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ABSTRACT
Subgraph matching finds all distinct isomorphic embeddings
of a query graph on a data graph. For large graphs, current
solutions face the scalability challenge due to expensive joins,
excessive false candidates, and workload imbalance. In this
paper, we propose a novel framework for subgraph listing
based on Compact Embedding Cluster Index (CECI), which
divides the data graph into multiple embedding clusters for
parallel processing. The CECI system has three unique tech-
niques: utilizing the BFS-based filtering and reverse-BFS-
based refinement to prune the unpromising candidates early
on, replacing the edge verification with set intersection to
speed up the candidate verification, and using search cardi-
nality based cost estimation for detecting and dividing large
embedding clusters in advance. The experiments performed
on several real and synthetic datasets show that the CECI
system outperforms state-of-the-art solutions on average by
20.4× for listing all embeddings and by 2.6× for enumerating
the first 1,024 embeddings.

CCS CONCEPTS
• Mathematics of computing → Graph algorithms; •
Theory of computation→Graph algorithms analysis;
Pattern matching; Sorting and searching; • Software and its
engineering→Massively parallel systems;

KEYWORDS
subgraph listing; subgraph matching; graph pattern match-
ing; subgraph isomorphism; CECI; extreme cluster

* Work done at George Washington University.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACMmust be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
SIGMOD ’19, June 30-July 5, 2019, Amsterdam, Netherlands
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-5643-5/19/06. . . $15.00
https://doi.org/10.1145/3299869.3300086

ACM Reference Format:
Bibek Bhattarai, Hang Liu, and H. Howie Huang. 2019. CECI: Compact
Embedding Cluster Index for Scalable Subgraph Matching. In 2019 Inter-
national Conference on Management of Data (SIGMOD’19), June 30–July
5, 2019, Amsterdam, Netherlands. ACM, New York, NY, USA, 16 pages.
https://doi.org/10.1145/3299869.3300086

1 INTRODUCTION
Given a query graph Gq and a data graph G, subgraph list-
ing is a problem of finding all the subgraphs of G that are
isomorphic to Gq . As an example in Figure 1, subgraph list-
ing for the query graph {u1,u2,u3,u4,u5} finds two possi-
ble matches in the data graph, i.e., {v1,v3,v4,v11,v12} and
{v1,v5,v6,v13,v14}. Note that this paper uses the terms sub-
graph matching and subgraph listing interchangeably. This
NP-hard problem is important in many application domains
including sub-compound search in chem-informatics [54],
analysis of protein-protein interaction networks [44], com-
puter aided design [41], and graph pattern mining [1, 51].
Although many techniques such as search order optimiza-
tion [19, 46, 59], join cardinality reduction [4, 17, 50], and
index based filtering [52, 57–59] have been developed in re-
cent times, subgraph matching for large graphs still faces
three main challenges.

First, scalability has been an Achilles heel for existing solu-
tions, the majority of which adopt one of the two approaches,
one embedding at a time listing [4, 16, 17, 42, 54] or all embed-
dings at once listing [2, 32, 47]. An embedding is a unique
subgraph of the data graph that matches the query graph.
While the former requires small amount of memory for inter-
mediate results, this strictly sequential approach is not viable
for larger graphs. Instead of listing all embeddings, most cur-
rent solutions return the first 1,000 or so embeddings. On
the other hand, relying on parallel computing frameworks
such as MapReduce, the latter approach aims to process all
the embeddings concurrently. However, exponential mem-
ory consumption and expensive join operation makes their
performance vastly unsatisfactory.

Second, existing algorithms spend a considerable amount
of time working on false candidates that yield no embed-
dings in the end. For example, join based listings [2, 32, 50]
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Figure 1: Query graph, data graph and embedding clus-
ters. The solid lines in the BFS tree of the query graph
are tree edges and the dotted lines non-tree edges.

decompose the query graph into several sub-patterns, col-
lect the candidates for each sub-pattern, and join them to
form the complete embedding. This approach suffers from
false cardinality because it cannot limit the join operations
to true candidates only [50]. In contrast, exploration based
approaches [10, 47, 50, 54] list the embeddings by exploring
the data graph from predetermined nodes in a specific order.
While it avoids the false cardinality associated with joins,
this approach suffers from exploring false search paths, lead-
ing to incomplete backtracking branches especially when
the query graph becomes non-trivial.
The third challenge arises from the power law nature

of the real world graphs. This imposes a huge disparity in
workload distribution among different machines while par-
allelizing the solution. Among several projects that have
attempted to address this issue, PsgL [47] chooses a worker
machine for each intermediate embedding after every ex-
pansion, which is an overkill in the sense that it needs to
calculate the cost and make a machine selection for every
incomplete embedding. In comparison, TTJ [32] uses a node-
degree-based threshold to reduce the workload skew. This
approach is less costly, however, node degree alone is insuf-
ficient to achieve insightful workload estimation. We believe
that a workload balancing method that provides a good trade-
off between computation overhead and workload balance is
of essence to scale subgraph listing.
To address these challenges, we utilize a new concept

of embedding cluster, which is a special subgraph of the
data graph. An embedding cluster contains a group of the
embeddings which share the same data node (pivot node)
as a match of the first query node for a given matching
order. For simplicity, we have used the Breadth-first search
(BFS) order as the matching order, but our methods work
with any other matching orders. In this paper, we use the
terms node and vertex interchangeably, and data node and
query node are used to refer to a node in the data and query
graph, respectively. A data graph may have a number of
embedding clusters and each cluster may contain several
distinct embeddings. For example, in Figure 1, there are two

Pre-
processing

BFS based 
filtering

Embedding 
Enumeration

Cardinality 
based Cost 
Function 

Isomorphic 
Embeddings

CECI

Reverse BFS 
based 

Refinement

Query 
and data 
graph

Figure 2: Framework Overview. The solid arrow rep-
resents the workflow and the dotted arrow shows the
interaction between data structure (in oval) and pro-
cessing steps (in box).

embedding clusters, EC1 and EC2, where the embeddings in
EC1 match the pivot node v1 to the query node u1, and in
EC2, v2 to u1.

Traditionally to enumerate the embeddings, one first col-
lects the candidate set for each query node u, i.e. nodes in
the data graph that can be matched to u in an isomorphic
embedding. For example, {v1,v2} for u1, {v3,v5,v7,v9} for
u2, {v4,v6,v8,v10} for u3, and so on. Next, each candidate of
the query nodes is joined with the candidates of adjacent
query nodes, following the matching order in a backtracking
fashion. However, even though node v1 of the data graph
is connected to only three candidates {v3,v5,v7} of u2 and
two candidates {v4,v6} of u3, the backtrack search tree still
tries to join with all four candidates of both u2 and u3. This
leads to a search cardinality of 32, i.e, (4 × 4 × 2).

With the help of embedding clusters, we can now separate
the candidates of the query nodes by different pivot nodes,
reducing the overall search cardinality of subgraph listing.
For the same example, two embedding clusters EC1 and EC2
yield a cardinality reduction of more than three times to 10,
i.e., (3 × 2 + 2 × 2). Another benefit of embedding clusters
is that such clusters naturally become many smaller local
computations, which can be worked upon concurrently.

To incorporate this idea, we design an auxiliary data struc-
ture, Compact Embedding Cluster Index (CECI)1, which
represents all the embedding clusters and is used to facil-
itate parallel embedding enumeration. Each node in CECI
contains all the data nodes that can be matched with a given
query node. The size of CECI is polynomial to the size of
the data and query graphs, i.e. O(|Eq | × |Eд |). CECI not only
enables listing all the embeddings in parallel but also reduces
the number of unpromising candidates significantly.

Figure 2 shows the workflow of our subgraph listing frame-
work. Two main steps are logical decomposition of the data
graph into embedding clusters with BFS order based filter-
ing and reverse BFS based refinement to reduce the amount
of false candidates, and parallel embedding enumeration by
searching different embedding clusters concurrently. The
1CECI is used to represent the data structure or whole system depending on
the context. When needed, the CECI system is used to represent the system
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work distribution is equipped with proactive workload bal-
ancing based on cardinality based cost function. We charac-
terize our approach as k embeddings at a time listing, where
k different workers enumerate isomorphic subgraphs in par-
allel from different parts of the data graph, i.e., different
embedding clusters.
The evaluation result on a large variety of real and syn-

thetic datasets shows that our method is able to signifi-
cantly outperform the state-of-the-art algorithms. Specif-
ically, it computes all isomorphic embeddings faster than
DualSim [24] and PsgL [47], on average by 6.08× and 34.82×
respectively. Also, it outperforms CFLMatch [4] and Tur-
boIso [17] by 2.7× and 2.72× to enumerate the first 1,024
embeddings.
The rest of the paper is organized as follows. Section 2

introduces the problem and the preprocessing steps. Section 3
discusses the CECI creation and refinement, and Section 4
presents parallel embedding enumeration. In Section 6, the
experimental results are discussed. Section 7 presents the
related work and Section 8 concludes.

2 BACKGROUND
2.1 Problem Statement
A graph can be represented as G = (V ,E,L) where V is the
set of vertices, E ⊆ (V ×V ) is the set of all edges and L is
the function that assigns one or more labels to each vertex
from the set Σ of labels. A graph Gsд = (Vsд ,Esд ,Lsд) is a
subgraph ofG if and only if there exists an injective mapping
µ : Vsд → V , such that (v1,v2) ∈ Esд only if (µ(v1), µ(v2)) ∈ E.
Further, a subgraphGsд of data graphG is isomorphic to the
query graph Gq = (Vq ,Eq ,Lq ), if and only if there exists a
bijective function f : Vq → Vsд such that ∀u ∈ Vq ,Lq(u) ⊆
Lsд(f (u)) and ∀(ui ,uj ) ∈ Eq , (f (ui ), f (uj )) ∈ Esд . All the
query graphs are assumed to be a connected, undirected
graph, and the data graph can be directed or undirected. The
subgraph listing problem is to find all distinct subgraphsGsд
of the data graphG that are isomorphic to a query graphGq .

2.2 Preprocessing
Preprocessing is crucial to subgraph listing as it can signifi-
cantly reduce the memory consumption, as well as the total
run-time of the algorithm, up to several orders of magnitude.
The necessary preprocessing tasks for subgraph listing are
described below.
Finding the root query node: Root query node us is the
query node from which one starts the matching process.
Intuitively, one prefers the root node to have the smallest
number of matches to minimize the number of embedding
clusters. Similar to TurboIso [17], we choose the root vertex

us based on the cost function us ← argmin
u

|candidate(u)|

deдree(u)

where candidate(u) is all the candidates of u in the data
graphG , anddeдree(u) is the number of edges of nodeu. The
candidate list of u is obtained by verifying each data node by
the label, degree, and neighborhood label count (discussed
in Section 3.2). In Figure 1, the costs for u1,u2,u3,u4, and u5
are 1, 1.33, 1.25, 2, and 3 respectively. Hence u1 is chosen as
the root query node.
Generating the query tree: we perform a BFS traversal
of the query graph starting from the root query node us
to create a query tree. BFS has been obvious choice for the
query tree in several existing works [4, 17] because they
represent the topology of the query graph accurately and
minimize the diameter of the search space. The edges from
the query graph that are also present on the query tree are
called tree edges (TE). Each tree edge connects a parent
node with a child node, where the former appears earlier
than the latter in the BFS order. If an edge is on the query
graph but not on the BFS tree, it is called non-tree edge
(NTE). The BFS query tree shown in Figure 1(a) has four
tree edges, (u1,u2), (u1,u3), (u2,u4), and (u3,u5), as well as
two non-tree edges (u2,u3) and (u3,u4).
Determining thematching (visit) order, i.e., the sequence
of the query nodes to follow when matching them to the
data nodes. Several heuristics have been developed over the
years such as the least frequent node first [46], the least
frequent path first [59], locally optimized order for each ex-
ploration [17], and dense region first [4]. Generally speaking,
the order puts more selective query nodes, i.e., the one with
fewer candidates earlier to lower the size of intermediate
result sets. Also, the next node in order is selected from the
neighbors of already selected nodes such that the search
space can be limited.
For the simplicity of illustration, BFS traversal order of

the query graph from the root node, i.e., (u1,u2,u3,u4,u5) in
Figure 1 is used. Nonetheless, the techniques we have devel-
oped in this work can easily adopt other matching orders
without the need for a major modification. In our experi-
ments, adopting edge-ranked visit order [53] or path-ranked
order [17] provided up to 34.5% speedup over using naive
BFS matching order. The improvement is more significant
on larger query graphs.
Breaking automorphism: When multiple query vertices
are symmetric to each other, an identical embedding can
be listed repeatedly. Formally, such repeated listings of the
same embedding are called automorphisms. For example,
an embedding of QG1 in Figure 6(a) can be listed for six
times:{{0, 1, 2}, {0, 2, 1}, {1, 2, 0}, {1, 0, 2}, {2, 0, 1}, and {2, 1, 0}}.
To list each embedding only once, we have combined

the concepts proposed by TurboIso [17] for finding NEC-
equivalence group with ordering based symmetry breaking
rules proposed by [16]. First, we explore the equivalence
rules advocated by TurboIso to find similar query vertices
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Figure 3: CECIwith BFS based filtering and reverse BFS based refinement for the query and data graphs of Figure 1.
TE_Candidates and NTE_Candidates are colored in blue and gray respectively. The red and green portions are
removed by BFS based and reverse BFS based filtering steps respectively.

and place them in equivalence groups. For example, the ver-
tices 0, 1, and 2 in QG1 in Figure 6(a) are equivalent to each
other as they have the same label and are connected to the
same set of neighbors or with each other. Second, as [16]
suggests, a specific order is enforced within each group to
break automorphism. Since the values of the query vertex
IDs follow 0 < 1 < 2 in our equivalence group, a matching
order ofmap(0) < map(1) < map(2) should also be enforced
in each embedding to eliminate the automorphisms.
Finding the cluster pivots, i.e., a set {vs } of data nodes
that matches with the root query node us . Each node in {vs }
identifies a distinct embedding cluster. In Figure 1, the cluster
pivots for EC1 and EC2 are v1 and v2, from which parallel
graph exploration starts to create CECI as we will discuss
shortly.

3 CECI CREATION, FILTERING, AND
REFINEMENT

This section discusses the techniques to find the candidates,
i.e. potential matches of each query node. The candidates
undergo several filtering and refinement stages so that the
number of false candidates in the verification stage is as small
as possible. By traversing the data graph following the BFS
traversal order, we create the embedding clusters in form
of CECI from the data graph, which accurately captures the
topological structure and connectivity of the query graph.

3.1 CECI Structure
Given the query treeTq of a query graphGq , CECI represents
a data graphG in the structure similar toTq , where each node
in CECI contains the set of data nodes that are the candidates
of the corresponding query node u. Each query node u has a
tree edge connecting it with its parent up . Each CECI node
consists of tree edge candidates (TE_Candidates), which are
key-value pairs of <vp , {v}>, wherevp is the candidate of up
and {v} is the set of candidates of u that are adjacent to vp .

Figure 3 shows the CECI for the query graph and the
data graph from Figure 1. For the tree edge (u1,u2), the
TE_Candidates consist of <v1, {v3,v5,v7}> and <v2, {v7,v9}>.
In other words, the edges (v1, v3), (v1, v5), (v1, v7), (v2,v7),
and (v2,v9) are candidates of the query edge (u1,u2).
If there is a non-tree edge incident upon it, a CECI node

contains the non-tree edge candidates (NTE_Candidates),
which are also key-value pairs, <vn , {v}>. For a non-tree
edge (un ,u), vn is the candidate of a query node un , an
NTE neighbor of u, and {v} is candidate set of u that are
adjacent to vn . For the non-tree edge (u2,u3) in our exam-
ple, the NTE_Candidates are <v3, {v4}>, <v5, {v4,v6}>, and
<v7, {v6}>.

3.2 CECI Creation and BFS Based Filtering
Following the BFS traversal order, we explore the data graph
starting from the pivot nodes level by level to obtain the can-
didates of each query node. Algorithm 1 presents the steps for
creating the TE_Candidates of CECI. The NTE_Candidates
can be computed in a similar fashion.
For each node u in the query tree, we first determine the

frontiers, i.e., the set of nodes from which we expand the
CECI. The union of TE_Candidates of node up (the parent of
u) on CECI generates such frontier set (line 3). In Figure 3(a),
the parent of the query nodeu4 isu2, whose TE candidates are
{v3,v5,v7} and {v7,v9}. The union of these sets produces
the frontiers {v3,v5,v7,v9}. Note that v9 is not expanded
because it is removed by filtering before we explore u4. If the
parent is the root query node, the frontiers are the cluster
pivots. In Figure 3(a), for query node u2 and u3, the frontiers
for their parent u1 consist of nodes v1 and v2.
For each frontier node vf , CECI applies four filters to

its neighbor nodes N (vf ). First, a label filter (LF) collects
adjacent nodes {v} of vf that have the label of u (line 5) i.e.,
the nodes with different labels are removed. In our example,
query nodesu2 andu3 have labelsB andC respectively. Foru2,
data nodes {v3,v5,v7} adjacent to v1 and {v7,v9} adjacent
to v2 are selected as they have label B. Similarly for u3, data
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Algorithm 1: TE_Candidates Construction and Filtering.
Input: Tq , and G
Output: TE_Candidates and Frontiers of CECI

1 function BFSFilter (Tq , G )
2 forall u ∈ Tq in BFS order do
3 CECI[up ].Frontiers=∪ CECI[up ].TE_Candidates
4 forall vf ∈ CECI[up ].Frontiers do

// Label Filter

5 LF (N (vf ), Lq (u))
// Degree Filter

6 DF (u, v)
// Neighborhood Label Count Filter

7 NLCF (u, v)
8 CECI[u].TE_Candidates[vf ].add(v )

// No Tree Edge Candidate

9 if (|CECI[u].TE_Candidates[vf ]| = 0) then
10 CECI[up ].Frontiers.delete(vf )
11 forall uc ∈ children of up do
12 CECI[uc ].TE_Candidates.delete(vf )

13 return TE_Candidates

nodes {v4,v6} adjacent to v1 and {v8} adjacent to v2 have
label C . Note that v8 will later be removed by NLC filter.

Next, for each selected candidate v , we apply lightweight
degree filter (DF) and then more expensive neighborhood
label count filter (NLCF) on the remaining candidates (line
6 - 8). The former ensures that the degree of data node v
is larger than or equal to that of the query node u, and the
latter requires that the count countv (l) of label l nodes in
the neighborhood of v must be equal to or greater than the
countu (l) for all distinct labels l in the neighborhood of u. If
v passes all these filters, it is added to the value set for the
key-value pair <vp , {v}> on the TE_Candidates of the nodeu.
For example, the nodes v3,v5,v7,v9 on candidate of u2 have
degree no less than that of u2, i.e., 3 and have at least one
adjacent nodes with labelsA,C , andD each. Thus, all of them
are retained on TE_Candidates. For u3, the nodes {v4,v6}
have degree 5 and have each A, B, D, and E labeled node in
the neighborhood. However, {v8} is filtered out because v8
does not have label E node among its neighbors.
The last filter (line 9 - 12) is based on the fact that if the

TE_Candidates for nodeu has no entry for keyvp , then there
will be no embedding that matchesvp toup . Therefore, CECI
removesvp from the candidates ofup , and the TE_Candidates
corresponding to vp from all children of up . In our example,
after the first three filters, the TE_Candidates of u3 for key
v2 becomes empty, thus we remove the node v2 from the
candidates of u1 and the entry corresponding to v2 from
TE_Candidates of u2.

For the construction of NTE_Candidates, for each non-
tree edge, the node appearing earlier in the matching order

acts as the parent and the other as child. The expansion
starts from the frontiers of parent node which can be ob-
tained by the union of TE_Candidates and NTE_Candidates
for the parent node, and follows the similar steps as in Al-
gorithm 1. For node u3 in our example, the non tree edge
(u2,u3) finds its NTE_Candidates by expanding the frontiers
of u2, i.e. {v3,v5,v7}. The nodes {v4} adjacent to v3, {v4,v6}
adjacent to v5, and {v6,v8} adjacent to v7 pass the Label
filter. Later, v8 is pruned as it does not pass NLCF. The re-
sulting NTE_Candidates are <v3, {v4}>, <v5, {v4,v6}> and
<v7, {v6}>.

3.3 Reverse BFS Based Refinement
The BFS order based exploration to create TE_Candidates
and NTE_Candidates only filters a portion of the unpromis-
ing candidates. This section introduces a reverse BFS ordered
refinement to further prune them. The key idea here is to
focus on the child nodes, in contrast to the parent node in
filtering. Refinement traverses the CECI created in the pre-
vious section in the reverse BFS order, e.g., (u5,u4,u3,u2,u1)
in our example, and removes the disqualified candidates.
To facilitate the refinement, we calculate the cardinality

for each candidate of a given query node, which also acts as
the cost function for the given query and data node pair (u,v).
The cardinality for (u,v) represents the maximum possible
number of embeddings that can be obtained by matching
v with u. The cardinality for the candidates of leaf query
nodes, i.e., degree one nodes in the query tree, are one. For
other query nodes, the cardinality (u,v) for a query node u
and a data node v is obtained from the cardinalities of their
children.

Formally, cardinality can be represented as

cardinality (u,v) =
∏
uc

[∑
vc

cardinality(uc ,vc )
]

Hereuc are the children ofu in query tree, whilevc are nodes
adjacent to v that are candidates of uc . For a given uc , the
list {vc } is the list of the nodes that are in TE_Candidates of
uc for key of v and also in the NTE_Candidates of uc . This
algorithm works iteratively from leaf nodes to root query
node eventually finding the cardinality for every query node
on CECI.

In Figure 3(b), the cardinalities of nodes {v11,v13,v15} and
{v12,v14} in TE_Candidates of u4 and u5 are all one, as these
two nodes are leaves in Tq . For u2, the cardinality of v3 and
v5 are one, as they have one node each as their child i.e., on
TE_Candidates of u4. However, the cardinality of v7 is zero
since its only child v15 is not in the NTE_Candidates of u4.
The process of CECI refinement is illustrated in Algo-

rithm 2. If the cardinality of pair (u,v) is zero, that means
the node v is guaranteed not to match u and hence should
be removed from TE_Candidates as well as NTE_Candidates
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Algorithm 2: Reverse BFS Based Refinement
Input: Tq , and CECI
Output: refined CECI

1 function revBFSRefine ( Gq , CECI, G )
2 forall u ∈ Tq in reverse-BFS order do
3 score = 0
4 foreach v ∈ CECI[u].TE_Candidates do
5 if v < CECI[u].NTE_Candidates then
6 cardinality(u, v) = 0
7 score += cardinality(u, v)

// if v is guaranteed not to match u
8 if cardinality(u, v) == 0 then
9 CECI[u].TE_Candidates.delete(v )

10 forall uc ∈ children of u do
11 CECI[uc ].TE_Candidates.clear(u)

CECI[uc ].NTE_Candidates.clear(u)

12 cardinality(up , uList.key) *= score

13 return CECI

of u. In addition, the entry of v from TE_Candidates and
NTE_Candidates of all children (including non tree edge
neighbors) of u also has to be removed. In our example, we
remove v7 from the candidates of u2. Also, the <v7, {v6}>
entry from NTE_Candidates of u3 is removed although it
has the valid cardinality of one for v6. Figure 3(c) shows the
CECI after refinement.

3.4 Time and Space Complexity
The size of CECI for a data and query graph pair is O(|Eq | ×
|Eд |). Intuitively, for each edge in the query graph, at most all
the edges in the data graph can be its candidates. The space
complexity of index for TurboIso [17] and CFLMatch [4] are
O(|Eд |

|Vq |−1) and O(|Vq | × |Eд |) respectively. Compared to
CFLMatch, CECI incurs higher space cost due to the inclu-
sion of NTE_Candidates, but it accelerates the embedding
enumeration process. The time complexity of CECI creation
and refinement is O(|Eq | × |Eд |).

3.5 Correctness
The CECI created is complete, i.e., for every pair of nodes
u and up in the query graph, if there is an embedding of
the query graph on the data graph that maps v to u and
vp to up , then < vp ,v > is guaranteed to be in either the
TE_Candidates or the NTE_Candidates of node u on CECI,
contingent upon whether (up ,u) is a tree or non-tree edge.

Lemma 1: Given a complete CECI, all embeddings of a query
Gq in a data graph G can be computed by traversing all em-
bedding clusters in CECI.

First, every edge contained on TE_Candidates or NTE_C-
andidates is also an edge in G . Second, every candidate edge

that is removed during CECI creation and refinement is guar-
anteed not to match the corresponding query edge. The
former ascertains that every embedding found by exploring
CECI is a true embedding from the data graph, while the
latter ensures that no legitimate candidates are eliminated
during refinement and filtering.

The complete CECI may not be minimal. A minimal CECI
is the one where TE_Candidates and NTE_Candidates only
contain the candidates that are guaranteed to be part of at
least one embedding. Obtaining the complete and minimal
candidate CECI is an NP-hard problem [4]. Thus, our work
only provides the completeness guarantee, i.e., all the em-
beddings in the data graph can be found by exploring CECI.
Since there can be false candidates for some query vertices
in non-minimal CECI, we need further verification while
enumerating the embeddings. In particular, Section 4 dis-
cusses our set intersection based embedding enumeration
technique.

3.6 Implementation
The TE_Candidates and NTE_Candidates for the given query
node u are constructed using C++ STL vectors, where each
element of the vector holds a pair. The first part of the pair
(key) is a scalar, node vf from frontier of the parent query
node up . The second part of the pair (value) is an STL vec-
tor, which holds all candidates of u that are adjacent to the
key. The lists, once constructed are sorted by key so that
lookup algorithms like binary search and lower bound can be
used [39].
The filtering and refinement has been parallelized using

OpenMP. In the BFS ordered filtering, TE_Candidates and
NTE_Candidates are calculated by expanding the frontiers
which are dynamically distributed among the threads using
traditional pull-based workload distribution model. Allowing
each thread to write the TE_Candidates or NTE_Candidates
creates serialization in writing. To solve the problem, an in-
termediate private bin is created for each thread, and they
are merged only when all the frontier nodes are expanded.
Similarly, during the reverse BFS exploration, the nodes on
TE_Candidates are distributed among multiple thread dy-
namically. To reduce the workload skew, if a certain frontier
node has degree more than a predefined threshold (1M by
default), it is broken down to multiple pieces and fed to
different workers.

4 PARALLEL EMBEDDING
ENUMERATION

CECI generated in Section 3 is a collection of embedding clus-
ters, each of which has different size as determined by the
cardinality defined in Section 3.3. Figure 4(a) describes the
overall workflow of embedding enumeration using CECI. As
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Figure 4: Parallel embedding enumeration with CECI.

Section 4.3 discusses, the large clusters can be further decom-
posed into smaller sub-clusters. The clusters are assigned to
multiple processors and searched upon concurrently. Each
processor explores the assigned cluster iteratively starting
from its pivot following a specific matching order to gener-
ate all embeddings. In the running example, we use the BFS
matching order, i.e., (u1,u2,u3,u4,u5).

Embedding enumeration in this work is based on set inter-
section between the TE candidates and NTE candidates. The
effectiveness of intersection-based approach for speeding
up triangle counting [20, 21] motivated us to adopt such
technique. This method is different from existing subgraph
enumeration solutions [4, 17] because they only have aux-
iliary data structure equivalent to TE_Candidates. Without
NTE_Candidates, these solutions only obtain the candidate
nodes for each query node, which require further verification
in order to confirm the presence of non-tree edges.
In the example above, after matching v1 with u1 and v3

with u2, we get the partial embedding (v1,v3). Candidates
of u3 is obtained from TE_Candidates, i.e., {v4,v6}. Each
of these candidate nodes has to have an edge with v3, the
match for u2, in order to get mapped with u3. This requires
verification of edges (v3,v4) and (v3,v6) on the data graph.

Our enumeration starts bymapping the pivot of the embed-
ding cluster to the root query node, e.g.,v1 to u1. For a query
node u, the TE_Candidates for vp , where vp is the data node
mapped to up , are obtained. Additionally, if node u has non-
tree edges, then NTE_Candidates for node vn matched with
un are collected. The set intersection between TE_Candidates
and NTE_Candidates provides matching nodes {v} that can
be mapped to u in the current embedding.
In the running example, the matching nodes for u2 are

obtained from its TE_Candidates for v1, which are {v3,v5}.
Mapping v3 to u2, the matching nodes for u3 are obtained
by intersection of two lists, TE_Candidates of u3 for v1, i.e.,

{v4,v6}, and NTE_Candidates ofu3 forv3, i.e., {v4}, resulting
on the matching node {v4}.

Each entry in {v} can be matched with u if it has not been
matched with another query node already. The matching
node is appended to the current embedding, and the process
is repeated for the next query node in the matching order
until the embedding is complete or the whole embedding
cluster is searched upon. In our example, after matching v4
to u3, the current embedding becomes (v1,v3,v4,). Repeating
the process for u4 and u5 gives one complete embedding
(v1,v3,v4,v11,v12).

When an embedding is complete or it can no longer be
expanded, the process backtracks to the previous query node
in the visit order and repeats the process for its next match-
ing node. In our example, we backtrack back to u2, match
v5 to u2, and advance again to find the second embedding
(v1,v5,v6,v13,v14). If the process backtracks back to the root
query node, the search on the specific embedding cluster is
complete. Figure 4(b) shows the workflow of this process.

4.1 Benefits of Intersection-Based Method
In addition of having to keep both data graph and auxiliary
structure in memory, edge verification is also time costly. Us-
ing the adjacency list based graph format, to check whether
there is an edge between nodes vx and vy , it requires a run-
time proportional to the degree of vx or vy whichever is
the smaller. Even if the adjacency list is sorted, the run-time
reduces to log of that degree. To overcome this overhead,
CFLMatch [4] uses an adjacency matrix representation (with
size |V | × |V |) of the data graph, which limits it to small data
graphs only.

Lemma 2: The cost of intersection based enumeration is always
less than or equal to using edge verification.

Let’s consider a non-tree edge connecting ui and uj with
m and n candidates respectively. The cost of edge verification
ism×n multiplied with the cost of verifying each edge. With
O(n) intersection time (sorted adjacency list), the total time
for intersection ism × n. Since the intersection result can
be readily added into the embedding, the cost is reduced by
a factor of average time for edge verification in data graph.
Even with the sparse matrix representation i.e., constant
time for edge verification, intersection based approach will
outperform edge verification by a constant factor.
Adopting intersection based enumeration provides av-

erage improvement of 13% to 170% on run-time for query
graphs listed in Figure 6. The speedup is higher for the query
graphs with larger number of non-tree edges.
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4.2 Parallel Embedding Enumeration
CECI enables the logical decomposition of the data graph
into multiple embedding clusters, where each cluster may
contain one or more embeddings of a given query graph. This
transforms the problem of subgraph listing on a single large
data graph into several smaller subgraphs of that data graph.
Naturally, we can now employ multiple machines (workers)
to perform subgraph listing on each of these subgraphs, i.e,
embedding clusters. These embedding clusters are identified
uniquely by their pivot nodes.
Considering each cluster as a single work unit, the naive

approach to distribute the total work is to assign an equal
number of embedding clusters to each worker. This approach
is referred to as static (ST)workload distribution, since there
is no re-adjustment of the workload once it is assigned. In
Figure 5, there are two clusters EC1 and EC2. If we have two
workers available, it will assign one cluster to each worker.

Due to the power law nature of real world graphs, the
static distribution suffers from huge disparity among the
clusters in term of workload. The obvious solution is to adopt
a dynamic workload distribution to supply variable number
of embedding clusters to different workers depending on
the size of each cluster. We have used a classical pull-based
dynamic workload balancing model [11, 27], which allows
eachworker to start with a certain number of clusters and can
request an additional cluster. This approach is called coarse
grained dynamic (CGD) due to its cluster level granularity.

4.3 Handling Extreme Clusters
In CECI, we aim to identify ExtremeCluster which are large
embedding clusters that dominate the total subgraph listing
time ahead of the time. If assigned to a single machine, these
clusters would largely limit the speedup of parallel process-
ing. For example, in Figure 5, cluster EC2 contains nine of the
total ten embeddings. Assigning EC2 to one worker would
limit the maximum parallelization speedup to 1.11.

At this point, we advocate the use of cardinality calculated
during CECI refinement in Section 3.3. Recall that the car-
dinality is defined for each pair (u,v) between query node
u and data node v . It represents the maximum number of
embeddings that can be obtained by matching v with u. Fol-
lowing this convention, the cardinality for the root query

node and pivot (us ,vs ) gives the maximum number of em-
beddings possible on a given embedding cluster. In Figure 5,
the total cardinality for (u1,v1) and (u1,v4) are 1 and 9 re-
spectively, which reflects the total embeddings on clusters
EC1 and EC2.
We empirically choose a parameter β , and flag a given

cluster as ExtremeCluster if the cardinality of that cluster
is greater than the threshold of β × cardinalityexp , where
cardinalityexp is the expected workload per worker. If a
cluster is found to be ExtremeCluster, it is decomposed into
several sub-clusters, each of which must have a cardinality
less than the threshold β × cardinalityexp . The sub-clusters
are further decomposed if it is an ExtremeCluster.

Algorithm 3: Extreme Cluster Decomposition

1 work = { }; i = 0; prev = { }
2 work_unit = CECI[us ].frontiers
3 Cardold =

∑
v∈work_unit (CECI[us ].cardinality[v])

4 Cardexp = Cardold
worker_count

5 β = 1
6 work = prepare_work(i , prev, work_unit , CECI[0].cardinality,
Cardold )

7 function prepare_work ( i , prev, work_unit, cardinality, cardold )
8 total =

∑
v∈work_unit (cardinality[v])

9 forall w ∈ work_unit do
10 myWork = card (ui ,w )

total ∗ cardold
11

12 if myWork ≤ β ×Cardexp then
13 work.append(prev ⊕w )
14 else
15 work_unit = CECI[i + 1].TE_Candidates[w]∩

{∪CECI[i + 1].NTE_candidates}
16 workloads = CECI[i + 1].cardinality
17 prepare_work(i + 1, prev ⊕w , work_unit ,

workloads, myWork)

18 return work

Algorithm 3 describes the routine for decomposing the
ExtremeClusters. Conceptually, if we detect an ExtremeClus-
ter while matching node v to query node u (line 8-10), the
expansion of v to the next query node unext in the match-
ing order is accomplished using multiple workers. First, the
matching nodes for unext adjacent to v are obtained from
its TE_candidates and NTE_Candidates (line 13). For each
entry v ′ in matching nodes, effective workload is calculated
as cardinality(unext ,v ′)

total (v ′) × cardinality(u,v), where total(v ′) is
the sum of cardinalities of all the matching nodes. If work-
load of v ′ is greater than β × cardinalityexp , the function is
called again recursively.

In Figure 5, let us assume β = 1 and the number of workers
k = 2. Then the threshold β × cardinalityexp = 5 which
means cardinality(u1,v4) = 9 is greater than the threshold,
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therefore EC2 is broken down into three sub-clusters with
respect to three matching nodes of u2 in that cluster. After
decomposition, all three sub-clusters have a cardinality of
3, i.e, smaller than the threshold. Those three sub-clusters
along with EC1 is then distributed between two workers.
This distributed solution will be referred as fine-grained
distributed (FGD) in subsequent sections.
The value of β provides a trade-off between workload

balance obtained and overhead for doing so. A smaller β
increases one time cluster decomposition cost, but provides
more balanced workload distribution. To smooth the fin-
ishing time of different threads, we sort the clusters and
sub-clusters in the work pool by cardinality. This allows the
larger clusters to be searched earlier and keeps small clusters
in the end.
Note that the cardinality overestimates the total number

of embeddings present on each embedding cluster. However,
it still serves as an effective reflection of workload because
larger embedding clusters in general tend to have bigger
number of isomorphic embeddings, and the clusters that do
not follow above-mentioned trend contain high false candi-
date count which needs verification before discarding them
thereby increasing the amount of work.

5 DISTRIBUTED IMPLEMENTATION
In addition to a multi-threaded (OpenMP) version, we have
implemented the CECI system on a distributed-memory clus-
ter (with OpenMP and MPI). To manage the graph data in
the cluster, two methods have been explored: replicating
the whole data graph on the memory of each machine (in-
memory data graph), and storing the graph on a lustre file
system, shared by several compute machines (shared data
graph). Efficient decomposition of graph into different ma-
chines is a non-trivial problem and is left out for now.

In the first approach, all machines hold the same data and
query graph but work on the disjoint set of embedding clus-
ters creating different CECI on each machine. For the second
approach, there is only one copy of the data graph shared
on the networked storage, in the Compressed Sparse Row
(CSR) format [28]. Each machine uses a beginning_position
array to locate the adjacency list for a given vertex. Both
methods distribute the cluster pivots to multiple machines by
using MPI library’s synchronous communication functions
MPI_Send and MPI_Recv.

While distributing pivots {vs } among machines, two ma-
jor concerns need to be addressed. First, since cardinality
is not available before CECI creation, we rely on a light-
weighted approximation to balance the workload. In the
in-memory setting, the workload for each vertexv is propor-
tional to the sum of degree of v and degree of all neighbors
of v . In the second approach, only the degree of a node v

is used since the neighbor information is not available. In
both cases, the workload is scaled using vertex ID to account
for imbalance inflicted by automorphism breaking orders,
i.e., effective workload for v is equal to |V |−v

|V | ×workload(v).
Since CECI creation takes a small portion (<5%) of the total
run-time, even such a coarse method is able to deliver an
acceptable performance.
Second, two embedding clusters can overlap with each

other (e.g., in Figure 1). When highly overlapping clusters
fall in different machines, it incurs significantly redundant
exploration. We estimate the similarity between two embed-
ding clusters via Jaccard distance. If vi and vj are the pivots
of clusters ECi and ECj , respectively, the similarity between
these two clusters is J (vi ,vj )=

N (vi )∩N (vj )
N (vi )∪N (vj )

. If J (vi ,vj ) ≥ 0.5,
these two clusters will be handled by the same machine pro-
vided that the total workload does not exceed the maximum
allowed workload. To reduce the overhead of similarity cal-
culation, CECI system only runs similarity measure on the
largest 1, 000 clusters (as defined by light-weighted work-
load). In our second approach, this method cannot be applied
as each machine does not have the whole graph.
During embedding enumeration, the CECI system pro-

ceeds as follows: (1) Each machine starts enumeration on
embedding clusters from its CECI. These machines also keep
record of unexplored clusters in their CECI. (2) When all
the embedding clusters in the local CECI are done, it steals
the work from the machine with the maximum number of
unexplored clusters (victim machine). Work stealing is im-
plemented by using one-directional function MPI_Get. (3)
Finally, if needed, the results from all machines are accumu-
lated to a single machine.

6 EXPERIMENTS
We have implemented the CECI system with around 3,000
lines of OpenMP, MPI, and C++ code and evaluated it on
three different machines. (1) Server 1: A server with dual-
socket Intel Xeon CPU E5-2683 CPUs with 28 cores and
512 GB memory for main memory. (2) Server 2: A quad-
socket Intel Xeon CPU E7-8857 CPUs with 48 cores and 2 TB
memory which is used to run yahoo graph only. (3) Cluster
1: 16 8-core nodes cluster with dual-socket Intel Xeon CPU
E5-2650 CPUs with 128 GB memory each for distributed
implementation. All machines run Linux 3.10.0 kernel with
GCC 4.8.5 and compilation flag -O3. All reported results are
the average of five runs.
Query graph: Five unlabeled query graphs from Figure 6,
which are also used by recent projects PsgL, TTJ, and Dual-
Sim are used. Section 6.2 experiments on larger, and labeled
query graphs.
Data graph: The experiments run on both undirected and
directed data graphs listed in Table 1. The first nine are
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Figure 6: Different simple query graphs used for test-
ing. Note that all the nodes have same label 0.

real graphs while the last one, rand_500k, is a synthetic
graph generated by Graph500 Kronecker Generator [15].
The numbers of vertices and edges range from 0.5 million to
1.5 billion, and 2 million to 12.9 billion, respectively. All real
graphs are obtained from Stanford Large Network Dataset
Collection [49], except Yahoo [55].

Table 1: Graph datasets used in the experiments. |V |
and |E | are the vertex count and edge count respec-
tively.

Datasets Abbr. |V| |E| Directed
citPatent CP 3.77M 16.5M Y
Friendster FS 65.6M 1.8B N
Human HU 4.6K 0.7M N
live-journal LJ 3.99M 34.68M N
Orkut OK 3.0M 117.2M N
Webgoogle WG 0.9M 8.6M Y
wiki-talk WT 2.3M 5.0M Y
Yahoo YH 1.4B 12.9B N
Youtube YT 1.1M 3.0M N
rand_500k RD 0.5M 2.0M N

6.1 Small Query Graphs
We have run the experiment to find all embeddings of query
graphs QG1 toQG5 from Figure 6 on eight real world datasets.
Only one automorphism of each embedding is listed by uti-
lizing vertex numbering based automorphism breaking tech-
nique as described in Section 2.2.
The performance numbers of DualSim are quoted from

their paper [24]. Although the DualSim paper reports the
result for 6-core machine, it is unlikely to achieve very high
performance in a machine with higher core count. Its algo-
rithm is IO bound in nature since DualSim iteratively loads a
fixed set of disk pages, each of which contains the adjacency
list for one node, and runs isomorphism with that set at each
time. To achieve better scalability, DualSim needs to process
the whole graph together, which will result in an exponential
memory requirement. We implemented PsgL (for optimal
setting α = 0.5) on shared memory using OpenMP. Hence,
the communication overhead for PsgL is minimized.
Figure 7 compares the performance of the CECI system

with state-of-the-art solutions – DualSim [24] and PsgL [47]
on QG1 and QG4. The run-time reported here includes the
time for preprocessing, CECI creation, and enumeration of

1E-1
1E+0
1E+1
1E+2
1E+3
1E+4

WG CP WT LJ OK FR YH

Ru
nt
im

e(
Se
c)

QG1
PsgL DUALSIM CECI

1E+0
1E+1
1E+2
1E+3
1E+4
1E+5

WG CP WT LJ OK FR YH

QG4

PSgL DUALSIM CECI

Figure 7: Performance comparison with DualSim and
PsgL on query QG1 and QG4. The standard deviation
of run-time is less than 2% of the average.

the embeddings. The last step takes more than 95% of the
total run-time.

On average, our system outperforms DualSim and PsgL by
1.86× and 4.08× respectively for QG1 and 4.54× and 14.31×
respectively for QG4. For QG1, we obtain the highest speedup
of 4.8× on LJ and 22.6× on WT against DualSim and PsgL
respectively. Similarly, for QG4, the highest speedup is 12.8×
on CP and 63.7× on WT.
Figure 8 shows the performance of CECI system against

DualSim and PsgL for three remaining query graphs on WG,
WT and LJ data graphs. The average speedup of 19.7×, 49.3×,
and 86.7× is obtained over PsgL on QG2, QG3 and QG5
respectively. Similarly, the average speedup of 2.5×, 1.7×,
and 19.8× is obtained against DualSim. We omit the other
bigger data graphs because PsgL cannot finish the query in
an extensively long period of time (days) and the DualSim
manuscript does not include the results for those data and
query combination.
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Figure 8: Performance comparison with DualSim and
PsgL on query graphs QG2, QG3, and QG5. Standard
deviation of runtime is less than 2% of the average.
In general, PsgL is slower because it lacks the ability to

prune the unpromising paths prior to exhaustive expansion
(Figure 18) and has weaker thread scalability as compared
to CECI (Section 6.5) due to exhaustive work distribution
method. The speedup over DualSim comes from the better
utilization of compute power. Since DualSim loads a set of
few slotted pages from graph at a time to run listing algo-
rithm, it incurs multiple IO loads and is able to supply very
limited amount of workload in a given time.

6.2 Larger and Labeled Query Graphs
In this section, we evaluate CECI system with larger and
labeled query graphs. We perform Depth-first search (DFS)
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traversal of data graphs from random source nodes in order
to generate connected query graphs of different size from 3
to 50 nodes similar to existing works [4, 17, 50]. Iteratively,
a new node is selected and every backward edge from that
node to already selected nodes is added to query graph until
the required node count is achieved. Thus, at least one iso-
morphic embedding will be found for each query. For each
node count, 100 query graphs are generated.

First, we compare CECI systemwith CFLMatch [4], a state-
of-the-art subgraph matching solution on labeled graphs.
However, we restrict the comparison with only two data
graphs – RD and HU due to CFLMatch’s inability to handle
larger data graphs. We randomly inject each node of RD with
one of the 100 different labels. HU dataset comes with one
or more of 90 different labels on each node. The node labels
are transferred to query graph while doing DFS based query
generation. If the data node has multiple labels, only the first
label is used in the query node. Both CFLMatch and CECI
runs single threaded solutions, and only return the first 1,024
embeddings. All of the 100 queries for each size is run for
five times and the average of 500 execution is reported.
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Figure 9: Performance comparison with CFLMatch on
larger query graphs. The standard deviation of run-
time is less than 5% of the average.

As shown in Figure 9, CECI system outperforms CFLMatch
by average 3.5× and 1.9× on RD and HU graph respectively.
The speedup comes mainly from intersection based embed-
ding enumeration. The speedup in HU is smaller than in
RD because CFLMatch uses only one label per node for HU
while CECI system uses multiple labels. The speedup de-
creases slightly as the query graph gets larger because CECI
system has used naive BFS matching order while CFLMatch
has their optimized core-forest-leaf matching order, which
offers bigger advantage on larger query graphs.
Additionally, we compare our solution with TurboIso2

on the HU graph to find the first 1024 embeddings. Fig-
ure 10 shows that our system is on average 2.71× and 2.52×
faster than TurboIso and Boosted-TurboIso respectively. The

2We obtain the source code from authors of BoostIso [45], which contains
two versions of TurboIso. The first implementation, TurboIso, replicates
the works on [17] while the second version, Boosted-TurboIso, speeds up
TurboIso further by exploiting the vertex symmetry in data graph.
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Figure 10: Performance comparison with TurboIso
and Boosted TurboIso on larger query graphs. The
standard deviation of runtime is less than 5% of the
average.

speedup comes from intersection based enumeration, re-
duction of redundancy in filtering, and better utilization of
tree-edge and non-tree edge connectivities to filter the un-
promising candidates early.

6.3 Workload Balancing
This section uses QG1, QG3, and QG5 as the query graphs so
that CECI system experiences workload imbalance at various
backtracking tree depths: 3, 4 and 5 respectively. The speedup
obtained by adopting Coarse Grained Dynamic (CGD), and
Fine Grained Dynamic (FGD), against static workload dis-
tribution (ST) are measured. The value of β is fixed to 0.2,
i.e., the embedding clusters that are larger than one fifth of
expected cardinality per thread are ExtremeClusters.

From Figure 11, one can see that FGD and CGD techniques
clearly outperform ST. FGD is on average 16.8× better than
CGD, and CGD is 10.7× faster than ST. In rare cases (WT
on QG3), FGD is slightly slower than CGD because those
cases do not have ExtremeCluster and treating some clusters
as ExtremeCluster increases one time distribution overhead
slightly.
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Figure 11: Speedup obtained by adopting dynamic
workload balancing method, and ExtremeCluster
decomposition over static workload distribution
method.

Figure 12 shows the effect of different β on time spent
by each worker while running QG3 on FS graph. As we
decrease β , the time spent by fastest processor increases, but
the high skew at the end is reduced significantly. Scheduling
overhead for β = 1, 0.2, and 0.1 are 14.76, 16.53, and 23.96
Sec respectively.
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6.4 CECI size
Table 2 shows the size of CECI for different data and query
graph pairs. Since TE_Candidates and NTE_Candidates only
store candidate edges once, CECI system can drastically re-
duce the space consumption to O|Eд | × |Eq | as compared
to |Eд | |Eq | of aggressive instance expansion approach in
PsgL [47]. Here, |Eq | and |Eд | are the query and data graph
edge counts.
Table 2: CECI size in GB for different query and data
graph combinations. The numbers inside the paren-
theses and brackets are theoretical memory require-
ment, and % of space saved by CECI, respectively.

Graph FS LJ OK WT YH YT

QG1 20 (40)
[51%]

0.9 (1.5)
[45%]

1.3 (2.6)
[51%]

0.01 (0.1)
[83%]

121 (288)
[58%]

0.07 (0.1)
[31%]

QG2 26 (54)
[52%]

1.1 (2.1)
[48%]

1.7 (3.5)
[50%]

0.02 (0.2)
[88%]

160 (384)
[58%]

0.09 (0.2)
[45%]

QG3 32 (67)
[52%]

1.3 (2.6)
[50%]

2.1 (4.4)
[52%]

0.03 (0.2)
[86%]

225 (481)
[53%]

0.09 (0.2)
[57%]

QG4 38 (81)
[54%]

1.5 (3.0)
[49]

2.5 (5.3)
[53%]

0.03 (0.2)
[85%]

274 (577)
[52%]

0.11 (0.3)
[66%]

QG5 39 (81)
[52%]

1.6 (3.0)
[47%]

2.6 (5.3)
[52%]

0.03 (0.2)
84%

290 (577)
[50%]

0.12 (0.3)
[62%]

Filtering and refinement reduces the size of CECI signif-
icantly below the theoretical limit. For example, QG5 and
YH pair has theoretical size of 624 GB since |Eq | is 6, |Ed | is
12.9 Billion and 8 bytes is used to store each edge. However
after usage of BFS filtering and reverse-BFS refinement, the
CECI size is only 290 GB, reduced by 2.2×. For larger graphs
whose CECI does not fit inside memory, we plan to store it
in non-volatile memory [30].
Among existing solution, CFLMatch [4], due to its usage

of adjacency matrix based graph representation failed to
run data graphs graph larger than 500K nodes on Server
1. Similarly, PsgL [47] due to its exponential intermediate
result sets failed to run on Server 1 for YH graphs, i.e., it
needed more than 512 GB. DualSim [24] masks the problem
of exponential memory requirement by loading only a small
portion of graph into memory at a time. On the other hand,
TurboIso [17] saves memory by serializing the auxiliary data
creation and verification thereby making the solution unsuit-
able for larger number of embeddings.

6.5 Scalability
This part evaluates the scalability of CECI system under
both shared and distributed memory settings. The results
presented accounts for the time for both CECI creation and
embedding enumeration.
Figure 13 and 14 display the speedup obtained with the

increasing number of threads while running QG1 and QG4
respectively on FS and OK on Server 1.We compare the result
against speedup on PsgL. CECI system is able to obtain a near
linear speedup up to 16 workers. However, the trend slightly
flats out beyond 16 threads due to the lack of adequate work-
load. In general, the better speedup for CECI as compared to
PsgL is due to light-weighted workload balancing and better
locality on candidate set access.
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Figure 13: Scalability comparison against PsgL for in-
creasing thread count on Server 1 while running QG1.
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Figure 14: Scalability comparison against PsgL for in-
creasing thread count on Server 1 while running QG4.

We evaluate the CPU usage of CECI system over the life-
time of the program. Initially, CPU usage is low since the
process is either heavily serialized or dominated by IO loads.
During CECI creation, the cpu usage gets only slightly larger
due to massive serialization on creating CECI. During em-
bedding enumeration phase, which constitutes more than
95% of the overall execution time, all cores are used to the
maximal resulting in near 100% utilization on each core.
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Figure 15: CPU usage while running different query
graphs on OK data graph. The results are collected
while running 32 OpenMP threads on Server 1.

The scalability of two distributed solutions described in
Section 5 is examined on Cluster 1. We vary the machine
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count from 1 to 16 while running four OpenMP threads
on each machine. In general, the distributed systems have
speedup curve that flats out earlier as compared to the shared
memory setup because of the higher communication over-
head. The reason for having flat line beyond 4machines (each
running 4-OpenMP thread) is due to insufficient workload
on smaller graphs. Scalability on smaller graphs YT, WT, and
LJ had the same effect on the shared memory framework
beyond 16 threads. Note that larger graphs OK and FS have
much better speedup with more machines.

Figure 16 shows the speedup of distributed system while
the data graph is loaded in the memory of each machine. For
16 machines, we see maximum of 13.72× speedup for QG1
and 14.92 × speedup for QG4 while querying on FS graph.
Figure 17 shows the scalability of distributed CECI when the
shared data graph is accessed from a lustre file system. Here,
the CECI creation overhead increases by a factor up to 100
due to increased IO overhead. However, the parallelization of
CECI creation makes the solution scalable and the memory
requirement in each compute node is reduced by up to |E |.
As a result, we are still able to achieve speedup as high as
12.6 × for QG1 and 13.57× for QG4 with 16 machines.
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Figure 16: Speedup with increasing machine count for
listing QG1 andQG4 on distributed solution that loads
whole graph into the memory of each machine.
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Figure 17: Scalability with increasing node count for
listing QG1 and QG4 on distributed solution that uses
networked graph storage (lustre).

6.6 CECI: Advantages and Overheads
After filtering and refinement, CECI reduces the number
of false search paths significantly, more so when the query
graph is complex. We compare the number of recursive calls
made by CECI against that by PsgL. In backtracking match-
ing algorithm, a new recursive call to matching routine has
to be made every time an intermediate match is expanded by

one tree-edge. The total number of recursive call is approx-
imation of total search space [33]. The result in Figure 18
shows up to 44% reduction on the total number of recursive
calls. Note that, the benefit increases as the query graph
becomes more complex.
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Figure 18: Percentage of reduction on recursive calls
by CECI over PsgL for different queries.
The overhead for constructing and using CECI for sub-

graph listing is insignificant as compared to it’s benefits. We
implement a baseline parallel subgraph listing solution us-
ing graphs only and compared it with CECI based listing.
As shown in Figure 19, subgraph listing with CECI, includ-
ing creation overhead, is up to 2 orders magnitude faster
than running listing with bare graph. This speedup comes
from several factors including reduced search space, batched
filtering and refinement, better locality of candidates.
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Figure 19: Breakdown of speedup obtained upon base-
line technique into several techniques
With the whole graph in memory, CECI construction al-

ways took less than 5% of total run-time reported in Sec-
tion 6.1. Loading graph accounts for less than 15% of total
overhead and the majority of overhead is dominated by pre-
processing, filtering and refinement. For network stored large
graphs, the CECI construction can take up to 40% of the total
run-time. In Figure 20, we have presented the breakdown of
IO/compute/communication time for constructing CECI on
FS graph. The majority of increased overhead comes from
loading the partitioned sections of the data graph on demand
basis as explained in Section 5.

7 RELATED WORK
Subgraph Matching: The inception of subgraph matching
is backtracking based approach [54]. Later works VF2 [10]
and QuickSI [46] enhance the matching order by picking the
vertex connected to one of the already matched nodes. In
addition, QuickSI [46] reduces the search space by selecting
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Figure 20: Breakdown of CECI construction overhead
into IO, communication and computation.

infrequent nodes and edges first. Later, several solutions such
as Spath [59], GraphQL [19], GADDI [57] are developed with
the application of several heuristics such as pruning rules,
join orders, and auxiliary data.

Lee et al. [33] have carried out a comprehensive survey on
subgraph matching and have experimentally demonstrated
that there is no universally best visit order and each filtering
approach is good for only some datasets. Later, TurboIso [17]
exploits the vertex similarity on query graph to reduce the
overall workload. BoostIso [45] extends this idea to the data
graph to further exploit the symmetries in data and query
graphs for reducing the computation cost. CFLMatch [4]
removes cardinality cost imposed by the low degree nodes
by processing the dense portion of query earlier with the
help of core-forest-leaf decomposition.

With the help of an efficient visit order and auxiliary data
structures, it is possible to perform subgraph matching in
reasonable time for small to medium sized data graphs. Un-
fortunately, these solutions fail to accommodate large graphs
due to their inherent sequential nature – they list embed-
dings one by one.
Parallel Subgraph Listing solutions have gained popular-
ity in recent years. Prior works [2, 32, 43, 50] decompose
the query graph into sub-components, find the matches of
each sub-component in parallel machines, and join the result
from multiple machines to compute the embedding list. In
contrary, [22] decomposes the data graph into distributed
machines and applies the ideas from distributed relational
query optimizations into subgraph matching. PsgL [47] enu-
merates all embeddings together by forming new interme-
diate embedding after each expansion and allocating it to
suitable machine. DualSim [24] develops a disk based so-
lution on which the adjacency list of each node is stored
as a slotted page and at any time a specific combination
of pages is loaded and subgraph listing is performed upon
that section using dual approach. Despite providing signifi-
cant parallelism, these solutions suffer from expensive join
operation, huge amount of false candidates, and exponential-
sized intermediate result. Our system improves upon these
methods via a join-free approach, which only expands one
embedding at a time on each worker in parallel.
Approximate Subgraph Matching: These solutions [52,
58] are useful for querying noisy and dynamic graph databases

because they have better error tolerance. Similarly, approxi-
mate subgraph count estimators calculates the number of a
given query graph in data graphs [3, 6, 12]. Although these
works have better scalability, they do not provide the indi-
vidual embeddings unlike CECI system.
Subgraph Containment Search is slightly different re-
search area [5, 8, 26, 56, 60, 61] that finds whether a data
graph contains at least one isomorphic embedding of given
query graph. Although both subgraph containment search
and subgraph listing involve subgraph isomorphism, the lat-
ter is considered more difficult since it requires enumerating
every single embedding.
Subgraph Isomorphism in Streaming Graph is gaining
more popularity as most of the real world graph data are
continuously evolving. Several works [9, 25, 34] have al-
ready provided a solution for performing isomorphic sub-
graph search in streaming graphs. Recent framework [31]
provides a framework to manage and analyze the evolving
graph, which can be good platform to run streaming sub-
graph matching.
Graph data mining exploits subgraph isomorphism to ex-
tract the frequent subgraphs from data graphs [1, 8, 51].
Graph mining is essential for several problems involving
topological as well as label feature based patterns in the
data graphs. Examples of such applications include discover-
ing 3D motifs in protein structures or chemical compounds,
extracting network motifs or significant subgraphs from
protein-protein network.
Other than subgraph isomorphism, several recent works
on optimizing graph exploration [23, 35, 38] and triangle
counting [20, 21] have been helpful in designing the CECI
system. Finally, graph computing frameworks designed for
in-memory [40, 48], distributed [7, 13], external [14, 18, 28, 29,
36], and heterogeneous [37] systems can also be integrated
with CECI.

8 CONCLUSION AND FUTUREWORK
In this work, we have introduced a novel approach for sub-
graph listing with the help of CECI constructed by traversing
the data graph. Particularly, with logical decomposition of
data graph into embedding clusters we are able to parallelize
the subgraph listing problem. In addition, with the help of in-
tersection based embedding enumeration and workload bal-
ancing backed by cardinality based cost function, we are able
to outperform state of the art parallel solutions, i.e. DualSim
and PsgL by 6.08× and 34.82× on average respectively. One
possible future research is to translate the logical decompo-
sition into physical decomposition which enables subgraph
listing in trillion edge graphs.
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