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a b s t r a c t

Discrete ill-posed problems arise in many areas of science and engineering. Their solu-
tions, if they exist, are very sensitive to perturbations in the data. Regularization aims to
reduce this sensitivity. Many regularization methods replace the original problem by a
minimization problem with a fidelity term and a regularization term. Recently, the use
of a p-norm to measure the fidelity term and a q-norm to measure the regularization
term has received considerable attention. The relative importance of these terms is
determined by a regularization parameter. When the perturbation in the available data
is made up of impulse noise and a sparse solution is desired, it often is beneficial to
let 0 < p, q < 1. Then the p- and q-norms are not norms. The choice of a suitable
regularization parameter is crucial for the quality of the computed solution. It therefore
is important to develop methods for determining this parameter automatically, without
user-interaction. However, the latter has so far not received much attention when the
data is contaminated by impulse noise. This paper discusses two approaches based on
cross validation for determining the regularization parameter in this situation. Computed
examples that illustrate the performance of these approaches when applied to the
restoration of impulse noise contaminated images are presented.

© 2020 Elsevier B.V. All rights reserved.

1. Introduction

We consider the computation of an approximate solution of problems of the form

Ax + δ = bδ, (1)

where A ∈ Rm×n is a large matrix, whose singular values decrease to zero gradually with no significant gap, the vector
bδ

∈ Rm represents measured error-contaminated data, and δ ∈ Rm denotes the unknown error. We will sometimes refer
to δ as noise. The quotient of the largest and smallest singular values of A is known as the condition number of A. Due to
the decrease of the singular values to zero, this condition number is large. This makes it difficult to compute a meaningful
approximate solution of (1); see below.

Problems of the kind (1) are commonly referred to as discrete ill-posed problems. They typically arise from the
discretization of ill-posed problems, such as Fredholm integral equations of the first kind with a smooth kernel; see,
e.g., [1–3] for discussions on ill-posed and discrete ill-posed problems.
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Let b = [bi] ∈ Rm denote the unknown error-free vector associated with bδ
= [bδ

i ]. Thus, b
δ

= b + δ. In the present
paper, we will assume that the error δ in bδ is made up of impulse noise, possibly together with Gaussian noise. Impulse
noise affects only a certain percentage of the entries of b and leaves the other entries unchanged. Specifically,

bδ
i =

{
di with probability σ ,

bi with probability 1 − σ ,
(2)

where the di are identically and uniformly distributed random numbers in an interval [dmin, dmax], which is the dynamic
range of bi. If di ∈ {dmin, dmax}, i.e., in case all di attain their maximum or minimum achievable values, impulse noise is
commonly referred to as salt-and-pepper noise. Impulse noise simulates the effect of broken sensors on the measuring
device. The application of primary interest to us is the restoration of blurred and noise-contaminated images, however,
the techniques described also can be used for other applications.

Since δ is not known, a naïve approach to determine an approximation of the solution of (1) is to solve the least-squares
problem

min
x∈Rn

∥Ax − bδ
∥2. (3)

However, due to the large condition number of the matrix A and the error δ in bδ , the solution A†bδ of (3), where A†

denotes the Moore–Penrose pseudoinverse of A, generally does not furnish a meaningful approximation of the desired
vector

x̂ := A†b. (4)

To achieve an accurate approximation of x̂, the least-squares problem (3) is replaced by a minimization problem,
whose solution is less sensitive to the error δ in bδ than the solution of (3). This replacement is known as regularization.
A regularization technique that recently has received considerable attention, see, e.g., [4–10] and references therein, is to
replace the least-squares problem (3) by an ℓp-ℓq minimization problem of the form

x∗
:= argmin

x∈Rn

{
1
p

Ax − bδ
p
p +

µ

q
∥Lx∥q

q

}
, (5)

where the regularization matrix L ∈ Rℓ×n is such that

N (A) ∩ N (L) = {0}. (6)

Here N (M) denotes the null space of the matrix M , and

∥z∥s :=

⎛⎝ r∑
j=1

|zj|s

⎞⎠1/s

, z = [z1, z2, . . . , zr ]T ∈ Rr .

We will refer to ∥z∥s as the s-norm of z also for 0 < s < 1, even though the mapping z → ∥z∥s is not a norm for these
s-values. We are interested in solving (5) for 0 < p, q < 1. Note that if either p < 1 or q < 1, then the functional (5)
generally is non-convex. When p = q = 2, the minimization problem (5) reduces to Tikhonov regularization [3,11,12].

The first term in (5) is known as the fidelity term and the second term as the regularization term. The matrix L in the
latter term often is chosen to be a discretized differential operator. We are primarily concerned with the restoration of
images that have been contaminated by impulse noise and possibly also by Gaussian noise. Let the image be made up of
m×m pixels. We let the entries of the vector x ∈ Rn represent the pixels enumerated column-wise. The matrix A ∈ Rn×n

represents a blurring operator and we will let L be a scaled discretized Laplacian in two space-dimension, i.e.,

L := L2 ⊗ I + L2 ⊗ I, (7)

where the symmetric tridiagonal matrix

L2 =

⎡⎢⎢⎢⎢⎢⎢⎣

1 −1
−1 2 −1

− 1 2 −1
. . .

. . .
. . .

−1 2 −1
−1 1

⎤⎥⎥⎥⎥⎥⎥⎦ ∈ Rm×m

is a scaled discrete Laplacian with Neumann boundary conditions in one space-dimension, I denotes the identity matrix
of order m, and ⊗ stands for the Kronecker product. Because A is a blurring matrix and L is a discrete differential operator,
the condition (6) generally is satisfied. The regularization parameter µ > 0 balances the relative influence of these terms
on the solution.

We briefly comment on the choice of q. In many situations it is known that the desired solution (4) is sparse in some
basis. To enhance sparsity, we may consider using a regularization term with the ℓ0-norm, which counts the number of
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Fig. 1. Comparison of different ℓq-norms. The solid black graph represents the ℓ0-norm, the dotted black graph shows the ℓ1-norm, the dark gray
solid graph displays the ℓ0.5-norm, and the light gray solid graph depicts the ℓ0.1-norm.

non-vanishing entries. However, the minimization problem so obtained is very difficult to solve. Therefore, it is common to
approximate the ℓ0-norm by the ℓ1-norm. The main advantage of using this approximation is that the ℓ1-norm is convex.
This makes the computation of a solution easier. However, ℓq-norms with 0 < q < 1 are better approximations of the
ℓ0-norm. In particular, the smaller q, the better the approximation; see Fig. 1 for an illustration. The main drawback of
using 0 < q < 1 is that the resulting minimization problem (5) is not convex; see Lanza et al. [13] for a recent discussion
on the choice of q in the context of image restoration.

We turn to the choice of p. The value of p should depend on the type of noise in the data bδ . For white Gaussian noise,
p = 2 is appropriate and a method for determining µ for this kind of noise, based on the discrepancy principle is described
in [14]. This method requires that a fairly accurate estimate of the norm of the noise be available and allows 0 < q < 1.
However, for impulse noise, p = 2 usually produces restorations of poor quality. It has been shown, see, e.g., [8,10], that
choosing 0 < p < 1 in the fidelity term leads to accurate restorations in the case of salt-and-pepper noise.

A popular approach to solving the minimization problem (5) is to approximate the ℓp- and ℓq-norms by weighted ℓ2-
norms. The iterative refinement of these approximations leads to a solution process known as the iteratively reweighted
norm (IRN) method. This method proceeds by solving a sequence of weighted least-squares problems until an accurate
approximate solution of (5) has been found. Several implementations are available; see, e.g., [6,10,15–18]. Applications
of the IRN method to minimization problems (5) with p or q smaller than unity are described in [8,10]. It is shown in [8]
that the solutions of the sequence of weighted least-squares problems converge to a stationary point of the functional (5).

We use the IRN-method FMM-GKS described in [8] for solving (5), and will refer to it simply as the MM-GKS method.
Each iteration with MM-GKS can be divided into two steps: The first step majorizes the functional to be minimized in
(5) by a quadratic functional that is tangent to the functional at the current approximation. Then, in the second step, the
unique minimizer of the majorant is computed and used as the new iterate.

None of the works on solution methods for (5) mentioned discuss how a suitable value of the regularization parameter
µ can be determined automatically, i.e., without user interaction. The value of µ affects the quality of the computed
solution, and it is important to develop techniques for determining a suitable value. It is the purpose of the present paper
to describe two algorithms for determining µ. Both algorithms are based on cross-validation (CV); see, e.g., Stone [19] for
a discussion on cross-validation. Here we only note that CV is a so-called heuristic parameter choice rule and, therefore,
may fail for certain data; see, Engl et al. [1] and Kindermann [20,21], as well as [22], for discussions on and illustrations
of heuristic methods. In numerous numerical experiments with applications to image restorations, some of which are
reported in Section 4, we have never observed CV to fail to determine a useful value of the regularization parameter.

In our first algorithm for determining a suitable value of µ, we apply the CV technique to the data, i.e., to the vector
bδ . CV splits the data into two complementary sets: the training set and the testing set. The first set is used for solving the
problem with different regularization parameters. Then the second set is used to validate the regularization parameter.
CV selects the parameter µ that minimizes the difference between the reconstructed data set and the testing set.

Our second algorithm for determining a suitable value of µ uses a modified version of the CV approach outlined above.
Instead of seeking to reconstruct the right-hand side, the algorithm applies CV to the computed solutions. To the best of
our knowledge, this modified CV approach, henceforth referred to as MCV, has not been considered before. We will show
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that both CV and MCV determine regularization parameters that yield restorations of good quality and that, typically,
MCV determines regularization parameters that give restorations of higher quality than CV.

Several other methods have been developed for the restoration of images that are corrupted by blur and impulse noise.
In particular, two-phase strategies have been shown to yield accurate restorations; see, e.g., [23–26]. These methods first
identify pixels that are contaminated by impulse noise by means of a median-type filter. Subsequently, these pixels are
removed from the computations and the noise-free problem so obtained is solved by a variational method. In the current
literature on two-phase methods, the functional to be minimized in the second phase is usually convex and little attention
is given to the selection of the regularization parameter. In fact, only Sciacchitano et al. [26] propose a two-phase method
that does not require a user to specify a regularization parameter. None of the methods mentioned is designed to remove
mixed noise, i.e., noise that is made up of both impulse noise and Gaussian noise. One of the main advantages of the
method of this paper is that, as we will show in Section 4, it is able to restore images that have been contaminated by
mixed noise in a satisfactory manner. This type of noise is of considerable interest, and the choice of a suitable value of
the regularization parameter is important.

This paper is organized as follows: Section 2 outlines the IRN method described in [8] for the solution of (5). Our
algorithms for determining the regularization parameter µ are described in Section 3 and a few numerical example are
presented in Section 4. Finally, Section 5 contains concluding remarks.

2. A majorization–minimization method

This section briefly describes the method proposed in [8]. This is an alternating direction method of multipliers
(ADMM); see, e.g., Beck [27, Chapter 15] for a general discussion of this kind of methods: In one ‘‘direction’’ a minimization
problem is solved by computing an approximate solution of the associated normal equations (Eq. (11)). This requires
significant computations. In the other ‘‘direction’’ the weights (see Eq. (10)) are updated. This is very inexpensive. The
method is well suited for the solution of problems of the form (5), because only the solution in one ‘‘direction’’ requires
significant computations; see below or [8,10]. We remark that there also are other methods available for the minimization
of (5), in particular for the situation when p, q ≥ 1; see, e.g., [7,16,28]. In the present paper, we are primarily concerned
with the case when both p, q < 1 in (5), though the method described also can be applied when 1 ≤ p < 2 or 1 ≤ q < 2.
The following description is very similar to the one provided in [8,14]. We present it here for the convenience of the
reader.

Assume that 0 < s ≤ 1, because the smoothing to be described is not required for s > 1. In all computed examples of
Section 4, we have 0 < s < 1. Introduce a smoothed version of the function x → ∥x∥s

s as follows. Consider the function
Φs : R → R defined by

Φs(t) = |t|s.

If 0 < s ≤ 1, then Φs is not differentiable at 0. Therefore, we define the smoothed version of Φs as

Φs,ε(t) =

(√
t2 + ε2

)s
, (8)

where ε > 0 is a small constant. Clearly, Φs,ε(t) is everywhere differentiable. A smoothed version of ∥x∥s
s for x =

[x1, . . . , xn]t ∈ Rn is given by the right-hand side of

∥x∥s
s ≈

n∑
i=1

Φs,ε(xi).

Throughout this paper, the superscript t denotes transposition.
Introduce the smoothed version of the functional that is minimized in (5),

Jε(x) :=
1
p

m∑
i=1

Φp,ε((Ax − bδ)i) +
µ

q

ℓ∑
i=1

Φq,ε((Lx)i).

The smoothed minimization problem associated with (5) reads

x∗
:= argmin

x∈Rn
Jε(x). (9)

The method described in [8] for computing a stationary point of Jε is a majorization–minimization method. It
determines a sequence of iterates x(k), k = 1, 2, . . . , that converge to a stationary point of Jε . The method requires
the gradient ∇Jε to exist. This is secured by the smoothing described.

At each step the functional Jε , for k = 1, 2, . . . , is majorized by a quadratic functional x → Q(x, x(k)) that is tangent
to Jε at x(k). The next iterate x(k+1) is the unique minimizer of x → Q(x, x(k)). We outline this method in the remainder
of this section.

Definition 1. Consider the differentiable function Jε(x) : Rn
→ R. We say that the function x → Q(x, y) : Rn

→ R is a
quadratic tangent majorant for Jε(x) at y if the following conditions hold:
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• Q(x, y) is quadratic;
• Q(x, y) ≥ Jε(x) for all x ∈ Rn;
• Q(y, y) = Jε(y) and ∇Q(y, y) = ∇Jε(y).

2.1. Majorization step

We outline the construction of a quadratic tangent majorant at the point x(k). Two approaches are described in [8],
one yields a majorant with fixed aperture and the other one a majorant with the largest aperture possible. The second
kind of majorant approximates the function Jε better than the first kind, but its computation is more demanding. In
the following, we will only consider the majorant with fixed aperture, and we will apply this method in our numerical
examples reported in Section 4. We note, however, that we could equally well have applied the method that determines
the largest aperture possible in the computed examples. A comparison of these methods is reported in [8].

Let

v(k) := Ax(k) − bδ,

u(k)
:= Lx(k),

and introduce the vectors

ω
(k)
fid := v(k)

(
1 −

(
(v(k))2 + ε2

ε2

)p/2−1
)

,

ω(k)
reg := u(k)

(
1 −

(
(u(k))2 + ε2

ε2

)q/2−1
)

,

(10)

where all operations are element-wise. It is shown in [8] that the function

x → Q(x, x(k)) =
εp−2

2

(Ax − bδ
2
2 − 2

⟨
ω

(k)
fid, Ax

⟩)
+

µεq−2

2

(
∥Lx∥2

2 − 2
⟨
ω(k)

reg, Lx
⟩)

+ c,

with c a suitable constant independent of x, is a quadratic tangent majorant for Jε at x(k).

2.2. Minimization step

Given x(k), the next iterate x(k+1) is the minimizer of x → Q(x, x(k)). Since Q is quadratic, x(k+1) can be computed by
determining the zero of the gradient, i.e., by solving the linear system of equations

(AtA + ηLtL)x(k+1)
= At (bδ

+ ω
(k)
fid) + ηLtω(k)

reg, η := µ
εq−2

εp−2 . (11)

The matrix on the left-hand side is non-singular for any µ > 0 due to the requirement (6). Therefore x(k+1) is the unique
minimizer of Q(x, x(k)).

An approximate solution of (11) can be computed efficiently by seeking a solution in a low-dimensional subspace. Let
the columns of Vk ∈ Rn×dk , with 1 ≤ dk ≪ n, form an orthonormal basis for the subspace in which we determine the
next approximate solution x(k+1) of (11). We compute x(k+1) by solving the minimization problem

y(k+1)
:= arg min

y∈Rdk


[

AVk
η1/2LVk

]
y −

[
bδ

+ ω
(k)
fid

η1/2ω
(k)
reg

]
2

2

(12)

and letting

x(k+1)
:= Vky(k+1). (13)

Introduce the QR factorizations

AVk = QARA with QA ∈ Rm×dk , RA ∈ Rdk×dk ,

LVk = QLRL with QL ∈ Rℓ×dk , RL ∈ Rdk×dk .
(14)

Thus, the matrices QA and QL have orthonormal columns, and the matrices RA and RL are upper triangular. Inserting the
factorizations (14) into (12) yields

y(k+1)
:= arg min

y∈Rdk


[

RA
η1/2RL

]
y −

[
Q t
A(b

δ
+ ω

(k)
fid)

η1/2Q t
L ω

(k)
reg

]
2

2

,
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and substituting (13) into (11) gives the residual vector

r := At (AVky(k+1)
− bδ

− ω
(k)
fid) + ηLt (LVky(k+1)

− ω(k)
reg). (15)

We expand the solution subspace by including the scaled residual vector vnew = r/∥r∥ in the solution subspace. This vector
is orthogonal to the columns of the matrix Vk, and we define the new matrix Vk+1 = [Vk, vnew] ∈ Rn×dk+1 , dk+1 = dk + 1,
whose columns form an orthonormal basis for the expanded solution subspace. The so determined solution subspaces are
referred to as generalized Krylov subspaces. A related application of generalized Krylov subspaces is described in [12].

In addition to storing the matrix Vk+1, we also store the matrices

AVk+1 = [AVk, Avnew], LVk+1 = [LVk, Lvnew].

The QR factorizations of these matrices are computed by updating the QR factorizations (14) according to

AVk+1 = [AVk, Avnew] = [QA, q̃A]

[
RA rA
0t τA

]
,

LVk+1 = [LVk, Lvnew] = [QL, q̃L]

[
RL rL
0t τL

]
,

where

rA = Q t
A(Avnew), qA = Avnew − QArA,

τA = ∥qA∥2 , q̃A = qA/τA,

rL = Q t
L (Lvnew), qL = Lvnew − QLrL,

τL = ∥qL∥2 , q̃L = qL/τL;

see Daniel et al. [29] for details.
Algorithm 1 summarizes the computations. To initiate the computations a user chooses a k0-dimensional solution

subspace of Rn. The columns of the matrix V0 form an orthonormal basis for this subspace. Thus, dk = k0 + k. In the
computations reported in Section 4, we let k0 = 10 and let the columns of V0 form an orthonormal basis for the Krylov
subspace

K10(AtA, Atbδ) = span{Atbδ, (AtA)Atbδ, . . . , (AtA)9Atbδ
}.

This subspace is determined by carrying out 10 steps of the Golub–Kahan bidiagonalization algorithm applied to A with
initial vector bδ; see, e.g., [30]. Algorithm 1 summarizes the computations.

Algorithm 1 (The MM-GKS Method). Let 0 < p, q ≤ 2 and µ > 0. Consider A ∈ Rm×n and L ∈ Rℓ×n such that (6) holds. Fix
ε > 0 and k0 > 0, and choose the initial vector x0;

Generate the initial subspace basis: V0 ∈ Rn×k0 such that V t
0V0 = I;

Compute and store AV0 and LV0;
Compute the QR factorizations AV0 = QARA and LV0 = QLRL;
η = µ εq−2

εp−2 ; y(0) = V t
0x

(0);
for k = 0, 1, . . . do

v(k) = Ax(k) − bδ;
u(k)

= LVky(k);

ω
(k)
fid = v(k)

(
1 −

(
(v(k))2+ε2

ε2

)p/2−1
)
;

ω
(k)
reg = u(k)

(
1 −

(
(u(k))2+ε2

ε2

)q/2−1
)
;

y(k+1)
= (Rt

ARA + ηRt
LRL)−1(Rt

AQ
t
A(b

δ
+ ω

(k)
fid) + ηRt

LQ
t
L ω

(k)
reg);

r = At (AVky(k+1)
− bδ

− ω
(k)
fid) + ηLt (LVky(k+1)

− ω
(k)
reg);

vnew = r/∥r∥2; Vk+1 = [Vk, vnew];
Update the QR factorizations AVk+1 = QARA and LVk+1 = QLRL;
x(k+1)

= Vky(k+1);
end

Let x∗ be the approximated solution computed by Algorithm 1. We will write

x∗
= MM-GKS(A, bδ, p, q, µ, ε, x0, V0),

where we expressly state that the initial approximate solution is x0, and that the initial subspace basis is V0.
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We summarize properties of the approximate solutions determined by the algorithm. The range of a matrix M is
denoted by R(M).

Proposition 2. We have x(0) ∈ R(AT ) and x(k) ∈ R(AT ) ∪ R(L) for k = 1, 2, . . . .

Proof. The statement about x(0) follows from the definition of the vector. The property of x(k) is a consequence of (15)
and the fact that the matrix L, defined by (7), is symmetric. □

In our applications of the minimization problem (5), the matrix–vector product Ax models blurring of x. Therefore,
Ax represents the discretization of a function that typically is quite smooth. This also holds for ATx. The vector x(0) in
Algorithm 1 therefore, generally, represents the discretization of a smooth function and is poorly suited to model a piece-
wise smooth image. The vectors x(k), k = 1, 2, . . . , generated by the algorithm generally have a component in R(L).
Since L is a discrete differential operator, the vector Lx generally represents the discretization of a function that is less
smooth than the function whose discretization gives x. The component in R(L) of the vectors x(k), k ≥ 1, makes these
vectors useful for approximating piece-wise smooth functions. Thus, having a regularization term defined by a discrete
differential operator in (5) is essential for the good performance of Algorithm 1.

The main computational effort of Algorithm 1 is the evaluation of matrix–vector products with the matrices A, L, and
their transposes. Since the matrices AVk and LVk are stored, each iteration requires the evaluation of the matrix–vector
products Avk+1 and Lvk+1, which are needed for updating AVk and LVk, and of their QR factorizations. The evaluation of a
matrix–vector product with each one of the matrices At and Lt is required when computing the residual vector (15).

The following result for the approximate solutions x(k) computed by Algorithm 1 is shown in [8].

Theorem 3. Let (6) hold. Then for any initial approximate solution x(0) ∈ Rn, the sequence {x(k)}k converges to a stationary
point of Jε(x). Thus,

(i) limk→∞

x(k+1)
− x(k)


2 = 0,

(ii) limk→∞ ∇Jε(x(k)) = 0.

3. Determining the regularization parameter

This section describes two CV methods for determining the regularization parameter µ. The first method applies CV to
the data vector and the second one to the computed solution. For notational simplicity, we describe these two methods
when applied to a Tikhonov regularization problem in standard form,

min
x∈Rn

{∥Ax − bδ
∥
2
2 + µ∥x∥2

2}, (16)

where A ∈ Rm×n, bδ
∈ Rm, and µ > 0 is a regularization parameter. We assume that A is very ill-conditioned, that bδ is

contaminated by error, and that we are interested in the solution (4).

3.1. Cross validation

The CV method partitions the right-hand side bδ into two complementary subsets: the training set and the testing set.
The training set is used for solving the problem (16) (with the rows of the testing set removed) for different regularization
parameters, and the testing set is used to validate the computed solution and select a suitable regularization parameter.
The computations with the CV method proceeds as follows. Without loss of generality, we may assume that the testing
set consists of the first d elements of bδ . Let b̃δ

∈ Rm−d and Ã ∈ R(m−d)×n denote the restrictions of bδ
= [bδ

j ] and A = [Aij],
respectively, in (16) to the training set, i.e.,

b̃δ
= [bδ

d+1, b
δ
d+2, . . . , b

δ
m]

t ,

Ã =

⎡⎢⎢⎣
Ad+1,1 Ad+1,2 . . . Ad+1,n
Ad+2,1 Ad+2,2 . . . Ad+2,n

...
... . . .

...

Am,1 Am,2 . . . Am,n

⎤⎥⎥⎦ .

Let {µj}
l
j=1 denote a set of positive regularization parameters. For each j = 1, 2, . . . , l, we solve the Tikhonov

regularization problem obtained by replacing A by Ã, bδ by b̃δ , and µ by µj in (16). Denote the computed solutions by xµj ,
j = 1, 2, . . . , l. We validate these solutions by using the testing set. Thus, for each xµj , we compute the residual norms

rj =

√ d∑
i=1

((
Axµj

)
i
− bδ

i

)2
, j = 1, 2, . . . , l.
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The norm rj measures how well the computed solution xµj is able to predict the testing data (which were not included
when computing xµj ). Let µk be such that rk ≤ rj for j = 1, 2, . . . , l. We then select µ = µk for the solution of (16). The
heuristics behind this approach for determining µ is that an accurate approximation xµ of x̂ should be able to predict the
testing data accurately.

To reduce variability, we apply CV for several different partitionings and average the regularization parameter values
determined for each partitioning. In detail, let K be a not too large positive integer and carry out K CV steps. At step
1 ≤ k ≤ K , we consider a randomly selected set of d components of the vector bδ as testing data, while the other
m−d components are used as training data. Each step provides a regularization parameter µ(k) for k = 1, 2, . . . , K . These
parameters may differ. The regularization parameter µ to be used for the solution of (16) is the average of the parameter
values µ(k), i.e.,

µ =
1
K

K∑
k=1

µ(k).

The process, when applied to the solution of (9), is summarized in the following algorithm.

Algorithm 2 (Cross Validation). Let A ∈ Rm×n, d < m, and let K > 0 be a positive integer. Consider the solution of (9) and
let {µj}

l
j=1 be a set of positive regularization parameters.

for k = 1, 2, . . . , K do
Construct a set I (k) of d distinct random integers between 1 and n;
Let Ã and b̃δ denote the matrix and vector, respectively, obtained by removing the rows with indices in I (k) from
A and bδ;
for j = 1, 2, . . . , l do

x(k)µj
= MM-GKS(̃A, b̃δ, p, q, µ, ε, xinitk,j , V

init
k,j ),

i.e., x(k)µj
denotes the regularized solution of the system (16) with the matrix A replaced by Ã, bδ replaced by

b̃δ , and µ replaced by µj;

Compute r (k)j =

√∑
i∈I(k)

((
Ax(k)µj

)
i
− bδ

i

)2
;

end
Let j∗ = argmin1≤j≤l{r

(k)
j };

Let µ(k)
= µj∗ ;

end
Compute µ =

1
K

∑K
k=1 µ(k);

3.2. Modified cross-validation

The standard CV technique compares predictions of the right-hand side determined for different parameters µj. We
would like to exploit a similar idea, but instead compare predictions of computed solutions.

Let I1 and I2 denote two distinct sets of d distinct random integers between 1 and n. Similarly to standard CV, let Ãi
and b̃δ

i denote versions of the matrix and right-hand side of (16), respectively, in which the rows of bδ and A with index
in Ii have been removed, for i = 1, 2.

Let {µj}
l
j=1 be a set of positive regularization parameters. For i = 1, 2, let x(i)µj

denote the solution of the Tikhonov
regularization problem (16) with A replaced by Ãi, bδ replaced by b̃δ

i , and µ replaced by µj, i.e.,

x(i)µj
= argmin

x∈Rn

{̃Aix − b̃δ
i

2
2 + µj ∥x∥2

2

}
, i = 1, 2.

Compute the quantities

∆xj =

x(1)µj
− x(2)µj


2
, j = 1, 2, . . . , l,

and let µk minimize ∆xj over j = 1, 2, . . . , l. Thus, this application of CV considers the computed approximations of x̂
instead of the residual vectors. We refer to this method as modified CV (MCV). To reduce variability, we apply MCV for
several index sets I1 and I2. The following algorithm describes MCV.

Algorithm 3 (Modified Cross Validation). Let A ∈ Rm×n, d < m, and let K > 0 be an integer. Consider the solution of (9)
and let {µj}

l
j=1 be a set of positive regularization parameters. Let K ∈ N.
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for k = 1, 2, . . . , K do
Construct two distinct sets I (k)1 and I (k)2 of d distinct random integers between 1 and n;
Let, for i = 1, 2, Ãi and b̃δ

i denote the matrix and vector, respectively, obtained by removing the rows with
indices in I (k)i from A and bδ;
for j = 1, 2, . . . , l do

for i = 1, 2 do
x(k,i)µj

= MM-GKS(̃Ai, b̃δ
i , p, q, µ, ε, xinitk,j,i, V

init
k,j,i),

i.e., x(k,i)µj
denotes the regularized solution of the system (16) with the matrix A replaced by Ãi, bδ

replaced by b̃δ
i , and µ replaced by µj;

end

Compute ∆x(k)j =

x(k,1)µj
− x(k,2)µj


2
;

end

Let j∗ = argmin1≤j≤l

{
∆x(k)j

}
;

Let µ(k)
= µj∗ ;

end
Compute µ =

1
K

∑K
k=1 µ(k);

3.3. Implementation details

The execution of Algorithms 2 and 3 requires that computations with Algorithm 1 be carried out multiple times.
These executions can be carried out in parallel, but nevertheless may be fairly expensive. This subsection describes some
implementation details and discusses certain implementation choices.

In our implementation for all k, j, and i in both the CV and MCV methods, we set the initial approximate solution to
Ãt
i b̃

δ
i , i.e., for the CV algorithm we set

xinitk,j = Ãt b̃δ, j = 1 . . . , l and k = 1, . . . , K ,

while for the MCV algorithm we set

xinitk,j,i = Ãt
i b̃

δ
i , j = 1, . . . , l, k = 1, . . . , K , and i = 1, 2.

Moreover, we set the initial subspace basis as Ãt
i b̃

δ
i /
̃At

i b̃
δ
i


2, i.e., for the CV algorithm we set

V init
k,j = Ãt b̃δ, j = 1 . . . , l and k = 1, . . . , K ,

while for the MCV algorithm we set

V init
k,j,i = Ãt

i b̃
δ
i /
̃At

i b̃
δ
i


2 , j = 1, . . . , l, k = 1, . . . , K , and i = 1, 2.

These choices allow all the runs of the MM-GKS method to be independent and, therefore, in parallel.
The first aspect which we would like to discuss is the choice of the initial approximate solution. We remark that we

also considered other initial approximate solutions. We implemented the following options:

• For a fixed k, we set the initial approximation for the computation of x(k)µj
to x(k)µj−1

, i.e., for the CV algorithm

xinitk,j =

{̃
At b̃δ j = 1,
x(k)µj−1

j > 1, k = 1, . . . , K ,

and for the MCV algorithm

xinitk,j,i =

{̃
At
i b̃

δ
i j = 1,

x(k,i)µj−1
j > 1,

k = 1, . . . , K and i = 1, 2.

• For a fixed j, we set the initial approximate solution for the computation of x(k)µj
to x(k−1)

µj
, i.e., for the CV algorithm

xinitk,j =

{̃
At b̃δ k = 1,
x(k−1)

µj
k > 1, j = 1, . . . , l,

and for the MCV algorithm

xinitk,j,i =

{̃
At
i b̃

δ
i k = 1,

x(k−1,i)
µj

k > 1,
j = 1, . . . , l and i = 1, 2.
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Both these initial approximate solutions lead to poor numerical results. These choices do not allow enough variability in
the computed solutions. The comparison of the computed solutions therefore is not meaningful. In the first case, µ1 is
always chosen as regularization parameter, while in the second case we obtain that µ(1)

= µ(2)
= · · · = µ(K ), i.e., all the

sweeps over all the parameters µj provide the same result.
Another point that is worthwhile to mention is the selection of the solution subspace. Algorithms 2 and 3 determine

different solution subspaces for each value of j, k, and i. These subspaces are constructed as described in Algorithm 1 and,
thus, depend on the restricted operator Ãi and the associated right-hand side b̃δ

i , as well as on the parameter µj. This
construction, coupled with the update of the QR factorizations in Algorithm 1, can become expensive if many iterations
have to be carried out. To speed up the computations with Algorithms 2 and 3, we considered two possible approaches
to the selection of the solution subspaces. For ease of notation, we will only discuss cross validation, however, the results
obtained with modified cross validation are similar.

• For a fixed j, let V (j) denote the subspace constructed by the MM-GKS method for µ = µj and k = 1. We fix the
solution subspace for µ = µj and k > 1 as V (j), i.e., for each j we construct a solution subspace only for k = 1, and
we ‘‘recycle’’ this subspace for the subsequent ks.

• We construct the subspace Kr (AAt , Atbδ) with r sufficiently large, and use it as solution subspace for all j and k.

Both these approaches reduce the computational effort required by the CV method. However, none of them give
satisfactory numerical results. In particular, the first choice of subspaces does not provide necessary additional information
as k changes. In other words, x(k)µj

≈ x(1)µj
for all k. This is due to the fact that the constructed subspace V (j) is of fairly small

dimension. Thus, even if we slightly change the operator and right-hand side, as we do when we change k, the computed
solution in such a small space is very close to the one obtained for k = 1. This implies that µ(1)

= µ(2)
= · · · = µ(K ).

We turn to the second approach, and first discuss the choice of r . Let x∗ denote an approximate solution computed by
Algorithm 1. By construction, we know that x∗ belongs to a subspace of fairly small dimension, which we denote by
k̂. Then k̂ is the sum of k0, the dimension of the initial subspace, and the number of iterations carried out. However,
looking at the magnitude of the coefficients of x∗ in the basis of the subspace constructed by the MM-GKS method,
we observe that, generally, only the first k̃ < 50 components are significant; the other components are of very small
magnitude. It is therefore reasonable to assume that, by choosing r > 2k̃, the space Kr (AAt , Atbδ) should contain an
accurate approximation of x∗. We therefore set r = 100. Moreover, if r > 100 then the computational advantage that
we obtain by fixing the space a priori would be less significant, since we still need to compute the QR factorizations
of ÃVr for each k, where Vr a matrix whose columns form an orthonormal basis for Kr (AAt , Atbδ) determined, e.g., by
Golub–Kahan bidiagonalization. Our numerical experiments show that the MM-GKS method defined in this manner is
not able to compute accurate reconstructions in Kr (AAt , Atbδ) for reasonable values of r . This is possibly due to the fact
that when we compute x(k)µj

we are not solving the system Ax = bδ , but Ãx = b̃δ and, thus, we are considering a subspace
associated with a different problem.

We conclude from the above observations that, for both the cross validation and modified cross validation methods,
it is of vital importance that all the runs of the methods are independent of each other.

Finally, we would like to point out that in the computations reported in the next section, we let K = l = 10 and
d =

⌈ n
200

⌉
in both Algorithms 2 and 3. The µj are equispaced in a logarithmic scale. These parameter choices are not

critical for the performance of the CV and MCV methods. Other values of K and l can be used without changing the
results significantly.

4. Numerical examples

This section presents some numerical examples. All computations are carried out in MATLAB 2016a with about
15 significant decimal digits running on a laptop computer with a quad core CPU Intel Core i7-6700HQ @ 2.60 GHz
processor and 16 GB of RAM. We compare results obtained by computing approximate solutions with Algorithm 1 with the
regularization parameter determined by Algorithm 2 or Algorithm 3, and will refer to these methods as MM-GKS-CV and
MM-GKS-MCV, respectively. These methods are applied to image restoration problems and compared to restored images
computed by Algorithm 1 with the optimal regularization parameter, i.e., the regularization parameter which yields a
restored image that is closest to the desired solution x̂. We refer to the latter restoration as the optimal restoration. The
matrix A represents the blurring operator and the vector bδ represents the available blur- and noise-contaminated image.
The entries of bδ are pixel values.

The error δ in bδ models different types of noise. In the first examples, we consider salt-and-pepper noise of different
percentages. Subsequently, we consider a mixture of salt-and-pepper noise and white Gaussian noise, as well as a mixture
of impulse noise and white Gaussian noise. To model salt-and-pepper noise a certain percentage of randomly chosen
entries of b are set to 0 (which corresponds to black) or to 255 (which is the maximum value attainable and corresponds
to white). Impulse noise is modeled by letting a certain percentage of randomly chosen entries of b be randomly chosen
uniformly distributed integers in the interval [0, 255]; cf. (2). We refer to this percentage as the noise level and denote it
by σ . White Gaussian noise is modeled by pseudo-random numbers with zero mean and specified variance. We refer in
this case to the ratio η =

∥δ∥2
∥b∥2

as the noise level.
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Fig. 2. Clock test image: (a) true image (246 × 246 pixels), (b) PSF (29 × 29 pixels), (c) blurred and noisy image (salt-and-pepper noise: σ = 0.1).

Fig. 3. Clock restorations: (a) Optimal µ, (b) CV, (c) MCV.

Differentials of many natural images are known to be sparse. Therefore, we would like to compute a solution with
this property. We use the second derivative operator in tensor form as regularization matrix L with the same boundary
conditions as the matrix A; see [31] for more information about boundary conditions.

We let ε = 1 in (8). This value is small compared to the average size of the elements of the vector bδ . The iterations
with the algorithms are terminated as soon as two consecutive iterates are sufficiently close, i.e., as soon asx(k) − x(k+1)


2x(k)2 ≤ 10−4.

The quality of the restored images is measured by the Peak Signal to Noise Ratio (PSNR), which is defined as

PSNR(x) = 20 log10

(
255 n

∥x − x̂∥2

)
,

where x̂ denotes the desired solution (4), n is the number of pixels in the image, and 255 is the largest possible pixel
value.

Clock. In our first example, we consider the image in Fig. 2(a) and blur it with the PSF shown in Fig. 2(b), which models
out-of-focus blur. To model salt-and-pepper noise, we set 10% of the pixels to either 0 or 255; see Fig. 2(c) for the blurred
and noisy image. This image is represented by the vector bδ . We set p = 0.8 and q = 0.1. Since this is a generic image,
we impose reflexive boundary conditions; see [32] for a discussion on these boundary conditions.

Fig. 3 displays the restored images obtained with the MM-GKS-CV and MM-GKS-MCV methods, and by selecting the
optimal µ, i.e., the one that maximizes the PSNR, by trial and error. By visual inspection, we can see that the two proposed
approaches for determining the regularization parameter and computing a restoration provide restorations of high quality
that are close to the one obtained with the optimal µ-value. This is confirmed by the PSNR-values reported in Table 1.
The table shows that MCV (Algorithm 3) yields a more accurate restoration than CV (Algorithm 2).

Finally, Fig. 4 displays the PSNR-value as a function of the regularization parameter µ. The figure shows the PSNR-values
associated with regularization parameter values determined by the CV and MCV methods, as well as the PSNR-value that
corresponds to the optimal µ-value. We can observe that the µ-value determined by MCV is closer to the optimal one
than the value provided by CV.

Cameraman. We use the image in Fig. 5(a) and blur it with the non-symmetric Gaussian PSF shown in Fig. 5(b), and add
20% salt-and-pepper noise; Fig. 5(c) shows the blurred and noisy image. Similarly as in the previous example, we set
p = 0.8 and q = 0.1, and impose reflexive boundary conditions.
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Table 1
PSNR values obtained with the two proposed algorithms and by choosing the optimal µ

value.
Example Optimal µ CV µ MCV µ

Clock 33.8103 29.5063 33.1401
Cameraman 24.1153 20.7145 23.9731
Boat 26.1539 25.273 26.1539
Jet plane 26.5764 25.4870 25.7399
Fiorella 27.1715 26.8313 25.1991

Fig. 4. Clock test image: PSNR-values (vertical axis) for different µ-values (horizontal axis). The optimal value of µ is identified by a star, the µ

computed by the CV algorithm is identified by a circle, and the µ determined by the MCV algorithm is identified by a square.

Fig. 5. Cameraman test image: (a) true image (234 × 234 pixels), (b) PSF (41 × 41 pixels), (c) blurred and noisy image (salt-and-pepper noise:
σ = 0.2).

Fig. 6 shows the restoration obtained when µ is determined by the CV and MCV methods, or is chosen to minimize
the PSNR. Table 1 reports the PSNR-values of these restorations. We note that the CV algorithm yields a regularization
parameter µ that gives a worse restoration than the regularization parameter computed by MCV. The latter restoration
is close in quality to the one achieved with the optimal µ.

Boat. In this example we consider the boat image in Fig. 7(a). We blur it with the average PSF shown in Fig. 7(b) and add
30% salt-and-pepper noise; the contaminated image is shown in Fig. 7(c). We set p = 0.8 and q = 0.5, and use reflexive
boundary conditions.

As in the previous examples, we show restorations obtained for three values of the regularization parameter furnished
by CV, MCV, and by maximizing the PSNR-value; see Fig. 8. The PSNR-values are reported in Table 1. By comparing the
restorations, we observe that, similarly as in the previous examples, the MCV method yields a restoration of higher quality
than the CV method. Moreover, in this example the parameter µ determined by MCV is very close to the optimal value.
The MCV restoration can be seen to have much sharper edges than the CV restoration.
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Fig. 6. Cameraman restorations: (a) Optimal µ, (b) CV, (c) MCV.

Fig. 7. Boat test image: (a) true image (250 × 250 pixels), (b) PSF (26 × 26 pixels), (c) blurred and noisy image (salt-and-pepper noise: σ = 0.3).

Fig. 8. Boat restorations: (a) Optimal µ, (b) CV, (c) MCV.

Fig. 9. Jet plane test image: (a) true image (247 × 247 pixels), (b) PSF (27 × 27 pixels), (c) blurred and noisy image (salt-and-pepper noise: σ = 0.1,
Gaussian noise: ϵ = 0.01).

Jet plane. We consider the image in Fig. 9(a). It is blurred with the motion PSF in Fig. 9(b), and we add a mixture of
salt-and-pepper and Gaussian noise. Specifically, we add 10% of salt-and-pepper noise and 1% of white Gaussian noise.
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Fig. 10. Jet plane restorations: (a) Optimal µ, (b) CV, (c) MCV.

Fig. 11. Fiorella test image: (a) true image (264 × 238 pixels), (b) PSF (41 × 37 pixels), (c) blurred and noisy image (impulse noise: σ = 0.2,
Gaussian noise: ϵ = 0.01).

Thus, if δG represents the Gaussian noise, then

η =
∥δG∥2

∥b∥2
= 0.01.

Similarly as in the other examples, we impose reflexive boundary conditions and set p = 0.8 and q = 0.1.
Fig. 10 displays the restorations obtained with the MM-GKS-CV and MM-GKS-MCV methods, as well as the restoration

obtained with the optimal regularization parameter. Visual inspection of these restorations shows that ℓp-ℓq minimization
is able to determine accurate restorations in the presence of mixed noise. Moreover, we note that both the CV and MCV
algorithms are able to determine suitable regularization parameters. These observations are confirmed by the PSNR-values
reported in Table 1. The PSNR-values show that, even though the MCV restoration is affected by slight ringing, it is more
accurate than the CV restoration.

Fiorella. In this example we blur the image in Fig. 11(a) with the non-symmetric PSF in Fig. 11(b), and add a mixture
of impulse noise and white Gaussian noise, such that the impulse noise corrupts 20% of the pixels and the norm of the
Gaussian noise is 1%. Similarly as above, we impose reflexive boundary conditions and set p = 0.8 and q = 0.1.

Fig. 12 depicts the restorations obtained with all the considered methods and Table 1 displays PSNR-values for the
restorations. Visual inspection of the restorations and comparison of the PSNR-values show that for this example the CV
method is able to determine a better regularization parameter than the MCV method. However, both the CV and MCV
methods provide accurate restorations in the very difficult scenario of mixed impulse and Gaussian noise.

5. Conclusion and extension

The image restoration methods described in [8,10] require a user to provide a suitable value of the regularization
parameter. This paper develops two approaches based on cross-validation for determining such a value. This enhances
the usefulness of the methods in [8,10].

Computed examples show the two methods for determining the regularization parameter, and in particular the
modified cross-validation algorithm (Algorithm 3), to provide good approximations of the optimal parameter µ. We
remark that these methods do not require additional knowledge about the image and, thus, are completely automatic.
They therefore can be applied to real-world problems.
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Fig. 12. Fiorella restorations: (a) Optimal µ, (b) CV, (c) MCV.

Similarly as the two-phase methods described in [23–26], it may be attractive to preprocess images that are
contaminated by impulse noise by a median filter. This would result in a fully automatic two-phase method. We are
presently investigating the properties of this kind of method.
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