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There is a growing need to perform a diverse set of real-time analytics (batch and stream analytics) on evolv-

ing graphs to deliver the values of big data to users. The key requirement from such applications is to have a

data store to support their diverse data access efficiently, while concurrently ingesting fine-grained updates

at a high velocity. Unfortunately, current graph systems, either graph databases or analytics engines, are not

designed to achieve high performance for both operations; rather, they excel in one area that keeps a private

data store in a specialized way to favor their operations only. To address this challenge, we have designed

and developed GraphOne, a graph data store that abstracts the graph data store away from the specialized

systems to solve the fundamental research problems associated with the data store design. It combines two

complementary graph storage formats (edge list and adjacency list) and uses dual versioning to decouple

graph computations from updates. Importantly, it presents a new data abstraction, GraphView, to enable data

access at two different granularities of data ingestions (called data visibility) for concurrent execution of di-

verse classes of real-time graph analytics with only a small data duplication. Experimental results show that

GraphOne is able to deliver 11.40× and 5.36× average speedup in ingestion rate against LLAMA and Stinger,

the two state-of-the-art dynamic graph systems, respectively. Further, they achieve an average speedup of

8.75× and 4.14× against LLAMA and 12.80× and 3.18× against Stinger for BFS and PageRank analytics (batch
version), respectively. GraphOne also gains over 2,000× speedup against Kickstarter, a state-of-the-art stream
analytics engine in ingesting the streaming edges and performing streaming BFS when treating first half as

a base snapshot and rest as streaming edge in a synthetic graph. GraphOne also achieves an ingestion rate

of two to three orders of magnitude higher than graph databases. Finally, we demonstrate that it is possible

to run concurrent stream analytics from the same data store.
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1 INTRODUCTION

We live in aworldwhere information networks have become an indivisible part of our daily lives. A

large body of research has studied the relationships in such networks, e.g., biological networks [35],

social networks [22, 43, 49], and the web [9, 33]. In these applications, graph queries and analytics

are being used to gain valuable insights from the data, which can be classified into two broad

categories: batch analytics (e.g., PageRank [69], graph traversal [11, 54, 56]) that analyzes a static

snapshot of the data, and stream analytics (e.g., anomaly detection [8], topic detection [73]), which

studies the incoming data over a time window of interest.

Generally speaking, batch analytics prefers a base (data) store that can provide indexed access on

the non-temporal property of the graph such as the source vertex of an edge, and stream analytics

needs a stream (data) store where data can be stored quickly and can be indexed by their arrival

order for temporal analysis.

Increasingly, one needs to perform batch and stream processing together on evolving graphs [10,

77, 78, 93]. The key requirement here is to sustain a large volume of fine-grained updates at a high

velocity and simultaneously provide high-performance data access for various classes of real-time

analytics and query support.

This trend poses a number of challenges to the underlying storage and datamanagement system.

First, batch and stream analytics perform different kinds of data access, that is, the former visits

the whole graph, while the latter focuses on the data within a time window. Second, each analytic

has a different notion of real time, that is, data are visible to the analytics at different granularity of

data ingestion (updates). For example, an iterative algorithm such as PageRank can run on a graph

that is updated at a coarse granularity, but a graph query to output the latest shortest path requires

data visibility at a much finer granularity. Third, such a system should also be able to handle a high

arrival rate of updates, and maintain data consistency while running concurrent batch and stream

processing tasks.

Unfortunately, current graph systems can provide neither diverse data access nor at different

granularity of data ingestion in the presence of a high data arrival rate, as shown in Table 1. Many

dynamic graph systems [50, 59] only support batched updates, and a few others [23, 79] offer data

visibility at fine granularity of updates but with a weak consistency guarantee (atomic read consis-

tency), which as a result may cause an analytic iteration to run on different data versions and pro-

duce undesired results. Relational and graph databases such as Neo4j [66] can handle fine-grained

updates but suffer from poor ingestion rate for the sake of strong consistency guarantee [62]. Also,

such systems are not designed to support high-performance streaming data access over a timewin-

dow. However, graph stream engines [34, 65, 76, 85] interleave incremental computation with data

ingestion, i.e., graph updates are batched and not applied until the end of an iteration. In short, the

existing systems manage a private data store in a way to favor their specialized analytics.

In principle, one can utilize these specialized graph systems side by side to provide data man-

agement functions for dynamic graphs and support a wide spectrum of analytics and queries as

shown in Figure 1(a). However, such an approach would be suboptimal [93], as it is only as good as

the weakest component, in many cases the graph database with poor performance for streaming

data. Worse, this approach could also lead to excessive data duplication, as each subsystem would

store a replica of the same underlying data in their own format.
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Table 1. A Simplified Classification of Various Graph Data Management Systems Depicting That Each

Graph System Only Supports One Type of Data Ingestion and Access Pattern

Graph Systems Ingestion Type Offered Data Access Type Offered

Graph Database Fine-grained (e.g., Neo4j [66]) Whole Data

Dynamic Fine-grained (e.g., Stinger [23])
Whole Data

Graph System Coarse-grained (e.g., Graphchi [50])

Stream Coarse-grained (e.g., Naiad [65]) Streaming Access of Whole Data

Graph System Coarse-grained (e.g., GraphTau [34]) Streaming Access from Time-window

Fig. 1. Showing a high-level overview of graph analytics system. The evolving graph data arrive one edge at

a time or in batches from the data sources, such as Apache Kafka, database change log, and so on. Each of

current graph analytics systems have a private data store optimized for one class of usecases that interface

with data sources. GraphOne abstracts the data store away from the analytics systems to solve the problems

associated with a general-purpose graph data store and enables execution of diverse classes of analytics from

the same data store using GraphView instances.

In this work, we have designed GraphOne, a unified graph data store abstracted away from the

specialized graph systems, as shown in Figure 1(b), to solve the fundamental problem of such data-

store design and management. GraphOne offers diverse data access at two granularity levels of

data ingestions for various real-time analytics, so that many classes of analytics can be performed

from the same data store, while supporting data ingestion at a high arrival rate. Figure 2 provides

a high-level overview.

It leverages a hybrid graph store to combine a small circular edge log (henceforth edge log) and

an adjacency store for their complementary advantages. Specifically, the edge log keeps the latest

updates in the edge list format using a logging phase and is designed to accelerate data ingestion.

At the same time, the adjacency store holds the snapshots of the older data in the adjacency list

format that is moved periodically from the edge log using a archiving phase and is optimized for

batch and streaming analytics. It is important to note that the graph data are not duplicated in two

formats, although a small amount of overlapping is allowed to keep the original composition of

the versions intact.
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Fig. 2. High-level architecture of GraphOne. Solid and dotted arrows show the data management and access

flow, respectively.

GraphOne enforces data ordering using the temporal nature of the edge log in the logging phase

and keeps the per-vertex edge arrival order intact in the adjacency store using a novel edge sharding

in the archiving phase. A dual versioning technique then exploits the fine-grained versioning of

the edge list format and the coarse-grained versioning of the adjacency list format to create real-

time versions to offer snapshot isolation data consistency. Further, GraphOne allows independent

execution of analytics that run parallel to data management and can fetch a new version at the

end of its own incremental computation step in case of stream analytics. This is different from the

current stream graph systems where the size of batched update is often determined by the heaviest

compute, which hurts the timeliness of other concurrently executing analytics.

Additionally, we provide two optimization techniques, cacheline-sized memory allocation and

special handling of high degree vertices of power-law graphs, to reduce the memory requirement

of versioned adjacency store.

GraphOne simplifies the diverse data access by presenting a new data abstraction, GraphView,

on top of the hybrid store. Two types of GraphView are supported as shown in Figure 2: (1) The

static view offers real-time versioning of the latest data for batch analytics, and (2) the stream

view supports stream analytics with the most recent updates. These views offers visibility of data

updates to analytics at two levels of granularity where the edge log is used to offer it at the edge

level, while the adjacency store provides the same at coarse granularity of updates. As a result,

GraphOne provides high-level applications with the flexibility to choose the granularity of data

visibility for a desired performance. In other words, the edge log can be accessed if fine-grained

data visibility is required, which can be tuned (Section 7.4).

We have implemented GraphOne as an in-memory graph data store with a limited durability

guarantee on external non-volatile memory express solid-state drives (NVMe SSD). For compar-

ison, we have evaluated it against many classes of in-memory graph systems: LLAMA [59], as a

snapshot-based coarse-grained graph batch analytics system; Stinger [23], a fine-grained dynamic

graph system; Neo4j and SQLite, two graph data management systems; and Kickstarter [85], as

graph stream analytics. The experimental results show that GraphOne can support a high data

ingestion rate,; specifically, it achieves 11.40× average speedup in ingestion rate than LLAMA,

5.36× higher ingestion rate than Stinger, and two to three orders of magnitude higher ingestion

rate than graph databases.

In addition, GraphOne outperforms LLAMA by 8.75× and 4.14× and Stinger by 12.80× and

3.18× for BFS and PageRank analytics (batch version), respectively. GraphOne also gains a
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Fig. 3. Graph traversal can locate possible infected nodes using real-time authentication graph if infected

user and node are known.

speedup of over 2,000× over Kickstarter in ingesting the streaming edges and performing stream-

ing BFS when treating the first half as a base snapshot and the rest as streaming edge in a synthetic

graph. The stream processing in GraphOne runs parallel to data archiving phase (update to adja-

cency store) that offers 28.58% higher ingestion rate compared to the current practice of running

the two in sequence. Due to this feature, GraphOne also enables concurrent stream analytics from

the same dynamic adjacency store that is mostly absent in prior graph stream analytics engine.

To summarize, GraphOne makes three contributions:

• Unifies stream and base stores to manage the graph data in a dynamic environment;

• Provides batch and stream analytics through dual versioning, smart data management, and

memory optimization techniques;

• Supports diverse data access for concurrent execution of various usecases with GraphView

and data visibility abstractions.

The rest of the article is organized as follows. We present a usecase in Section 2, opportunities

and a GraphOne overview in Section 3, the hybrid store in Section 4, data management internals

and optimizations in Section 5, GraphView data abstraction in Section 6, evaluations in Section 7,

related work in Section 8, and a conclusion in Section 9.

2 USE CASE: NETWORK ANALYSIS

Graph analytics is a natural choice for data analysis on an enterprise network. Figure 3(a) shows a

graph representation of a simple computer network. Such a network can be analyzed in its entirety

by calculating the diameter [52] and betweenness centrality [13] to identify the articulation points.

This kind of batch analysis is very useful for network infrastructuremanagement. In themeantime,

as the dynamic dataflow within the network captures the real-time behaviors of the users and

machines, the stream analytics is used to identify security risks, e.g., denial of service, and lateral

movement, which can be expressed in the form of path queries, parallel paths, and tree queries on

a streaming graph [18, 40].

The Los Alamos National Laboratory (LANL) recently released a comprehensive dataset [39]

that captures a wide range of network information, including authentication events, process

events, DNS lookups, and network flows. The LANL data cover over 1.5 billion events, 12,000

users, and 17,000 computers and span 58 consecutive days. For example, the network authentica-

tion data capture the login information with which a user logs into a network machine and from

that machine to other machines. When the network defense system identifies a malicious user and

node, it needs to find all the nodes that may have been infected. Instead of analyzing every node

of the network, one can quickly run a path traversal query on the real-time authentication graph
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Fig. 4. Sample graph and its various storage format. GraphOne concentrates on the complementary prop-

erties of the edge list format and the adjacency list format.

to identify the possible infected nodes, that is, find all the nodes whose login has originated from

the chain of nodes that are logged in from the first infected machine [40], as shown in Figure 3(b).

In summary, a high-performance graph store that captures dynamic data in the network, com-

bined with user andmachine information and network topology is advantageous in understanding

the health of the network, accelerating network service, and protecting it against various attacks.

This clearly articulates the need to have a data store that can efficiently ingest the incoming data

and make it available for analysis in a form that various analytics and query engine prefer, so

that analytics writer can focus on the actual usecases rather than thinking about how to manage

the incoming data and providing that right data consistency as well proving various data access

types. To this end, GraphOne presents a graph data storage and management infrastructure that

abstracts the data store away from the analytics engines to solve the basic data access problem

associated with such diverse real-time analytics.

3 OPPORTUNITIES AND OVERVIEW

A graph can be defined as G = (V, E, W), where V is the vertex set, E is the edge set, and W is the

set of edge weights. Each vertex may also have a label. In this section, graph formats and their

traits are described as relevant for GraphOne, and then we present its high-level overview.

3.1 Graph Representation: Opportunities

Figure 4 shows three most popular data formats for a sample graph. First, the edge list is a col-

lection of edges, a pair of vertices, and captures the incoming data in their arrival order. Second,

the compressed sparse row (CSR) groups the edges of a vertex in an edge array. There is a meta-

data structure, a vertex array, that contains the index of the first edge of each vertex. Third, the

adjacency list manages the neighbors of each vertex in separate per-vertex edge arrays, and the

vertex array stores a count (called degree) and pointer to indicate the length and the location of

the corresponding edge arrays, respectively. This format is better than the CSR for ingesting graph

updates, as it affects only one edge array at a time.

In the edge list, the neighbors of each vertex are scattered across, so this is not the optimal

choice for many graph queries and batch analytics, wher it is preferred to get the neighboring

edges of a vertex quickly [12, 31, 32, 36], and so on. However, the edge list provides a natural

support for fast update, as each update simply needs to be appended to the end of the list.

However, the adjacency list format loses the temporal ordering, as the incoming updates get

scattered over the edge arrays; thus, this is not suited directly for stream analytics. Also, creation

of fine-grained snapshots are not easy on adjacency lists, hence prior work has only attempted to
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Fig. 5. Architecture of GraphOne. Operations related to same data structures have been grayed out in the

archiving phase. The compaction Phase is not shown.

create coarse-grained versioning [28, 59]. Stinger [23] directly updates the adjacency list format

but can provide read committed only, a weaker data consistency, that does not provide any

snapshot capability. Therefore different steps within an analytics will run on different versions of

data, thereby producing unknown results in the case of evolving graphs.

Given their advantages and disadvantages, neither format is ideally suited for supporting both

the batch and stream analytics and high ingestion of data on its own. We now identify two oppor-

tunities for this work:

Opportunity #1: Utilize both the edge list and the adjacency list within a hybrid store.

The edge list format preserves the data arrival order and offers a good support for fast updates, as

each update is simply appended to the end of the list that requires sequential write only. However,

the adjacency list keeps all the neighbors of a vertex indexed by the source vertex, which provides

efficient data access for graph analytics. Thus it allows GraphOne to achieve high-performance

graph computation while simultaneously supporting fine-grained updates.

Opportunity #2: Fine-grained snapshot creation with the edge list format. Graph analytics

and queries require an immutable snapshot of the latest data for the duration of their execution.

The edge list format provides a natural support for fine-grained snapshot creationwithout creating

a physical snapshot due to its temporal nature, as tracking a snapshot is just remembering an offset

in the edge list. Hence, the adjacency list format can use the fine-grained snapshot capability of the

edge list to complement its coarse-grained snapshot capability [28, 59] to create real-time versions

of graph data.

3.2 Overview

GraphOne utilizes a hybrid graph data store (discussed in Section 4) that consists of a small circu-

lar edge log and the adjacency store. Figure 5 shows a high-level overview of GraphOne architec-

ture. The hybrid store is managed in several phases (presented in Section 5). Specifically, during

the logging phase, the edge log records the incoming updates in the edge list format atomically in

their arrival order and supports a high ingestion rate. We define non-archived edges as the edges

in the edge log that are yet to be moved to the adjacency store. When their number crosses the

archiving threshold, a parallel archiving phase begins, which merges the latest edges to the adja-

cency store to create a new adjacency list snapshot. This duration is referred to as an epoch. In the

durable phase, the edge log is written to a disk in an asynchronous manner and requires support
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from upstream buffering for complete recovery. In this article, we use data ingestion to mean that

newly arrived edges has been percolated to the adjacency store.

Thus, GraphOne is an in-memory graph data store with a weaker durability guarantee and of-

fers snapshot isolation as its data consistency, which is slightly weaker than full serializability that

supports transactions, but is stronger than the read-committed isolation level offered by NoSQL

data stores such as Stinger [23] or Trinity [79, 90]. Due to the logging phase, the non-archived edges

move to the adjacency store in batches, which enables a number of optimizations to improve the

performance of archiving phase (Section 5.1.2) and to also reduce the memory consumption of the

adjacency store (Section 5.2). These techniques together bring the performance of GraphOne very

close to static graph engines.

To efficiently create and manage immutable graph versions for real-time data analytics in the

presence of the incoming updates, we provide a set of GraphView APIs (discussed in Section 6)

that data access for diverse classes of analytics. Specifically, static view API is for batch processing,

while stream view API is for stream processing. Internally, the views utilize a dual versioning tech-

nique where the versioning capability of both formats is exploited for faster creation of a snapshot

of the current data at very low cost. For example, a real-time static view can readily be composed

by using the latest coarse-grained version of the adjacency store and the latest fine-grained ver-

sion of non-archived edges. The data overlap technique allows GraphOne to keep the original

composition of the created view intact and thus guarantees its data access without interfering the

data management operations.

It is important to note that the GraphView also provides analytics with the flexibility to trade

off the granularity of data visibility of incoming updates for better analytics performance, i.e., an

analytic gets to choose the type of data ingestion that it is interested in. For example, the analytics

that prefer running only on batched updates will access the latest adjacency store and thus avoid

the cost associated with the access of the latest edges from the non-archived edges that are not

indexed by source vertices.

Despite its simplicity, the abstraction of data visibility is very powerful, as it allows high-

performance fine-grained ingestion but offers the performance of batched updates to those an-

alytics that are not interested in fine-grained ingestions. Put other way, GraphOne removes the

cost of fine-grained ingestion from the data write path to the data read path of those analytics that

are really interested in running on fine-grained ingestion. All other data read paths offer perfor-

mance of a batched update system.

3.3 Major Differences

GraphOne is different than databases, graph batch analytics, graph stream analytics, and key-

value stores in some major ways. In this sub-section, we provide an overview of those differences.

In databases, it is possible to provide functionality similar to adjacency list graph format. For

example, a database can create a simple schema to store graph edges containing source and desti-

nation vertices in an edge table. The data of edge table is similar to an edge list format. Creating an

index in the source vertex in a edge table results in a structure similar to an adjacency list. In that

case, databases update the edge list log structure (for logging purpose) and update to the indexed

structures (archiving to adjacency store) in the same thread context. Stinger [23] does not have

any log structure and maintains an indexed structure only but works same way, i.e., update of the

indexed structure happens in the thread context of update thread.

However, GraphOne updates both of them in separate thread contexts, while delaying the up-

date of the indexed structure for batching the edges to achieve better overall ingestion throughput.

The major difference of GraphOne from the snapshot-based graph batch analytics on evolving

graphs, such as Kineograph [17], LLAMA [59] and so on, is the ability of GraphOne to create
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fine-grained snapshots and control the data access of those snapshots by anlaytics using the data

visibility abstraction.

Both the databases and snapshot-based graph batch analytics and GraphOne run analytics in

separate thread contexts than the data ingestion.

For graph stream analytics, update of the log structure happens separately than the analytics

in GraphOne and prior stream engines. The major difference is in the context of the indexed

structure update (archiving phase). Prior graph stream engines perform the archiving phase in

the context of stream analytics using operators such map, join, and group-by (as in Naiad [64],

GraphTau [34], etc.) or using specific implementation (as in Kickstarter [85], GraphBolt [61], etc.),

followed by actual stream computation. GraphOne, however, moves the archiving phase out of the

analytics pipeline, i.e., archiving happens in parallel to actual stream computation, which results

in overall better performance.

Due to the overlapping nature of archiving and computation, GraphOne becomes the first-

ever system that can enable concurrent stream analytics from the same indexed structure. Even

snapshot-based stream analytics systems such as Kinerograph [17] cannot execute two classes of

stream analytics together: Those that need to access whole data, and those that require window

access, as Kineograph, propose a different snapshot technique to be implemented as future work

for data-window access (see Section 6.3 in the article [17]). Prior stream analytics can decides to

deploy multiple instances of same stream analytics engine to run concurrent stream analytics but

will also produce a separate adjacency store.

Key-value store natively provides only three basic operations: PUT, GET, and DELETE. How-

ever, the APPEND operation is a must-have requirement for graph systems to support graph data

ingestion. A new edge insertion potentially means appending a new entry in the neighbor list

(the value) of the source vertex (the key). Similarly, a deletion of edge requires deleting one entry

from neighbor list of the source vertex. Many prior graph analytics systems, such as Kineograph,

Trinity, and so on, additionally implement a graph layer on top of a key-value store to support this

APPEND operation. The append operation on top of key-value store works using copy-on-write in

Trinity: An edge addition requires copy of the prior neighbor list (value) of the source vertex (key)

from the memory and then appends a new neighbor to the neighbor list and, finally, writes the

whole neighbor list to a new memory location. Then, they provide some optimizations to reduce

this migration on each append.

Clearly, key-value store is not natively suited for storing evolving graph data. However, Gra-

phOne provides a native implementation of the adjacency list with in-built support for the AP-

PEND operation without using copy-on-write approach.

Finally, the GraphOne data store brings all different classes of analytics within a single system

by allowing them to be performed concurrently from the same data store using the GraphView

interface. In this article, we concentrate on the data-store design and optimization and demonstrate

through discussions and experiments that its data-store abstraction and optimization techniques

can be integrated to many classes of analytics engines to bring performance improvement. For

this, we will be implementing actual analytics as suggested in prior works as much as possible for

fair comparison while doing data-management our way.

4 HYBRID STORE AND VERSIONING

In this section, we first present internals of hybrid store followed by a discussion on versioning.

4.1 Hybrid Store

The hybrid store design presented in Figure 6 consists of a small circular edge log that is used to

record the latest updates in the edge list format. For deletion cases, we use tombstones, specifically
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Fig. 6. The hybrid store for the data arrived from time t0 to t9: The vertex array contains pointers to the first
and the last block of each edge array, while degree array contains deleted and added edge counts. However,

only the pointer to the first block in the vertex array, and total count in the degree array are shown for

brevity.

the edge log adds a new entry, but the most significant bit (MSB) of the source vertex ID of the

edge is set to denote its deletion as shown in Figure 6 for deleted edge (2, 4) at time t7.
The adjacency store keeps the older data in the adjacency list format. The adjacency store is

composed of a vertex array, per-vertex edge arrays, and a multi-versioned degree array. The vertex

array contains a per-vertex flag and pointers to the first and last blocks of the edge arrays. Addition

of a new vertex is done by setting a special bit in the per-vertex flag. Vertex deletion sets another

bit in the same flag and adds all of its edges as deleted edges to the edge log. These bits help

GraphOne in garbage collecting the deleted vertex ID.

The edge arrays contains per-vertex edges of the adjacency list. It may contain many small edge

blocks, each of which contains a count of the edges in the block and a memory pointer to the next

block. The connection of edge blocks are referred to as chaining. An edge addition always happens

at the end of the edge array of each vertex, which may require the allocation of a new edge block

that is linked to the last block. Figure 6 shows chained edge arrays for the vertices with ID 1 to

4 for data updates that arrive between t4 to t7. The adjacency list treats an edge deletion as an

addition but the deleted edge entry in the edge array keeps the negative position of the original

edge, while the actual data are not modified at all, as shown for edge (2, 4). As a result, deletion
never breaks the convergence of a previous computation, as it does not modify the dataset of the

computation.

The degree array contains the count of neighboring edges of each vertex and is the most im-

portant data structure to support multi-versioning of adjacency list, because a degree array from

an older adjacency store snapshot can identify the edges to be accessed even from the latest edge

arrays due to the latter’s append-only property. We exploit this property and customize the degree

structure to provide snapshot capability even in presence of data deletion. Hence, the degree array

in GraphOne ismulti-versioned to support adjacency store snapshots. It keeps the total added and

deleted edge counts of each vertex. Both counts help in efficiently getting the valid neighboring

edges, as a client can do the exact memory allocation (refer to the get-nebrs-*() API in Table 3).

When an edge is added or deleted for a vertex, a new entry is added for this vertex in the degree

array in each epoch. Two different versions S0 and S1 of the degree array are shown in Figure 6

for two epochs, t0 − t3 and t4 − t7.
One can note that degree nodes are shared across epochs if there is no later activity in a vertex.

For example, the same degree nodes for vertices with ID 5 and 6 are valid for both epochs in
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Figure 6. The degree array nodes of an older versions are garbage collectedwhen the corresponding

adjacency store snapshot retires, i.e., not being used actively by any analytics, and is tracked using

reference counting mechanism through the global snapshot list, which will be discussed shortly.

For example, if snapshot S0 is retired, then the degree nodes of snapshot S0 for vertices with IDs

1–4 can be reused by later snapshots (e.g., S2). The garbage collection of degree node is part of

archiving phase (see Section 5.1.2).

The vertex array is separated from the degree array for easier implementation of multi-

versioning of the adjacency list, as the degree array nodes corresponding to older snapshots will

be freed and recycled when the corresponding snapshot retires without affecting other data struc-

tures, such as edge arrays that are actively accessed by analytics.

The global snapshot list is a linked list of snapshot objects to manage the relationship between

the edge log and adjacency store at each epoch. Each node contains an absolute offset to the edge

log where the adjacency list snapshot is created and a reference count to capture the number of

views using this adjacency list snapshot. A new entry in the global snapshot list is created after

each epoch, and it implies that the edge log data of the last epoch has been moved to the adjacency

store atomically and is now visible to the world.

Weighted Graphs. Edge weights are generally embedded in the edge arrays along with the des-

tination vertex ID. Some graphs have static weights, e.g., an edge weight in an enterprise network

can represent the network speed between the two nodes. A weight change is then treated inter-

nally as an edge deletion followed by an edge addition. However, if edge weights are dynamic, such

as network dataflow, then such weight changes are suited for various steam analytics if kept for a

configurable time window, e.g., anomaly detection in the network flow. In this case, GraphOne is

configured to treat weight changes as a new edge to aid such analytics. Thus, a streaming graph

will not use the tombstones that we discussed in the beginning of this sub-section.

AnExample of Dataflow. The dataflow of GraphOne is presented in Figure 6. There are addition

and deletion of 10 edges from time t0 to t9, and two snapshots of the adjacency list are created.

From time t0 to t3, all the incoming edges are logged in the edge log. At t4 archiving starts moving

these edge log data to the adjacency list in parallel to logging. During t4 to t7, new edges are logged

in the edge log. GraphOne again starts moving the last four updates to the adjacency list, while

new arrivals are getting logged in the edge log from t8 onward. At the end of t9, the edge log

contains two edges that are yet to move to the adjacency store.

4.2 Dual Versioning and Data Overlap

GraphOne uses dual versioning to create the instantaneous read-only graph views (snapshot isola-

tion) for data analytics by exploiting both the fine-grained versioning property of the edge log and

the coarse-grained versioning capability of the adjacency list format. It should be noted that the

adjacency list provides one version per epoch, while the edge log supports multiple versions per

epoch, as many as the number of edges arrived during the epoch. So the dual versioning provides

many versions within an epoch, which is the basis for static views and should not be confused

with the adjacency list snapshots. In Figure 6, the static view at time t6 would be an adjacency list

snapshot S0 plus the edges from t4 to t6.
A small amount of data overlap between the two stores keeps the composition of the view intact

and makes the view accessible even when the edge log data are moved to the adjacency store to

create a new adjacency list version. Thus, both stores have the copy of a few epochs of the same

data. For one ormore long-running iterative analytics, wemay use the durable edge log or a private

copy of non-archived edges to provide data overlap, so that analytics can avoid interfering with

data management operations of the edge log.

ACM Transactions on Storage, Vol. 15, No. 4, Article 29. Publication date: January 2020.



29:12 P. Kumar and H. H. Huang

Fig. 7. Circular Edge log design showing various offset or markers. Markers for durable phase are similar to

archiving and are omitted.

5 DATA MANAGEMENT AND OPTIMIZATIONS

Data management faces the key issues of minimizing the size of non-archived edges, providing

atomic updates, data ordering, and cleaning of older snapshots. Addition and deletion of vertices

and edges and edge weight modification are all considered an atomic update.

5.1 Data Management Phases

Figure 5 depicts the internals of the datamanagement operations. It consists of four phases: logging,

archiving, durable, and compaction. Client threads send updates, and the logging to the edge log

happens in the same thread context synchronously. The archiving phase moves the non-archived

edges to the adjacency store using many worker threads, and one of them assumes the role of the

master; this is called the archive thread. The durable phase happens in a separate thread, while

compaction is multi-threaded but happens much later.

A client threadwakes up the archive thread and durable thread to start the archiving and durable

phases when the number of non-archived edges crosses a threshold, called the archiving threshold.

The logging phase continues as usual in parallel to them. Also, the archive thread and durable

thread check whether any non-archived edges are there at the end of each phase to repeat their

process or wait for work with a timeout.

The edge log has a distinct offset or marker, head, for logging, which is incremented every time

an edge is ingested as shown in Figure 7. For archiving, GraphOne manages a pair of markers, i.e.,

the archiving operation happens from the tail archive marker to the head archive marker, because

the head will keep moving due to new updates. The durable phase also has a pair of markers to

work with. Markers are always incremented and used with the modulo operator.

5.1.1 Logging Phase. The incoming update is converted to numerical identifiers, if required,

and acquires an edge list format. The mapping between vertex label to vertex ID is managed using

a hashmap. The reverse mapping to map the vertex ID to vertex name is managed internally. Many

times, the incoming data may directly contain a unique pair of vertex ID in an edge. For such cases,

user can configure GraphOne to directly use the existing ID space. In either case, a unique spot

is claimed within the edge log by the atomic increment of the head, and the edge is written to a

spot calculated using the modulo operation on the head. The source vertex also stores the operator

(Section 4), addition or deletion, along with the edges.

The atomicity of updates is ensured by the atomic increment of the head and by writing the least

significant bit of the edge log rewind count in the most significant bit of the destination vertex ID.

This is written after writing the source vertex and alternates between zero and 1 each time the

edge log rewinds. Thus, a reader of the edge log can figure out if it is reading the latest data, old

data, or a partial update. Thus, for each edge in the edge log, the MSB of source vertex contains

the deletion information while the MSB of the destination vertex contains the rewind information

and is written in this order.
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Fig. 8. Edge sharding separates the non-archived edges into many buffers based on their source vertex ID,

so that the per-vertex edge arrays can keep the edge log arrival order and enable non-atomic archiving.

The edge log is automatically reused in the logging phase due to its circular nature and thus

is overwritten by newer updates. Hence, the logging may get blocked occasionally if the whole

buffer is filled, as the archiving or durable phases may not be able to catch up. We keep sufficiently

large edge log to avoid frequent blocking. In case of blocked client threads, they are woken up

when the archiving or durable phases complete.

5.1.2 Archiving Phase. This phase moves the non-archived edges from the edge log to the ad-

jacency store. This phase has many stages and is discussed next.

Edge Sharding. A naive multi-threaded archiving, where each worker can directly work on a

portion of non-archived edges, may not keep the data ordering intact. If a deletion comes after the

addition of an edge within the same epoch, then the edge may become alive or dead in the edge

arrays depending on the archiving order of the two data points. To avoid this ordering problem,

we propose an edge sharding technique.

An edge sharding stage in the archiving phase (Figure 8) maintains per-vertex edges as per the

edge log arrival to address the ordering problem. It shards the non-archived edges to multiple local

buffers based on the range of their source vertex ID, i.e., each local buffer contains edges belonging

to a few particular source vertices. Our implementationmakes sure that the per-vertex edges in the

local buffers are in the same arrival order as that of the edge log. This is implemented by scanning

the edge log twice. In the first scan, each worker thread counts its contribution to all the local edge

buffers, and in the second scan, the worker thread copies the edges to the corresponding slots in

those local buffers.

For undirected graphs, the total edge count in the local buffer is twice the non-archived edge

count, as the ordering of reverse edges is also managed. For directed edges, both directions have

their own local buffers. Hence, each edge is stored twice, one in the forward direction and another

in the reverse direction. However, GraphOne provides a way to avoid storing the edges twice,

which is called a unigraph in this article.

Non-Atomic Archiving. Edge sharding has an additional advantage of avoiding the usage of

atomic instructions for populating the edge arrays, i.e., the edges in each local buffer are archived

in parallel without using any atomic instructions. A heuristic is required for workload distribution,

as the equal division is not possible among threads; thereby the last thread may get more work

assigned. To handle the workload imbalance among worker threads, we create a larger number of

local buffers with a smaller vertex range than the available threads, and assign different numbers

of local buffers to each thread so that each gets an approximately equal number of edges to archive.

The idea here is to assign slightly more than equal work to each thread, so that all the threads are

balanced while the last thread is either balanced or lightly loaded.
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This stage allocates new degree nodes or can reuse the same from the older degree array versions

if they are not being used by any analytics. We follow these rules for reusing the degree array

from older versions. We track the degree array usage by analytics using reference counting per

epoch [42], which can be reused if all static views created within that epoch have expired, i.e., the

references are dropped to zero (not being used by any running analytics). It also ensures that a

newly created view uses the latest adjacency list snapshot that should never be freed.

The stage then populates the degree array and allocatesmemory for edge blocks that are chained

before filling those blocks. If a previous edge array for a participating vertex exists, then the new

edge block is chained to it; otherwise, a new entry is created for the new edge block in the vertex

array. We then create a new snapshot object, fill it up with relevant details, and add it atomically to

the global snapshot list. At the end of the archiving phase, the archive thread sets the tail archive

marker atomically to the value of the head archive marker and wakes up any the blocked client

threads.

5.1.3 Durable Phase and Recovery. The edge log data are periodically appended to a durable file

in a separate thread context instead of logging immediately to the disk to avoid the overhead of

IO system calls during each edge arrival. Also, this will not guarantee durability unless fsync() is

called. The logging uses buffered sequential write and allows the buffer cache to work as a spillover

buffer for the access of non-archived edges if the edge log is over-written.

The durable edge log is a prefix of the whole ingested data, so GraphOne may lose some recent

data in the case of an unplanned shutdown. The recovery depends on upstream backup that keep

the latest data for some time, such as Kafka [44], and replays it for the lost data and creates the

adjacency list on the whole data. Recovery is faster than building the data structures at an edge

level, as only the archiving phase is involved working on bulk of data. Alternatively, persistent

memory may be used for the edge log to provide durability at each update [47].

The durable phase also performs an incremental checkpointing of the adjacency store data from

an old time-window and frees thememory associated with it. This is useful for streaming data such

as LANL network flow,where the old adjacency data can be checkpointed in disk, as the in-memory

adjacency store within the latest time window is sufficient for stream analytics. By default, it is not

enabled, as it will break access of whole data in case of batch analytics or full access by streaming

analytics. During checkpointing the adjacency store, the vertex ID, and length of the edge array

are maintained along with edge arrays so that data can be read easily later if required.

5.1.4 Compaction Phase. The compaction of the edge arrays removes deleted data from per-

vertex edge array blocks up to the latest retired snapshot identified via the reference counting

scheme discussed in Section 5.1.2. The compaction needs a similar reference counting for the pri-

vate static views (Section 6.1). For each vertex, it allocates new edge array block, copies valid data

up to the latest retired snapshot from the edge arrays, and creates a link to the rest of the original

edge array blocks. The newly created edge array block is then atomically replaced in the vertex

array, while freeing happens later to ensure that cached references of the older data are dropped.

This phase is generally clubbed with the archiving phase where the degree array is updated to

reflect the new combination.

5.2 Memory Overhead and Optimizations

The edge log and degree array are responsible for versioning. The edge log size is relatively small,

as it contains only the latest updates that move quickly to the base store, e.g, the archiving thresh-

old of 216 edges translates to only 1 MB for a plain graph assuming 8 byte vertex ID. Thus the

edge log is only several MBs. The memory in degree arrays are also reused (Section 5.1.2). This

leaves us with memory analysis of edge arrays, which may consume a lot of memory due to

ACM Transactions on Storage, Vol. 15, No. 4, Article 29. Publication date: January 2020.



GraphOne: A Data Store for Real-time Analytics on Evolving Graphs 29:15

Table 2. Impact of Two Optimizations on the Chain Count

and Memory Consumption of the Edge Arrays of the Adjacency Store

on the Kronecker (Kron-28) Graph

Optimizations
Chain Count Memory

Average Maximum Needed (GB)

Baseline System 29.18 65,536 148.73

+Cacheline memory 2.96 65,536 47.42

+Hub Vertex Handling 2.47 3,998 45.79

Static System 0.45 1 33.81

excessive chaining in their edge blocks. For example, GraphOne runs an archiving phase for

216 times for Kron-28 graph if the archiving threshold is 216. In this case, the edge arrays would

consume 148.73 GB memory and have average 29.18 chain per-vertex. We will discuss the graph

datasets used in this article shortly. If all the edges were to be ingested in one archiving phase,

then this static system needs only an average 0.45 chain and 33.80 GB memory. The chain count

is less than 1 as 55% of vertices do not have any neighbor.

GraphOne uses two memory allocation techniques, as we discuss next, to reduce the level of

chaining to make the memory overhead of edge arrays modest compared to a static engine. The

techniques work proactively and do not affect the adjacency list versioning. Compaction further

reduces the memory overhead to bring GraphOne at par with static analytics engine but is per-

formed less frequently.

Optimization #1: Cacheline Sized Memory Allocation. Multiples of cacheline-sized memory

is allocated for the edge blocks. One cacheline (64 bytes) can store up to 12 neighbors for the plain

graph of 32bit type, leaving the rest of the space for storing a count to track space usage in the

block and a link to the next block. In this allocation method, the majority of the vertices will need

only a few levels of chaining. For example, in a Twitter graph, 88.43% of the vertices will need

at most 3 cachelines only, as do 92.49% for Kron-28 graph. This optimization reduces the average

chain count by 9.88× and memory consumption by 3.14× in comparison to a baseline system as

shown in Table 2. The baseline system uses a dynamic block size that is equivalent to the number

of edges arrived during each epoch for each vertex.

Optimization #2: Hub Vertex Handling. A few vertices, called hub-vertices, have very high

degree in a graph that follows power-law distribution [24]. They are very common in real-life

graphs, such as for the twitter follower graph whose degree distribution is shown in Figure 9. Such

vertices are likely to participate in each archiving phase. Hence they will have a lot of chaining in

their edge arrays, and the aforementioned memory management technique alone is not enough.

In this case, we allocate in multiples of 4 KB page-aligned memory for vertices that already have

8,192 edges or if the number of neighbors in any archiving phase crosses 256. The average chain

count is reduced to 2.47, leading to a further reduction in memory utilization by 1.63 GB, as listed

in Table 2. The reduction in memory overhead due to hub vertex handling are modest on top of

cacheline-sized memory allocations. This is because the number of hub vertices are very small in

comparison to total vertex of the graph. Therefore, even if one varies the threshold to identify a

hub vertex, the performance will remain similar to the cacheline-sized memory (Figure 18).

6 GRAPHVIEW AND DATA VISIBILITY

GraphView data abstraction hides the complexity of the hybrid store by embedding the data vis-

ibility option and simplifying data access by providing APIs as shown in Tables 3, 4, and 5. The
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Fig. 9. Degree distribution of Twitter graph.

Fig. 10. GraphOne hybrid store illustrating various views with two adjacency store versions, S0 and S1, with

a small edge log.

static view is suited for batch analytics and queries, while the stream view for stream processing.

Both offer diverse data access at two granularities of data visibility of updates. The access of non-

archived edges provides data visibility to analytics at the edge-level granularity.

A number of views may co-exist at any time without incurring much memory overhead, as

the view data are composed of the same adjacency store and non-archived edges as shown in

Figure 10. Each analytics has its own view instance and executes in separate thread contexts

and in parallel to any data-management phases and their threads. Generally, the registration of

the batch or stream analytics triggers a thread creation that calls a function pointer specified in

the create-* or reg-* APIs (Tables 3, 4, and 5), and passing the handle. The function pointer is

omitted for brevity from the API signature. Caller is responsible for all the computation inside

the callback, including creation of more threads to achieve parallelism if required, and a return

assumes that computation has been finished. In this section, we concentrate on data-access APIs

and leave the development or integration of a full-fledged analytics system to simplify some of

the tasks of actual analytics as a future work.

Due to the cost of indexing the non-archived edges, GraphView provides an option to trade off

the granularity of data visibility to gain analytics performance by opting to compute only on the

latest adjacency store snapshot. Further, one can use a vertex-centric compute model [82] on the

adjacency list plus an edge-centric compute model [45, 75, 96] on non-archived edges, so there is

no need to index the latter as plotted later to find its optimal minimum size (Figure 16).

6.1 Static View

Batch analytics and queries prefer snapshots for computation, which can be created in real time

using create-static-view() API, and then data may be accessed using other sets of APIs as shown in

ACM Transactions on Storage, Vol. 15, No. 4, Article 29. Publication date: January 2020.



GraphOne: A Data Store for Real-time Analytics on Evolving Graphs 29:17

Table 3. Static View APIs

snap-handle create-static-view(global-data, simple, private, stale)

status delete-static-view(snap-handle)

count get-nebr-length-{in/out}(snap-handle, vertex-id)

count get-nebrs-{in/out}(snap-handle, vertex-id, ptr)

count get-nebrs-archived-{in/out}(snap-handle, vertex-id, ptr)

count get-non-archived-edges(snap-handle, ptr)

Table 3. A static view is represented by an opaque handle that identifies the view composition, i.e.,

the non-archived edges and the latest adjacency list snapshot, and serves as input to other static

view APIs. A created handle should be destroyed using delete-static-view(); otherwise, there would

be a memory leak as each static view may contain at least a degree array. However, the handle can

be wrapped in a reference counting objects for auto deletion when the handle goes out of scope.

Based on the input supplied to create-static-view() API, many types of static view are defined.

ALGORITHM 1: Traditional BFS using static view APIs

1: handle← create-static-view(global-data, private=true, simple=true)

2: level = 1; active-vertex = 1; status-array[root-vertex] = level;

3: while active-vertex do

4: active-vertex = 0;

5: for vertex-type v = 0; v < vertex-count; v++ do Can be parallelized

6: if status-array[v] == level then

7: degree← get-nebrs-out(handle, v, nebr-list);

8: for j=0; j < degree; j++ do

9: w← nebr-list[j];

10: if status-array[w] == 0 then

11: status-array[w]← level + 1; ++active-vertex;

12: end if

13: end for

14: end if

15: end for

16: ++level;

17: end while

18: delete-static-view (handle)

6.1.1 Basic Static View. This is the most fundamental view of data, where the data are accessed

directly from underlying storage. Themain low-level API are follows: get-nebrs-archived-*(), which

returns the reference to the per-vertex edge array, and get-non-archived-edges(), which returns the

non-archived edges. These two APIs are very useful for advanced users and for higher-level library

development that requires more control and performance.

However, it also provides a high-level API, get-nebrs-*(), that returns the neighbor list of a vertex

by combining the adjacency store and the non-archived edges in a user-supplied memory buffer. It

provides simplicity to analytics writers as they do not have to know the exact internal structures

of the underlying data of GraphOne. However, there is a performance cost associated with usage

of this API, as it will have to repeatedly scan the non-archived edges for finding the neighboring
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edges of each vertex and an additional step of data copying to user-supplied buffer. This API will

be preferable by queries with high selectivity that only need to scan the non-archived edges for

one or a few vertex, e.g., 1-Hop query, and is not apt for long-running analytics.

The implementation of get-nebrs() for the non-deletion case is a simple two-step process: Copy

the per-vertex edge array to the user supplied buffer, followed by a scan of the non-archived edges

to find and add the rest of the edges of the vertex to the buffer. For the deletion case, both the steps

track the deleted positions in the edge arrays, and the last few edges from edge arrays and/or

non-archived edge log are copied into those indexes of the buffer.

One can also pass simple=true in the create-static-view() to create a temporary in-memory ad-

jacency list from the non-archived edges for optimizing the performance of get-nebr-*() API. Al-

gorithm 1 shows a simplified BFS (push model) implementation using the high-level APIs of basic

static view.

6.1.2 Private Static View. For long-running analytics, keeping basic static views accessible have

some undesirable impacts: (1) All the static views may have to use the durable edge log if the

corresponding non-archived edges in the edge log has been overwritten, and (2) the degree array

cannot be reused in the archiving phase, as it is still in use. To solve this, one can create a private

static view by passing private=true in the create-static-view() API. In this case, a private copy of

the non-archived edges and the degree array are kept inside the view handle with their global

references dropped to make it independent from archiving.

The private static view approach of batch analytics is more flexible than static analytics engine

where latter converts the whole data that takes much longer to complete [60] than the analytics

runtime. In contrast, a private view only needs to copy a degree array whose cost will be much

lower. This view is also better than other dynamic graph system that disallows the users to choose

fine-grained control on snapshot creation.

Creation to many private static views may introduce memory overhead. To avoid this, a refer-

ence of the private degree array is kept in the snapshot object and is shared by other static views

created within that epoch and are locally reference counted for freeing. Thus, creating many pri-

vate views within an epoch has overhead of just one degree array. However, creating many pri-

vate static views across epochs may still cause the memory overhead if older views are still being

accessed by long-running analytics. This also means that the machine is overloaded with compu-

tations, and they are not real time in nature. In such a case, a user may prefer to copy the data to

another machine to execute them.

6.1.3 Stale Static View. Many analytics are finewith data visibility at coarse-grained ingestions,

and thus some stale but consistent view of the datamay be better for their performance. In this case,

passing stale=true to create-static-view()API returns a handle corresponding to the snapshot of the

latest adjacency list only. Thus, same set of APIs can be used by users to access the slightly stale

data, but performance will automatically be of batched update case. This view can be combined

with private static view where degree array will be copied.

6.2 Stream View

As we discussed in the beginning of this section, all stream computations runs in a separate thread

contexts, i.e., one thread per stream analytics (can be parallelized to execute the core logic of stream

analytics), while logging and archiving keep working in parallel in their own thread contexts. The

stream view APIs as listed in Table 4 and 5 simplify the data access in the presence of data inges-

tion. For a stream analytics, window-sz is the size on which a stream analytics want the data-state

(adjacency store) to be accessible for computation and can stretch up to the beginning of the stream
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Table 4. Stateless Stream View APIs

stream-handle reg-stream-view(global-data, window-sz, batch-sz)

status update-stream-view(stream-handle)

status unreg-stream-view(stream-handle)

count get-new-edges-length(stream-handle)

count get-new-edges(stream-handle, ptr)

ALGORITHM 2: A stateless stream compute skeleton

1: handle← reg-stream-view(global-data, batch-sz=10s)

2: init-stream-compute(handle)

3: while true do

4: if update-stream-view(handle) then

5: count = get-new-edges(handle, new-edges)

6: for j=0; j < count; j++ do Can be parallelized

7: do-stream-compute(handle, new-edges[j]) Or any method

8: end for

9: end if

10: end while

11: unreg-sstream-view(handle)

if not specified. The batch-sz means stream analytics wants to perform incremental computation

only if batch-sz count of edges have been accumulated since last incremental compute.

All stream analytics in GraphOne follow a pull method, i.e., the analytics pulls a new snapshot

by calling update-*-view() API at the end of incremental compute to perform the next phase of

incremental compute. If no new data arrive from last time the API was called or if the size of

new data is less than batch-sz (reg-*-view() API), then this API will get blocked and will return

only when new data equal to or greater than batch-sz is available to continue the computation.

Although, the focus of this sub-section is on data access for stream computations, one can pass

the appropriate flag value to reд-∗ APIs listed in Table 4 and 5 to configure the data visibility of

the stream view.

Also, checkpointing the computation results and the associated data offset is the responsibility

of the stream engine, so that the long-running computation can be resumed from that point onward

in case of a fault. We now present data access patterns and corresponding APIs for two classes of

stream analytics: stateless and stateful stream computations.

6.2.1 Stateless Stream Processing. A stateless computation, e.g., counting incoming edges (ag-

gregation), only needs a batch of new edges. The APIs are listed in Table 4. The computation can

be registered using the reg-stream-view() API, and the returned handle contains the batch of new

edges. Algorithm 2 shows how one can use the API to do stateless stream computation. The han-

dle also allows a pointer to point to analytics results to be maintained by the stream compute

implementation. The implementation also needs to checkpoint only the edge log offset and the

computation results as GraphOne keeps the edge log durable.

An extension of the model is to process on a data window instead on the whole arrived data.

For sliding window implementation, GraphOne manages a cached batch of edge data around

the start marker of the data window in addition to the batch of new edges. The old cached data

can be accessed by the analytics for updating the compute results, e.g., subtracting the value in

aggregation over the data window. The cached data are fetched from the durable edge log and show
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Table 5. Stateful Stream View APIs

sstream-handle reg-sstream-view(global-data, window-sz, v-or-e-centric, simple, private, stale)

status update-sstream-view(sstream-handle)

status unreg-sstream-view(sstream-handle)

bool has-vertex-changed(sstream-handle, vertex-id)

count get-nebr-length-{in/out}(sstream-handle, vertex-id)

count get-nebrs-{in/out}(sstream-handle, vertex-id, ptr)

count get-nebrs-archived-{in/out}(sstream-handle, vertex-id, ptr)

count get-non-archived-edges(sstream-handle, ptr)

ALGORITHM 3: A stateful stream compute (vertex-centric) skeleton

1: handle← reg-sstream-view(global-data, v-centric, stale=true)

2: init-sstream-compute(handle)

3: while true do

4: if update-sstream-view(handle) then

5: for v=0; v < vertex-count; v++ do Can be parallelized

6: if has-vertex-changed(handle, v) then

7: do-sstream-compute(handle, v)

8: end if

9: end for

10: end if

11: end while

12: unreg-sstream-view(handle)

sequential read due to the sliding nature of the window. A tumbling window implementation is

also possible where the batch size of new edges is equal to the window size and hence does not

require older data to be cached. Additional checkpointing of the starting edge offset is required

along with the edge log offset and computation results.

6.2.2 Stateful Stream Processing. A complex stream computation, such as graph coloring [76],

is stateful when it needs the streaming data and complete base store to access the computational

state of the neighbors of each vertex. A variant of the static view is better suited for it, because its

per-vertex neighbor information eases the access of the computational state of neighbors. The APIs

are listed in Table 5. The stateful computation is registered using reg-sstream-view() and returns

sstream-handle. For edge-centric computation, the handle also contains a batch of edges to identify

the changed edges. For vertex-centric computation, the handle contains per-vertex one-bit status to

denote the vertex with edge updates that can be identified using the has-vertex-changed()API. This

is updated during teh update-sstream-view() call, which also updates the degree array. Algorithm 3

shows an example code snippet.

As the degree array plays an important role in stateful computation due to its association with

the static view, using an additional degree array at the start marker of the data window eases the

access of the data within the window from the adjacency store. The sstream-handle manages the

degree array on behalf of the stream engine and internally keeps a batch of cached edges around

the start marker of the window to update the old degree array. The get-nebrs-*() function returns

the required neighbors only. Checkpointing the computational results, the edge log offset at the

point of computation, and window information is sufficient for recovery.
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Table 6. Historic View APIs

count get-prior-edges(global-data, start, end, ptr)

6.2.3 Discussion. In this sub-section, we bring the differences to the existing graph stream

analytics. The major difference arises for stateful computation, as computation requires the

access of prior data in the form of an adjacency store that is built in separate thread context.

While GraphOne performs archiving in a separate thread context than that of the analytics, a

prior steam analytics engine performs both of them in sequence in the same thread context. This

difference can easily be explained using Algorithm 3. Prior stream engines will perform an actual

archiving phase (building/updating adjacency store indexes) at line number 4 instead of calling

update-sstream-view(handle), while GraphOne does a very lightweight metadata update at line

number 4 by calling the above-mentioned function so that the view handle can point to the latest

adjacency store as the update to the adjacency store happens in a different thread context. The

rest of the lines in Algorithm 3 remain the same. Thus, it will be possible to integrate many stream

analytics systems with a GraphOne data store. This difference also enables concurrent execution

of multiple stream analytics from the same adjacency store.

For stateless computation, there is no difference with the existing stream engines, as analytics

do not require access to the adjacency store at all. If these are the only analytics running in the

system, then GraphOne can be configured to not perform the archiving phase. Thus, prior streams

systems will be identical to GraphOne, and both of them look exactly like Algorithm 2.

6.3 Historic Views

GraphOne provides many views from the recent past, but it is not designed for getting arbitrary

historic views from the adjacency store. However, a durable edge log can provide the same using

a get-prior-edges() API (Table 6) in edge list format as it keeps deleted data, behaving similarly to

existing data stores [14, 25].

Moreover, in case of no deletion, one can create a degree array at a durable edge log offset by

scanning the durable edge log, and the resultant degree array will serve older static or stream

view from the adjacency store to gain insights from the historical data. For data access from a

historical time-window in this case, one need to build two degree arrays at both the offsets of the

time-window of interest of the durable edge log.

7 EVALUATIONS

GraphOne is implemented in around 16,000 lines of C++ code, including various analytics. It

supports plain graphs and weighted graphs with either 4-byte or 8-byte vertex sizes. We store the

fixed weights along with the edges and variable length weights in a separate weight store using

indirection. Any type of value can be stored in place of weight such as integers, float/double,

timestamps, edge-id, or any custom weight as the code is written using C++ templates. So one can

write a small plug-in describing the weight structures and other functions, and GraphOne would

be ready to serve a custom weight. All experiments are run on a machine with two Intel Xeon

CPU E5-2683 sockets, each having 14 cores with hyper-threading enabled. It has 512-GB memory,

Samsung NVMe 950 Pro 512GB, and CentOS 7.2. Prior results have also been performed on the

same machine.

We choose data ingestion, BFS, PageRank, and 1-Hop query to simulate the various real-time

usecases to demonstrate the impact of GraphOne on analytics. BFS and PageRank are selected,

because many real-time analytics are iterative in nature, e.g., shortest path, and many prior graph

systems readily implement them for comparison. 1-Hop query accesses the edges of random
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Table 7. Graph Datasets Showing Vertex and Edge Counts

in Millions (for Deletions See Section 7.3)

Graph Name Graph Type
Vertex Counts

(in Millions)

Edge Counts

(in Millions)

LANL Directed 0.16 1,521.19

Twitter Directed 52.58 1,963.26

Friendster Directed 68.35 2,586.15

Subdomain Directed 101.72 2,043.20

Kron-28 Undirected 256 4,096

Kron-21 Undirected 2 32

512 non-zero degree vertices and sums them up to make sure we access them all. 1-Hop query

simulates many small query usecases, such as listing one’s friends, or triangle completion to get

friend suggestions in a social graph, and so on.

Datasets. Table 7 lists the graph datasets. Twitter [3], Friendster [1], and Subdomain [4] are

real-world graphs, while Kron-28 and Kron-21 are synthetic Kronecker graphs generated using

graph500 generator [27], all with 4-byte vertex size and without any weights. We also use these

graphs for running comparisons with LLAMA, which always expects weighted graphs. So these

graphs are also converted to a weighted graph with 4 bytes of random weights assigned by a tool

developed as part of the LLAMA software suite. The LANL network flow dataset [84] is a weighted

graph where vertex and weight sizes are 4 bytes and 32 bytes, respectively, and weight changes are

treated as new streaming data. We run an experiment on the first 10 days of data. We test deletions

on a weighted RMAT graph [15] generated by a graph generator developed by McColl et al. [62]

where vertex and weight sizes are 8 bytes. It contains 4 million vertices, 64 million edges, and a

update file containing 40 million edges, from which 2,501,937 edges are for deletions.

These graphs have been taken from various domains, such as Twitter and Friendster from social

media, a subdomain from aweb domain, while LANL is captured from an enterprise cyber network

apart from many synthetic graphs. We believe these are diverse enough to capture a wide variety

of applications. We have two copies of each dataset, one in binary edge list format and another

in raw text edge list format. During the ingestion, vertex name–to–vertex ID conversion was not

needed for binary graph data, as we directly used the vertex ID supplied with these datasets. This

convention is also followed by other graph systems. We discuss two cases of raw text data in

Section 7.2. All the edges will be stored twice in the adjacency list: in-edges and out-edges for

directed graphs and symmetric edges for undirected graphs. No compaction was running in any

experiments unless mentioned.

7.1 Data Ingestion Performance on Binary Data

In this sub-section, we present data ingestion when they already contain the data in binary edge

format, i.e., GraphOne does not create any vertex ID from the incoming data. This will depend

on the data source; however, this is a perfect scenario to test the performance of various stages of

data management pipeline and the end-to-end ingestion rate as data are already in a ready state

to be ingested in GraphOne.

Logging and Archiving Rate. Logging to edge log is naturally faster, while archiving rate de-

pends upon the archiving threshold. Table 8 lists the logging rate of a thread and the archiv-

ing rate at the archiving threshold of 216 edges for our graph dataset. A thread can log close to
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Table 8. Different Data Management Rates in Millions Edges/s (M/s) on Various Graph Dataset

Graph Individual Phases (M/s) In-Memory Rate (M/s) Ext-Memory Rate (M/s) Compaction

Name Logging Archiving Ingestion Recovery Ingestion Recovery Rate (M)

LANL 35.98 28.91 26.99 30.23 25.26 29.48 41.85

Twitter 82.62 47.98 66.39 71.28 61.13 71.87 541.71

Friendster 82.85 49.32 60.40 95.78 58.35 95.44 520.65

Subdomain 82.86 43.43 68.25 180.75 61.54 151.96 444.84

Kron-28 79.23 43.68 52.39 116.18 49.70 107.61 798.91

Kron-21 78.91 78.40 58.31 90.44 57.02 66.66 1011.68

The results show that the ingestion rate would be upper and lower bounded by the logging and archiving rate. See Sec-

tion 7.3 for results on datasets containing deletions.

Fig. 11. Write throughput for friendster inGraphOne comparing against average requirement andmaximum

available in an NVMe.

80 million edges per second, while the archiving rate is only around 45 million edges per second

at the archiving threshold for most of the graphs. Both the rates are lower for LANL graph, as the

weight size is 32 bytes, while others have no weights.

Ingestion Rate. It is defined as single-threaded ingestion to the edge log at one edge at a time and

leaving the archive thread and durable phase to automatically change with the arrival rate. The

number is reported when all the data are in the adjacency store, and maintained in the NVMe ext4

file. GraphOne achieves an ingestion rate of more than 45 million edges per second, except LANL

graph. The ingestion rate is higher than the archiving rate (at the archiving threshold) except in

Kron-21, as edges more than the archiving threshold are archived in each epoch due to a higher

logging rate. This indicates that GraphOne can support a higher arrival rate as the archiving rate

can dynamically boost with increased arrival velocity. The Kron-21 graph is very small graph, and

the thread communication cost affects the ingestion rate.

Compaction Rate. We run compaction as a separate benchmark after all the data have been

ingested. The graph compaction rate is 345.53 million edges per second for the RMAT graph, which

has more than 2.5 million deleted edges of a total 104 million edges. Results for other graphs are

shown in Table 8. The poor rate for the LANL graph is due to the long tail for compacting edge

arrays of few vertices. As shown in Figure 19, the compaction improves the analytics performance

where the static GraphOne serves a compacted adjacency list as it had no link in its edge arrays.

Durability. The durable phase has less than 10% impact on the ingestion rate. Table 8 shows the

in-memory ingestion rate and can be compared against that of GraphOne, which uses NVMe SSD

for durability. This is because the durable phase runs in a separate thread context and exhibits

only sequential write. The NVMe SSD can support up to 1,500 MB/s sequential write, and that is

sufficient for GraphOne, as it only needs smaller write IO throughput, as shown in Figure 11 for

Friendster. This indicates that a higher logging rate can easily be supported by using a NVMe SSD.
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Table 9. Impact of Raw Text Data on Logging Phase

Graph Logging Rate (in Million Edges/sec)
Name Binary Data Raw Data

LANL 35.98 1.25

Twitter 82.62 3.10

Friendster 82.85 3.05

Subdomain 82.86 3.11

Kron-28 79.23 3.10

Kron-21 78.91 3.23

Logging rate is per-thread.

Recovery. Recovery only needs to perform the archiving phase at the bulk of the data. As we will

show in Figure 16, the archiving is fastest when around 227–231 edges are cleaned together. Hence,

we take the minimum of this size as a recovery threshold to minimize the memory requirement

of the IO buffer and the recovery time and get an opportunity to pipeline the IO read time of the

data with recovery. Table 8 shows the total recovery time, including the data read from NVMe SSD

after dropping the buffer cache. Clearly, GraphOne hides the IO time when compared against in-

memory recovery. The recovery rate varies a lot for different graphs due to different distribution

of the batch of graph data that has profound impact on parallelism and hence locality access of

edge arrays.

7.2 Data Ingestion Performance on Text Data

In this sub-section, we expect the incoming data in raw text format without having any vertex

ID, such as LANL network logs. Ingesting raw text data involves parsing the information, and

identified key information will be converted to vertex ID using a hashmap of GraphOne to create

a binary edge. It will also need to parse the text to identify the edge weights that will also be stored

within the binary edge. Here, the additional cost of parsing the data and interaction with hashmap

will reduce the performance of the logging phase. So we only demonstrate the performance of

logging phase, as performance of other phases will remain same.

We pick two kinds of text data to ingest. The first kind is in purely text format where the vertices

of the edges are in the string format, and inserting them into GraphOne additionally requires

interaction with hashmap, where the latter converts the strings to vertex ID. We pick LANL raw

text data in this case. The hashmap is taken from the open-sourced Intel Thread Building Block

library [70]. Thesecond kind is just a pair of vertex IDs that only requires parsing the data, but

no conversion to vertex ID is required. Therefore, interaction with hashmap is not required. We

pick other graphs, including Twitter, Friendster, and so on, in a raw text graph to demonstrate the

performance of logging phase. The second kind is selected to gain an intuition about the cost of

vertex ID creation and lookup versus parsing cost.

Table 9 shows that parsing the raw text takes the most time for Kron-28 graph. For LANL graph,

the parsing and interacting with the hashmap takes most of the time. The numbers in Table 9 are

for the single-threaded logging phase. We can confirm that they do show sub-linear scaling with

increasing thread count as the hashmap can support parallel ingestion and retrieval. Specifically,

with eight threads for 8 LANL text files shows logging rate close to 5.55 million edges per second,

a speedup of 4.44×. The sub-linear scaling is due usage of the atomic instructions while claiming

the spot in the edge log.
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However, we feel that it is not the ideal setup for parallel ingestions in the real world. For

example, the actual data sources for GraphOne may not necessarily be the files; rather, they could

be the database log changes, Kafka, and so on. In the case of Kafka, data are already sharded using

a shared-nothing partitioning technique; therefore, we believe logging data from different shards

to the same edge log to create a global order is not worth it, and separate edge logs would be the

best way to go forward. We confirm that batching in independent edge logs shows linear scaling

as per our testing.

7.3 Graph Systems Performance

We choose different classes of graph systems to compare against GraphOne. Stinger is a dynamic

graph system, Neo4j and SQLite are graph databases, Galois and static version of GraphOne are

static graph systems, and LLAMA [59] as a snapshot system. Except for stream computations,

all the analytics in this section are performed on private static view containing no non-archived

edges, as it is created at the end of the ingestion.

It should be noted that, unlike these systems, the main contribution of GraphOne is its data

store. As the scope of this work is to show the advantage of our efficient data store, we try to

mimic the implementation strategy of prior work as much as possible when comparing the ana-

lytics performance, thus motivating the need to integrate such data stores in the existing real-time

analytics engines empirically. We also compare the data ingestion performance to demonstrate the

superior design of GraphOne.

7.3.1 Snapshot-based System. This section compares graph batch analytics systems that create

snapshots at bulk updates. We choose the in-memory LLAMA [59] system for the comparison,

which is available in github as open source. Since LLAMA ingests data from files by using a fread()

function call, which internally uses buffered IO system call to batch the edges. We create a tmpfs

file-system so that the data read from files could be done faster to test data ingestion. We also

modified GraphOne to do ingestion in the same way by calling fread for each edge from files

hosted in tmpfs. We use the same set of graphs as listed in Table 7 with few differences because of

the way LLAMA is implemented as discussed next. Though both of these differences are unfair to

GraphOne, we could not find a better way of comparison.

First, LLAMA only takes a weighted graph with 4 bytes of weight but stores weights in a struc-

ture parallel to the adjacency store. So when BFS and PageRank runs, it does not access the weight

structure at all. GraphOne stores the 4-byte weights in the adjacency store directly and hence will

be accessed while running BFS and PageRank even though not required. The required input binary

file is created from text files using a utility provided by LLAMA that inserts random 4-byte weights

for each edges. Second, LLAMA also creates one snapshot for a batch of input that is presented as

a file. Interestingly, LLAMA’s multi versioned vertex array consumes a lot of memory, and there-

fore it cannot create even 512 snapshots for most of the graphs except a Kron-21 graph. So we

choose to create 256 snapshots, but Kron-28 still runs out of memory, so we drop its comparison.

In GraphOne, we create one snapshot for each 65,536 batch of edges (the archiving threshold),

which will be equal to 32,768 snapshots for the Friendster graph.

Despite the advantage of LLAMA over GraphOne is this setup, GraphOne achieves huge

speedup over LLAMA as shown in Figure 12 for data ingestion time, BFS, and PageRank. Gra-

phOne achieves an average speedup of 6.38×, 1.66×, and 2.43× for data ingestion, BFS, and PageR-
ank, respectively, for all graphs except Kron-21, for which the speedups are much higher at 31.47×,
24.79×, and 1.23×, respectively. There is just one exception of BFS performance in the Subdomain

graph that has 140 levels in its BFS tree. LLAMA has a highly optimized BFS implementation

as it uses, in addition, a bitwise status for each active vertex that avoids reading the actual BFS

ACM Transactions on Storage, Vol. 15, No. 4, Article 29. Publication date: January 2020.



29:26 P. Kumar and H. H. Huang

Fig. 12. Data ingestion rate and analytics performance comparison of GraphOne against LLAMA.

Fig. 13. Comparison against Stinger for in-memory setup.

algorithmic metadata for many vertices in so many iterations, and thereby GraphOne is slower

by 33%.

The speedups of GraphOne are due to our memory management optimizations, overlap of

logging and archiving, edge sharding technique, and avoiding the read of adjacency data through

multi-versioned degree array. As we have demonstrated, memory management (Section 7.4.3) pro-

vides speedup to ingestion and analytics, while edge sharding (Section 7.4.4) leads to further im-

provement in data ingestion. The multi-versioned array in LLAMA is the main structure responsi-

ble for providing snapshot capability in LLAMA and is also used by analytics. However, GraphOne

provides a snapshot through a multi-versioned degree array but uses a private degree array of a

static view for the analytics that avoids reading the multi-versioned degree array completely. This

technique apart from cacheline-/page-sized memory allocation further results in better analytics

performance.

These advantages power GraphOne to perform better than LLAMA despite creating an order

of more adjacency list snapshots and reading the unnecessary weights from the adjacency store

for analytics. For results on the Kron-21 graph, we believe that overlapping of logging and archiv-

ing plays a major role, as each LLAMA snapshot is created using 218 batched edges only (total

edges/snapshot count) due to its smaller size. For other graphs, the batched edges per snapshot

are much higher due to their larger sizes.

7.3.2 Dynamic Graph System. Stinger is an in-memory graph system that uses atomic instruc-

tions to support fine-grained updates. So it cannot provide semantically correct analytics if updates

and computations are scheduled at the same time, as different iteration of the analytics will run on

the different versions of the data. We used the benchmark developed in Reference [62] to compare

the results on the RMAT graph.

Stinger is able to support 3.49 million updates per second on the same weighted RMAT graph,

whereas GraphOne ingests 18.67 million edges per second, achieving 5.36× higher ingestion rate,

as shown in Figure 13. Part of the reason for poor update rate of Stinger is that, unlike GraphOne,

it directly updates the adjacency store using atomic constructs.

We have also implemented PageRank and BFS in a similar approach as Stinger. The compar-

ison is plotted in Figure 13. Clearly, GraphOne is able to provide a better support for BFS and
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Fig. 14. Update rate comparison against SQLite and Neo4j.

PageRank achieving 12.76× and 3.18× speedups, respectively. The reason behind the speedup is

explicit optimization to reduce the chaining, which removes a lot of pointer chasing, and better

cache access locality due to cacheline-sized edge blocks.

7.3.3 Databases. GraphOne is only designed for a graphlike data structure and does not offer

any other indexing apart from those that are created on source and destination vertices at this

moment. Also, GraphOne offers snapshot isolation and not the strict serializability required for

transaction support, hence GraphOne cannot compete against workloads that require transac-

tion support. The value proposition here is that the adjacency store design can be integrated with

the existing databases where prime focus is management and analytics on graph data but with-

out transaction support, such as analytics queries. For example, the in-memory adjacency list in

Neo4j [66] is optimized for read-only workloads, and new updates generally require invalidating

and rebuilding those structures [72]. TitanDB [2], an open source graph analytics framework, is

built on top of other storage engines such as HBase and BerkeleyDB, and thus does not offer adja-

cency list at the storage layer. Adjacency store of GraphOne can be very useful in these products.

Therefore, even if GraphOne is limited in this sense, we expect it to be beneficial by integrating it

with graph databases and expect that their query engine can be integrated using our GraphView

APIs to support their query languages.

Therefore, we compare against SQLite 3.7.15.2, a relational database, and Neo4j 3.2.3, a graph

database for ingestion test only. SQLite and Neo4j support ACID transaction and do not provide

native support for graph analytics. It is known that a higher update rate is possible by trading

off the strict serializability of databases; however, to measure the magnitude of improvement, it is

necessary to conduct an experiment. The results are shown in Figure 14. The in-memory config-

uration of SQLite can ingest 12.46K edges per second, while GraphOne is able to support 18.67

million edges per second in the same configuration for above dataset. Neo4j could not finish the

benchmark after more than 12 hours, which is along the same line as observed in Reference [62].

Hence we have tested on a smaller graph with 32K vertices, 256K edges, and 100K updates. Neo4j

is configured to use disk to make it durable. Neo4j and GraphOne both use the buffer cache while

maintaining the graph data. Neo4j can ingest only 14.81K edges per second, whereas GraphOne

ingests at 3.63M edges per second.

7.3.4 Stream Graph Engines. GraphOne runs stream computation and data ingestion to ad-

jacency store (archiving phase) concurrently, while prior stream processing systems updates the

adjacency store as part of stream computation where first operation is generally the update of the

adjacency store as in Kickstarter [85], differential dataflow of Naiad [64], GraphBolt [61], Graph-

Tau [34], and so on, except Kineograph [17] that we discussed in Section 3.2. This results into

lower ingestion rate in prior work. In this sub-section, we will evaluate both the advantage of ef-

ficient data store, as well as the design choice of having the data store (adjacency store) updated

in parallel to streaming analytics.

In this sub-section, we will first compare Kickstarter against the version of GraphOne that

updates the adjacency store as a first operation of streaming analytics workflow followed by
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actual analytics computation as done in Kickstarter. This serves a baseline version of GraphOne

for stream analytics comparison, and then we demonstrate the advantage of GraphOne over the

baseline GraphOne by following our design decision of updating the adjacency store in parallel

to analytics.

We use an open-source binary executable file of Kickstarter’s single node multi-threaded im-

plementation that has been shared by authors through github (source code is not available yet),

and contains only BFS and SSSP (single source shortest path) implementation. It only prints the

time taken by the analytics, but not the time taken by the insertion, so we estimate it using a wall

clock (literally) by looking into some logs that are printed in the console. We choose BFS for the

comparison, and it is naively implemented in GraphOne.

Kickstarter expects all the graph data in the text format, from which the base snapshot should

be provided as a adjacency format, while the rest is in edge list format along with the number of

batches to be created from this update data file. So we put these two files in a tmpfs file system to

avoid the disk IO in the path of data read. Interestingly, Kickstarter, while performing streaming

BFS very quickly, is very slow in updating the adjacency store. For the Kron-21 graph, we supplied

half of the edges (16 million) as a base snapshot in the adjacency format, while the rest (16 million)

are edge updates in the edge list format. The base snapshot creation and BFS are very fast, while the

update insertion took slightly more than 210 minutes, and streaming BFS took 31 ms. The process

runs for total 210 minutes and 26.948 s. We then repeated the same steps for the Twitter graph, but

it did not finish running the process for over 18 hours. So we did not run any more experiments.

However, we supplied all the edges in edge list format in a text file hosted in the tmpfs file

system and created the base snapshot at half the edge count and the next snapshot after all the

edges arrived. The edges are inserted to GraphOne one edge at a time using the logging phase,

while the archiving is controlled by the steaming analytics. The baseline GraphOne (i.e., archiving

and BFS done in sequence) took 6.226 s to update the adjacency list (including the wait time until

all the edges arrive), and 36 ms for BFS, and the total process time is 12.632 s. While our naive

BFS is competitive to the Kickstarter’s implementation, the adjacency store update for streaming

edges is more than 2,000× faster than Kickstarter.

This experiment brings two observation: First, our data store is very optimized, and, second,

such a data store can be easily integrated with Kickstarter to take advantage of the state-of-the-art

graph stream processing and our highly optimized data store. We did not perform any additional

experiment due to Kickstarter’s poor update rate and the fact that their analytics can be imple-

mented on top of GraphOne.

Advantage of Separating Archiving Phase from Stream Computation. We now show the

advantage of running the adjacency store update (archiving phase) in parallel to stream compu-

tation. We report the wall clock time of the whole process in GraphOne compared to baseline

GraphOne. Here baseline means that archiving is run as part of streaming workflow, as done in

Kickstarter, and so on. In the setup, edges are always inserted one at a time using the logging

phase. We take the above setup of providing the input data from a text file hosted in tmpfs con-

taining data in the edge list format. This time BFS starts running as soon as the first snapshot of

the adjacency store is available.

We first run GraphOne and figure out how many times streaming BFS was executed. This is

because archiving runs in parallel to BFS, and when one streaming BFS converges in any snapshot

(captured using stateful stream view), it immediately pulls the current snapshot by calling update-

sstream-view() and performs streaming BFS again. Therefore streaming BFS may run fewer times

than the archiving phase count. Hence, we print the count of how many times streaming BFS

was executed. We then run same number of streaming BFS in the baseline GraphOne by creating
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Table 10. Impact of Separating Archiving Phase out of Analytics Workflow

Graph Name Baseline GraphOne GraphOne

Twitter 987.45 764.58

Friendster 1236.78 1032.35

Subdomain 975.74 817.90

Kron-28 2687.60 1990.68

Kron-21 19.37 13.87

GraphOne, by this separation, decreases the overall runtime of data ingestion and ana-

lytics as shown in the third column of this table. The data are ingested from a text file

hosted in a tmpfs file system. All the numbers are in seconds.

exactly that number of adjacency list snapshots. Table 10 shows the wall clock timing of the two

systems.

The design decision to separate the archiving from the analytics workflow increases the overall

average performance by 28.58% for graphs. It should be noted that GraphOne actually creates

29,954 adjacency store snapshots compared to 1,870 created by the baseline GraphOne, while both

versions run streaming BFS 1,870 times. The improvement in time despite creating more adjacency

list snapshot in GraphOne is due to continuous creation of adjacency store snapshots in parallel to

stream analytics, which can schedule the stream analytics right at the time requested by pulling the

latest snapshot using update-sstream-view. However, baseline GraphOne will incur a huge delay

in scheduling the stream analytics, as it first has to create an adjacency store on the latest data.

The logging and archiving operations are examples of different categories of stream analytics:

logging is a proxy to continuous stateless stream analytics, while archiving is the same for

discrete stateful stream analytics. Thus, Table 8 is also an indication of their performance as well.

We have also implemented streaming weakly connected components using ideas from COST [63]

using stateless stream view APIs, and it can process 33.60 million stream edges per second on the

Kron-28 graph.

Another advantage of separating the archiving phase out of streaming analytics is that now

concurrent stream analytics can be executed from the same data store as we have discussed in

Section 3.2 and Section 6.2. We explore this next.

Concurrent Execution of Stream Analytics. The separation of the data store as an abstraction

provides benefit of executing many analytics together, such as multiple batch analytics or multiple

stream analytics or any combination of both from the same data store, and thereforemany complex

usecases can be implemented using the GraphOne data store and GraphView APIs. As discussed

in Section 3.2 and Section 6.2, prior graph analytics systems in theory can only execute multiple

batch analytics but not multiple stream analytics from the same adjacency store. Even snapshot-

based stream analytics systems such as Kinerograph [17] cannot execute together two classes of

stream analytics—those that need to access whole data and those that requires window access—as

they propose a different snapshot technique to be implemented in future (see Section 6.3 in the

article [17]) for the latter access. Prior stream analytics can decide to deploy multiple instances of

the same stream analytics engine to run concurrent stream analytics but will also produce a sep-

arate adjacency store. Therefore, we choose multiple stream analytics to demonstrate the impact

of their execution from the same adjacency store.

We choose stream BFS starting from different source vertices, and each one creates a sepa-

rate stateful stream view handle for execution. The choice of selection of streaming BFS is com-

pletely random, and we could have also picked up other stream analytics. We are only interested in
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Fig. 15. Showing total time of GraphOne when different number of concurrent streaming BFS are executed

while data are ingested in Kron-16 graph. All the data are ingested from a text file hosted in a tmpfs file

system.

demonstrating this capability that is enabled by GraphOne, while other consequences, such as

system overload due to multiple real-time analytics, are outside the scope of the article.

Figure 15 shows that it is possible to execute more concurrent streaming BFS while the data

arrive in the Kron-21 graph. The actual streaming BFS computation takes much less time as they

utilize the prior computation results, and the graph is getting inserted from a text file hosted in

tmpfs, where parsing each text edge to convert it to a binary edge list format slows down the

data logging rate (see Table 9). This implies that the system has sufficient CPU resources to run

more streaming BFS. It is only when the count increases beyond 8 that each component (logging,

archiving, and streaming BFS) starts to fight for CPU and memory bandwidth resources and that

the overall system performance decreases.

It would also be possible to concurrently executed batch and streaming version analytics to-

gether as well, where the batch version will simply run on the latest data at the time whenever

they are called by creating a static view and exiting after the computation is over, while streaming

analytics will continue executing until unregistered.

Discussion on Staleness. It should be noted that the experiments in this section were run using

stale stateful stream view. Although including the latest edges in the computation will incur some

penalty (see Section 7.4) if a real-time nature is required, we claim that it is equally or more real

time in nature than Kickstarter or baseline GraphOne. This is because by the time the adjacency

store is ready in those systems to execute the stream analytics, the adjacency store is more or

equally stale than the one used in GraphOne, as updating the adjacency store (archiving phase)

takes some time (e.g., 6.22 s in Kron-21 for ingesting 16million streaming edges to adjacency store),

and then only actual analytics will start. However, GraphOne will supply the latest adjacency list

that will be stale by at max non-archived edge count (which is always less than twice the archiving

threshold) or will be no stale if slight lower analytics performance is acceptable.

7.4 System Design Parameters

In this sub-subsection, we present the various results associated with various system design pa-

rameters and individual techniques.

7.4.1 Performance Tradeoff in Hybrid Store. We first characterize the behavior of the hybrid

store for different numbers of non-archived edges. Figure 16 shows the performance variation of

archiving rate, BFS, PageRank, and 1-Hop query for the Kron-28 graph when the non-archived

edge counts are increased, while the rest of the edges are kept in the adjacency store for Kron-28.

The figure shows that up to 217 non-archived edges in the edge log brings a negligible drop in the
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Fig. 16. Algorithmic performance and archiving rate variation for different non-archived edge count.

Table 11. Batch Analytics Performance (in Seconds)

When There Are 0 or 1,024 Non-archived Edges in GraphOne

for a Kron-28 Graph

Non-archived BFS PageRank 1-Hop

Edge Count (5 Iterations) (512 Queries)

0 1.3101 32.1611 8.32×10−4
1,024 1.3255 32.2803 5.47×10−2

analytics performance. Hence, we recommend that the value of the archiving threshold should be

216 edges, as the logging overlaps with the archiving. GraphOne is able to sustain an archiving

rate of 43.68 million edges per second at this threshold. The 1-Hop query latency of all 512 queries

together is only 53.766 ms, i.e., 0.105 ms for each query.

The archiving threshold of 216 edges is not unexpected, as it is small compared to total edge count

(233) in Kron-28, and the analytics on non-archived edges are parallelized. Further, the paralleliza-

tion cost dominates when the number of non-archived edges are small (210). Thus the analytics

cost remains same from 210 up to 217 and then drops as the number of non-archived edges becomes

really large. This raises a question on whether there will be a performance drop in the analytics

when we increase the edge count from 0 to 210. Table 11 shows that the drop is only applicable

for 1-Hop query. This is because BFS and PageRank have already spawned multiple threads for

execution from the adjacency store, and therefore they can easily process the edges in parallel

in edge-centric processing (i.e., it only need to scan non-archived edges once each iteration), and

thus the performance drop will be negligible. However, 1-Hop query is single threaded as get-

ting neighbors of a vertex from an adjacency list does not require multiple threads. But either the

cost to create threads for parallel scan or doing it sequentially will lead to performance drop. The

Table 11 and Figure 16 shows the cost to process non-archived edges when we create multiple

threads to take advantage of the parallelism offered by edge log scan (one time for each 1-Hop

query). Scanning without parallelism will also reduce the performance for 1-Hop queries, but we

have not measured it.

Figure 16 also shows that higher archiving threshold lead to a better archiving rate, e.g., a archiv-

ing threshold of 1,048,576 (220) edges can sustain an archiving rate of 56.99 million edges per

second. The drawback is that the analytics performance will be reduced, as it will find more non-

archived edges. On the contrary, archiving works continuously and tries to minimize the number

of non-archived edges, so a smaller arrival rate will lead to frequent archiving, and thus fewer

non-archived edges will be observed at any time. The drop in archiving rate at the tail is due to the
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Fig. 17. Archiving rate scaling with thread count.

Fig. 18. Caheline-sized memory allocation brings huge performance gain, while hub vertex handling on top

of cacheline-sized memory allocation improves the query performance only.

impact of large working set size that leads to more last-level-cache transactions and misses while

filling the edge arrays.

7.4.2 Scalability. The edge sharding stage removes the need of atomic instruction or locks com-

pletely in the archiving phase, which results in better scaling of archiving rate with increasing

number of threads as plotted in Figure 17. There is some super-linear behavior when thread count

is increased from 16 to 32. This is due to the second socket coming into picture with its own hard-

ware caches, and non-atomic behavior makes it to scale super-linear. This observation is confirmed

by running the archiving using 16 threads spread equally across two sockets and achieves higher

archiving rate compared to the case when the majority of threads belong to one socket.

7.4.3 Memory Allocation. Figure 18 shows that the cacheline-sized memory allocation and

special handling of hub-vertices improve the performance of the archiving and analytics. The

cacheline-sized memory optimization improves the archiving rate at the archiving threshold by

2.20× for the Kron-28 graph, while speeding up BFS, PageRank, and 1-Hop query performance by

1.37×, 3.11×, and 8.82×, respectively.
Hub vertices handling additionally improves the query performance (by 7.5%). This was ex-

pected, as the number of hub-vertices in any power-law graph are very small, so performance

improvement would be limited.

GraphOne without Any Memory Chain. Memory allocation techniques tries to minimize

the memory link or chain counts, but it cannot reduces it to just one due to the evolving nature of

input graph data. In this part, we show how much GraphOne suffers from such an ideal system if

it can achieve such a goal. We design an ideal system, called static GraphOne, that has only one

memory link.

Figure 19 shows this performance drop; specifically, by trading off just 17% average performance

for real-world graphs (26% for all the graphs plotted) from the static system, one can support high

arrival velocity of fine-grained updates. However, the performance drop is only temporary, as the

compaction process will remove the chaining in the background.

7.4.4 Advantage of Edge Sharding. Figure 20 shows the performance of the archiving phasewith

the edge sharding stage on the Kron-28 graph in comparison to an alternate approach where each
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Fig. 19. Graph analytics performance in GraphOne compared to its static version, which has no chaining

requirement.

Fig. 20. Impact of the edge sharding on archiving phase performance.

Fig. 21. Showing Ingestion rate when edge log size increases.

worker thread can directly work on the edge log by dividing the number of edges equally among

them. This will require the use of atomic instructions when two threads compete to add the edges

to the adjacency list of the same vertex. Also, the order of processing will not be the same as the

order of arrival of updates, and thus the alternate method will suffer from the ordering issues that

we have outlined in Section 5.

The edge sharding stage improves the whole archiving phase by 2.59× for the Kron-28 graph as

shown in Figure 20. It should be noted that the degree array computation also shows speedup, as

we removed the atomic instruction usage from this stage as well.

7.4.5 Edge Log Size. Figure 21 shows the effect of edge log size on overall ingestion rate on the

Kron-28 graph. A smaller edge log would block the logging thread frequently, as the archiving rate

is generally slower than the logging rate. Therefore, a larger edge log size can accommodate more

edges, which will than force the archiving to run on large non-archived edges, which results in a

higher archiving rate. Clearly, an edge log size greater than 4 million edges (32 MB) does not have

any impact on overall ingestion rate.

7.4.6 Degree Array Snapshot Counts. GraphOne keeps many recent degree values of each ver-

tex that are recycled after their number increases beyond a number. In this sub-section we show

the performance implication by varying this number, before we propose its recommended value.

Keeping more degree array in GraphOne provides a higher number of adjacency list snapshots,

but managing them incurs more memory cost and results in a slower archiving rate as recycling of
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Fig. 22. Impact of the degree node count on archiving phase performance.

Table 12. BFS Performance When Using Low-level vs.

High-level GraphView API

Graph Low-Level API High-Level API

Name BFS PageRank BFS PageRank

Kron-28 15.09 58.62 15.51 60.17

Twitter 3.66 14.39 3.67 14.48

old degree nodes requires more pointer chasing in the degree array structure. Figure 22 shows this

impact on the archiving rate for the Kron-28 graph. Clearly, having fewer degree array versions

is better for data ingestions. Therefore, GraphOne keeps only three degree array versions and

recommends using private views for long-running analytics.

7.5 GraphView

In this subsection, we measure the cost of creating different kinds of GraphViews and measure the

performance impact of different parameters.

Cost of High-level API of GraphView. As discussed in Section 6, we provide two levels of API:

the low-level API, get-nebrs-archived-*(), which directly allows access of references of the internal

edge array blocks, and the high-level API, get-nebr-*, which simplifies the job of programmer to

implement the vertex-centric implementation and also makes the programmer not traverse all the

links in the edge array. However, the high-level API has a cost, as it internally traverses and copies

all the edge array blocks data for each vertex to a user-supplied buffer.

Table 12 shows the cost of BFS (push based) when using high-level APIs over low-level APIs.

Clearly, simplifying the programmer’s job does not have much cost. However, there could be a cost

with high-level APIs in some cases, such as when implementing BFS using a direction-optimized

technique [11] (i.e., using push+pull both). In this case, few levels of BFS are computed using the

pull method where not every neighbors of active vertices are visited. Thus, high-level API will

have obvious disadvantages, as it always copies the whole neighbor list to a user-supplied buffer.

Clearly, this is a limitation of the GraphView API in its current form, as for direction-optimized

BFS on a Kron-28 graph, high-level API has around 140% overhead. However, we do not see any

limitation on extending the set of APIs, such as getting only the last k neighbors of a vertex, where

k would be a user-supplied value. We leave this for future work.

Cost of Private Static View Creation. Passing private flag in the view creation API copies the

degree array and non-archived edges to a private buffer. The copy takes some time but improves

the working of GraphOne, as the copying makes the data management independent of analytics

as former can recycle the degree array easily. Table 13 shows the cost of creating a private static

view, which requires copying the degree array is in milliseconds, much less than BFS.
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Table 13. Time Spent (in Milliseconds) in GraphView Creation

Graph Name Kron-28 Kron-21 Twitter

View Creation Time 215.53 1.77 111.66

8 RELATEDWORK

Static graph analytics systems [7, 16, 29, 30, 38, 45, 46, 53, 55, 57, 58, 67, 74, 75, 87, 89, 91, 94–96] sup-

port only batch analytics, where pre-processing consumes much more time than the computation

itself [60], and are clearly not designed to support real-time analytics.

Grapchi [50] and other snapshot-based systems [28, 37, 41, 59, 71, 86] support bulk updates only.

However, in Graphchi, the updates are not made visible to the graph until the currently running

analytics finishes. This implies that updates can be ingested only in long intervals, and execution

of another analytics is not supported while the first one is running, as the updates will hardly get a

chance to be merged to the graph if one or the other analytics is always running. LLAMA [59] uses

amulti-versioned vertex array and reverse chaining of a delta adjacency list to createmultiple delta

snapshots. However, it supports only bulk updates. Clearly, creating a new delta snapshot using

an adjacency list at each fine-grained update will results in thousands of snapshots of the vertex

array that must be kept for some time as deletion can only happen once computation finishes on

the snapshot. Thus, soon the system will run out of memory and storage resources.

Chronos [28], e.g., also supports snapshots for bulk updates only and uses a bitmap for each edge

in the edge array instead of a multi-version vertex array to identify whether an edge is part of a

particular snapshot. The bit length assigned to each bitmap decides how many snapshots Chronos

can manage, which clearly cannot support snapshots at fine-grained updates.

Naiad [65], a timely dataflow framework, supports iterative and incremental computation but

does not offer the data window on the graph data. Other stream analytics systems [17, 34, 65,

81] support stream processing and snapshot creation, some offering a data window but mostly at

bulk updates only. Stream databases [5, 6] provide only stream processing. TIDE [88] introduces

probabilistic edge decay that samples data from a base store.

Graph data sharding [20, 45, 50, 51, 57, 92] is a well-studied problem. Our edge sharding is

different, as our aim is to keep ordering intact in the adjacency store and remove usage of atomic

instructions from archiving phase. Nonetheless, prior sharding techniques may be very useful for

dividing the GraphOne data in many machines, which is left as a future work.

Prior works [26, 78] follow an integrated graph system model that manages online updates and

queries in the database and replicates data in an offline analytics engines for long-running graph

analytics tasks. As we have identified in Section 1, they suffer from excessive data duplication

and the weakest component problem. Zhang et al. [93] also argue that such composite design is

not optimal. GraPU [80] proposes to pre-processes the buffered updates instead of making them

available to compute as in GraphOne. Trading off granularity of data visibility is similar to Lazy-

base [19], but we additionally tune the access of non-archived edges to reduce performance drop

in our setup and offer diverse data views.

Many dynamic graph systems manage graph data at a read-committed isolation level only [21,

23, 79] using an atomic update construct without providing a streaming access or creation of snap-

shots. In other words, these systems modify the per-vertex edge arrays, while an analytics task

is running. As a result, different iterations of the analytics may run on different versions of the

dataset. Hence, the result can be semantically incorrect or the convergence may get delayed [85].

The in-memory adjacency list in Neo4j [66] is optimized for read-only workloads, and new

updates generally require invalidating and rebuilding those structures [72]. Titan [2] (also known
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as Janus Graph), an open source graph analytics framework, is built on top of other storage engines,

such as HBase and BerkeleyDB, and thus does not offer an adjacency list at the storage layer.

OrientDB [68] builds a graph model using a document store model where all information of a

vertex, including all of its neighbors, are stored in a document.

Key value stores are basic building blocks for many NoSQL data storage systems that support

atomic updates only. However, the append operation or partial update of values are generally

not possible in key-value store, so it is necessary to store graph data in an adjacency list format.

Therefore, systemsmust develop a graph data layer on top of a key-value store, such as trinity [79],

which defined an append operation using migration of an old value (neighbor list) of a source

vertex (key), which may trigger a lot of migration. Therefore, Facebook also uses a specialized

data store, called TAO [14], for storing its social graph by moving away frommemcache key-value

architecture. Hence, in the absence of a higher layer, a key-value store is not natively suited for a

graph eco-system, while GraphOne provides native support of an adjacency list format with an

in-built support for append operation.

Timestamp is a knownmethod to provide snapshots in an adjacency list format [83]. As we have

discussed, it is inefficient to maintain adjacency list snapshots at edge-level granularity and cannot

provide streaming view. Also, additional storage for storing the timestampwill double the memory

cost and will introduce additional complexity and performance degradation as each analytics and

query need to be made timestamp aware.

9 CONCLUSION

We have presented GraphOne, a unified graph data-store abstraction that offers diverse data ac-

cess at different granularity for various real-time analytics and queries at high performance, while

simultaneously supporting high arrival velocity of fine-grained updates.
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