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Task-driven Perception and Manipulation
for Constrained Placement of Unknown Objects
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Abstract—Recent progress in robotic manipulation has dealt
with the case of previously unknown objects in the context of
relatively simple tasks, such as bin-picking. Existing methods
for more constrained problems, however, such as deliberate
placement in a tight region, depend more critically on shape
information to achieve safe execution. This work deals with pick-
and-constrained placement of objects without access to geometric
models. The objective is to pick an object and place it safely inside
a desired goal region without any collisions, while minimizing the
time and the sensing operations required to complete the task. An
algorithmic framework is proposed for this purpose, which per-
forms manipulation planning simultaneously over a conservative
and an optimistic estimate of the object’s volume. The conser-
vative estimate ensures that the manipulation is safe while the
optimistic estimate guides the sensor-based manipulation process
when no solution can be found for the conservative estimate. To
maintain these estimates and dynamically update them during
manipulation, objects are represented by a simple volumetric
representation, which stores sets of occupied and unseen voxels.
The effectiveness of the proposed approach is demonstrated by
developing a robotic system that picks a previously unseen object
from a table-top and places it in a constrained space. The system
comprises of a dual-arm manipulator with heterogeneous end-
effectors and leverages hand-offs as a re-grasping strategy. Real-
world experiments show that straightforward pick-sense-and-
place alternatives frequently fail to solve pick-and-constrained
placement problems. The proposed pipeline, however, achieves
more than 95% success rate and faster execution times as
evaluated over multiple physical experiments.

Index Terms—Perception for Grasping and Manipulation;
Manipulation Planning; Dual Arm Manipulation

I. INTRODUCTION

BJECT placement in tight spaces is a challenging prob-

lem in robot manipulation. In contrast to a simpler
pick-and-drop problem, only specific object poses will allow
it to fit in a tight space. Such scenarios occur in logistics
applications, such as packing items into boxes, or in service
robotics, such as inserting a book into a gap in a bookshelf.
Recent work has focused on variants of this problem, such as
bin-packing [1], [2] and table-top placement in clutter [3].
Nevertheless, in many cases a geometric and textured 3D
model for the manipulated object is assumed to be known.
Possessing such high-fidelity models is expensive both in
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Fig. 1. A demonstration of pick-handoff-place returned by the proposed
framework for inserting a previously unknown object in a constrained space.
This work does not focus on the last step of precise, closed-loop insertion but
how to reason about the object’s shape so as to safely bring it to the opening
of the placement area. Only a subset of placement poses allow the object to
fit into the target area. Experiments (Table.I) consider a larger margin than
the demonstration shown here (2 cm instead of 1 cm shown).

pick handoff

terms of time and effort. In several setups it becomes in-
feasible to build models due to the wide variety of objects
to be manipulated and the resources required for obtaining
the models. Some recent robot manipulation systems [4], [5]
have shown the capacity of picking novel and previously
unseen objects from clutter. These systems, however, typically
assume no constraints for the object’s placement. Therefore,
the object is grasped with any feasible and stable grasp
without reasoning about placement. Some alternatives do not
require exact models of objects but operate with category-
level prior information. Examples include an approach based
on sparse keypoint representations [6] and deep reinforcement
learning [7]. While the employed representations can guide
manipulation planning solutions, they do not account for safety
as they do not consider geometric or physical constraints.

This work targets pick-and-place problems where the task
imposes constraints on the placement pose. The capabilities
of a manipulator impose limitations on what placement poses
are reachable depending on the grasp, making certain grasps
more desirable than others. This requires careful reasoning to
select the pick that will allow the desired placement. This will
be referred to as the pick-and-constrained-placement problem.
In the context of this problem, it is possible that a feasible
placement pose is not directly attainable using a pick-and-
place operation. Instead, it may require a re-grasping of the
object or a hand-off to be executed.

Solutions to such problems typically need object models for
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Fig. 2. (Left) Figure shows a partial view of the object from the sensor.
A conservative estimate of the object considers both the observed and the
unobserved parts of the object given knowledge of the support surface. An
optimistic estimate considers only the observed parts. (Right) The estimates
are updated as the object is manipulated to different sensor viewpoints.

collision checking, which this work does not assume. Picking,
placement, and re-grasping actions need to be computed given
partial viewpoints of the object acquired from the sensor, as
in Fig. 2. This work approaches the pick-and-constrained-
placement problem without prior object models as integrated
perception and manipulation planning. The objective is to
place the entire object safely inside the desired goal region
without any collisions, while minimizing the time and sensing
operations required to complete the task.

One option is to pick the object with a task-agnostic grasp
that solely interacts with the visible part of the object as
in pick-and-drop systems [4], [5]. After picking, the object’s
shape can be completely reconstructed by manipulating it to
different configurations in front of the sensor. Then, geometric
planning can be performed based on the reconstructed model.
Nevertheless, not only will this option be very time-consuming
given the object must be moved to multiple viewpoints, but
using a goal-agnostic pick may not allow the constrained
placement without multiple regrasps. A key point of this
work is that constrained placement task can be successfully
completed without a complete object model. This motivates a
dynamic estimate of the object’s shape to solve the problem,
and a planning approach capable of using and updating such
a representation on the fly.

The algorithmic solution proposed simultaneously operates
over conservative and optimistic estimates of the object’s 3D
volume, as in Fig. 2. The conservative estimate considers
the entire volume attached to the object, which has not been
observed by the sensor as part of the object. The optimistic
estimate considers only the object’s observed region to be
its complete representation. While the conservative estimate
ensures that the manipulation is safe, the optimistic estimate
guides the action selection when no solution can be found
for the conservative estimate. Both estimates are dynamically
updated by incorporating new viewpoints, which are selected
such that a safe-to-execute constrained placement solution can
be found with minimal sensing.

To efficiently obtain these dynamic estimates, this work
proposes to utilize a simple volumetric representation. Similar
to occupancy-grids [8] often used in the context of robot
navigation to store the occupied and free space, this represen-
tation stores whether a voxel in the object’s reference frame
is occupied, unoccupied or unobserved. Instead of utilizing

fixed-size grids or octrees to store the volumetric information,
the representation maintains sets of occupied and unobserved
voxels. This minimalistic representation provides efficiency at
the cost of building exact models but proves to be sufficient
to solve the considered problem.

The effectiveness of the proposed approach is demonstrated
by developing a robotic system that picks a previously unseen
object from a table-top and places it in a constrained space
(Fig. 1). The system comprises of a dual-arm manipulator, an
RGB-D sensor, a vacuum-based end-effector and an adaptive,
finger-based hand. Additionally, the system features handoffs
to transfer objects between the two arms and a strategy to
adjust the computed motion trajectories during real-world
execution given sensing updates. Handoff is a re-grasping
strategy that allows more flexibility in solving constrained
placement problems. Closed-loop execution handles stochastic
in-hand motions of objects resulting from unmodeled physical
forces like gravity, inertia and grasping contacts.

240 real-world manipulation experiments are performed to
compare the proposed solution and the straightforward pick-
sense-and-place alternative '. The experiments demonstrate
that the proposed pipeline is both robust and efficient in
handling objects with no prior models within the limitations
of the end-effector and the sensor. It achieves a success rate of
95.82%, which is much higher than an alternative that commits
to a pick without manipulation planning and performs object
reconstruction from heuristic viewpoints without utilizing the
conservative volumetric representation. The proposed pipeline
results in fewer sensing operations and achieves faster execu-
tion times.

II. RELATED WORK

This section discusses existing pick-and-place manipulation
pipelines, object representations for these pipelines and as-
sumptions about the object’s shape and category.
Manipulation pipelines for pick-and-place: Given access to
object models, previous work has addressed problems such
as bin-picking [9], tight-packing [1], [2] and placement of
grasped objects in clutter [3]. Most manipulation pipelines
for novel objects [4], [5] focus on picking the object but do
not address the problem of constrained placement. It has been
demonstrated that robust grasps can be computed [10] over
3d point cloud representations of novel objects by learning lo-
cal geometric features. However, constrained placement tasks
require simultaneously evaluating placements and grasps over
the objects, which is a relatively harder problem than task-
agnostic grasping. A recent work, [7] performs pick-and-place
of objects without object models, but within a single cate-
gory, by training an end-to-end deep reinforcement learning
framework within the task context. Given that it is hard to
interpret the learned policies, it is not clear how the policies
learned with rewards coming from a specific task can be
generalized to other similar tasks, configurations and objects.
Another recent effort [6] proposes using semantic keypoints as
category-level object representation in conjunction with shape

Videos and supplementary algorithmic description: https://robotics.cs.
rutgers.edu/task-driven-perception/



MITASH et al.: PICK-AND-CONSTRAINED-PLACEMENT OF UNKNOWN OBJECTS

Target Object  TargetPlacement | conservative Proposed Pipeline Pose Tracking and Shape update
a Estimate (0),
V ’ Pick-Place (0) l Closed-loop Execute ‘S:'
f 3 . . ensing
. Planning 1
\ B \ (Cons'er\ﬂlﬁve Pick-Handoff-Place (0) }—‘[ Closed-loop Execute ion Planning

Tomask Rylace

Real-world execution

Shape representation

Optimistic
Estimate (S), Manipulation Pick-Place (S)
Planning
(Optimistic | | p; pandoft-Place (5) }—~| Pick the object

Success.
—_—

Failure

pick points " ¢ %
.

oy
"
Finger
grasps

Occupied
voxel set (S)

Unobserved
voxel set (U)

Object rep.

Oo=5uU
No Solution

<
Vacuum No Solution

Online Execution

Move to next best view Update Object’s
Conservative &
Update Shape Optimistic estimates
Place (0) _‘.‘ Closed-loop Execute ‘ modeled in Closed-loop

1 y
2 . ]
Handoff-Place (0) —-{ Closed-loop Exccute ‘ / 4 u

In-hand motion not  Adjustment based on

Fig. 3. (left) The proposed framework considers as input RGB-D images and the target object mask and builds a shape representation based on the observed
and the occluded part of the object. (center) It simultaneously operates over a conservative and an optimistic estimate of the object’s volume to compute a
sequence of manipulation and sensing actions for pick-and-constrained-placement. The object is dynamically updated during the manipulation until a safe to
execute sequence of action is available. (right) Online adaption is performed, which is informed by pose-tracking to counter the effect of stochastic in-hand

motion of the object, which is not modeled during planning.

completion [11] to model collision geometry. Nevertheless,
such techniques typically require access to prior knowledge of
the object’s category to complete its shape and the output is
often too noisy for safe manipulation planning in constrained
spaces. This work does not assume any knowledge of the
object’s geometry or category prior while solving pick-and-
constrained placement problems.

Object representation for manipulation: Objects are often
represented as mesh models that capture the surface of the
object. The models are built either using a turntable setup [12],
or via in-hand scanning by a human user [13] or a robotic
arm [14]. A popular technique for surface reconstruction is
Truncated Signed Distance Function (TSDF) [15], [16] which
fuses multiple depth observations from a sensor and maintains
a signed distance to the closest zero-crossing (representing
the surface). Alternatively, the Surfel representation [17] is
used to store local surface patches with position and normal
information. Nonetheless, the objective is to generate complete
meshes and often involves additional setup and post-processing
steps. The complete models are then used to perform pose
estimation [18], [19], [20], [21] over the online sensor data
and transfer the manipulation actions that are defined over the
model to the scene. Given the effort in modeling every object
instance, some approaches operate at the category-level where
objects are represented in a normalized object frame [22] or
via a canonical model [23]. But given large intra-class shape
variation in certain scenarios, it is hard to capture the shape in
a single category-level pose representation. This often leads
to planning manipulation actions that end up in physically-
unrealistic configuration for certain instances of the category.

An alternative is volumetric shape completion that has been
studied in the context of grasping [24], [25], [26], manipulation
[11] and object search [27]. These approaches come up with a
most-likely estimate of the object from a partial view based on
assumptions, such as symmetry or category-level information.
Operating over such estimates can lead to collisions if the
estimated volume is smaller than the actual object. Instead,
the proposed approach operates only over the sensor data
without any assumptions about the object’s shape. The object
representation in this work is most similar to occupancy grids.

Occupancy grids are often used in the context of SLAM or
indoor navigation to map boolean or probabilistic occupancy
properties either over fixed grid structures [8] or over a more
efficient octree representation [28]. Instead of a fixed grid
structure the current representation stores the occupied and
unobserved voxels of the object as sets. These sets are updated
based on new viewpoints. The minimalistic representation can
efficiently maintain a dynamic representation of the conserva-
tive and optimistic object volume. Thus, the representation is
utilized in the context of the pipeline to perform manipulation
planning directly over sensor data, without any assumptions
over geometric or category-level priors.

III. PROBLEM SETUP AND NOTATION

This section formulates the integrated perception and ma-
nipulation planning problem for constrained placement.
Object representation: A rigid object can be defined by a
region occupied by the object O* C R? in its local reference
frame that represents its shape. Given a pose P € SE(3),
the region occupied by the object at P is denoted by Op. It
should be noted that a geometric model is not available for the
object to be manipulated, i.e., O* is unknown. Thus, O defines
an object representation over which manipulation planning can
operate. In general, O # O*. O is derived from an initial view
of the object given point cloud and image segmentation. The
resulting object model is typically incomplete, and may not
be sufficient to safely place the object in a constrained area.
Constrained placement: Given an object at an initial pose
Pt € SE(3), the goal of the constrained placement problem
is to transfer O* to a pose Piarget € SE(3), such that

Etarget C Rplace Where Rpjace C R3 is the target placement

region.
Manipulation Planning: Manipulation planning for con-
strained placement involves computing a sequence of manip-
ulation actions (picks, placements, re-grasps) that can move
the object O* from Ppi; t0 Piarget, Which successfully solves
a constrained placement task. Such a solution consists of
motions of the arms denoted by II parameterized by the time
of the motions. II(0) is the initial arm configuration, and II(1)
has an arm placing the object at Piarges.
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Integrated Perception and Manipulation Planning: Given
that the true object geometry O* is unknown and planning
can make use only of the partial object representation O,
perception actions are also necessary. These actions can update
the object representation O by manipulating it to desirable
configurations in front of the sensor and obtaining additional
sensing information. Thus, the problem involves computing a
sequence of perception and manipulation actions, such that:
i) the object after executing the sequence of actions ends up
inside the defined constraints, i.e., Oj;ﬁnal is within Rpjace,
where Py, is the resultant pose of the object after applying
the actions; ii) and the returned sequence of perception and
manipulation actions minimizes the task execution time.

IV. PROPOSED PIPELINE

This section presents the proposed pipeline as shown in Fig-
ure. 3. Given as input RGB-D image of the scene and the target
object mask Ti,.5k, the object representation O is initialized
with it’s origin at the centroid of the 3D point cloud segment
corresponding to Ti,.sx and the reference frame at identity
rotation with respect to the camera frame. Within a voxel
grid centered at the origin, each voxel is labeled as either 1)
observed and occupied S, 2) unobserved U, or 3) observed and
unoccupied, i.e., empty voxels that are implicitly modeled as a
set of voxels {p € R? | p ¢ SUU, ||p — origin(O)| < Dmax}»
for a maximum dimension parameter D, ,x = 30cm. The
representation is stored as a set O that consists of two mutually
exclusive sets of voxels S and I/ in R3. S is a set of occupied
voxels on the surface of the object that are observed by the
RGB-D sensor. U is a set of unobserved voxels in space that
have not been observed by the sensor given the viewpoints but
have a non-zero probability of belonging to the target object.
Thus O = SUU, where, S N U = ¢.

A set of grasps and placements are computed simultane-
ously over a conservative estimate and an optimistic estimate
of the object’s volume. The conservative estimate corresponds
to O, while the optimistic estimate only considers the observed
part of the object, i.e., S. Manipulation planning is performed
considering the grasps and placements computed over O. The
objective is to compute a sequence of these manipulation ac-
tions and corresponding arm motions, which allow to connect a
grasp to a placement pose. Any manipulation planning solution
computed over O can be directly executed in the real-world as
it is necessarily collision-free with respect to the true object
shape O*, given that O* C O. Often no solution can be found
for the task as O may significantly overestimate O*. In such a
scenario, the object is picked and manipulated to acquire new
observations, thereby updating O.

The choice of picking point is critical as it might influence
the solution once O has been updated. For this reason, ma-
nipulation planning is performed over the optimistic estimate
of the object’s volume. In this case, all actions after picking,
such as re-grasps and placements are computed over S. If
no placements are achievable given S, the problem is not
solvable, since S C O*. If a solution is found for S, it informs
the selection of the picking point over O.

The next decision is the selection of the next best view. It is
selected among a set of pre-defined discrete viewpoints with

an objective of exposing the highest number of unobserved
voxels in Y. This is found by rendering S at each of the
viewpoints and computing the number of voxels in ¢/ that are
visible, given the rendered image. The selected viewpoint is
most-likely to reduce the conservative volume of the object.
The object is then moved to this viewpoint and O is updated.

The size of the set O (and thus the conservative volume)
is largest at initialization. Any update to O either removes a
point p € U (if it is observed to be empty) or p can be moved
from U to S. To update O, the observed segment s’ at time ¢ is
transformed to the object’s local frame based on the estimated
pose P*. For each point p on the transformed point cloud, its
nearest neighbor pS € S and p“ € U are found. If \ p° —p |<
0. where 0. is the correspondence threshold, p is considered
to be already present. Otherwise, if | p — p |< d., p“ is
removed from U and added to S. Finally, the method iterates
over all points in Up, to remove points in /, which belong to
the empty part of space based on the currently observed depth
image. Applying these constraints in the update significantly
reduces the drift that occurs in simultaneous updates to the
object’s pose and shape.

Grasps and placements are re-computed over the updated
object estimate and manipulation planning is performed again.
This process is repeated until either a solution is found for
the constrained placement task or the algorithm runs out of
a maximum number of trials. This means that the pipeline
does not require the object to be completely reconstructed,
but only enough to compute a safe-to-execute solution for the
placement task.

V. SYSTEM DESIGN & IMPLEMENTATION

Fig. 4 shows the hardware
setup. It comprises a dual-
arm manipulator (Yaskawa
Motoman) with two 7-dof
arms. The left arm is fit-
ted with a narrow, cylindri-
cal end-effector with a vac-
uum gripper; and the right
arm is fitted with a Robotiq
2-fingered gripper. A single
RGB-D sensor (Kinect Azure) is mounted on the robot over-
looking both the picking and the placement regions. The sensor
is configured in Wide-FOV mode to capture images at 720p
resolution with a frequency of up to 20Hz. Below are the
implementation details corresponding to different components
of the proposed pipeline for this hardware setup.

Grasp computation: Grasp sets G| and G, are computed
over the object representation O by ensuring stable geometric
interaction with the observed part of the object S and being
collision-free with both S and U, thereby ensuring safe and
successful execution. It is also crucial for the success of
manipulation planning to have large, diverse grasp sets at its
disposal. This is distinct from the typical objective of grasp
generation modules that primarily focus on the quality of the
top (few) returned grasps. For instance, in Fig. 3, the grasps are
spread out over O with different approach directions, which

Dual ArmMznipuIator
o

So

2-Fingered
Adaptive Gripper

Vacuum gripper

Fig. 4. Hardware Setup.
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provide options to manipulation planning and aid solution
discovery.

Vacuum grasps G) are computed by uniformly sampling pick
points and their surface normals from S, and ranked in quality
by their distance from the shape centroid. The grasp set G,
for the fingered gripper samples a large set of grasps over
O according to prior work [10]. Sampled grasps are pushed
forward along the grasp approach direction until the fingers
collide with points from S or U/, and ranked by the alignment
between the finger and contact region on S.

Placement Computation: Given the placement region
Rplace, and the object representation O, two boxes are com-
puted, 1) the maximum volume box Bpjace Within Ryjace and
2) the minimal volume box Bg that encloses O. Candidate
placement poses correspond to configurations of Bo which fit
within Bpjace. A discrete set of configurations (= 24) for the
box is computed by placing Bo at the center of Bpjace and
validating all axis-aligned rotations. Any pose in the returned
set Pplace 18 a candidate Piarget-

Manipulation Planning: The input to manipulation plan-
ning is the estimated object representation O, the grasp sets
for both arms, Gi, G, and the placement poses Pplace. Manip-
ulation planning returns a sequence of prehensile manipulation
actions that ensure a collision free movement (II) of the arms
and O such that the object is transferred from P;;; to some
Piarget € Pplace- In the absence of any errors, the execution
of these actions solves the constrained placement task.

As a part of the task planning framework, a probabilistic
roadmap [29] consisting of 5000 nodes is constructed using
the PRM* algorithm [30] for each of the arms. The grasps and
placements for each arm can be attained by corresponding
grasping, and placement configurations of the arms, obtained
using Inverse Kinematics solvers. Beginning with the initial
configuration of the arms, the high-level task planning problem
becomes a search over a sequence of the manipulation actions,
achievable by the pick, place or handoff configurations. This
is described in the form of a forward search tree [31] which
operates over the same roadmap [32] by invalidating edges
(motions) that collide with the object, or the other arm.
The search tree is further focused by only expanding pick-
place and pick-handoff-place action sequences. Each such
sequence can be achieved through a combination of different
choices of grasping, handoff, and placement configurations.
The search traverses the set of options for grasps in the
descending order or quality, and returns the first discovered
solution that successfully achieves a valid target placement
(Ptarget € Pplace)-

Shape and Pose Tracking: The object pose P’ changes
over time with the gripper manipulating it, where E! € SE(3)
denotes the gripper pose at time t. Between consecutive
timestamps for a perfect prehensile manipulation, AP*~ 1t =
AE'1 which is the change in the gripper’s pose. Tracking is
introduced to account for non-prehensile within-hand motions
which violates this nicety.

The object segment at any time s® is computed from
a) points lying in a pre-defined region of interest in the
reference frame of the gripper, and b) by eliminating the
points corresponding to the gripper’s known model. Object

t

pose update AP!~! is computed in three steps:

1) Assuming rigid attachment of the object with the end-
effector, the transformation, AE'~1 is applied to the object
segment in previous frame s'~! to obtain the expected object
segment at time t, s".

2) To account for any within hand motion of the object, a
transformation is computed between s’ and the observation
st via ICP. While AP~ !t = AE!'~1! x APjcp provides a
good estimate of relative pose between consecutive frames,
accumulating such transforms over time can cause drift.

3) A final point-set registration process is utilized to lo-
cally refine the pose. An ICP registration step with a strict
correspondence threshold is performed between the object
representation () at pose P! = P'=1 . AP!=1 and the
current observation s’. The resulting transformation is applied
to AP~  and correspondingly P*.

During manipulation, when a new viewpoint is encountered,
the output of pose tracking is utilized to update the object’s
shape which assists tracking in future frames.

Reaction to Sensing Updates: Given a manipulation
planning solution II, the objective is to ensure that any
errors in execution or non-prehensile grasping interactions are
addressed. At any point in time ¢, II(¢) describes how the
arms are configured. Assuming prehensile grasps, the expected
object pose P** can be estimated. Tracking returns the current
estimate P?. If P! # P™ the remainder of the motion has to
be adjusted to account for AP = P — P! Large AP errors
may require complete re-planning of II. In this work these
adjustments are performed before handoffs, and placements

by locally adapting II.
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VI. EXPERIMENTAL SETUP

This section describes the setup for the experiments per-
formed to measure the efficacy of the proposed pipeline and
the developed system in solving the pick-and-constrained-
placement problem. Given the dual-arm manipulator, objects
are placed on a table-top in front of the left arm (vacuum
gripper), with the target placement region centrally aligned in
front of the robot, reachable by both arms. The constrained
placement solutions can therefore involve a direct placement
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by the left arm, or a handoff-placement with the right arm.
Following describe the different parameters of the setup fol-
lowed by the evaluation metrics.

Objects: Experiments are performed over 5 YCB [12]
objects (Fig. 5) of different shapes and sizes. It should be
noted that no models are made available to the method.

Initial Configuration: For each stable resting pose of the
object in front of the left arm, rotations were uniformly
sampled along the axis perpendicular to the plane of the table.
Different initial configurations of the object will affect the
nature of the task planning solution by virtue of a) different
available initial picks, and b) different conservative shape
representation based on how much of the object is unseen at
the configuration. Configurations with limited reachable grasps
are ignored. The height of the table is known in advance and it
is used to obtain the initial point cloud segment for the object.

Placement Region: An opening is created on the table
surface where the object needs to be placed. This corresponds
to the placement task. Two placement scenarios are evaluated
as shown in Fig. 5 (bottom right). Using the measures of three
canonical dimensions measured from the object, the first class
of opening size allows four out of six approach directions for
placement to fit, while the other only allows two approach
directions. An error tolerance of 2.00cm is considered in the
dimension of the opening. The idea is that more constraints
(Iesser approach directions) need deliberate planning to choose
precise grasp and handoff sequences that allow the placement.
Evaluating the insertion with a lower margin would need to
consider the sensor accuracy, errors in detection of the target
placement region and the accuracy of an insertion controller,
which are not the focus of this work.

Evaluation metrics: Given the task, the pipeline is respon-
sible to pick the object and re-configure it such that it ends
up within the desired placement region on top of the table.
A simple control strategy is used to insert the object into the
hole and measure the success of the task. It utilizes cartesian
control to incrementally lower the object until the joint-limits
are reached or a collision is observed. The object is then
dropped. Success (S) denotes the percentage of trials that
result in collision-free, successful insertion of objects within
the constrained opening, while Marginal Success (MS) records
trials where the object grazes the boundaries of the constrained
space during a successful insertion. In terms of quality metrics,
Task planning time records open-loop manipulation planning,
Move time records the time the robot is in motion, and
Sensing actions counts the number of times the robot actively
re-configures the object to acquire sensor data from a new
viewpoint.

Baseline - Complete Shape Reconstruction: The baseline
(shown in Fig. 5) picks the object with a task-agnostic pick
(i.e., any pick that works) and reconstructs the entire object
by moving to pre-defined viewpoints. Manipulation planning
is performed on the reconstructed shape to find and execute a
solution for constrained placement.

A drawback of this approach is that committing to a task-
agnostic pick might preclude solutions, which might have been
possible with a different pick. For instance, the initial pick
might not allow a direct placement or in some cases even

4

%
*®

Fig. 6. Qualitative results indicating different solution modes of the proposed
pipeline.

obstruct handoffs. Another drawback is that the amount of
object reconstruction required depends on the task. It can be
inefficient to fully reconstruct the object if a robust solution
with partial information can be found. Finally, even with a
large number of perception actions, some parts of the objects
might be missing, which can still lead to execution failures.
For instance, this can happen if say the bottom surface is not
reconstructed and fingered grasps interact with the unmodeled
part of the object during execution.
VII. RESULTS

240 trials are performed with combinations of object sets,
initial configurations and placement constraints. Out of these,
120 experiments use the Baseline pipeline shown in Fig. 5
and the remaining 120 use the proposed pipeline. The results
for Baseline (BL) and Baseline + Handoff (HO) are derived
from the same set of physical experiments. Fig. 7 shows the
outcome of the experiments. The failures include Placement
failures where the final act of placement fails to insert the
object, Handoff failures where executing the transfer of object
between the arms fails, and No Solution cases when planning
fails and nothing is executed.

margiﬁl placement handoff 'ﬁj‘
100% success) failure failure solution

I
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Fig. 7. Split of outcomes of experiments within success and various failure
cases for each category.

Baseline (BL): The baseline corresponds to the shape
reconstruction pipeline but without the option for handoffs.
Once picked with a task-agnostic grasp, the object is moved
in front of the sensor at a predefined pose, and RGB-D images
are captured from 4 different viewpoints by rotating the object
along the global Z-axis by an angle of 7 /2. Views are merged
to obtain the object’s reconstruction. Manipulation planning
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TABLE I
Object #Experiments Baseline (+) Handoff Proposed pipeline
S (%) S+ MS (%) S (%) S+ MS (%) S (%) S + MS (%)
001_chips_can 20 15.00 15.00 35.00 40.00 90.00 90.00
003_cracker_box 30 30.00 33.33 46.66 56.66 90.00 93.33
004_sugar_box 30 23.33 23.33 53.33 60.00 93.33 96.66
006_mustard_bottle 20 0.00 0.00 45.00 55.0 100.00 100.00
002_bleach_cleanser 20 0.00 0.00 50.00 60.00 100.00 100.00
Overall 120 15.83 16.66 46.66 55.00 94.16 95.82

Evaluating the task success rate of the proposed manipulation pipeline against a baseline. Overall 240 manipulation trials were executed,
where the results corresponding to Baseline and Baseline + handoff are derived from the first set and the results for the proposed
pipeline are derived from the second set. S indicates successful insertion in the constrained space, and MS stands for marginal success,
where the object made contact with the boundary of the constrained space but the task still succeeded.

TABLE II
Baseline + Handoff Proposed pipeline
sense-place  sense-hoff-place overall place sense-place hoff-place sense-hoff-place overall
#instances 20.0 46.0 66.0 18.0 22.0 51.0 24.0 115.0
tp time (s) 4.29 £+ 3.59 5.87 £ 2.88 5.39 +£3.20 1.10 £ 047 6.69 £ 4.15 541 £3.14 13.50 + 8.69 6.67 + 6.22
move time (s)  9.92 £ 1.04 1991 + 1.87 16.88 + 4.88 6.13 2276 724 £ 1.24 1812 £ 2.02 18.22 + 1.67 14.18 + 5.79
sense actions 4.0 £ 0.0 4.0 +£ 0.0 4.0+ 0.0 0.0 + 0.0 1.36 &+ 0.56 0.0 + 0.0 1.41 + 0.57 0.59 + 0.81

Comparing the quality and computation time for the solutions found with the baseline and the proposed approach. The data is presented only for

successful executions within each category.

is then invoked to find a pick-and-placement (no handoff)
solution with the left arm if it exists. The baseline achieves
a very low success rate (Table. I) and the most dominant
failure mode is No Solution (Fig. 7) since the initially chosen
grasp might not allow task completion. This implies that
given the selected grasp, a reachable, collision-free placement
configuration cannot be found for the arm.

Baseline + Handoff (HO): An improvement over BL, this
allows the manipulator an additional option of transferring
the object to the fingered gripper which can then be used
to reorient and place it in the constrained space. The overall
success rate increases significantly when additional handoff
actions are available. Nonetheless, the handoff by itself can
be seen as a constrained placement problem, and as this
approach commits to a pick for object reconstruction without
manipulation planning, it could still lead to No solution cases
specially for relatively smaller sized objects such as for the
Mustard bottle (Fig. 7). The grasps with the fingered gripper
are computed assuming that the reconstructed geometry is
indeed the complete model of the object. However, views
across a single rotation are not sufficient to complete the
object shape. Unlike the proposed approach, the baseline does
not consider the unseen part of the object as a collision
geometry. This causes grasps to collide with the unmodeled
parts of the object during execution (Handoff failures). The
baseline approach performs re-sensing after it picks the object.
The re-sensing action prevents any inconsistency due to in-
hand motion of the object during the pick. Nevertheless,
any in-hand motion that occurs after the reconstruction does
not get accounted for and can result in Placement failures.
Placement can also fail if the reconstructed geometry is an
under-approximation of the true object geometry.

Proposed Pipeline: The proposed pipeline discovers four
classes of solutions (Fig 6) that compose a sequence of picks,
updates, handoffs and placements. The key benefit is that it
chooses the mode of operation based on the problem at hand,
and tries to (a) perform the minimum number of sensing
actions (b) with a minimum number of manipulation actions

(c) in a robust fashion that accounts for non-prehensile errors
(d) while guaranteeing safe execution and successful task
completion. The results reflect that it achieves all of the above
by leveraging the object representation, integrated perception
and planning in the pipeline, and closed loop execution to
achieve a success rate of 95.82%.

The proposed pipeline eliminates the cases of No Solution
by performing manipulation planning with a large, diverse,
and robust set of grasps. It ensures successful execution of the
task by conservative modeling of the unseen parts of the object
to avoid collision and by tracking the shape representation to
account for any in-hand motion of the object and adjusting the
computed plan. The failure cases for this approach are due to
failures in tracking. If the within-hand motion is too drastic,
motion plans might not be found for local adjustments to the
initially computed solution.

As indicated in Fig. 6 and Table. II, the proposed solution
can find one of the four solution modes with varying solution
quality. The advantage in terms of efficiency comes from the
fact that the proposed solution requires additional sensing in
only 38% of the runs and the mean number of sensing actions
is 1.36 as opposed to the 4 additional sensing actions in
every run for the baseline approach. Additionally, the object
representation allows task planning with multiple grasping
options even before picking thereby increasing the number
of single-shot pick-and-place solutions with less motion time.
The overall execution time reduces significantly due to the
combination of these factors.

Demonstrations and Publicly-shared Data: On top of the
benchmark, additional demonstrations show the capability of
the proposed system. The first demonstration is performed
over mugs, some with and some without handles, with the
handles being occluded in the first viewpoint. Such a case
imposes ambiguity for shape completion approaches, but is
solved with the proposed pipeline as demonstrated in the
accompanying video. The second demonstration presents the
task of flipping objects and placing them on the table. Without
models, object placement tasks can either be specified relative
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to constraints in the environment or relative to the initial pose.
Following data items corresponding to all the manipulation
runs for the proposed solution are made publicly available at
https://robotics.cs.rutgers.edu/task-driven-perception/. 1) Task spec-
ification: Initial RGB-D data, object segment, placement re-
gion. 2) RGB-D data at 20Hz for the executed trajectory.

3) Robot arm transforma- .
tions and grasping status \g ‘ R ii
|
¢ ol e

for both grippers. 4) Rela-

tive pose estimates returned
Fig. 8. Demonstrations of the proposed
pipeline’s operation (left) in the pres-

by the tracking module for

every frame. The data can

be used as a manipula-

tion benchmark or to study

tracking shapes and poses ence of shape ambiguity (right) on the
. . . object flipping task.

of objects in-hand during

manipulation.

VIII. LIMITATIONS AND FUTURE WORK

The current work paves the way for the paradigm of
task-driven perception and manipulation for solving pick-and-
constrained-placement tasks. Not assuming a category-level
shape prior or known geometric models and operating directly
over the sensor data makes this manipulation pipeline safe to
execute and scalable. The results show performance benefits
from the design principles adopted in the pipeline and the
representation proposed in the current work.

There are some limitations to the current work that can
be addressed in future research. The pick/grasp computation
is not the focus here. General grasping strategies on such
shape representations can prove useful. Additionally, the end-
effectors utilized in the system restrict the choice of objects
that can be evaluated due to limitations based on object’s
weight, size or material properties. Similar restrictions are
due to the depth sensor used in this study as it is not suited
for reflective and transparent objects. Segmentation in the
presence of clutter is challenging despite the recent progress
in depth and color based segmentation [33], [34] of unknown
objects. Future work could focus on dealing with segmentation
noise and occlusions due to clutter. Finally, it is often not
possible or safe to insert the object completely in a narrow
opening, and in such cases it can be dropped from some
height. This process is significantly affected by the object’s
mass distribution, which also needs to be modeled.
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