss-type quadrature
and the decompositions (13). This approach for computing upper and lower bounds for the function (7) has previously been
described in [7].

3.2. Quadrature rules

We review the technique used in [7] for computing bounds for the function (7). This method also can be applied to bound
the function (9). We refer to [7] for details. Extensions and many references can be found in [15,16].

Consider the spectral factorization

AAT
= WΛW T ,

where Λ = diag[λ1, λ2, . . . , λm] ∈ Rm×m and the matrixW ∈ Rm×m is orthogonal. Substitution into (7) or (9) yields

φp(µ) = bTW (µ−1Λ + I)−pW Tb

=

m∑
j=1

β̂2
j

(µ−1λj + 1)p
, (17)
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where b̂ = [̂β1, β̂2, . . . , β̂m]
T

:= W Tb. The sum in (17) can be expressed as a Stieltjes integral

φp(µ) =

∫
∞

0

1
(µ−1λ + 1)p

dω(λ) (18)

with a piece-wise constant distribution function ω with jump discontinuities of height β̂2
j at the eigenvalues λj; dω is the

associated measure.
We will approximate the integral (18) by Gauss-type quadrature rules. One can show that

Gℓ,p(µ) := ∥b∥2eT1(µ
−1Cℓ,ℓCT

ℓ,ℓ + Iℓ)−pe1.

is an ℓ-node Gauss quadrature rule for approximating the integral (18) and

Rℓ+1,p(µ) := ∥b∥2eT1(µ
−1Cℓ+1,ℓCT

ℓ+1,ℓ + Iℓ+1)−pe1.

is an (ℓ + 1)-node Gauss–Radau quadrature rule with a fixed nodes at the origin for approximating the same integral; see,
e.g., [7,15,16] for details.

Since the derivatives of the integrand in (18) (as a function of λ) of even order are negative on the interval of integration
and the derivatives of odd order are positive, the remainder formulas for the error in Gauss and Gauss–Radau quadrature
show that, generically,

Gℓ,p(µ) < φp(µ) < Rℓ+1,p(µ), µ > 0, p ∈ {2, 3}. (19)

The quadrature errors of the rules Gℓ,p(µ) and Rℓ+1,p(µ) decrease as ℓ increases; see [17]. Thus, we can compute upper and
lower bounds for the integral (18) of desired accuracy by using the decompositions (13) with ℓ chosen sufficiently large.
Following [7], we increase ℓ until we can determine a value of µ, denoted by µℓ, that satisfies

ϵ2
≤ Gℓ,p(µℓ) and Rℓ+1,p(µℓ) ≤ ϵ2α2 (20)

for some constant α > 1 independent of µ and ℓ. This is done by solving

φℓ,p(µ) = ϵ2 (21)

by Newton’s method, where φℓ,p(µ) := Gℓ,p(µ). Details for p = 2 are provided in [7]; the computations when p = 3 are
carried out in the same manner.

It follows from (19) that

ϵ2 < φp(µℓ) < ϵ2α2.

For many linear discrete ill-posed problems, the required number of bidiagonalization steps, ℓ, is quite small. This is
illustrated in the following section. Having determinedµℓ as described,we compute the corresponding approximate solution
xµℓ,ℓ in the Krylov subspace (15) as outlined in Section 3.1. Here we only note that the dominating computational expense
for determining xµℓ,ℓ is the evaluation of the decompositions (13). Note that it is not necessary to compute the SVD of any
matrix in the method of this section.

4. Computed examples

This section presents computed examples with several of the linear discrete ill-posed problems that are available in the
MATLABpackage Regularization Tools byHansen [18]. All problems are discrete ill-posed problems;many are discretizations
of Fredholm integral equations of the first kind. The problems are described in [18]. Further discussions on some of the
problems can be found in [19–22].

The discretized problems havematrices A ∈ R2000×2000. The codes in the Regularization Tools provide the ‘‘exact solution’’
xtrue, which is used to compute the ‘‘exact right-hand side’’ btrue := Axexact. The error e in b (cf. (2)) is Gaussian with zero
mean and the variance is chosen to correspond to a specified noise level ∥e∥/∥btrue∥ ∈ {10−1, 10−2, 10−3

}. For each problem
and each noise level, we generate 10 random noise vectors e. The tables report averages of the relative error

RE :=
∥xcomputed − xtrue∥

∥xtrue∥
(22)

achieved for the 10 noise vectors of specified noise level, as well as standard deviations (SD), when using the discrepancy
principle and the modified discrepancy principle to determine the regularization parameter.

The iterations with Newton’s method applied to the solution of (8) or (10) use the initial iterate µ(0)
= 0. Both φp(0) and

the derivative φ′
p(0) can be evaluated by taking limits of φp(µ) and φ′

p(µ) as µ ↘ 0; see [7] for details when p = 2. Formulas
for p = 3 can be evaluated similarly. Newton’s method determines iterates µ(k), k = 1, 2, . . . . The iterations with Newton’s
method are terminated as soon as an iterate µ(k) satisfies

|φp(µ(k))| ≤ 2 · 10−3
∥e∥. (23)
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Table 1
Modified Discrepancy Principle (MD) vs. Discrepancy Principle (D) using the SVD to determine the regular-
ization parameter µ. The table shows the average relative error (avg. RE) and its standard deviation (SD).
Noise Problem Avg. RE SD

level MD D MD D

10−3 baart 1.1×10−1 1.1×10−1 4.5×10−3 5.3×10−3

foxgood 1.0×10−2 7.5×10−3 2.5×10−3 2.6×10−3

shaw 4.9×10−2 4.6×10−2 1.2×10−3 1.9×10−3

gravity 1.3×10−2 1.0×10−2 2.2×10−3 2.0×10−3

deriv2 3.7×10−1 1.4×10−1 2.3×10−1 5.6×10−3

heat 3.0×10−2 2.3×10−2 2.2×10−3 1.3×10−3

phillips 9.0×10−3 6.3×10−3 9.3×10−4 1.0×10−3

10−2 baart 1.6×10−1 1.5×10−1 1.1×10−2 1.4×10−2

foxgood 2.9×10−2 1.6×10−2 8.8×10−3 7.6×10−3

shaw 7.7×10−2 6.3×10−2 1.7×10−2 1.5×10−2

gravity 2.9×10−2 2.1×10−2 4.9×10−3 5.8×10−3

deriv2 3.4×10−1 2.0×10−1 1.9×10−1 1.3×10−2

heat 8.4×10−2 6.4×10−2 7.9×10−3 6.8×10−3

phillips 2.3×10−2 1.7×10−2 1.7×10−3 3.7×10−3

10−1 baart 2.7×10−1 2.3×10−1 6.2×10−2 4.7×10−2

foxgood 5.5×10−2 3.2×10−2 2.1×10−2 1.5×10−2

shaw 1.8×10−1 1.3×10−1 8.8×10−2 3.3×10−2

gravity 7.1×10−2 5.0×10−2 1.3×10−2 1.4×10−2

deriv2 4.1×10−1 3.1×10−1 1.5×10−1 2.7×10−2

heat 7.1×10−1 1.7×10−1 7.9×10−1 1.7×10−2

phillips 5.9×10−2 4.1×10−2 8.5×10−3 8.2×10−3

The solution of (21) is carried out similarly with an analogous stopping criterion, i.e., φp(µ(k)) is replaced by φℓ,p(µ(k))
in (23).

Table 1 shows results for the situation described in Section 2 when the SVD of A is computed, while Table 2 displays
the corresponding results when the solution is computed by first carrying out a few bidiagonalization steps as described in
Section 3. The parameters η and α in (6) and (20), respectively, are set to 1.01.

Table 1 shows the average relative error to be smaller when the parameter µ is determined by the discrepancy principle
thanwhen it is determinedby themodified discrepancyprinciple for all problems and all noise levels. The better performance
of the discrepancy principle depends on that the regularization parameter determined by the discrepancy principle generally
is strictly larger than the regularization parameter obtained by the modified discrepancy principle; see Proposition 1. The
standard deviation of the relative error is for someproblems slightly larger for the discrepancy principle than for themodified
discrepancy principle. The computations are carried out by using the SVD of A as described in Section 2. Results similar to
those of Table 1 are obtained for smaller and larger matrices A. The table indicates that there is no reason to use themodified
discrepancy principle when an accurate estimate of the norm of the error e is available.

Table 2 is analogous to Table 1 and shows results for the situation when the regularization parameter µ is computed by
the method of Section 3. The table shows the average relative error to be smaller when the parameter µ is determined by
the discrepancy principle than when it is determined by the modified discrepancy principle for all problems and all noise
levels. For some problems, the standard deviation of the relative error is somewhat larger when the discrepancy principle is
used. The solutionmethod reduces thematrix A in the large Tikhonov regularization problem (3) to a small bidiagonalmatrix
Cℓ+1,ℓ; see (13) and (14). Table 2 reports for each problem the average value of ℓ for each noise realization. We remark that
the computation of an approximation of xtrue in a Krylov subspace of dimension ℓ entails regularization in addition to the
regularization furnished by choosing a regularization parameter µ > 0. The table shows the discrepancy principle to yield
a smaller average relative error (22) than the modified discrepancy principle. Analogous results are obtained for Tikhonov
regularization problem (3) with a matrix A of different size.

5. Conclusion

The average relative errors reported for the discrepancy principle are smaller than those achieved with the modified
discrepancy principle for a variety of linear discrete ill-posed problems solved by Tikhonov regularization. This holds both
when the solution is computed by a method that is well suited for small to moderately sized problems based on first
evaluating the SVD of the matrix of the problem, and when the solution is determined by a method that is well suited
for large-scale problems based on reducing the given problem to a smaller one by carrying out a few steps of Golub–
Kahan bidiagonalization. We conclude that when a fairly accurate estimate of the noise level in the data b is available, the
discrepancy principle performs better than the modified discrepancy principle. When no such estimate is available, then it
may be beneficial to use other methods for determining the regularization parameter such as methods described in [2] or
so-called heuristic parameter choice rules; see, e.g., [23–25] for discussions of the latter.
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Table 2
Modified Discrepancy Principle (MD) vs. Discrepancy Principle (D) using bidiagonalization to determine the regularization
parameter µ. The table shows the average number of bidiagonalization steps (avg. ℓ), the average relative error (avg. RE),
and its standard deviation (SD).
Noise Problem Avg. ℓ Avg. RE SD

level MD D MD D MD D

10−3 baart 4.9 5.0 1.2×10−1 1.0×10−1 8.8×10−3 3.4×10−2

foxgood 4 4 1.1×10−2 8.0×10−3 2.6×10−3 2.3×10−3

shaw 8 8 4.9×10−2 4.2×10−2 1.1×10−3 1.4×10−3

gravity 9 9.1 1.6×10−2 1.3×10−2 1.1×10−3 1.6×10−3

deriv2 14.8 15.2 1.5×10−1 1.4×10−1 4.5×10−3 4.4×10−3

heat 21 22 3.3×10−2 2.3×10−2 1.6×10−3 1.5×10−3

phillips 9.8 10.6 1.1×10−2 6.8×10−3 9.8×10−4 1.5×10−3

10−2 baart 4 4 1.6×10−1 1.5×10−1 3.4×10−3 7.1×10−3

foxgood 3 3 2.9×10−2 1.9×10−2 5.2×10−3 7.1×10−3

shaw 6 6 1.0×10−1 9.3×10−2 8.7×10−3 1.0×10−2

gravity 7 7 3.5×10−2 2.7×10−2 1.9×10−3 2.4×10−3

deriv2 8 8.1 2.4×10−1 2.2×10−1 5.8×10−3 9.2×10−3

heat 14 15 9.9×10−2 7.2×10−2 3.4×10−3 4.4×10−3

phillips 7.2 7.5 2.8×10−2 2.2×10−2 2.4×10−3 2.3×10−3

10−1 baart 3 3 3.0×10−1 2.7×10−1 2.0×10−2 2.3×10−2

foxgood 3 3 7.9×10−2 3.9×10−2 1.2×10−2 1.3×10−2

shaw 5 5 1.6×10−1 1.4×10−1 1.1×10−2 2.1×10−2

gravity 5 5 8.3×10−2 6.0×10−2 7.7×10−3 7.0×10−3

deriv2 4 4 3.7×10−1 3.5×10−1 7.8×10−3 8.2×10−3

heat 9 9 2.5×10−1 2.1×10−1 1.1×10−2 1.1×10−2

phillips 4.9 6.4 9.0×10−2 4.3×10−2 1.0×10−2 6.9×10−3

Acknowledgments

Work of A.B. is partially supported by a grant from the GNCS group of INdAM, Italy, while work of L.R. is supported in part
by NSF, USA grants DMS-1720259 and DMS-1729509.

References

[1] H.W. Engl, M. Hanke, A. Neubauer, Regularization of Inverse Problems, Kluwer, Dordrecht, 1996.
[2] U. Hämarik, R. Palm, T. Raus, A family of rules for parameter choice in Tikhonov regularization of ill-posed problemswith inexact noise level, J. Comput.

Appl. Math. 236 (2012) 2146–2157.
[3] A.F. Bentbib, A. Bouhamidi, K. Kreit, A conditional gradient method for primal–dual total variation-based image denoising, Electron. Trans. Numer.

Anal. 48 (2018) 310–328.
[4] A. Buades, B. Coll, J.M. Morel, Image denosing methods. A new nonlocal principle, SIAM Rev. 52 (2010) 113–147.
[5] T. Hearn, L. Reichel, Image denoising via residual kurtosis minimization, Numer. Math. Theor. Meth. Appl. 8 (2015) 403–422.
[6] T.A. Hearn, L. Reichel, Application of denoising methods to regularization of ill-posed problems, Numer. Algorithms 66 (2014) 761–777.
[7] D. Calvetti, L. Reichel, Tikhonov regularization of large linear problems, BIT 43 (2003) 263–283.
[8] M. Hanke, P.C. Hansen, Regularization methods for large-scale problems, Surv. Math. Ind. 3 (1993) 253–315.
[9] H. Gfrerer, An a posteriori aparameter choice for ordinary and iterated Tikhonov regularization of ill-posed leading to optimal convergence rates,

Math. Comp. 49 (1987).
[10] T. Raus, Residue principle for ill-posed problems, Acta et Comment. Univ. Tartu. 672 (1984) 16–26, in Russian.
[11] P.C. Hansen, Rank-Deficient and Discrete Ill-Posed Problems, SIAM, Philadelphia, 1998.
[12] A. Neubauer, An a posteriori parameter choice for Tikhonov regularization in the presence of modeling error, Appl. Numer. Math. 4 (1986) 203–222.
[13] G.H. Golub, C.F. Van Loan, Matrix Computations, fourth ed., Johns Hopkins University Press, Baltimore, 2013.
[14] S. Gazzola, P. Novati, M.R. Russo, On Krylov projection methods and Tikhonov regularization, Electron. Trans. Numer. Anal. 44 (2015) 83–123.
[15] C. Fenu, D. Martin, L. Reichel, G. Rodriguez, Block Gauss and anti-Gauss quadrature with application to networks, SIAM J. Matrix Anal. Appl. 34 (2013)

1655–1684.
[16] G.H. Golub, G. Meurant, Matrices, Moments and Quadrature with Applications, Princeton University Press, Princeton, 2010.
[17] G. López Lagomasino, L. Reichel, L. Wunderlich, Matrices, moments, and rational quadrature, Linear Algebra Appl. 429 (2008) 2540–2554.
[18] P.C. Hansen, Regularization tools version 4.0 for MATLAB 7.3, Numer. Algorithms 46 (2007) 189–194.
[19] M.L. Baart, The use of auto-correlation for pseudo-rank determination in noisy ill-conditioned least-squares problems, IMA J. Numer. Anal. 2 (1982)

241–247.
[20] L. Fox, E.T. Goodwin, The numerical solution of non-singular linear integral equations, Phil. Trans. R. Soc. A 245 (902) (1953) 501–534.
[21] D.L. Phillips, A technique for the numerical solution of certain integral equations of the first kind, J. ACM 9 (1962) 84–97.
[22] C.B. Shaw, . Jr, Improvements of the resolution of an instrument by numerical solution of an integral equation, J. Math. Anal. Appl. 37 (1972) 83–112.
[23] F. Bauer, M.A. Lukas, Comparing parameter choicemethods for regularization of ill-posed problems, Math. Comput. Simulation 81 (2011) 1795–1841.
[24] S. Kindermann, Convergence analysis of minimization-based noise level-free parameter choice rules for linear ill-posed problems, Electron. Trans.

Numer. Anal. 38 (2011) 233–257.
[25] L. Reichel, G. Rodriguez, Old and new parameter choice rules for discrete ill-posed problems, Numer. Algorithms 63 (2013) 65–87.

http://refhub.elsevier.com/S0377-0427(19)30069-X/sb1
http://refhub.elsevier.com/S0377-0427(19)30069-X/sb2
http://refhub.elsevier.com/S0377-0427(19)30069-X/sb2
http://refhub.elsevier.com/S0377-0427(19)30069-X/sb2
http://refhub.elsevier.com/S0377-0427(19)30069-X/sb3
http://refhub.elsevier.com/S0377-0427(19)30069-X/sb3
http://refhub.elsevier.com/S0377-0427(19)30069-X/sb3
http://refhub.elsevier.com/S0377-0427(19)30069-X/sb4
http://refhub.elsevier.com/S0377-0427(19)30069-X/sb5
http://refhub.elsevier.com/S0377-0427(19)30069-X/sb6
http://refhub.elsevier.com/S0377-0427(19)30069-X/sb7
http://refhub.elsevier.com/S0377-0427(19)30069-X/sb8
http://refhub.elsevier.com/S0377-0427(19)30069-X/sb9
http://refhub.elsevier.com/S0377-0427(19)30069-X/sb9
http://refhub.elsevier.com/S0377-0427(19)30069-X/sb9
http://refhub.elsevier.com/S0377-0427(19)30069-X/sb10
http://refhub.elsevier.com/S0377-0427(19)30069-X/sb11
http://refhub.elsevier.com/S0377-0427(19)30069-X/sb12
http://refhub.elsevier.com/S0377-0427(19)30069-X/sb13
http://refhub.elsevier.com/S0377-0427(19)30069-X/sb14
http://refhub.elsevier.com/S0377-0427(19)30069-X/sb15
http://refhub.elsevier.com/S0377-0427(19)30069-X/sb15
http://refhub.elsevier.com/S0377-0427(19)30069-X/sb15
http://refhub.elsevier.com/S0377-0427(19)30069-X/sb16
http://refhub.elsevier.com/S0377-0427(19)30069-X/sb17
http://refhub.elsevier.com/S0377-0427(19)30069-X/sb18
http://refhub.elsevier.com/S0377-0427(19)30069-X/sb19
http://refhub.elsevier.com/S0377-0427(19)30069-X/sb19
http://refhub.elsevier.com/S0377-0427(19)30069-X/sb19
http://refhub.elsevier.com/S0377-0427(19)30069-X/sb20
http://refhub.elsevier.com/S0377-0427(19)30069-X/sb21
http://refhub.elsevier.com/S0377-0427(19)30069-X/sb22
http://refhub.elsevier.com/S0377-0427(19)30069-X/sb23
http://refhub.elsevier.com/S0377-0427(19)30069-X/sb24
http://refhub.elsevier.com/S0377-0427(19)30069-X/sb24
http://refhub.elsevier.com/S0377-0427(19)30069-X/sb24
http://refhub.elsevier.com/S0377-0427(19)30069-X/sb25

	Comparison of A-posteriori parameter choice rules for linear discrete ill-posed problems
	Introduction
	The singular value decomposition
	Bidiagonalization and quadrature
	Bidiagonalization
	Quadrature rules

	Computed examples
	Conclusion
	Acknowledgments
	References


