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Abstract

The need to solve discrete ill-posed problems arises in many areas of science
and engineering. Solutions of these problems, if they exist, are very sensitive to
perturbations in the available data. Regularization replaces the original problem
by a nearby regularized problem, whose solution is less sensitive to the error in
the data. The regularized problem contains a fidelity term and a regularization
term. Recently, the use of a p-norm to measure the fidelity term and a q-norm
to measure the regularization term has received considerable attention. The bal-
ance between these terms is determined by a regularization parameter. In many
applications, such as in image restoration, the desired solution is known to live
in a convex set, such as the nonnegative orthant. It is natural to require the com-
puted solution of the regularized problem to satisfy the same constraint(s). This
paper shows that this procedure induces a regularizationmethod and describes a
modulus-based iterative method for computing a constrained approximate solu-
tion of a smoothed version of the regularized problem. Convergence of the iter-
ative method is shown, and numerical examples that illustrate the performance
of the proposed method are presented.

Keywords: modulus-based method, constrained minimization, ill-posed
problem, sparse approximation

1. Introduction

Many applications in science and engineering require the solution of minimization problems
of the form

min
x∈Rn

‖Ax − b‖pp, (1)
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where A ∈ Rm×n is a large matrix, whose singular values ‘cluster’ at the origin. Matrices of
this kind arise, for instance, from the discretization of Fredholm integral equations of the first
kind. The minimization problem (1) is a so-called discrete ill-posed problem; see, e.g., [1–3]
for discussions on this kind of problems. The vector b ∈ Rm represents measured data that are
contaminated by an (unknown) error e ∈ Rm that may stem frommeasurement or discretization
inaccuracies. Our solution methods allow m � n as well as m < n.

When p = 2, the minimization problem (1) is a linear least-squares problem. We also are
interested in computing approximate solutions of (1) when 0 < p < 2. The choice of p should
be informed by the type of error e in b; see below.

Letting p = 2 is appropriate when the error e in b can be modeled by white Gaussian noise.
However, when the error is non-Gaussian, e.g., when b is contaminated by impulse noise, the
use of the Euclidean norm is not effective. When p � 1, the expression

‖x‖p =
⎛⎝ n∑

j=1

|x j|p
⎞⎠1/p

, x = [x1, x2, . . . , xn]
T ∈ R

n

is a norm. The mapping x �→ ‖x‖p is not a norm for 0 < p < 1, since it does not satisfy the
triangle inequality. Nevertheless, minimization of (1) for these values of p also is of inter-
est; see, e.g., [4–6]. For simplicity, we will refer to the mapping x �→ ‖x‖p as a norm for all
p > 0.

Let btrue ∈ Rm denote the unknown error-free vector associated with b, i.e.,

b = btrue + e.

We would like to compute the solution of minimal norm, xtrue, of the minimization problem (1)
with b replaced by btrue. We assume that btrue is in the range of A, denoted byR(A). Since the
singular values of A ‘cluster’ at the origin, the matrix A in (1) is numerically rank deficient. The
minimization problem (1) therefore might not have a solution or the solution might not be an
accurate approximation of xtrue due to severe propagation of the error e in b into the computed
solution. To remedy these difficulties, at least in part, we replace the minimization problem (1)
by a penalized minimization problem of the form

xμ := arg min
x

Jμ(x), (2)

where

Jμ(x) :=Φfid(x)+ μΦreg(x),

Φfid(x) :=
1
p
‖Ax − b‖pp =

1
p

m∑
i=1

φp((Ax − b)i),

Φreg(x) :=
1
q
‖Lx‖qq =

1
q

s∑
j=1

φq((Lx) j),

and 0 < p, q � 2. This replacement is known as regularization. The function φγ : R→ R+ ∪
{+∞} is given by

φγ (t) = |t|γ , γ ∈ R, (3)

and the matrix L ∈ R
s×n is referred to as the regularization matrix. Common choices of L

include the identity, a finite difference matrix, or a framelet operator; see, e.g., [6–8]. The
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regularization parameter μ > 0 balances the influence of the fidelity term Φfid and the regular-
ization term Φreg in (2). Let N (M) denote the null space of the matrixM. It is desirable that L
be chosen so that

N (A) ∩ N (L) = {0}, (4)

because then the minimization problem (2) has a unique solution for any μ > 0 when
p, q > 1.

Minimization problems of the form (2) arise in a wide variety of research areas, such as
in numerical linear algebra [9, 10], image restoration [5, 6, 8], compressed sensing [11–13],
pattern recognition [14], and matrix completion [15].

It is in general beneficial to impose the same constraints on the computed solution that
the desired solution, xtrue, is known to satisfy. For example, in image restoration problems,
the entries of xtrue represent pixel values of the image. Pixels are nonnegative and, there-
fore, one generally obtains a more accurate approximation of xtrue when solving the constraint
minimization problem

x+μ := arg min
x�0

Jμ(x) (5)

than when solving the unconstrained problem (2). In the present paper we first show that (5)
induces a regularization method whenever the regularization parameter μ is chosen appropri-
ately with respect to the noise. Then, we describe a solution method for a smoothed version
of (5) that is based on the modulus iterative method [16]. As numerically shown in [17] the
difference between the results obtained considering the smoothed and the original functional
is negligible in terms of quality of the computed reconstructions.

To the best of our knowledge, this is the first time that the regularization properties of �p–�q
minimization have been investigated. Moreover, the constrained version (5) of the model (2)
has not been proposed before, and the majorization–minimization algorithm has never been
combinedwith the modulusmethod. Particular cases of this regularization technique have been
analyzed in [18–20].

The organizationof this paper is as follows. Section 2 proves that the describedminimization
scheme is a regularization method. Section 3 outlines the majorization–minimization gener-
alized Krylov subspace (MM-GKS) method proposed in [5] for the solution of a smoothed
version of the unconstrained minimization problem (2). Section 4 reviews modulus-based
methods for constrained optimization problems. Modulus-based methods for the solution of
a smoothed version of (5) are described in section 5, which discusses two approaches: the first
approach uses nested generalized Krylov subspaces and applies the modulus-based method in
these subspaces. The second approach is well suited for minimization problems (5) in which
A is a block-circulant-circulant-block (BCCB) matrix. Then the fast Fourier transform (FFT)
can replace the generalized Krylov subspace method. This replacement reduces the computa-
tional cost. Section 6 shows the convergence of the proposed methods. Illustrative numerical
examples are presented in section 7, and section 8 contains concluding remarks.

2. Regularization property

In this section we discuss the regularization properties of (5). In particular, we would like
to show that, when the norm of the noise e goes to 0, the minimizers of (5) converge to a
desirable solution of the noise-free problem. This kind of result is standard in the theory of
inverse problems; see, e.g., [1]. The proofs presented here are similar to, and the results can be

3
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derived from, the ones in [21]. We present the proofs for the convenience of the reader. Before
showing the regularization properties, we need two auxiliary results.

Lemma 1. Let {x j} j∈N be a sequence of elements of Rn and let q > 0. If the ‖x j‖qq are
uniformly bounded, i.e., if there exists a constant c > 0 independent of j such that

‖x j‖qq � c ∀ j ∈ N,

then ‖x j‖22 is uniformly bounded.
Proof. By definition of the q-norm we have

c � ‖x j‖qq =
n∑
i=1

|(x j)i|q,

where (x j)i denotes the ith component of xj. Thus,

c � |(x j)i|q ∀ 1 � i � n, j ∈ N,

which yields

c1/q � |(x j)i| ∀ 1 � i � n, j ∈ N.

We can now bound the two-norm by

‖x j‖22 =
n∑
i=1

(x j)2i �
n∑
i=1

c2/q = nc2/q.

�

Let

Ω0 = {x ∈ R
n : xi � 0, i = 1, 2, . . . , n}

denote the nonnegative orthant, and define the indicator function i0 for Ω0,

i0(x) =

{
0 if x ∈ Ω0,

∞ else.
(6)

We can rewrite the minimization problem (5) as

min
x∈Rn

Ĵ μ(x), Ĵ μ(x) = Jμ(x)+ i0(x). (7)

Let us first show that Ĵ μ admits a minimizer.

Lemma 2. Let condition (4) hold, then the functional Ĵ μ defined in (7) admits a global
minimizer.

Proof. It is immediate that the functional Ĵ μ is lower semi-continuous, proper, and coercive.
Thus, there exists an x ∈ Rn such that Ĵ μ(x) < ∞.

Let

ϕ = inf
x∈Rn

Ĵ μ(x).

4
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There exists a constant M and a sequence {x j} j such that Ĵ μ(x j)→ ϕ as j→∞ and
Ĵ μ(x j) � M for all j. In particular, ‖Ax − b‖pp � Mp and ‖Lx‖qq � M q

μ
. With a similar

argument as in lemma 1, we have that there are two constants c1 and c2 such that

‖Ax j− b‖22 � c1 and ‖Lx j‖22 � c2 ∀ j.

Thanks to (4), it is easy to see that there is a constant c such that

‖x j‖22 � c ∀ j,

i.e., the sequence {x j} j is uniformly bounded. Hence, it admits a convergent subsequence
{x jk} jk . Let x̄ be the limit of the subsequence {x jk} jk . We have that

ϕ � Ĵ μ(x̄) � lim inf
jk→∞

Ĵ μ(x jk ) = lim
jk→∞

Ĵ μ(x jk ) = ϕ,

i.e., x̄ is a minimizer of Ĵ μ. �

We are in position to show our main result.

Theorem 3. Consider the minimization problem (7) with 0 < p, q � 2. Let S denote the set
of nonnegative solutions of the noise-free problem associated with (1), i.e.,

S = {x ∈ R
n : Ax = btrue and x ∈ Ω0}.

Assume that S is non-empty. Let {b j} j∈N be a sequence of vectors in Rm such that ‖bj −
btrue‖p � δj → 0 as j→∞, and let {μ j} j∈N be a sequence of positive real numbers such
that

μ j → 0 and
δpj
μ j

→ 0 as j→∞.

For all j, let xj denote a global minimizer of

Ĵ j(x) =
1
p
‖Ax − b j‖pp +

μ j

q
‖Lx‖qq + i0(x).

There exists a convergent subsequence of {x j} j∈N, denoted by {xm}m∈N, such that
xm → x∗ as m→∞,

where

x∗ ∈ argmin
x∈S

‖Lx‖pp.

Proof. First, let us observe that the sequence {x j} j∈N is well defined thanks to lemma 2.
Since xj is a global minimizer of Ĵ j, we have that

Ĵ j(x j) � Ĵ j(x) ∀ x ∈ R
n.

In particular, let x† ∈ argminx∈S ‖Lx‖qq. Then

Ĵ j(x j) � Ĵ j(x
†). (8)
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Observe that obviously xj ∈ Ω0 and that x† ∈ Ω0 by definition. Thus i0(xj) = i0(x†) = 0. This,
combined with (8) and the definition of δj, implies

1
p
‖Ax j − b j‖pp +

μ j

q
‖Lx j‖qq �

1
p
‖Ax† − b j‖pp +

μ j

q
‖Lx†‖qq �

δpj
p
+

μ j

q
‖Lx†‖qq. (9)

The inequality above shows that the sequences {‖Ax j− b j‖pp} j∈N and {‖Lx j‖qq} j∈N are uni-
formly bounded. Thanks to lemma 1, we also have that the sequences {‖Ax j− b j‖22} j∈N
and {‖Lx j‖22} j∈N are uniformly bounded and, since N (A) ∩ N (L) = 0, the sequence {x j} j∈N
admits a convergent subsequence, which we also denote by {xm}m∈N. Let x∗ denote the limit
of {xm}m∈N. We first show that Ax∗ = btrue. Consider

0 � 1
p
‖Ax∗ − btrue‖pp � lim inf

m→∞
1
p
‖Axm − bm‖pp

� lim inf
m→∞

{
1
p
‖Axm − bm‖pp +

μm
q
‖Lxm‖qq

}

� lim inf
m→∞

{
δpj
p
+

μm
q
‖Lx†‖qq

}
= 0,

which implies that Ax∗ = btrue.
We now show that

x∗ ∈ argmin
x∈S

‖Lx‖qq.

We need to show that x∗ ∈ Ω0, i.e., that i0(x∗) = 0, and that ‖Lx∗‖qq = ‖Lx†‖qq. Consider

1
q
‖Lx∗‖qq + i0(x∗) � lim inf

m→∞

{
1
q
‖Lxm‖qq + i0(xm)

}
� lim inf

m→∞

{
1
pμ j

‖Axm − bm‖pp +
1
q
‖Lxm‖qq + i0(xm)

}

� lim inf
m→∞

{
δpj
pμ j

+
1
q
‖Lx†‖qq

}
=

1
q
‖Lx†‖qq,

where the last inequality follows from (9) divided by μj > 0. Multiplying the left-hand and
right-hand sides of the above inequality by q > 0, we obtain

‖Lx∗‖qq + i0(x
∗) � ‖Lx†‖qq,

which implies i0(x∗) = 0 and ‖Lx∗‖qq = ‖Lx†‖qq. This concludes the proof. �

3. A majorization–minimization solution method

We review one of the majorization–minimization (MM) methods for the solution of (2)
described in [5]. In each step of this method one first determines a functional Q that is a
quadratic tangent majorant for Jμ(x), and then computes the minimum of this functional.

Definition 4 ([5]). The functional x �→ Q(x, v) : Rn → R is said to be a quadratic tangent
majorant for x �→ Jμ(x) at x = v ∈ Rn if

6
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(a) x �→ Q(x, v) is quadratic;
(b) Q(v, v) = Jμ(v);
(c) �xQ(v, v) = �xJμ(v);
(d) Q(x, v) � Jμ(x) ∀ x ∈ Rn;

where�x f denotes the gradient of f = f(x) with respect to x ∈ Rn.

The functional Jμ(x) admits a quadratic majorant for 1 < p, q � 2, but not for 0 < p � 1
or 0 < q � 1, since x �→ Jμ(x) is not differentiable for the latter values of p and q, and all x.
For this reason, one smooths the function (3) to make it differentiable for γ ∈ (0, 1]. A popular
smoothed version of (3) is given by

φγ,ε(t) =
(
t2 + ε2

)γ/2
with

{
ε > 0 for 0 < γ � 1,

ε = 0 for γ > 1,

for some small ε > 0. The minimization problem (2) is replaced by the smoothed problem

min
x∈Rn

Jμ,ε(x), Jμ,ε(x) :=
1
p

m∑
i=1

φp,ε((Ax − b)i)+
μ

q

s∑
j=1

φq,ε((Lx) j). (10)

Huang et al [5] describe two approaches to construct a quadratic tangent majorant for (10)
at an available approximate solution x = x(k). Themajorants considered in [5] are referred to as
adaptive or fixed quadratic majorants. The latter are cheaper to compute, but may give slower
convergence. We develop the analysis only for fixed quadratic majorants, but all theoretical
results also hold for adaptive quadratic majorants.

Let x(k) be an available approximate solution of (10), and introduce the vectors

v(k) = Ax(k) − b, u(k) = Lx(k).

Define

w(k)
fid = v(k)

(
1−

(
(v(k))2 + ε2

ε2

)p/2−1
)
,

w(k)
reg = u(k)

(
1−

(
(u(k))2 + ε2

ε2

)q/2−1
)
,

where all operations in the expressions on the right-hand sides, including squaring, are element-
wise. It is shown in [5] that the functional

Q(x, x(k)) =
εp−2

2

(
‖Ax − b‖22 − 2〈w(k)

fid ,Ax〉
)
+

μεq−2

2

(‖Lx‖22 − 2〈w(k)
reg, Lx〉

)
+ c, (11)

where c is a suitable constant that is independent of x, is a quadratic tangent majorant for
Jμ,ε(x) at x(k). We determine the next approximation, x(k+1), as the minimizer of Jμ,ε(x) by
minimizing the functional x �→ Q(x, x(k)). It follows from (11) that

x(k+1) = arg min
x∈Rn

[
‖Ax − b‖22 − 2〈w(k)

fid ,Ax〉+ η
(‖Lx‖22 − 2〈w(k)

reg, Lx〉
)]

, (12)

where η = μεq−2

εp−2 . Details of the derivation of this expression are provided in [5].

7
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Since the functional x �→ Q(x, x(k)) is quadratic, the minimizer x(k+1) can be computed by
determining the zero of the gradient of the expression in the right-hand side of (12), i.e., by
solving the linear system of equations

(ATA+ ηLTL)x = AT(b+ w(k)
fid )+ ηLTw(k)

reg, (13)

where the superscript T denotes transposition. The matrix on the left-hand side of (13) is non-
singular for μ > 0 when (4) holds. This condition typically is satisfied for image restoration
problems, since in this application the matrix A represents a blurring operator, which is a
low-pass filter, while the regularization matrix L usually is the identity matrix or a difference
operator, which is a high-pass filter. For future reference, we formulate equation (13) as the
equivalent least-squares problem

min
x∈Rn

∥∥∥∥[ A
η1/2L

]
x −

[
b+ w(k)

fid

η1/2w(k)
reg

]∥∥∥∥2
2

. (14)

An algorithm for the MM method of this section is described in [[5], section 5]. This
algorithm determines an approximate solution in a low-dimensional solution subspace. The
dimension of this subspace is increased by one in each iteration. We will in section 5 present
an extension of this algorithm to the constrained minimization problems (5).

4. Modulus-based iterative methods

In [22, 23] a constrained least-squares problem is reduced to a linear complementarity problem,
which can be solved by a modulus-based iterative method. We will apply such a method to the
solution of a nonnegatively constrained least-squares problem associated with (12). For the
convenience of the reader, we describe the following results that are discussed by Bai [16] and
Cottle et al [24].

Theorem 5. Let M be a symmetric positive definite matrix. Then the nonnegatively con-
strained quadratic programming problem,

min
z�0

(
1
2
zTMz+ cTz

)
,

which we denote by NNQP(M, c), is equivalent to the linear complementarity problem,

z � 0, Mz+ c � 0, zT(Mz+ c) = 0,

which is denoted by LCP(M, c).

Corollary 6. Let M ∈ R
n×n be symmetric and positive definite and let c ∈ Rn. Then the

problems NNQP(M, c) and LCP(M, c) have the same unique solution.

Corollary 7. The nonnegative least squares (NNLS) problem

min
z�0

‖Gz− g‖2

is equivalent to LCP(GTG,−GTg), z � 0, r = GTGz− GTg � 0, and zTr = 0. It has a unique
solution when the matrix G is of full column rank.

Theorem 8. Let D ∈ Rn×n be a positive definite diagonal matrix, and define for any vector
y = [y1, y2, . . . , yn]T ∈ R

n the vector |y| = [|y1|, |y2|, . . . , |yn|]T ∈ R
n.

8
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Algorithm 1. (Modulus-based iterative method). Let
D ∈ R

n×n be a positive definite diagonal matrix and
let y(0) be an initial approximate solution of (15).

for k = 0, 1, . . . .do
y(k+1) = (D+ GTG)−1((D− GTG)|y(k)|+ GTg);

Exit when ‖y(k+1) − y(k)‖2 is small enough;
end
z = y(k+1) + |y(k+1)|;

(a) If (z, r) is a solution of LCP(GTG,−GTg), then y = (z− D−1r)/2 satisfies

(D+ GTG)y = (D− GTG)|y|+ GTg. (15)

(b) If y satisfies (15), then z = |y|+ y and r = D(|y| − y) is a solution of LCP(GTG,−GTg).

Proof. The theorem follows from results in [16]. �

We are interested in the situation whenD = αIwith α > 0 in algorithm 1. Convergence can
be shown when the matrix GTG is nonsingular; see, e.g., [22, 23]. The matrix (D+ GTG)−1 is
not explicitly formed when executing the algorithm; this is commented on further below. The
iterations with the algorithm are repeated until two consecutive iterates are close enough or
the maximal number of iterations is achieved. We will apply this algorithm in the following
section.

5. Constrained �p–�q minimization methods

We describe the application of the modulus-based iterative method of the previous section to
the �p–�q minimization problemwith nonnegativity constraint (5). Themethod can bemodified
to handle other inequality constraints.

Consider the minimization problem,

min
x�0

1
p
‖Ax − b‖pp+

μ

q
‖Lx‖qq. (16)

To impose the nonnegativity constraint on the solution, we replace the functional (10) by

min
x∈Rn

Ĵ μ,ε(x), Ĵ μ,ε(x) = Jμ,ε(x)+ i0(x), (17)

where the indicator function i0 is defined in (6). Since the functional Ĵ μ,ε is not differentiable
on the boundary ofΩ0, instead of constructing a quadratic tangentmajorant, we define and con-
struct a constrained quadratic tangent majorant. We will require that the majorant is quadratic
in Ω0, and that it takes on the value∞ in Rn\Ω0.

Definition 9. The functional x �→ Q̂(x, v) : Rn → R is said to be a constrained quadratic
tangent majorant for x �→ Ĵ μ,ε(x) = Jμ,ε(x)+ i0(x) at x = v ∈ R

n if Q̂(x, v) can be expressed
as Q̂(x, v) = Q(x, v)+ i0(x),

whereQ(x, v) is a quadratic tangent majorant of Jμ,ε(x) in the sense of definition 4.

9
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For an available approximate solution x(k) of (5) with μ > 0 and ε > 0, the expression

Q̂(x, x(k)) = Q(x, x(k))+ i0(x), (18)

with Q defined in (11), is a constrained quadratic tangent majorant of the functional x �→
Ĵ μ,ε(x) at x = x(k).

Proposition 10. Let 0 < p, q � 2 and assume that condition (4) holds. Then, for any x(k) ∈
Rn, the functional Q̂ defined by (18) is a constrained quadratic tangent majorant for Ĵ μ,ε(x).

Proof. This result follows trivially from the definitions of Q̂ and Q. �

5.1. Minimization method for general matrices

When the matrix A is large, the computations required by algorithm 1 may be prohibitive. We
will show how the computational cost can be reduced by determining an approximate solution
in a generalized Krylov subspace (GKS). We remark that GKS methods have previously been
applied in [5] to solve the unconstrained minimization problem (2).

The GKS method first determines an initial reduction of A to a small bidiagonal matrix by
applying 1 � � � min{m, n} steps of Golub–Kahan bidiagonalization to A with initial vector
b. This gives a decomposition

AV0 = U0B0, (19)

where the matrix V0 ∈ Rn×� has orthonormal columns that span the Krylov subspace
K�(ATA,ATb) = span{ATb, (ATA)ATb, . . . , (ATA)�−1ATb}, the matrix U0 ∈ R

m×(�+1) has
orthonormal columns, the first one of which is b/‖b‖2, and the matrix B0 ∈ R(�+1)×� is
lower bidiagonal. It is inexpensive to compute the QR factorization AV0 = QARA, where
QA ∈ Rm×� has orthonormal columns and RA ∈ R�×� is upper triangular. We also compute the
QR factorization LV0 = QLRL, where QL ∈ Rs×� has orthonormal columns and RL ∈ R�×� is
upper triangular (recall that L ∈ Rs×n). Here we assume that 1 � � � s is small enough so that
the decomposition (19) exists. This is the generic situation.

To begin with, we determine an initial approximate solution in R(V0) of the least-squares
problem (14). Thus, we solve the problem

min
y∈R�

∥∥∥∥∥
[

AV0

η1/2LV0

]
y−

[
(b+ w(k)

fid )

η1/2w(k)
reg

]∥∥∥∥∥
2

2

,

which simplifies to

min
y∈R�

∥∥∥∥∥
[

RA
η1/2RL

]
y−

[
QT
A(b+ w(k)

fid )

η1/2QT
Lw

(k)
reg

]∥∥∥∥∥
2

2

. (20)

This gives the approximate solution

x(0) = V0y
(0)

of (14), where y(0) ∈ R� denotes the solution of (20).
To determine an approximate solution of the constrained minimization problem in R(V0),

we replace (20) by

x(0) = arg min
x�0

∥∥∥∥[ RA
η1/2RL

]
VT
0 x −

[
QT
A(b+ w(k)

fid )
η1/2QT

Lw
(k)
reg

]∥∥∥∥2
2

. (21)

10
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This problem is solved by the modulus-based iterative method described by algorithm 1. We
apply this algorithm with the matrices and vector

G =

[
RA

η1/2RL

]
VT
0 , D = αI, g =

[
QT
A(b+ w(k)

fid )
η1/2QT

Lw
(k)
reg

]
,

and initial approximate solution z(0) = max{x(0), 0}, where the operation ‘max’ is component-
wise. The parameter α > 0 is user-defined. Its choice is discussed in [23]. The iterations with
algorithm 1 can be expressed as

z(0)j+1 = V0(αI + RT
ARA + ηRT

LRL)
−1 ·

(
(αI − RT

ARA − ηRT
LRL)V

T
0 |z(0)j |+ GTg

)
(22)

for j = 0, 1, 2, . . . .We remark that thematrix (αI + RT
ARA + ηRT

LRL)
−1 is not explicitly formed;

instead, we compute the Cholesky factorization of the matrix αI + RT
ARA + ηRT

LRL.

Theorem 11. Assume that the matrix RT
ARA + ηRT

LRL is of full rank. Then the sequence
{z(0)j } j generated by iteration (22) converges to the solution of (21).
Proof. Convergence for the situation when V0 = I is shown in, e.g., [22, 23]. It is based on
the observation that the largest eigenvalue of the matrix

M = (αI + RT
ARA + ηRT

LRL)
−1 · (αI − RT

ARA − ηRT
LRL)

is strictly smaller than one. Let the columns of Ṽ0 ∈ Rn×(n−�) be such that the matrix W =
[V0, Ṽ0] ∈ Rn×n is orthogonal, and define

M̃ = W

[
M 0
0 0

]
WT.

Then the iterations (22) can be expressed as

z(0)j+1 = M̃|z(0)j |+ V0G
Tg, j = 0, 1, 2, . . . . (23)

The largest eigenvalue of M̃ is strictly smaller than one. Therefore, the convergence proof in
[22, 23] carries over to the iterations (23) and, hence, to the iterations (22). �

Let the iterations (22) terminate with the iterate z(0)j+1. An approximate solution of (21) then
is furnished by

x(0)+ = z(0)j+1 +
∣∣∣z(0)j+1

∣∣∣ . (24)

Substituting (24) into (13) gives the residual vector

r(0) = AT
(
Ax(0)+ −

(
b+ w(0)

fid

))
+ ηLT

(
Lx(0)+ − w(0)

reg

)
.

We expand the solution subspace by including the scaled residual vector vnew = r(0)/‖r(0)‖2
in the solution subspace. Note that, at least in exact arithmetic, the vector vnew is orthogonal to
the columns of V0. We define the matrix V1 = [V0, vnew] ∈ Rn×(�+1), whose columns form an
orthonormal basis for the expanded solution subspace. If vnew is not numerically orthogonal to
the columns of V0, then we reorthogonalize.

We store the matrices

AV1 = [AV0,Avnew], LV1 = [LV0, Lvnew]

11
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Algorithm 2. (NN-(�p–�q)GKS). Let A ∈ R
m×n and L ∈ R

s×n be such that (4) holds. Let 0 < p � 2, and
0 < q � 2. Fix ε > 0, � > 0, and μ > 0. Let b ∈ Rm denote the noise-corrupted data vector and let x(0)+ ∈
Ω0 be an initial guess for the solution of (1).

η = μ εq−2

εp−2

Generate the initial subspace basis: V0 ∈ Rn×� such that VT
0 V0 = I

Compute AV0 and LV0

Compute the QR factorizations AV0 = QARA and LV0 = QLRL
for k = 0, 1, 2, . . . .do

v(k) = Ax(k)+ − b
u(k) = Lx(k)+

w(k)
fid = v(k)

(
1−

(
(v(k) )2+ε2

ε2

)p/2−1
)

w(k)
reg = u(k)

(
1−

(
(u(k))2+ε2

ε2

)q/2−1
)

G =

[
RA

η1/2RL

]
VT
0

Let λmin and λmax denote the smallest and largest eigenvalue of GTG
α =

√
λminλmax

g =

[
QT
A(b+ w(k)

fid )

η1/2QT
Lw

(k)
reg

]

x(k) = (RT
ARA + ηRT

LRL)
−1(RT

AQ
T
A(b+ w(k)

fid )+ ηRT
LQ

T
Lw

(k)
reg)

z(k)0 = max{x(k) , 0}
for j = 0, 1, . . .do

z(k)j+1 = V0(αI + RT
ARA + ηRT

LRL)
−1

(
(αI − RT

ARA − ηRT
LRL)V

T
0 |z(k)j |+ GTg

)
Exit loop when ‖z(k)j+1 − z(k)j ‖2 is small enough

end
x(k)+ = z(k)j+1 + |z(k)j+1|
Compute the residual r(k) = AT(Ax(k)+ − (b+ w(k)

fid ))+ ηLT(LVx(k)+ − w(k)
reg)

Reorthogonalize, if needed, r(k) = r(k) − VkVT
k r

(k)

Enlarge the solution subspace with vnew = r(k)

‖r(k)‖2
Vk+1 = [Vk, vnew]
Update the QR factorizations AVk+1 = QARA and LVk+1 = QLRL

end

and compute their QR factorizations by updating the QR factorizations of AV0 and LV0

according to

AV1 = [AV0,Avnew] = [QA, q̃A]

[
RA rA
0T τA

]
, (25)

LV1 = [LV0, Lvnew] = [QL, q̃L]

[
RL rL
0T τL

]
, (26)

where
rA = QT

A(Avnew), qA = Avnew − QArA, τA = ‖qA‖2, q̃A = qA/τA,
rL = QT

L(Lvnew), qL = Lvnew − QLrL, τL = ‖qL‖2, q̃L = qL/τL;

see [25] for details on updating the QR factorization of a matrix. We now apply the modulus-
based iterations (22) with RA and RL replaced by the upper triangular matrices in the QR
factorizations (25) and (26), respectively, and use the initial iterate x(0)+ . The modulus-based

12
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Algorithm 3. (NN-(�p–�q)FFT). Let A ∈ R
n×n be a BCCB matrix and W ∈ R

s×n be an analysis operator
such that WTW = I. Let 0 < p � 2, and 0 < q � 2. Fix ε > 0 and μ > 0. Let b ∈ Rn denote the noise-
corrupted data vector and let x(0)+ ∈ Ω0 be an initial guess for the solution of (1). Let F denote the Fourier
matrix such that A = F∗ΣF.

η = μ εq−2

εp−2

Let λmin and λmax denote the smallest and largest eigenvalue of ATA
α =

√
(λmin + η)(λmax + η)

for k = 0, 1, 2, . . .do
v(k) = Ax(k)+ − b
u(k) = Wx(k)+

w(k)
fid = v(k)

(
1−

(
(v(k) )2+ε2

ε2

)p/2−1
)

w(k)
reg = u(k)

(
1−

(
(u(k))2+ε2

ε2

)q/2−1
)

x(k) = F∗(Σ∗Σ+ ηI)−1(Σ∗F(b+ w(k)
fid )+ ηFWTw(k)

reg)
z(k)0 = max{x(k) , 0}
for j = 0, 1, . . .do

z(k)j+1 = F∗(αI +Σ∗Σ+ ηI)−1
(
((α− η)I − Σ∗Σ)F|z(k)j |+ Σ∗F(b+ w(k)

fid )+ ηFWTw(k)
reg

)
Exit loop when ‖z(k)j+1 − z(k)j ‖2 is small enough

end
x(k+1)
+ = z(k)j+1 + |z(k)j+1|

end

iterations give a new approximate solution x(1)+ of (16), a new associated residual vector

r(1) = AT
(
Ax(1)+ −

(
b+ w(1)

fid

))
+ ηLT

(
Lx(1)+ − w(1)

reg

)
,

and a new solution subspace defined by the range of the matrix

V2 =
[
V1, r

(1)/‖r(1)‖2
]
.

The computations proceed in this manner until an approximate solution of (16) with desired
accuracy has been determined. Details of the computations are described by algorithm 2.

We observe that algorithm2 requires the computationof the smallest and largest eigenvalues
of GTG. Thanks to the projection into the generalized Krylov subspace, the matrix GTG is of
fairly small dimension. Therefore, these eigenvalues can be estimated very cheaply. This can
be done by computing the largest and the smallest singular values of G, for instance, by using
the method described in [26]. Iterations in the j-loop are terminated when two consecutive
iterates are close enough. The stopping criterion is described in section 7; see (32).

5.2. Minimization method for BCCB matrices

When deblurring images with large black areas close to the edges of the image, the blurring
matrix A ∈ Rn×n often can be chosen to be a BCCB (block circulant with circulant blocks)
matrix without affecting the quality of the restoration in a negative way. Many astronomical
images allow the use of a BCCB blurringmatrix; see, e.g., [27] for a discussion. The advantage
of using a BCCB blurringmatrixA is that it can be diagonalized by the unitary two-dimensional
Fourier matrix F ∈ Cn×n. Thus,

A = F∗ΣF, (27)

13
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where the matrix Σ is diagonal, possibly with complex diagonal entries. The superscript
∗ denotes transposition and complex conjugation. The factorization (27) can be computed
in O(n log2(n)) arithmetic floating point operations (flops) and allows at each step of the
algorithm to transform the �2–�2 minimization problem (14), whose solution provides an
approximation of the solution of the original �p–�q minimization problem, to a diagonal sys-
tem. This makes the application of the modulus-based iterations (algorithm 1) inexpensive
when D = αI for special regularization matrices L. In the computed examples reported in
section 7, we let L = W be an analysis operator defined by the transformation to a framelet
domain; see section 7 for details. Here it suffices to note thatWTW = I. The matrixGTG in the
modulus-based method then can be expressed as

GTG = ATA+ ηLTL = ATA+ ηWTW = F∗(Σ∗Σ+ ηI)F.

The evaluation of matrix-vector products with the matrix in the right-hand side requires only
O(n log2(n)) flops when using the FFT. Details of the computations are described by algorithm
3. We remark that the matrix F is not explicitly formed; only matrix-vector products with F
and F∗ are evaluated.

The stopping criterion for the j-loop is described by (32).

6. Convergence

This section shows convergence of the iterates generated by the modulus-based constrained
�p–�q minimizationmethod.We focus on the method described in subsection 5.1 and comment
at the end of this section on the convergence of the method discussed in subsection 5.2. The
proofs below extend results in [5] on the convergence of the unconstrained �p–�q minimiza-
tion method to allow constraints. Several of the proofs are analogous to those in [5]. For the
convenience of the reader, we provide enough details to make the present paper self-contained.

Assume that the condition of theorem11 holds. Then the nonnegative approximate solutions
x(0)+ , x(1)+ , x(2)+ , . . . of (17) defined in subsection 5.1 exist. We note that x(0)+ is obtained by an
element of a subspace of Rn of dimension �, and, more generally, x( j)+ lives in some subspace
of Rn for j = 1, 2, 3, . . . . For j � n− �, the approximate solutions x( j)+ live in Rn. Thus, for
large values of j all iterates are in the same space. This simplifies the convergence analysis.
Of course, the rate of convergence of the iterates x( j)+ for small j to the desired solution xtrue is
affected by the subspaces, in which the x( j)+ for j small live. In the followingwe will assume that
enough steps of the algorithm have been performed so that this does not constitute an issue.
We may require n− � steps of the algorithm to be performed for the following results to hold.
However, in practical application, this is never the case and convergence is reached within a
reasonable number of iterations.

Proposition 12. Let 0 < p, q � 2 and assume that condition (4) holds. Let {x(k)+ }∞k=1 denote
the sequence of approximate solutions generated by algorithm 2. For any initial approximate
solution x(0)+ ∈ Ω0 and all k � 1 we have

Q̂(x(k+1)
+ , x(k)+ ) � Q̂(x(k)+ , x(k)+ ).

Proof. An analogous result for the unconstrained minimization problem (10) with Q̂
replaced by the majorant Q, defined by (11), is shown in [[6], lemma 5.2]. The proof of this
result carries over to the functional Q̂. �

14
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Note that the result above holds for the constrained minimizers x(k)+ . The exact computations
of these points may require that the inner iterations in algorithms 2 and 3 be carried out an
arbitrarily large number of times. However, in practice only a fairly small number of iterations
are needed to ensure convergence to accurate approximations of the constrained minimizers.

Theorem 13. Let condition (4) hold. Then, for any initial approximate solution x(0)+ ∈ Ω0,

the sequence {Ĵ μ,ε(x
(k)
+ )}∞k=0 is monotonically nonincreasing and convergent, where Ĵ μ,ε is

defined by (17).

Proof. The sequence {Ĵ μ,ε(x
(k)
+ )}∞k=0 is bounded from below by zero and is monotonically

nonincreasing,

Ĵ μ,ε(x
(k+1)
+ ) � Q̂

(
x(k+1)
+ , x(k)+

)
� Q̂

(
x(k)+ , x(k)+

)
= Ĵ μ,ε

(
x(k)+

)
.

The first inequality and the equality follow from the fact that Q̂(x, x(k)+ ) is a constrained

quadratic tangent majorant of Ĵ μ,ε(x
(k)
+ ), i.e., they are a consequence of proposition 10. The

second inequality follows from proposition 12. Since the sequence Ĵ μ,ε(x
(k)
+ ), k = 0, 1, 2, . . . ,

is monotonically nonincreasing and bounded from below, it is convergent. �
In the remainder of this section, we investigate the behavior of the sequence of iterates

{x(k)+ }k�0.

Proposition 14. Let the initial approximate solution x(0)+ ∈ R
n of (17) belong to Ω0, and

let subsequent approximate solutions x(k)+ , k = 1, 2, 3, . . . , be determined as described in
section 5. Then the unconstrained majorization error functional

x �→ ε(x, x(k)+ ) :=Q(x, x(k)+ )− Jμ,ε(x)

has the following properties:

(a) ε(x, x(k)+ ) ∈ C1(Rn);
(b) ε(x, x(k)+ ) � 0 ∀ x ∈ Rn;
(c) ε(x(k)+ , x(k)+ ) = 0;
(d) 0 = ∇xε(x

(k)
+ , x(k)+ );

(e) ∇xε(x
(k+1)
+ , x(k)+ ) = −∇xĴ μ,ε(x

(k+1)
+ ).

Proof. The proof of this result is identical to the one of [[5], proposition 3]. �

Definition 15. A convex (not necessarily differentiable) function f(x) is said to be δ-strongly
convex if there is a constant δ > 0, such that the function f (x)− δ

2‖x‖22 is convex. The constant
δ is referred to as the modulus of strong convexity of f.

Lemma 16. Let f :Rn → R be a strongly convex function with modulus of strong convexity
δ > 0. Let x∗ ∈ R be a minimizer of f(x). Then

δ

2
‖x − x∗‖22 � f (x)− f (x∗) ∀ x ∈ R

n. (28)

Proof. A proof can be found in, e.g., [28]. �

Theorem 17. Let condition (4) hold and let {x(k)+ } denote the sequence of the iterates
generated by either algorithms 2 or 3. Then the following statements hold:

(a) lim
k→∞

‖x(k+1)
+ − x(k)+ ‖2 = 0;
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(b) There exists a convergent subsequence {x( jk)+ } that converges to a point x∗ ∈ Ω0;
(c) Let I = {i : (x∗) > 0}. Then (∇Jμ,ε)i = 0 for i ∈ I.

Proof. Consider the quadratic majorant function x �→ Q(x, x(k)+ ) at step k of the iterative
method. Since, thanks to (4), x �→ Q(x, x(k)+ ) is δ-strongly convex, we can apply lemma 16.
In particular, inequality (28) with the function Q(·, x(k)+ ) in place of f(·) and x(k+1)

+ in place of
x∗ yields

δ

2

∥∥∥x − x(k+1)
+

∥∥∥2
2
� Q

(
x, x(k)+

)
−Q

(
x(k+1)
+ , x(k)+

)
∀ x ∈ R

n. (29)

The above inequality holds for all k � 0. Substituting x by the iterate x(k)+ in (29), and observing
that x(k+1)

+ , x(k)+ ∈ Ω0, we obtain

δ

2
‖x(k)+ − x(k+1)

+ ‖22 � Q
(
x(k)+ , x(k)+

)
−Q

(
x(k+1)
+ , x(k)+

)
= Jμ,ε

(
x(k)+ , x(k)+

)
+ ε

(
x(k)+ , x(k)+

)
− Jμ,ε

(
x(k+1)
+

)
− ε

(
x(k+1)
+ , x(k)+

)
� Jμ,ε

(
x(k)+

)
− Jμ,ε

(
x(k+1)
+

)
= Ĵ μ,ε

(
x(k)+

)
− Ĵ μ,ε

(
x(k+1)
+

)
∀ k,

where the inequality follows from proposition 14. Summing the above inequalities over k gives

(30)

where Ĵ ∗
μ,ε denotes the limit point of the sequence {Ĵ μ,ε(x

(k)
+ )}k�0. According to theorem 13,

the Ĵ μ,ε(x
(k)
+ ) are nonnegative and a decreasing function of k. It follows that the limit point

exists and Ĵ μ,ε(x
(0)
+ )− Ĵ ∗

μ,ε is nonnegative. We conclude that the series on the left-hand side
of inequality (30) is convergent. Hence, statement (a) holds.

We turn to statement (b). With a similar argument as the one in the proof of lemma 2, we
obtain that the sequence {x(k)+ }k is uniformly bounded and, thus, admits a convergent subse-

quence {x( jk)+ } jk . Let x∗ be the limit point of {x( jk)+ } jk . Since x( jk)+ ∈ Ω0 for all jk andΩ0 is closed
we have that x∗ ∈ Ω0.

We now show statement (c). Let i ∈ I, then there exists J such that (x( jk)+ )i > 0 for all

jk > J. Then, for all jk > J, it holds that ∂Q
∂xi

(x( jk+1)
+ , x( jk)+ ) = 0, where ∂Q

∂xi
(x( jk+1)

+ , x( jk)+ ) denotes
the partial derivative of Q with respect to the ith component of x. Then, the definition of ε
yields ∂ε

∂xi
(x( jk+1)

+ , x( jk)+ ) = − ∂Jμ,ε
∂xi

(x( jk)+ ). We obtain that∣∣∣∣∂Jμ,ε

∂xi

(
x( jk)+

)∣∣∣∣ = ∣∣∣∣ ∂ε∂xi
(
x( jk+1)
+ , x(k)+

)∣∣∣∣
=

∣∣∣∣ ∂ε∂xi
(
x( jk+1)
+ , x( jk)+

)
− ∂ε

∂xi

(
x( jk)+ , x( jk)+

)∣∣∣∣
16
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� ‖∇ε
(
x( jk+1)
+ , x( jk)+

)
−∇ε

(
x( jk+1)
+ , x( jk+1)

+

)
‖

� L‖x( jk+1)
+ − x( jk)+ ‖,

where the last inequality follows from the Lipschitz continuity of the gradient of the func-
tions Q and Jμ,ε. Thanks to point (a) we have that ‖x( jk+1)

+ − x( jk)+ ‖ → 0 as jk →∞. Thus∣∣∣ ∂Jμ,ε
∂xi

(x( jk)+ )
∣∣∣→ 0 as jk →∞, i.e., ∂Jμ,ε

∂xi
(x∗) = 0. �

7. Numerical examples

This section presents a few computed examples that illustrate the performance of the numerical
methods described in the previous sections. We consider some imaging problems. Therefore,
we use a two-level framelet analysis operator as regularization operator L, since it is well-
known that images have sparse representation in the framelet domain. We recall that framelets
are extensions of wavelets. Following [7, 29], we define them as follows:

Definition 18. LetW ∈ Rr×n with 1 � n � r. The set of the rows ofW is a framelet system
for Rn if ∀ x ∈ Rn it holds

‖x‖22 =
r∑
j=1

(wT
j x)

2, (31)

where w j ∈ Rn denotes the jth row of the matrix W (written as a column vector), i.e., W =
[w1,w2, . . . , wr]T. The matrixW is referred to as an analysis operator and WT as a synthesis
operator.

Equation (31) is equivalent to the perfect reconstruction formula

x = WTy, y = Wx.

Thus, the matrix W defines a tight frame if and only if WTW = I. We remark that in gen-
eral WWT �= I, unless r = n and the framelets are orthonormal. Observe that N (W) = {0}.
Therefore, (4) is trivially satisfied.

We use the same tight frames as in [7, 17, 29–31]; they are determined by linear B-splines.
Specifically, for problems in one space-dimension, they are formed by a low-pass filter W0 ∈
R
n×n and two high-pass filtersW1 ∈ R

n×n andW2 ∈ R
n×n. The correspondingmasks are given

by

u(0) =
1
4
[1, 2, 1], u(1) =

√
2
4

[1, 0,−1], u(2) =
1
4
[−1, 2,−1].

The analysis operator W is determined by these masks and by imposing reflexive boundary
conditions, which ensure that WTW = I. Define the matrices

W0 =
1
4

⎛⎜⎜⎜⎜⎜⎝
3 1 0 . . . 0
1 2 1

. . .
. . .

. . .
1 2 1

0 . . . 0 1 3

⎞⎟⎟⎟⎟⎟⎠ , W1 =

√
2
4

⎛⎜⎜⎜⎜⎜⎝
−1 1 0 . . . 0
−1 0 1

. . .
. . .

. . .
−1 0 1

0 . . . 0 −1 1

⎞⎟⎟⎟⎟⎟⎠ ,

17



Inverse Problems 36 (2020) 084001 A Buccini et al

and

W2 =
1
4

⎛⎜⎜⎜⎜⎜⎝
1 −1 0 . . . 0
−1 2 −1

. . .
. . .

. . .
−1 2 −1

0 . . . 0 −1 1

⎞⎟⎟⎟⎟⎟⎠ .

Then the operatorW is defined as

W =

⎛⎝W0

W1

W2

⎞⎠ .

We are concernedwith image restoration problems in two space-dimensions. Therefore, we
construct the two-dimensional framelet analysis operator by means of the tensor products

Wi j = Wi ⊗Wj, i, j = 0, 1, 2.

The matrix W00 is a low-pass filter; all the other matrices Wij contain at least one high-pass
filter. The analysis operator is given by

W =

⎡⎢⎢⎢⎣
W00

W01
...

W22

⎤⎥⎥⎥⎦ .

We consider two types of noise, white Gaussian noise and impulse noise. The first is
obtained when the entries of the vector e in the data vector b are realizations of a Gaussian
random variable with 0 mean. In this case we refer to the ratio

σ =
‖e‖2

‖Axtrue‖2
as the noise level. Impulse noise is obtained when the entries of the vector b are constructed as
follows:

bi =

{
(btrue)i with probability 1− σ,

ui with probabilityσ,

where 0 � σ < 1 and ui is a number chosen randomly in the dynamical range of btrue. In this
case we will refer to σ as the noise level.

The outer iterations of the algorithms considered are terminated as soon as the relative
change of the computed approximate solution x(k)+ drops below a user-specified threshold, i.e.,
we terminate the iterations as soon as∥∥∥x(k+1)

+ − x(k)+

∥∥∥
2∥∥∥x(k)+

∥∥∥
2

< tolouter,
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Figure 1. Hubble test problem: (a) true image (230 × 230 pixels), (b) PSF (26× 26
pixels), (c) blurred image with 2% of white Gaussian noise and 20% of impulse noise
(230 × 230 pixels).

Table 1. Comparison of the RREs and SSIMs obtained with NN-(�p–�q)GKS or NN-
(�p–�q)FFT and with (unconstrained) �p–�q for different noise levels in the considered
examples. For the Hubble example, the noise that corrupts the data is the sum of 2%
of white Gaussian and σ1 = 20%, σ2 = 30%, and σ3 = 40% of impulse noise. For the
tomography example, the data is corrupted by white Gaussian noise of levels σ1 = 1%,
σ2 = 5%, and σ3 = 10%.

Example Quality measure Method
Noise level

σ1 σ2 σ3

Hubble RRE NN-(�p–�q)FFT 0.136 35 0.150 83 0.267 87
�p–�q 0.138 39 0.152 24 0.271 94

SSIM NN-(�p–�q)FFT 0.846 85 0.809 82 0.417 53
�p–�q 0.829 46 0.823 00 0.355 83

Tomography RRE NN-(�p–�q)GKS 0.194 91 0.261 88 0.321 57
�p–�q 0.211 61 0.296 28 0.390 64

SSIM NN-(�p–�q)GKS 0.779 30 0.578 54 0.432 03
�p–�q 0.557 56 0.327 40 0.205 30

or if the number of (outer) iterations reaches 200. The inner iterations in the modulus method
are stopped as soon as the relative change of the computed approximate solution x(k)+ drops
below a user-specified threshold∥∥∥z(k)j+1 − z(k)j

∥∥∥
2∥∥∥z(k)j ∥∥∥

2

< tolinner, (32)

or if the number of inner iterations reaches 100. In our experiments we set tolouter = tolinner =
10−4.

In all the experiments, we set the dimension of the initial space to � = 1 and choose the
initial approximate solution x(0)+ = max{ATb, 0}. Consequently, V0 = ATb/‖ATb‖2.

To assess the quality of the reconstructed solution, we compute the relative reconstruction
error (RRE) defined by

RRE(x) =
‖x − xtrue‖2
‖xtrue‖2 . (33)
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Figure 2. Hubble test problem reconstructions: panels (a)–(c) report the reconstructions
obtained with NN-(�p–�q)FFT with 20%, 30%, and 40% of impulse noise, respectively;
panels (d)–(f) report the reconstructions obtained with �p–�q with 20%, 30%, and 40%
of impulse noise, respectively.

The parameter q is set to 0.1 in all the experiments, while p will depend on the noise. The
regularization parameter μ is tuned by hand to minimize the RRE. A discussion on how to
determine a good value for μ is outside the scope of this paper; see [17, 32] for discussions.
The former reference uses the discrepancy principle and the latter cross validation to determine
μ.

To measure the quality of the computed approximate solutions, we in addition to (33) use
the structural similarity index (SSIM). The definition of the SSIM is involved and we refer to
[33] for details. Here we just recall that the SSIM measures how well the overall structure of
the image is recovered; the higher the index, the better the reconstruction. The highest value
achievable is 1.

All computations were carried out in MATLAB R2018b with about 15 significant decimal
digits running on a laptop computer with core CPU Intel R© CoreTM i7-8750H@2.20 GHz with
16 GB of RAM.
Hubble. In our first example we consider a synthetic astronomical image deblurring

problem.We construct this example by blurring the image of the hubble telescope in figure 1(a)
with the non-symmetric PSF in figure 1(b), and cut the boundary of the image to simulate
boundary effects in real data. We then add 2% of white Gaussian noise and three different
levels of impulse noise, namely 20%, 30%, and 40%. Figure 1(c) displays the blurred and
noisy image with 20% impulse noise. Thanks to the nature of the image, we may impose peri-
odic boundary conditions. This makes A ∈ R

2302×2302 a BCCB matrix, which allows us to use
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Figure 3. Hubble test problem reconstructions: panels (a)–(c) report a blow-up of the
reconstructions obtained withNN-(�p–�q)FFT with 20%, 30%, and 40% of impulse noise,
respectively; panels (d)–(f) report a blow-up of the reconstructions obtained with �p–�q
with 20%, 30%, and 40% of impulse noise, respectively.

algorithm 3 for the reconstruction; see, e.g., [27] for details on image deblurring. Since we
added impulse noise, we set p < 1. Specifically, we let p = 0.8.

We report the errors and SSIMs obtained with algorithm 3 and the unconstrained method,
implemented with the FFT as well, in table 1. We observe that the RRE obtained with the
constrained method is always smaller than the RRE obtained with the unconstrained version.
Moreover, the difference becomes larger as the noise increases. This is confirmed by both the
SSIM (except for the second noise level) and by visual inspection of the reconstructions in
figure 2. We observe that the presence of the nonnegativity constraint allows a more uniform
reconstruction of the black background of the image. Moreover, the presence of the constraint
allows us to select a smaller regularization parameter, thus, obtaining more detailed recon-
structions. This is confirmed by visual inspection of the blow-ups of the reconstructions in
figure 3.

Finally, in table 2, we report the CPU times in seconds for both the constrained and uncon-
strained methods. We can observe that, as expected, the computational cost of the constrained
method is higher than of the unconstrained one. However, the total cost is not very high and it
is possible to obtain the reconstructions in a reasonable amount of time.
Tomography. In our second example, we consider a synthetic tomography problem. In

tomography, the data are the Radon transform of the attenuation coefficients of some scanned
object; see, e.g., [34] for details on computerized tomography. We consider parallel beam
tomography, where J parallel x-ray beams are shined through an object at different angles θk
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Table 2. Comparison of the CPU times in seconds required for NN-(�p–�q)GKS or NN-
(�p–�q)FFT and with (unconstrained) �p–�q for different noise levels in the considered
examples. For the Hubble example, the noise that corrupts the data is the sum of 2%
of white Gaussian and σ1 = 20%, σ2 = 30%, and σ3 = 40% of impulse noise. For the
Tomography example, the data is corrupted by white Gaussian noise of levels σ1 = 1%,
σ2 = 5%, and σ3 = 10%.

Example Method
CPU time

σ1 σ2 σ3

Hubble NN-(�p–�q)FFT 29.998 29.710 26.628
�p–�q 13.850 13.990 14.978

Tomography NN-(�p–�q)GKS 69.423 47.724 98.215
�p–�q 15.692 6.6424 5.5741

Figure 4. Tomography test problem: (a) true image (256 × 256 pixels), (b) noise-free
sinogram (362× 90 pixels).

with k = 1, 2, . . . ,K. The datum bj,k, the so-called sinogram, is the line integral of the attenua-
tion coefficient of the object scanned along the jth beam at angle θk. We generate the synthetic
data using the Matlab program package IR tools [35]. In particular, we use the command
PRtomo. We set the dimension of the image to 256× 256, and consider 90 angles equispaced
between 0 and 179 degrees, and 362 beams. This leads to an underdetermined system where
A ∈ R32 580×65 536. We report in figure 4(a) the exact attenuation coefficient, and in figure 4(b)
the noise-free sinogram. We add different levels of white Gaussian noise, namely, 1%, 5%,
and 10%. Since the noise is Gaussian, we set p = 2. The matrix of the system is not a BCCB
matrix. Therefore, we use algorithm 2 for the solution of the constrained problem.

We report the results obtained with both the constrained and unconstrained approach in
table 1. We can observe that the difference in the computed solutions determined by the con-
strained and unconstrained methods is more significant in this example than in the previous
one. This can be motivated by the larger black area present in the image. Visual inspection
of the reconstructions in figure 5 confirms the large difference between the reconstructions
obtained with the unconstrained and the constrained approaches. In particular, we can observe
that the reconstructions obtained with the unconstrained method appear affected by unwanted
oscillations in the black areas. On the other hand, the constrained method is able to provide
constant black areas around the phantom and does not reconstruct the noise, thus avoiding
the unwanted oscillations present in the other reconstructions. Table 2 reports the CPU times
required for the computation of the reconstructions. Like in the previous example, the timings
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Figure 5. Tomography test problem reconstructions: panels (a)–(c) report the recon-
structions obtained with NN-(�p–�q)GKS with 1%, 5%, and 10% of white Gaussian noise,
respectively; panels (d)–(f) display reconstructions obtained with (unconstrained) �p–�q
with 1%, 5%, and 10% of white Gaussian noise, respectively.

for the constrained method are higher than the ones for the unconstrained one. However, they
are not too high to make the method unfeasible.
Walnut. For our final example, we consider a real tomography problem. We use the

data obtained by tomography of a walnut [36]. In particular, we consider the data in the
Data164.mat file. The attenuation coefficients are stored in a 164× 164 image and the
sinogram is obtained by shining 164 fan-beams at 120 angles. This procedure generates an
underdetermined problem where A ∈ R19 680×26 896. Figure 6(b) shows the sinogram. In [36] a
high-quality reconstruction obtained by a higher-dimensional data set of the true attenuation
coefficients is provided; see figure 6(a). However, due to different scaling and size it is very
difficult to use this image as ground truth to evaluate the RRE and SSIM. Thus, we compute
the reconstructions obtained with the constrained and unconstrainedmethodwith five different
regularization parameters. The advantages of the constrained method are already evident by
visual inspection of the reconstruction and, therefore, we rely on this for the comparison of
the two approaches. We do not know which kind of noise contaminated the data, however, it
is safe to assume that the noise is not too far from Gaussian. We therefore let p = 2. Finally,
since the matrix A is not a BCCB matrix, we use the NN-(�p–�q)GKS method for the solution
of the constrained problem.

The computed reconstructions are shown in figure 7. We can observe that, similarly to
the synthetic example, the unconstrained model tends to amplify the noise and introduces
unwanted oscillations in the reconstructed solution. On the other hand, these oscillations are
not present in the reconstructions obtained with the constrained model. Moreover, we can
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Figure 6. Walnut test problem: (a) high-quality reconstruction (2296 × 2296 pixels), (b)
under-sampled sinogram (164 × 120 pixels).

Figure 7. Walnut test problem reconstructions: panels (a)–(e) report the reconstruc-
tions obtained by the NN-(�p–�q)GKS method with different regularization parameters
μ, panels (f)–(j) show reconstructions determined by the (unconstrained) �p–�q method
with different regularization parameters μ. The reconstructions in panels (a) and (f) are
obtained with μ = 10−1, (b) and (g) with μ = 1, (c) and (h) with μ = 10, (d) and (i)
with μ = 100, and (e) and (j) with μ = 1000.

Table 3. Comparison of the CPU times in seconds required for NN-(�p–�q)GKS and with
(unconstrained) �p–�q for different values of μ.

Method
Values of μ

10−1 1 10 100 1000

NN-(�p–�q)GKS 15.067 35.288 20.842 1.324 0.9686
�p–�q 20.933 6.0861 2.2145 0.9123 0.9109

observe that the reconstructions obtained with the constrained method are much more sta-
ble with respect to the choice of the parameter μ; the method is able to provide satisfactory
reconstructions for a large interval of μ-values. Finally, in table 3 we show the CPU times
required for the computation of all the reconstructions in figure 7. We can observe that the con-
strained method, while being more expensive than the unconstrained one, is able to maintain
a reasonable computational cost.
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8. Conclusions

In this paper we proposed new approaches for solving discrete ill-posed problems with non-
negativity constraint. We started from the �p–�q regularization method described in [5] and
combined it with the modulus-based algorithm [16, 23] to impose nonnegativity. The use of
the non-convexmodels obtained when either p or q are smaller than 1 allowed us to determine
high-quality reconstructions and to consider noise models different from the Gaussian one.
We differentiated the cases in which the system matrix A is general and when it has a circulant
structure. In the first case, we apply a generalizedKrylov subspacemethod to lower the compu-
tational effort by projecting the problem into an appropriate subspace of fairly small dimension.
In the second case, we exploited the fact that circulant and BCCB matrices can be efficiently
diagonalized by the Fourier transform, thus, obtaining a diagonal problem.We provided a proof
of convergence of approximate solutions computed with the new algorithms described. Sev-
eral numerical examples, both on synthetic and real data, illustrated the performances of the
proposed methods in terms of the quality of the reconstructed solutions.
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