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Abstract—Due to the increasing availability of large data
sets, the need for general-purpose massively-parallel analysis
tools become ever greater. In unsupervised learning, Bayesian
nonparametric mixture models, exemplified by the Dirichlet-
Process Mixture Model (DPMM), provide a principled Bayesian
approach to adapt model complexity to the data. Despite their
potential, however, DPMMs have yet to become a popular tool.
This is partly due to the lack of friendly software tools that
can handle large datasets efficiently. Here we show how, using
Julia, one can achieve efficient and easily-modifiable implemen-
tation of distributed inference in DPMMs. Particularly, we show
how a recent parallel MCMC inference algorithm – originally
implemented in C++ for a single multi-core machine – can be
distributed efficiently across multiple multi-core machines using
a distributed-memory model. This leads to speedups, alleviates
memory and storage limitations, and lets us learn DPMMs from
significantly larger datasets and of higher dimensionality. It
also turned out that even on a single machine the proposed
Julia implementation handles higher dimensions more gracefully
(at least for Gaussians) than the original C++ implementation.
Finally, we use the proposed implementation to learn a model of
image patches and apply the learned model for image denoising.
While we speculate that a highly-optimized distributed imple-
mentation in, say, C++ could have been faster than the proposed
implementation in Julia, from our perspective as machine-
learning researchers (as opposed to HPC researchers), the latter
also offers a practical and monetary value due to the ease of
development and abstraction level. Our code is publicly available
at https://github.com/dinarior/dpmm subclusters.jl

I. INTRODUCTION

In unsupervised learning, Bayesian nonparametric mixture
models, exemplified by the Dirichlet-Process Mixture Model
(DPMM), provide a principled approach for Bayesian mod-
eling while adapting the model complexity to the data. This
contrasts with finite mixture models whose complexity is de-
termined manually or via model-selection methods. A DPMM
example is the Dirichlet-Process Gaussian Mixture Model
(DP-GMM), an ∞-dimensional extension of the Bayesian
variant of the (finite) Gaussian Mixture Model (GMM). De-
spite their potential, however, and although many researchers
have used them successfully in many applications over the
last decade, DPMMs have not enjoyed wide popularity among
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Fig. 1: The architecture of the proposed multi-machine multi-
core implementation. In this figure, for concreteness, we show
parallelization over 4 machines.

practitioners, largely due to computational bottlenecks in cur-
rent implementations. We argue that useful implementations
must be able to leverage parallel and distributed computing
resources in order for DPMMs to be a practical choice for
analysis. One of the missing pieces, we argue, is the avail-
ability of friendly software tools that can efficiently handle
DPMM inference in large datasets; i.e., we need to be able
to leverage parallel- and distributed-computing resources for
DPMM inference. This is because not only potential speedups
but also memory and storage requirements. This is especially
true for distributed mobile robotic sensing applications where
robotics agents have limited computational and communica-
tion resources. In an analogy, consider how advances in GPU
computing contributed to the success of deep learning (at
least in supervised learning). That said, here we are more
interested in distributing computations across multiple CPU
cores and multiple machines. This is not only because not
all computation types are appropriate for GPU hardware or
that CPU resources are more available but also because it
is useful during algorithm development to easily distribute
computations as an abstraction.

While DPMMs are theoretically ideal for handling large, un-
labeled, datasets, current implementations of DPMM inference
do not scale well with increases in size of the data sets and/or
dimensionality (exceptions are few recent implementations
designed for streaming, typically low-dimensional, data). This
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Fig. 2: 2D Synthetic data. 106 points drawn from a 6-
component GMM. The correctly-inferred clusters are shown,
in different colors, as ellipses at 5 standard deviations (the
correct value of K = 6 was inferred and was not assumed
known.

is partly since most existing implementations are serial; i.e.,
they do not harness the power of distributed computing. This
does not mean that there do not exist distributed algorithms
for DPMM inference. There is, however, a large practical gap
between designing such an algorithm and having it imple-
mented efficiently in a way that fully utilizes all the available
computing resources. Our work is an attempt to close this gap
in a way which is useful for typical large-scale applications
(such as in, e.g., computer vision).

More generally than the topic of DPMMs, distributed im-
plementations, at least in traditional programming languages
used for such implementations, tend to be hard to debug, read,
and modify. This clashes with the usual workflow of algo-
rithm development. Julia, a recent high-level/high-performance
programming language for technical computing, substantially
addresses this issue. It is “easy to write (and read)”, having
syntax similar to other technical computing environments (e.g.,
MATLAB or Python’s NumPy). It provides a sophisticated
compiler, distributed parallel execution, numerical accuracy,
and an extensive mathematical function.

In this work we show how to implement, using Julia,
efficient distributed DPMM inference. Particularly, we demon-
strate how a recent parallel MCMC inference algorithm [5] –
originally implemented in C++ for a single multi-core machine
in a highly-specialized fashion using a shared-memory model
— can be implemented such that it is distributed efficiently
across multiple multi-core machines using a distributed-
memory model. This leads to speedups, alleviates memory
and storage limitations of a single machine, and lets us learn
models from significantly larger datasets. We describe our
implementation design and compare our implementation with
the one from [5]. Surprisingly, we found that, in the DP-
GMM case, even on a single machine our implementation
handles higher dimensions better, and not just in terms of

speed, than [5]. This is important as computer vision usually
deals with higher-dimensional data than standard machine-
learning problems. Finally, we use our implementation to learn
image-patch models and apply them to image denoising. We
emphasize that the goal of this paper is not to claim that Julia
is faster/better than language X. For example, we speculate
that a highly-optimized distributed implementation in, say,
C++ could have been faster than the proposed implementation
in Julia. However, from our perspective as machine-learning
researchers (as opposed to HPC researchers), distributed im-
plementations in Julia, ours included, also offer a practical and
monetary value due to the ease of development and abstraction
level. That is, even if other implementations might be faster,
and even though the monetary cost of several machines is of
course greater than a single machine, the rapid development
and ease of modifications to the model in Julia offer significant
value in terms of our time as machine-learning algorithm
developers while still being able to massively parallelize
computations.

II. RELATED WORK

Bayesian non-parameteric mixture models in general, and
DPMMs in particular, have been used in computer vision by
several authors, e.g. [4], [6], [8]–[10], [13], [16]–[19], [21],
[22], [24], [25], [27], [28], [30], [32]–[35], [37]. While this
list may seem long, note it represents almost an entire decade,
yet it is almost exhaustive.

A few DPMM-inference software packages, in several dif-
ferent languages (e.g., R [15], Python [12], and Matlab [20]),
are publicly available; however, their implementations are
serial. A few works use GPU to distribute DPMM inference in
low-dimensional streaming-data applications using, e.g., either
small-variance asymptotics [30] or variational methods [3].
Our work differs from those in that we use a multi-machine,
multi-core, pure-CPU distributed implementation, that we rely
on MCMC inference, and in that we can handle large, high-
dimensional data in batch mode.

Julia has been little explored for Bayesian nonparametric
mixture models, though there are counterexamples, e.g. [36].
Likewise, Lin [23] use Julia for inference in Bayesian nonpara-
metric mixture models. In both [36] and [23] the implementa-
tions are serial. While there exist few more such examples, it
seems that the strong (and remarkably painless) support Julia
offers for parallel and distributed computing has yet to be
utilized in this context.

In this work we use Julia to implement a parallel MCMC
sampler for DPMM proposed by Chang and Fisher [5] for
both Gaussian and Multinomial distributions. Our code can be
easily adapted to other component distributions, e.g., Poisson,
as long as they belong to the Exponential family [2]. The
algorithm from [5], which is based on the split-merge frame-
work [14], was designed as a parallel algorithm and its authors
released a multi-core single-machine C++ implementation.
The latter assumes a shared-memory model while we extend
their work by proposing an implementation that accommodates
a distributed-memory model via an explicit partitioning of
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Cores × Machines C++ [5] Julia
1×1 55.87 132.88
2×1 35.48 78.28
4×1 16.45 42.48
8×1 10.21 32.95
8×2 – 17.56
8×3 – 16.73
8×4 – 12.93

TABLE I: Time (in [sec]) for running 100 DP-GMM iterations
with d = 2, N = 106,K = 6.

the data. This enables our implementation to extend theirs
by allowing parallelization across multiple machines, not just
multiple cores. In turn, this enables us to not only leverage
more computing power and gain speedups but also provide
practical benefits in terms of memory and storage. For ex-
ample, our implementation can be used within a distributed
network of weak agents (e.g., small robots collecting data). It
also never transfers data (which is expensive and slow); rather,
we transfer only sufficient statistics and parameters. Thus, the
proposed implementation is also well suited for a network of
low-bandwidth communication.

Surprisingly, it turns out that even on a single machine, our
Julia implementation of DP-GMM handles high dimensions
better than that C++ implementation, and not just in terms of
speed; e.g., for 250-dimensional data, [5] usually fails (while
ours succeeds). Thus, e.g., it is inapplicable for learning, say, a
prior of large image patches. In contrast, we easily apply our
implementation for learning a DP-GMM over such patches.
This is akin to Zoran and Weiss [38], except that they learn a
finite (and non-Bayesian) GMM where they manually fix K,
the number of Gaussians. Their implementation was also serial
and slow (based on the timings they report). In contrast, we
automatically infer, in a Bayesian fashion, all the parameters
(including K) from the data. Similarly to the experiments
presented here, Hughes and Sudderth [11] use a DP-GMM
in this problem. While they used a serial implementation of
variational inference we used a distributed (and exact) MCMC
sampling.

An application suggested in [38] for image-patch models
was image denoising. As it was impractical for them to use
the entire training dataset (∼44 million patches), they trained
their GMM on only a smaller subset (2 millions). Hughes
and Sudderth [11] did the same, probably for similar reasons
(and report, for their best run, results comparable to [38]).
When trained on 2 million patches, our results are comparable
to [38] but we obtained them much faster, despite the fact
that unlike [38] we also infer K and use a sampling-based
inference in a fully Bayesian setting. When trained on a much
larger training dataset (∼44 millions), we get slightly better
results than them. The fact that more data improves results
is unsurprising. Our point, however, is that: 1) the fact we
are able to do it at all is due to the distributed nature of our
implementation; 2) the fact we use a Bayesian nonparametric
model, i.e. an infinite-dimensional DP-GMM as opposed to
their finite GMM, lets us automatically infer K and adapt it

Cores × Machines C++ [5] Julia
1×1 1637.52 416.40
2×1 720.29 232.62
4×1 480.50 139.86
8×1 262.41 94.64
8×2 – 53.01
8×3 – 39.30
8×4 – 35.68

TABLE II: Time (in [sec]) for running 100 DP-GMM itera-
tions of d = 30, N = 106,K = 6.

to the data. E.g., for the larger dataset we inferred a larger
K than the one we inferred for the smaller one. It means we
let the data determine the complexity. This kind of argument
is standard in Bayesian nonparametric modeling; our key
contribution is to show how to convert this theory to practice,
i.e., implement such inference in a distributed way so one can
process large, high-dimensional data. Our code, to be made
available upon publication of this paper, is also easy to read
and adjust, due to the fact that Julia is a high-level language.

III. BACKGROUND

This section provides an overview of: 1) DPMMs; 2) the
inference algorithm from [5] that uses parallel sampling via
subcluster splits and merges; 3) Zoran and Weiss’ GMMs of
image patches and their application to image denoising.

A. DPMMs

A DPMM is an ∞-dimensional Bayesian mixture model
with a Dirichlet-Process (DP) prior over the clusters param-
eters. For the original proof of the existence of Dirichlet
Processes, see [7]. For a more detailed discussion on Dirichlet
Processes with computer-vision and machine-learning readers
in mind, see [31]. The generative model of a DPMM, for data
points (xi)

N
i=1, is as follows:

G ∼ DP (α,H), (1)

θ̃i ∼ G(θ̃i), ∀i ∈ {1, 2, . . . , N}, (2)

xi ∼ fx(xi; θ̃i), ∀i ∈ {1, 2, . . . , N}. (3)

Here, N is the number of data points, α is the concentration
parameter, and H is the base measure for the DP. For each
data point, indexed by i, we draw a sample θ̃i from the
DP realization G. We then draw xi from the distribution
parameterized by θ̃i. Since G is a DP realization, it is a
distribution over discrete atoms. Hence, multiple data points
can share the same parameter θ̃i. Points which share the same
parameter form a cluster and the shared θ̃ are referred to as
cluster parameters. An equivalent representation, but perhaps
easier to understand, is based on a stick-breaking process.
This alternative generative model is as follows:

π ∼ GEM(1, α), (4)
θk ∼ fθ(θk;λ) = H, ∀k ∈ {1, 2, . . .}, (5)
zi ∼ Cat(π), ∀i ∈ {1, 2, . . . , N}, (6)
xi ∼ fx(xi; θzi), ∀i ∈ {1, 2, . . . , N}. (7)
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Cores × Machines C++ [5] Julia
1× 1 94.53 350.84
2× 1 54.49 155.98
4× 1 34.08 104.95
8× 1 16.69 66.46
8× 2 – 34.51
8× 3 – 25.32
8× 4 – 21.28

TABLE III: Time (in [sec]) for running 100 DP-MNMM
iterations with d = 100, N = 106,K = 6.

Here, GEM stands for the Griffiths-Engen-McCloskey stick-
breaking process for a DP. By drawing a sample from
GEM(1, α), we get an ∞-dimensional vector of weights π.
For each of the weights πk, we draw a sample from the base
measure H as our parameter for cluster k. For each data point
i, we first draw a sample for the label assignment zi using
the weights π. Finally, we sample xi from the distribution of
cluster zi which is parameterized by θzi .

B. Parallel Sampler for DPMMs

Chang and Fisher [5] proposed a parallel sampling algo-
rithm for DPMMs. The main idea there is to have a restricted
Gibbs sampler [26] which fixes the number of clusters and
then proposes splits and merges. This allows a Gibbs sampling
step to be done in parallel without having to worry about the
creation of new clusters. In order to propose meaningful splits
that are likely to be accepted, their algorithm uses auxiliary
variables such that each cluster consists of 2 sub-clusters.
These variables are z̄i ∈ {l, r} (conceptually thought of as
“left” and “right”) which indicate which of the sub-cluster the
ith point is assigned to and π̄k = {π̄kl, π̄kr}, θ̄k = {θ̄kl, θ̄kr}
which denote the weights and parameters of the sub-clusters
of cluster k. By sampling the sub-clusters, one is able to
propose meaningful splits that split a cluster into its 2 sub-
clusters. Merges are proposed by merging 2 sub-clusters into
one with each of the original clusters becoming a sub-cluster
of the new merged cluster. The algorithm is summarized in
Algorithm 1. We use the same notation as in [5] where N
is the number of data points, K is the number of clusters,
fx(X; θ) is the likelihood of a set of data under the parameter
θ, fθ(θ;λ) is the likelihood of the parameter θ under the prior
λ, ∝∼ denotes sampling proportional to the right-hand side of
the equation, and Ik = {i : zi = k}. As that algorithm was
designed with parallelization in mind, most of its operations
are parallelizable. Particularly, sampling cluster parameters is
parallelizable over the clusters, sampling assignments can be
computed independently for each point, and cluster splits can
be proposed in parallel. Thus, a multi-core implementation
is quite straightforward, with the caveat that one needs to be
careful with merges; i.e., to prevent more than 2 clusters merge
into the same single cluster. E.g., if clusters 1 and 2 are merged
at the same time that clusters 2 and 3 are merged this would
imply the three clusters (1,2, and 3) would be merged into a
single one. See [5] for more details.

Algorithm 1 An inference iteration with sub-cluster splits

Run an iteration of restricted Gibbs sampling:
(a) Sample cluster weights π1, π2, . . . , πK ,:

(π1, . . . , πK , π̃K+1) ∼ Dir(N1, . . . , NK , α). (8)

(b) Sample sub-cluster weights π̄kl, π̄kr for each cluster k ∈
{1, . . . ,K}:

(π̄kl, π̄kr) ∼ Dir(Nkl + α/2, Nkr + α/2). (9)

(c) Sample cluster parameters θk for each cluster k:

θk ∝∼ fx(xIk
; θk)fθ(θk;λ) (10)

(d) Sample sub-cluster parameters θ̄kh for each cluster k ∈
{1, . . . ,K} and h ∈ {l, r}:

θ̄kh ∝∼ fx(xIkh
; θ̄kh)fθ(θ̄kh;λ). (11)

(e) Sample cluster assignments zi for each point i ∈
{1, . . . , N}:

zi ∝∼
∑K

k=1
πkfx(xi; θk)�(zi = k). (12)

(f) Sample sub-cluster assignments z̄i for each point i ∈
{1, . . . , N}:

z̄i ∝∼
∑

h∈{l,r} πzihfx(xi; θ̄zih)�(z̄i = h). (13)

Propose and Accept Splits:
(a) Propose to split cluster k into its 2 sub-clusters for all

k ∈ {1, 2, . . . ,K}.
(b) Calculate the Hastings ratio H and accept the split with

probability min(1, H):

Hsplit =
αΓ(Nkl)fx(xIkl

;λ) · Γ(Nkr)fx(xIkr
;λ)

Γ(Nk)fx(xIk
;λ)

(14)

Propose and Accept Merges:
(a) Propose to merge clusters k1, k2 for all pairs k1, k2 ∈

{1, 2, . . . ,K}.
(b) Calculate the Hastings ratio H and accept the merge with

probability min(1, H).

Hmerge =
Γ(Nk1

+Nk2
)

αΓ(Nk1)Γ(Nk2)

p(x|ẑ)
p(x|z)

× Γ(α)

Γ(α+Nk1 +Nk2)
(15)

× Γ(α2 +Nk1
)Γ(α2 +Nk2

)

Γ(α2 )Γ(
α
2 )

(16)

C. GMMs and Image Denoising

Zoran and Weiss [38] proposed an image-denoising method
that is based on maximizing the Expected Patch Log Likeli-
hood (EPLL) under a (learned) model while staying close to
the observed noisy image. See [38] for more details. For our
purposes, it is sufficient to summarize as follows: one first
needs to somehow learn a statistical model of images patches
(in [38], it was a finite GMM of K = 200 components, learned
via Expectation Maximization); next, any such learned model
can be used within their denoising method whose MATLAB
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Cores × Machines 8×1 8×2 8×3 8×4
C++ [5] 79.57 - - -
Julia 234.09 125.51 86.87 67.10

TABLE IV: Time (in [sec]) for running 100 DP-MNMM
iterations with d = 100, N = 106,K = 60.

code, together with their learned GMM, are publicly available.
Thus, their framework provides a way to test and showcase
the utility of our method.

IV. THE PROPOSED IMPLEMENTATION

Chang and Fisher [5] released a multi-core, single-machine,
C++ implementation of their algorithm for the case when
each cluster is a Gaussian, i.e., a DP-GMM, and the case
when each cluster is Multinomial, i.e., a Dirichlet-Process
Multinomial Mixture Model (DP-MNMM). Their implemen-
tation relies on a shared-memory model and is also highly-
optimized and not easily adjustable. In contrast, we extend
their work by proposing a flexible multi-core muli-machine
implementation that relies on a distributed-memory model and
is written in Julia. Similar to their implementation [5], and for
the interest of comparison, we focused on the Gaussian and
Multinomial cases. As an aside, we remark that one aspect
of the flexibility of our implementation is the ease in which
the Gaussian-to-Multinomial modification was made, requiring
far less code changes than was the case in Chang and Fisher’s
implementation. We now discuss key implementation details
and challenges. Assume we have N data points, K clusters
and M machines where each machine has P cores.

A. High-Level Design/Architecture

To achieve efficient multi-machine parallelization in Julia,
we use DistributedArray objects to store the data,
the labels and the sub-cluster labels. We make an extensive
use of sufficient statistics [29], including for inter-core and
inter-machine communication. The sufficient statistics for a
Gaussian cluster with points x1, x2, . . . , xm ∈ R

d are:

TG1 =
m∑

i=1

xi ∈ R
d ; TG2 =

m∑

i=1

xix
T
i ∈ R

d×d . (17)

The sufficient statistic for a Multinomial cluster with points
x1, x2, . . . , xm ∈ N

d
0 is:

TM =
m∑

i=1

xi ∈ N
d
0 . (18)

In both cases d is the dimensionality of the points. Aggregating
sufficient statistics for each cluster enables sampling the cluster
parameters. Since each sufficient statistic is a sum over a
set of data points, we can collect the sums for each process
and aggregate them. In fact, this property holds true for all
distributions in the exponential family. For an introduction to
sufficient statistics in general, and in the exponential family in
particular, see [29] and [2].

Sampling the cluster and sub-cluster parameters takes O(K)
time given the sufficient statistics, so we parallelize them only

Model K Avg. PSNR
GMM [38] 200 (fixed) 28.5061
DP-GMM (α = 1) 72 28.4173
DP-GMM (α = 103) 80 28.4276
DP-GMM (α = 106) 99 28.4303
DP-GMM (α = 106, all patches) 330 28.5402

TABLE V: Ave. PSNR (the higher the better) on 50 test images
(with added Gaussian noise) for different models.

on the master machine as usually K � N . Sampling the
cluster and sub-cluster assignments takes O(NK) time as can
be seen from Eqs. (12) and (13). These are the only steps
that scale with both N and K, so parallelizing these steps
is key. Since the assignment of each data point is sampled
independently from the rest, we distribute the data points
evenly across every process in every machine along with their
cluster assignments. We maintain the cluster and sub-cluster
parameters in the master machine along with their sufficient
statistics. They are then broadcasted to all processes so we can
sample the assignments. Proposing splits takes O(K) time and
proposing merges takes O(K2) time which does not scale with
N so they are relatively fast and are thus done on the master
machine. This architecture is illustrated in Figure 1.

B. Detailed Implementation Design

We maintain the following objects on the master machine:
1) an Array of the local clusters where each item in that
vector holds the cluster and sub-cluster parameters (i.e., θk,
μk, Σk,θkl, θkr, π̄kl and π̄kr for the kth Gaussian), the point
counts (i.e., Nk, Nkl, Nkr) and the sufficient statistic (i.e., Tk,
Tkl, Tkr) as well as the cluster weights (i.e., π1, π2, ..πk). We
have the following objects on each worker process: cluster
and sub-cluster weights (broadcasted from the master); a
thin version of the cluster and sub-cluster parameters which
includes only the distributions (broadcasted from master);
chunks of the data, xi (as part of the DistributedArray);
chunks of the cluster and sub-cluster assignments, zi, z̄i (as
part of a DistributedArray). We now describe our im-
plementation of Algorithm 1:
1) Run an iteration of a restricted Gibbs sampling:
a. Sample cluster parameters (Eq. (10)) and sub-cluster pa-

rameters (Eq. (11)) on the worker processes on the master
machine in parallel.

b. Sample cluster weights (Eq. (8)) and sub-cluster weights
(Eq. (9)) on the master process.

c. Broadcast cluster and sub-cluster weights and parameters
to all worker processes.

d. Sample cluster assignments (Eq. (12)) in parallel across all
worker processes. Each worker samples the assignments of
the data it is in charge of, updating the assignments in the
DistributedArray.

e. Sample sub-cluster assignments (Eq. (13)) in parallel across
all worker processes. Each worker samples the assignments
of the data it is in charge of, updating the assignments in
the DistributedArray.
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f. Update the cluster and sub-cluster sufficient statistics in
parallel across all worker processes. Each worker calculates
the sufficient statistics from the data it is in charge of. We
then aggregate the sufficient statistics across all workers
by simply summing them. E.g., if we have 4 workers and
we want to calculate the sufficient statistics T1 (i.e., the
sufficient statistics of for cluster 1), we would first calculate
{T i

1}4i=1, the sufficient statistics for the 4 workers, using the
data points each worker is in charge of that are assigned to
cluster 1 and then sum :

T1 = T 1
1 + T 2

1 + T 3
1 + T 4

1 (19)

Note that we do not maintain the sufficient statistics re-
ceived from each worker as this is a synchronous imple-
mentation. If we were doing this asynchronously, we would
maintain these as this would have allowed us to undo the
previous contribution to the aggregated statistics.

2) Splits:
a. Propose to split each cluster in parallel on the master

machine. The calculation of the Hastings ratio (Eq. (14))
requires only the sufficient statistics which are available via
the local clusters’ Array on the master.

b. Process all accepted splits by creating an assignment map
which maps old assignments to new ones. This is then
broadcasted to each worker process, which in turn updates
the assignments of the points it is in charge of. Sufficient
statistics for the newly-split clusters are calculated and
updated (similarly to Eq. (19)).

3) Merges:
a. Propose to merge all pairs of clusters in serial on the master

process (Eq. (16)). As in [5], when a merge of 2 clusters
is accepted, we do not consider them for future merges in
this iteration.

b. Process all accepted merges by creating an assignment
mapping which maps old assignments to new ones. This
is then broadcasted to all worker processes and each of
which updates the assignments of the points it is in charge
of. Sufficient statistics for the newly merged clusters are
calculated and updated (similarly to Eq. (19)).

C. Optimizing Process Communication

In each iteration, we broadcast a number of objects from
the master process to all processes as well as the sufficient
statistics from the workers so they can be aggregated. A naive
way to do this would be sending the objects from the master
process to each worker and the sufficient statistics from the
workers to the master directly. Unsurprisingly, however, we
found that inter-machine communication (between processes
on the same machine) is much faster than intra-machine
communication (between processes on different machines).
To reduce this communication overhead, we first send the
objects to be broadcasted from the master to one process in
each machine and then using that process to send it to all
processes in its machine. For sufficient statistics that need to be
aggregated, we first aggregate them within each machine and

then send those aggregated sufficient statistics to the master
for final aggregation. Empirically, this reduced communication
overhead tenfold.

D. Runtime Complexity

In § IV-A, we touched upon the runtime complexity. We
now analyze the total runtime complexity.

Run an iteration of a restricted Gibbs sampling.
Sampling the cluster and sub-cluster parameters (including
weights) takes constant time for each cluster but is parallelized
over P processes on the master. This takes O(K/P ) time.
Sampling the cluster weights is also done in constant time.
Broadcasting cluster and sub-cluster weights and parameters
to all worker processes take O(M + P ) as we first broadcast
to each machine and then, from each machine, we broadcast
to every process. Sampling the cluster assignments takes
O(NK) time in serial, but this is parallelized over MP
processes so this takes O(NK/(MP )). Sampling the sub-
cluster assignments takes O(N) time in serial, but this is
parallelized over MP processes so this takes O(N/(MP )).
Updating the cluster and sub-cluster sufficient statistics can
be split up into 2 steps. The first step is to for all workers
to calculate the sufficient statistics for the data it is in charge
of. This step takes O(N/(MP )) time. The second step is to
aggregate across all workers. This step takes O(M +P ) time.
Overall, this take O(N/(MP )) +O(M + P ) time.

Splits: Proposing splits by looking at each cluster is
O(K). Processing all the accepted splits requires updating
the sufficient statistics which could take at the worst case
O(N/(MP )) +O(M + P ) if all clusters are split.

Merges: Proposing merges by inspecting each cluster pair
is O(K2). Processing all the accepted merges also requires
updating sufficient statistics. The worst case (i.e., if all clusters
are merged) is thus O(N/(MP )) +O(M + P ).

To summarize, the total runtime complexity is O(K) +
O(M + P ) + O(NK/(MP )). Since N � K,P,M , this
implementation achieves linear parallelization theoretically.

E. Memory Complexity

We now look at the amount of memory used on each
machine. The data is stored as a distributed array across
all processes, so we have O(D ∗ N/M) on each machine.
Additionally, we have labels and sub-labels distributed arrays
across all processes, adding O(2N/M) on each machine.
Each process also has a copy of the cluster and sub-cluster
parameters which takes O(KP ) space for each machine. We
also have to aggregate sufficient statistics for each cluster
after sampling the assignments. This also takes O(KP ) for
each machine. Hence, we have a total memory usage of
O(N/M + KP ). Since usually N � K,P,M , the memory
overhead is insignificant in comparison to the data itself.

V. RESULTS

The experiments below were done on Dell machines with
Intel I7-6800K CPU @ 3.40GHz processors, treating each
hyperthread as a core.
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Synthetic Data: DP-GMM. We started by testing the
proposed implementation on large synthetic datasets. We gen-
erated synthetic data by drawing 106 points from an underlying
GMM with 6 clusters; see Fig. 2. For illustration, we use 2D
points here but note that the proposed implementation works in
arbitrary dimensions. Having run the proposed implementation
on this data set, we obtain the results shown in Fig. 2.
We obtained similar results when running the implementation
from [5]. Table I compares the runtime of both implementa-
tions. Recall that the implementation from [5] does not support
multiple machines. On a single machine, and for this low
dimensionality (i.e., d = 2), the proposed Julia implementation
is between 2 to 4 times slower than their optimized C++
implementation. As we increase the dimensionality of the data
set, however, the proposed implementation performs relatively
better; e.g., when we increase the dimensionality to 30, Table II
shows that the proposed implementation is almost 4 times as
fast on a single machine than the C++ implementation and that
we also obtain additional good speedup on multiple machines.
This is probably since their implementation was optimized for
low dimensions. However, we have also noted (empirically)
that the implementation from [5] fails when we go past a
certain dimension (while the proposed implementation still
succeeds); e.g., when we set the dimensionality to 250, the
implementation from [5] converged, wrongly, to 1 cluster
while the proposed implementation converged to the correct 6
clusters (attempts to debug their implementation suggest that
the problem is due to underflow/overflow). This observation is
consistent with the claim that it is easier to develop, read, and
debug algorithms in a high(er)-level language like Julia than in
a language like C++. The timing results we obtained suggest
that this does not have to come at the expense of performance.

Synthetic Data: DP-MNMM. In this experiment we gen-
erated synthetic data by drawing 106 points, of dimension
100, from an underlying MNMM with 6 clusters. The results
we obtained using both the proposed implementation and
the one from [5] are similar. Table III compares runtimes,
showing that the proposed Julia implementation is around
between 2 times to 4 times slower on a single machine;
this is consistent with the typical relative performance of
Julia to C/C++ given in http://julialang.org/benchmarks/. Note,
however, that the C++ code form [5] used sparse arrays for the
DP-MNMM which saved some computation time; presumably,
the proposed implementation could have benefited from sparse
arrays in a similar way, but we have not explored that direction.
Table III shows that, for such a small K, adding machines still
did not help the proposed Julia implementation beat the single-
machine C++ implementation. When increasing the true K to
60, however, a speedup is obtained; see Table IV.

Finally, we also tried changing the dimensionality to see if
has a similar effect as it had with the DP-GMM; in this case,
however (and unlike the DP-GMM case), we did not find that
the dimensionality impacted relative performance between the
implementations.

Image-patch Models and Image Denoising. Zoran and
Weiss [38] used a finite GMM to model image patches,

Fig. 3: Denoising examples using a DP-GMM we trained on
44 millions 8×8 patches. From left to right: originals images,
corrupted images (with an ave. PSNR of 20.17), and denoised
images (ave. PSNR: 29.14.).

having trained their GMM (in a non-Bayesian fashion) on a
subset of 2 million (out of 44 million patches that exist in
the entire training set available) 8 × 8 image patches from
BSDS500 [1]. Having tried different values of K manually,
they ended up setting K = 200. Next, they used the learned
model within an image-denosing method they proposed. They
released their image-denoising code and learned model but
not their GMM-learning code (which was based on EM). We
applied the proposed DP-GMM inference implementation to
learn an image-patch model from a similar subset of 2 million
patches from BSDS500. Using 4 machines, this took us less
than 1 hour (Zoran and Weiss reported 30 hours for their
serial MATALB implementation of GMM, which explains why
they avoided using the entire training data). Next, we used the
learned DP-GMM, with their code, for image denoising. We
also experimented with different values of α. Because we were
able to run 2 million patches with such an ease, we also ran
all of the ∼44 million 8 × 8 patches in BSDS500 (the test
set excluded). On 4 machines, this took us less than 2 days.
We compared the models we learned with the one provided
by [38] by performing image denoising on 50 test images from
the dataset. The results are summarized in Table V. For visual
examples, see Fig. 3.

VI. CONCLUSION

We extended a recent DPMM inference algorithm, proposed
by Chang and Fisher [5], by showing how it can be distributed,
using Julia and a distributed-memory model, across multiple
multi-core machines. Like the (single-machine, multi-core)
C++ implementation from [5], the proposed implementation
supports both DP-GMM and DP-MNMM models. Empirically,
we found that on a single machine the proposed implementa-
tion was usually slower than implementation from [5]. How-
ever, for DP-GMM in high dimensions (and still on a single
machine), the proposed implementation was faster and also
produced better results – probably since the implementation
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from [5] was optimized for low dimensions. In any case, the
point of re-implementing in Julia was not, of course, to try
to gain speedups on a single machine. Rather, we wanted an
implementation that: 1) lets us easily distribute inference over
multiple multi-core machines; 2) is written in a higher-level
language and that is still fast. Judging by these two criteria,
we deem our experience with Julia extremely positive. We
also applied the proposed implementation for learning image-
patch models and used the latter for image denoising within an
framework proposed in [38]. We obtained comparable results
to [38] when using a training set of 2 million patches (like
they did), but note that the proposed learning was much
faster and we inferred K automatically from the data while
they fixed it manually. We were also able to handle the
entire training set of 44 million 8 × 8 patches with the
proposed distributed implementation – something which was
probably infeasible with their GMM implementation (which is
not publicly available) and is infeasible using the DP-GMM
implementation from [5]. This led to slightly better results,
highlighting the utility of DPMMs and the importance of being
able to handle large datasets.
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