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1 Introduction

At the CERN LHC [1], an e�cient classification of hadronic decays of heavy standard-model (SM)

particles (objects) that are reconstructed within a single jet would provide a significant improve-

ment in the sensitivity of searches for physics beyond the SM (BSM) and in measurements of SM

parameters. The understanding of jet substructure in highly Lorentz-boosted W/Z/H bosons (where

H is the Higgs boson) and top (t) quark jets has advanced dramatically in recent years, both exper-

imentally [2] and theoretically [3]. For a particle with a Lorentz boost of �, the angular separation

between its decay products scales as ✓ ⇠ 2/� in radians. A knowledge of the radiation patterns of

these jets and their substructure is an important topic in theoretical and experimental research.

In this paper, we present studies using the CMS detector [4] at the LHC to evaluate and compare

the performances of a variety of algorithms (“taggers”) designed to distinguish hadronically decaying

massive SM particles with large Lorentz boosts, namely W/Z/H bosons and t quarks, from other

jets originating from lighter quarks (u/d/s/c/b) or gluons (g). We refer to such jets as “boosted

W/Z/H/t jets,” or “W/Z/H/t-tagged jets”. The machine-learning (ML) algorithms include the

energy correlation functions tagger (ECF), the boosted event shape tagger (BEST), the ImageTop

tagger, and the DeepAK8 tagger. Algorithms without ML techniques have also been evaluated and

are included for comparison. An alternative approach for jet clustering and identification, named

the “heavy object with variable R (HOTVR)”, where the heavy object is a W/Z/H boson or t quark,

is also studied.

The theoretical and experimental understanding of jet substructure has gained significant

precision in recent years. The CMS Collaboration has made many relevant measurements of jet

substructure, including measurements of the cross section of highly Lorentz-boosted t quarks [5],

jet mass in tt [6], dijet [7, 8], samples enriched in light-flavors [7], and substructure observables

in jets of di�erent light-quark flavors [9] in resolved tt events. Similar measurements by the

ATLAS Collaboration are found in refs. [10–14]. Overall, the systematic e�ects of jet substructure

are well understood and, after correcting for detector e�ects, the results are generally consistent

with theoretical expectations as expressed in simulations. Residual di�erences between data and

simulation can be adjusted using scale factors.

ML-based approaches can be tailored to suit the needs of individual analyses. Some analyses

require as pure a sample as possible, with optimized signal e�ciency for a fixed background

rejection. Others require well-behaved background estimates as a function of kinematic variables.

A characteristic example is the use of jet mass sidebands for the background estimation. In this

case, removing dependencies on the jet mass is collectively referred to as “mass decorrelation”,

as described in ref. [15]. This paper provides tools derived from a strong program of previous

study [16–20] for both the jet-mass-decorrelated and nominal scenarios.

The paper is organized as follows. A brief description of the CMS detector is presented in

section 2. The Monte Carlo (MC) simulated events used for the results are discussed in section 3,

and details of the CMS event reconstruction and the event selections used for the studies are

summarized in sections 4 and 5, respectively. Section 6 presents an overview of the methods

currently used in CMS for heavy-resonance (i.e., W/Z/H bosons and t quarks) identification, and

describes a set of novel algorithms that utilize ML methods and observables for this task. Our

discussion of the CMS methods builds on the work documented in refs. [16–20]. Section 7 details
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the analyses performed to understand the complementarity between the algorithms using simulated

events. The performance of the algorithms is validated in data samples collected in proton-proton

(pp) collisions at
p

s = 13 TeV by the CMS experiment at the LHC in 2016, and corresponding to an

integrated luminosity of 35.9 fb�1. The results, along with the e�ect of systematic uncertainties in

their measurement, are presented in section 8, followed by a discussion of the results and a summary

in section 9.

2 The CMS detector

The central feature of the CMS apparatus is a superconducting solenoid of 6 m internal diameter,

providing a magnetic field of 3.8 T. Within the solenoid volume are a silicon pixel and strip tracker,

a lead tungstate crystal electromagnetic calorimeter (ECAL), and a brass and scintillator hadron

calorimeter (HCAL), each composed of a barrel and two endcap sections. Forward calorimeters

extend the pseudorapidity (⌘) coverage provided by the barrel and endcap detectors [4]. Muons are

measured in gas-ionization chambers embedded in the steel flux-return yoke outside the solenoid.

In the barrel section of the ECAL, an energy resolution of about 1% is achieved for unconverted

or late-converting photons in the tens of GeV energy range. The remaining barrel photons have

a resolution of about 1.3% up to |⌘ | = 1, rising to about 2.5% at |⌘ | = 1.4. In the endcaps, the

resolution of unconverted or late-converting photons is about 2.5%, while the remaining endcap

photons have a resolution between 3 and 4% [21].

In the region |⌘ | < 1.74, the HCAL cells have widths of 0.087 in ⌘ and 0.087 radians in azimuth

(�). In the ⌘-� plane, and for |⌘ | < 1.48, the HCAL cells map onto 5⇥5 ECAL crystals arrays to

form calorimeter towers projecting radially outwards from close to the nominal interaction point.

At larger values of |⌘ |, the size of the towers increases and the matching ECAL arrays contain

fewer crystals.

Muons are measured in the ⌘ range |⌘ | < 2.4, with detection planes made using three tech-

nologies: drift tubes, cathode strip chambers, and resistive-plate chambers. Matching muons to

tracks measured in the silicon tracker results in a relative transverse momentum (pT) resolution for

muons with 20 < pT < 100 GeV of 1.3–2.0% in the barrel and better than 6% in the endcaps. The

pT resolution in the barrel is better than 10% for muons with pT up to 1 TeV [22].

The silicon tracker measures charged particles within the pseudorapidity range |⌘ | < 2.5.

It consists of 1440 silicon pixel and 15 148 silicon strip detector modules. Isolated particles of

pT = 100 GeV emitted at |⌘ | < 1.4 have track resolutions of 2.8% in pT and 10 (30) µm in the

transverse (longitudinal) impact parameter [23].

Events of interest are selected using a two-tiered trigger system [24]. The first level (L1), com-

posed of custom hardware processors, uses information from the calorimeters and muon detectors

to select events at a rate of around 100 kHz. The second level, known as the high-level trigger

(HLT), consists of a farm of processors running a version of the full event reconstruction software

optimized for fast processing, and reduces the event rate to around 1 kHz before data storage.

A more detailed description of the CMS detector, together with the definition of the coordinate

system used and the relevant kinematic variables, is given in ref. [4].
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3 Simulated event samples

Simulated pp collision events are generated at
p

s = 13 TeV using various generators described

below. They are used for the design and the performance studies of the heavy-resonance identifica-

tion algorithms to compare with data and to estimate systematic uncertainties. The signal samples,

enriched in one or more W/Z/H/-tagged jets, are obtained from the simulation of BSM processes.

The t and W jet signal samples are obtained from heavy spin-1 Z
0 resonances decaying to either

a pair of t quarks (tt) or a pair of W bosons, respectively. These resonances are narrow, having

intrinsic widths equal to 1% of the resonance mass. The Z- and H-tagged jet samples are obtained

from decays of spin-2 Kaluza-Klein graviton resonances in the Randall-Sundrum model [25, 26]

to a pair of Z or H bosons, following the narrow-width assumption. The Z
0 and graviton sam-

ples are simulated at leading order (LO) with M��G����5_a��@��� 2.2.2 [27] interfaced with

������ 8.212 [28, 29] with the CUETP8M1 underlying event tune [30] for the fragmentation and

hadronization description. Signal events are generated over a wide range of pT for di�erent Z
0

and graviton mass values. The background sample is represented by jets produced via the strong

interaction of quantum chromodynamics (QCD), referred to as “QCD multijet” processes. The

QCD multijet events are generated using ������ in exclusive p̂T bins using the NNPDF2.3 LO [31]

parton distribution function (PDF) set.

A variety of MC simulations are needed for the study of the performance of the tagging algo-

rithms in data. The tt process is generated with the next-to-leading-order (NLO) generator ������

v2.0 [32–34] interfaced with ������ for the fragmentation and hadronization description. Simulated

events originating from W+jets, Z+jets, and γ+jets, are generated using M��G����5_a��@���

at LO accuracy using the NNPDF3.0 LO [31] PDF set. The WZ, ZZ, ttW, and ttγ+jets processes

are generated using M��G����5_a��@��� at NLO accuracy, the single t quark process in the

t W channel and the WW process are generated at NLO accuracy with ������, all using the

NNPDF3.0 NLO PDF set. In all of these cases, parton showering and hadronization are simulated

in ������. Double counting of partons generated using ������ and M��G����5_a��@��� is

eliminated using the MLM [35] and FxFx [36] matching schemes for the LO and NLO samples,

respectively.

The systematic uncertainties associated with the performance of the taggers are evaluated using

simulated events produced with alternative generation settings. For the tt process, an additional

sample is generated using ������ interfaced with ������++ v2.7.1 [37, 38] with the UE-EE-5C

underlying event tune [39] to assess systematic uncertainties related to the modeling of the parton

showering and hadronization. Additional QCD multijet samples are generated at LO accuracy

using M��G����5_a��@���, interfaced with ������ to test the modeling of the hard scattering

in background events, or generated solely with ������++ with the CUETHppS1 underlying event

tune [30] to provide an alternative model of the background jets.

The most precise cross section calculations available are used to normalize the SM simulated

samples. In most cases, this is next-to-NLO accuracy in the inclusive cross section. Finally, the

pT spectrum of top quarks in tt events is reweighted (referred to as “top quark pT reweighting”)

to account for e�ects due to missing higher-order corrections in MC simulation, according to the

results presented in ref. [40]. The simulation of the QCD multijet and �+jets processes is based

on LO calculations. To account for missing higher-order corrections, the simulated QCD multijet
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events and the �+jets events are reweighted such that the pT distribution of the leading jet in

simulation matches that in data. Before extracting the weights, contributions from other processes

are subtracted from data using the predicted cross sections in both cases.

A full G����4-based model [41] is used to simulate the response of the CMS detector to SM

background samples. Event reconstruction is performed in the same manner for MC simulation

as for collision data. A nominal distribution of multiple pp collisions in the same or neighboring

bunch crossings (referred to as “pileup”) is used to overlay the simulated events. The events are

then weighted to match the pileup profile observed in the data. For the data used in this paper, there

were an average of 23 interactions per bunch crossing.

4 Event reconstruction and physics objects

Events are reconstructed using the CMS particle-flow (PF) algorithm [42], which aims to reconstruct

and identify each individual particle in the event with an optimized combination of information

from the various elements of the detector. Particles are identified as charged or neutral hadrons,

photons, electrons, or muons, and cannot be classified into multiple categories. The PF candidates

are then used to build higher-level objects, such as jets. Events are required to have at least one

reconstructed vertex. The physics objects are those returned by a jet-finding algorithm [43, 44]

applied to the tracks associated with the vertex, and the associated missing transverse momentum

Æpmiss
T , taken as the negative vector sum of the pT of those jets. In the case of multiple overlapping

events with multiple reconstructed vertices, the vertex with the largest value of summed physics

object p
2
T is defined to be the primary pp interaction vertex (PV).

Photons are reconstructed from energy depositions in the ECAL using identification algorithms

that use a collection of variables related to the spatial distribution of shower energy in the supercluster

(a group of 5⇥5 ECAL crystals), the photon isolation, and the fraction of the energy deposited in

the HCAL behind the supercluster relative to the energy observed in the supercluster [21, 45].

The requirements imposed on these variables ensure an e�ciency of 80% in selecting prompt

photons. Photon candidates are required to be reconstructed with pT > 200 GeV and |⌘ | < 2.5.

Simulation-to-data correction factors are used to correct photon identification performance in MC.

Electrons are reconstructed by combining information from the inner tracker with energy

depositions in the ECAL [45]. Muons are reconstructed by combining tracks in the inner tracker

and in the muon system [22]. Tracks associated with electrons or muons are required to originate

from the PV, and a set of quality criteria is imposed to assure e�cient identification [22, 45]. To

suppress misidentification of charged hadrons as leptons, we require electrons and muons to be

isolated from jet activity within a pT-dependent cone in the ⌘-� plane, ∆R =
p
(∆⌘)

2
+ (∆�)

2,

where � is the azimuthal angle in radians. The relative isolation, Irel, is defined as the pT sum of

the PF candidates within the cone divided by the lepton pT. Neither charged PF candidates not

originating from the PV, nor those identified as electrons or muons, are included in the sum.

The isolation sum Irel is corrected for contributions of neutral particles originating from

pileup interactions using an area-based estimate [46] of pileup energy deposition in the cone.

The requirements imposed on the electron and muon candidates lead to an average identification

e�ciency of 70 and 95%, respectively. In addition, the electron and muon candidates are required
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to have pT > 40 GeV and be within the tracker acceptance of |⌘ | < 2.5. The electron and muon

identification performance in simulation is corrected to match the performance in data.

The primary jet collection in this paper, referred to as “AK8 jets”, is produced by clustering PF

candidates using the anti-kT algorithm [43] with a distance parameter of R = 0.8 with the F���J��

3.1 software package [43, 44].

A collection of jets produced using the Cambridge-Aachen (CA) [47, 48] clustering algorithm

with R = 1.5, referred to as “CA15 jets”, is also used in this paper. In both jet collections, the

“PileUp Per Particle Identification (PUPPI)” [49] method is used to mitigate the e�ect of pileup

on jet observables. This method makes use of local shape information around each particle in the

event, the event pileup properties, and tracking information. This PUPPI algorithm operates at

the PF candidate level, before any jet clustering is performed. A local variable ↵ is computed for

each PF candidate, which contrasts the collinear structure of QCD with the low-pT di�use radiation

arising from pileup interactions. This ↵ variable is used to calculate a weight correlated with

the probability that an individual PF candidate originates from a pileup collision. These per PF

candidate weights are used to rescale the four-momenta of each PF candidate to correct for pileup.

The resulting PF candidate list is used as an input to the clustering algorithm. A detailed description

of the PUPPI implementation in CMS can be found in ref. [50]. No additional pileup corrections

are applied to jets clustered from these weighted inputs. Corrections are applied to the jet energy

scale to compensate for nonuniform detector response [51]. Jets are required to have pT > 200 GeV

and |⌘ | < 2.4.

A collection of jets, reconstructed with the anti-kT algorithm and a smaller distance parameter

R = 0.4, referred to as “AK4 jets”, are used to define the event samples for the validation of the

algorithms. To reduce the e�ect of pileup collisions, charged PF candidates identified as originating

from pileup vertices are removed before the jet clustering, based on the method known as “charged-

hadron subtraction” [51]. An event-by-event correction based on jet area [51] is applied to the jet

four-momenta to remove the remaining neutral energy from pileup vertices. As with the AK8 and

CA15 jets described above, additional corrections to the jet energy scale are applied to compensate

for nonuniform detector response. The AK4 jets are required to have pT > 30 GeV and be contained

within the tracker volume of |⌘ | < 2.4.

Jets originating from the hadronization of bottom (b) quarks are identified, or “tagged”, using

the combined secondary vertex (CSVv2) b tagging algorithm [20]. The working point, i.e., a

selection on the algorithm’s discriminant providing a well defined signal (e.g., b quarks) and

background (e.g., light quarks) e�ciency, used provides an e�ciency for the b tagging of jets

originating from b quarks that varies from 60 to 75%, depending on pT, whereas the misidentification

rate for light quarks or gluons is ⇠1%, and ⇠15% for charm quarks.

For the studies presented in this paper, the simulated signal jets (AK8 or CA15 jets) are identified

as W/Z/H/t-tagged jets when the∆R between the reconstructed jet and the closest generated particle

(W/Z/H boson or t quark) before the decay, denoted as ∆R(jet,generated particle), is less than

0.6. This definition allows for a consistent comparison of the performance of the algorithms using

collections of jets clustered with di�erent R. The choice of the 0.6 value approximately corresponds

to the minima of the ∆R distribution between jets and the closest generated particle based on studies

reported in ref. [17]. The fraction of AK8 jets with ∆R(AK8,generated particle) < 0.6 as a function

of the pT of the generated particle for jets initiated from the decay of a W boson (left) or t quark

– 5 –
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Figure 1. Matching e�ciency as a function of the pT of the generated particle, for hadronically decaying
W bosons (left) and t quarks (right). This e�ciency is defined as the fraction of the generated particles (t
quarks or W bosons) that are within ∆R < 0.6 with an AK8 or CA15 jet with pT > 200 GeV and |⌘ | < 2.4.
Superimposed is the merging e�ciency as a function of the generated particle pT when all decay products
are within ∆R(AK8,qi) < 0.6 (∆R(CA15,qi) < 1.2) with an AK8 (CA15) jet.

(right) is shown in figure 1. This “matching” e�ciency of W bosons (t quarks) reaches a plateau

of nearly 100% for pT & 200 (400) GeV. The corresponding e�ciency curve for CA15 jets is

superimposed on the plots, and shows consistent e�ciency with AK8 jets. A similar e�ciency is

obtained when a relaxed selection of ∆R(CA15,generated particle) < 1.2 is applied. This justifies

the use of the same ∆R(jet,generated particle) reconstruction criteria for both jet collections.

Additional criteria are applied to simulated jets for the evaluation of the performance in data

and for the calibration of the algorithms. The partonic decay products (b, q1, q2 for t quarks, or

q1, q2 for W, Z or H bosons) are required to be fully contained in the AK8 (CA15) jet, satisfying

∆R(AK8,qi) < 0.6 (∆R(CA15,qi) < 1.2). These requirements were derived from the studies

in ref. [17]. The “merging” probability as a function of the pT of the generated particle (i.e.,

the e�ciency for the decay products of the t quark or W boson to be fully contained in a single

jet based on the above requirements) is also shown in figure 1. For W bosons (t quarks) with

pT & 200 (650) GeV, at least 50% of the AK8 jets fully contain the W (t) decay products. In the

case of CA15 jets, similar e�ciency is achieved for W bosons (t quarks) with pT & 150 (350) GeV.

In the case of background jets, partons (u, d, s, c, b, and gluon) from the hard scattering are

required to be contained in the jet cone for the jet to be classified as such.

Finally, the Æpmiss
T is defined as the negative of the vectorial sum of the ÆpT of all PF candidates

in the event [52]. Its magnitude is denoted as p
miss
T . The jet energy scale corrections applied to the

jets are propagated to Æpmiss
T .

5 Event selection

Several samples are used to validate the performance of the tagging algorithms in data. A single-

µ signal sample is used to calibrate the t quark and W boson identification performance in a sample

– 6 –
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enriched in hadronically decaying t quarks, as explained below. A dijet sample, dominated by

light-flavor quarks and gluons, enables the study of the identification probability of background jets

(misidentification rate) in a wide range of pT. The misidentification rate depends on the flavor of the

parton that initiated the jet. Thus, in addition to the dijet sample, the single-� background sample

is further used. The dijet and single-� samples di�er in the light-flavor quark and gluon fractions.

The former has a larger fraction of gluon jets than the latter.

Systematic e�ects are quantified using these samples to determine uncertainties in measure-

ments corrected for the detector e�ects.

5.1 The single-µ signal sample

The single-µ signal sample was recorded using a single-muon trigger that selects events online

based on the muon pT. Candidate events are required to have exactly one muon with pT > 55 GeV,

satisfying the identification criteria defined in section 4, except for the requirement related to the

isolation of leptons Irel. In high-pT leptonic decays of the t quarks, the lepton from the W boson

decay often overlaps with the b jet from the t quark decay, leading to large values of Irel, causing

the event to be rejected. Therefore, a custom isolation criterion is applied by requiring a minimal

distance between the muon and the nearest AK4 jet, ∆R(µ,AK4) > 0.4, or the perpendicular

component of the muon pT with respect to the nearest AK4 jet, pT,rel > 25 GeV. This has been

extensively used in measurements [5] and searches [53–56] involving high momentum t quarks in

the single-µ sample.

The AK4 jets used in this selection are clustered from PF candidates after removing muons

with pT > 55 GeV. The custom isolation requirement results in an up to 40% increase in the

statistical power of the sample. To suppress the contribution from QCD multijet processes we

require p
miss
T > 50 GeV. To enhance the sample purity in tt events, we require the presence of

two or more AK4 jets, at least one of which is reconstructed as a b jet. In addition, to probe

high momentum topologies, we require the ÆpT of the leptonically decaying W bosons, defined as

ÆpT(W) = ÆpT(µ) + Æpmiss
T , and the scalar pT sum of the AK4 jets, denoted as HT, to be greater than

250 GeV. The t/W candidate is the highest pT AK8 or CA15 jet in the event with pT > 200 GeV,

satisfying the criteria discussed in section 4. To further improve the purity, we require the azimuthal

angle ∆� between the AK8 or CA15 jet and the muon to be greater than 2 radians. The purity of

the sample in semileptonic tt events is ⇠70%; other contributions arise from QCD multijet (⇠15%)

and W+jets (⇠10%) processes.

5.2 The dijet background sample

The dijet background sample was recorded with a trigger that uses HT. Events with HT > 1000 GeV

are selected to ensure 100% trigger e�ciency. Events are required to have at least one AK8 or

CA15 jet meeting the requirements presented in section 4, and the absence of electrons or muons,

leading to a sample dominated by jets from the QCD multijet process, which are backgrounds to

the algorithms presented here.

5.3 The single-γ background sample

The single-� background sample was collected using an isolated-single-photon trigger. Events with

a photon with pT > 200 GeV are selected to ensure 100% trigger e�ciency. The photon is further

– 7 –
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required to satisfy the criteria presented in section 4. In addition to the photon, the single-� sample

is required to have at least one AK8 or CA15 jet and no electrons or muons. The sample consists

of ⇠80% γ+jets events, but only ⇠15% QCD multijet events.

6 Overview of the algorithms

This section presents recently developed ML-based CMS heavy-object tagging methods. However,

to understand the historical developments and their limitations, we first present tagging algorithms

that do not rely on selections involving ML-based methods, but instead rely on selections based

on a set of jet substructure observables (“cuto�-based” approaches). To better explore the com-

plementarity between the jet substructure variables, alternative tagging algorithms were developed

using multivariate methods. Lastly, to exploit the full potential of the CMS detector and event

reconstruction, methods based on Deep Neural Networks (DNNs) are explored using either high

level inputs (e.g., jet substructure observables), or lower level inputs, such as PF candidates and

secondary vertices. Finally, dedicated versions of the algorithms are developed that are only loosely

correlated with the jet mass. A detailed discussion of each algorithm is presented in this section

and a summary of all t quark, W, Z or H boson identification algorithms is given in table 1.

Table 1. Summary of the CMS algorithms for the identification of hadronically decaying t quarks and W,
Z and H bosons. See text for explanation of the algorithm names. The column “Subsection” indicates the
subsection where the algorithm is described, and the column “jet pT [GeV]” indicates the jet pT threshold to
be used in each algorithm. The ⇤ in DeepAK8 and DeepAK8-MD algorithms indicates the ability of these
algorithm to also identify the decay modes of each particle.

Algorithm Subsection jet pT [GeV] t quark W boson Z boson H boson

mSD + ⌧32 6.1 400 X

mSD + ⌧32 + b 6.1 400 X

mSD + ⌧21 6.1 200 X X

HOTVR 6.2 200 X

N3-BDT (CA15) 6.3 200 X

mSD + N2 6.3 200 X X X

BEST 6.5 500 X X X X

ImageTop 6.6 600 X

DeepAK8(⇤) 6.7 200 X X X X

Jet mass decorrelated algorithms

mSD + N
DDT
2 6.3 200 X X X

double-b 6.4 300 X X

ImageTop-MD 6.6 600 X

DeepAK8-MD(⇤) 6.7 200 X X X X

– 8 –
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6.1 Substructure variable based algorithms

Historically, the high momentum t quark and W/Z/H boson tagging methods used by the CMS

Collaboration are based on a combination of selection criteria on the jet mass and the energy

distribution inside the jet [16–20].

The jet mass is one of the most powerful observables to discriminate t quark and W/Z/H

boson jets from background jets (i.e., jets stemming from the hadronization of light-flavor quarks

or gluons). The QCD radiation will cause a radiative shower of quarks and gluons, which will be

collimated within a jet. The probability for a gluon to be radiated from a propagating quark or

gluon is inversely proportional to the angle and energy of the radiated gluon. Hence, the radiated

gluon will tend to appear close to the direction of the original quark or gluon. These radiated gluons

tend to be soft, resulting in a characteristic “Sudakov peak” structure. This is explained in detail in

ref. [8]. Contributions from initial-state radiation, the underlying event, and pileup also contribute

strongly to the jet mass, especially at larger values of R. As such, jet mass from QCD radiation

scales as the product of the jet pT and R.

Several methods have been developed to remove soft or uncorrelated radiation from jets, a

procedure generally called “grooming”. These methods strongly reduce the Sudakov peak structure

in the jet mass distribution. The removal of the soft and uncorrelated radiation results in a much

weaker dependence of the jet mass on its pT.

The t quark and W/Z/H bosons have an intrinsic mass, and the jet substructure tends to be

dominated by electroweak splittings [57] at larger angles than QCD. This can be exploited to

separate such jets from jets arising from heavy SM particles.

The grooming method used most often in CMS is the “modified mass drop tagger” algorithm

(mMDT) [58], which is a special case of the “soft drop” (SD) method [59]. This algorithm system-

atically removes the soft and collinear radiation from the jet in a manner that can be theoretically

calculated [60, 61] (comparisons to data are found in ref. [8]).

The first step in the SD algorithm is the reclustering of the jet constituents with the CA

algorithm, and then the identification of two “subjets” within the main jet by reversing the CA

clustering history. The jet is considered as the final jet if the two subjets meet the SD condition:

min(pT1, pT2)

pT1 + pT2

> zcut

✓
∆R12

R0

◆β
, (6.1)

where R0 is the distance parameter used in jet clustering algorithm, pT1 (pT2) is the pT of the leading

(subleading) subjet and ∆R12 is their angular separation. The parameters zcut and � define what

the algorithm considers “soft” and “collinear,” respectively. The values used in CMS are zcut = 0.1

and � = 0 (making this identical to the mMDT algorithm, although for notation we still denote this

as SD). If the SD condition is not met, the subleading subjet is removed and the same procedure is

followed until eq. (6.1) is satisfied or no further declustering can be performed.

The two subjets returned by the SD algorithm are used to calculate the jet mass. Figure 2

shows the distribution of the AK8 jet mass after applying the SD algorithm (mSD) in simulated

signal and background jets. The jet mass has been measured in data in previous papers by CMS for

t-tagged [6] and QCD jets [7, 8].

The mSD in background jets peaks close to zero because of the suppression of the Sudakov

peak [58], whereas the mSD for signal jets peaks around the mass of the heavy SM particle (t quark,

– 9 –
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or W/Z/H bosons). In figure 2 (right), the peak around 80 GeV is from jets that contain just the

two quarks from the W decay and not all three quarks from the t decay. Similar conclusions also

hold for CA15 jets. Based on these observations, we define three regions in mSD. The “W/Z mass

region” with 65 < mSD < 105 GeV, the “H mass region” with 90 < mSD < 140 GeV, and the “t

mass region” with 105 < mSD < 210 GeV. These definitions will be used throughout this paper

unless stated otherwise.
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Figure 2. Comparison of the mSD shape in signal and background AK8 jets in simulation. The fiducial
selection on the jets is displayed on the plots. Signal jets are defined as jets arising from hadronic decays of
W/Z/H bosons (left) or t quarks (right), whereas background jets are obtained from the QCD multijet sample.

An additional handle to separate signal from background events is to exploit the energy

distribution inside the jet. Jets resulting from the hadronic decays of a heavy particle to N separate

quarks or gluons are expected to have N subjets. For two-body decays like W/Z/H, there are two

subjets, while for t quarks, there are three. In contrast, jets arising from the hadronization of light

quarks or gluons are expected to only have one or two (in the case of gluon splitting) subjets. The

N-subjettiness variables [62, 63],

⌧N =
1

d0

’

i

pT,i min
⇥
∆R1,i,∆R2,i, . . . ,∆RN ,i

⇤
, (6.2)

provide a measure of the number of subjets that can be found inside the jet. The index i refers to the

jet constituents, while the ∆R terms represent the spatial distance between a given jet constituent

and the subjets. The quantity d0 is a normalization constant. The centers of hard radiation are

found by applying the exclusive kT algorithm [64, 65] on the jet constituents before the use of any

grooming techniques. The values of the ⌧N variables are typically small if the jet is compatible with

having N or more subjets. However, a more discriminating observable is the ratio of di�erent ⌧N
variables. For this purpose, the ratio ⌧3/⌧2 ⌘⌧32 is used for t quark identification, whereas the ratio

⌧21 is used for W/Z/H boson identification. The distribution ⌧21 and ⌧32 for signal and background

AK8 jets is shown in figure 3. Measured values of these distributions at CMS can also be found for

light-flavor jets in ref. [9]. Typical operating regions for ⌧21 (⌧32) are 0.35–0.65 (0.44–0.89), which

correspond to a misidentification rate after the mSD selection of 0.1–10% for both.
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Figure 3. Comparison of the ⌧21 (left) and ⌧32 (right) shape in signal and background AK8 jets. The
fiducial selection on the jets is displayed in the plots. As signal jets we consider jets stemming from hadronic
decays of W, Z, or H bosons (left), or t quarks (right), whereas background jets are obtained from the QCD
multijet sample.

The baseline W and Z boson (collectively referred to as V boson) tagging algorithm, based

on selections on mSD and ⌧21, will be labelled as “mSD + ⌧21” in this paper. The V tagging with

this method is used frequently in current analyses (e.g., in refs. [66–69]) starting at approximately

200 GeV in pT.

For t quark tagging we studied a tagger based on mSD and ⌧32, which will be referred to as

“mSD+⌧32”. An additional improvement in the performance of the t quark identification is achieved

by applying the CSVv2 b tagging algorithm discussed in section 4 on the subjets returned by the SD

algorithm. In the studies presented in this paper we require at least one of the two subjets to pass

the loose working point of the CSVv2 algorithm, corresponding to the b quark jet identification

e�ciency ⇠85%, with a misidentification rate for light-flavor quarks and gluon jets of ⇠10%, and

⇠60% for the c quark jets. This version of the baseline t quark tagging algorithm is referred to as

“mSD+⌧32 + b”. Top-quark tagging with this method is used extensively in physics analyses (e.g., in

refs. [56, 70–72]) tagging high-pT t quarks, which start to merge into the AK8 cone at pT ⇠ 350 GeV

and are 50% e�cient at around 600 GeV. For applications below this mass range, analyses can

profit from the larger (or variable) R clustering algorithms discussed in the following sections.

6.2 Heavy object tagger with variable R

The heavy object tagger with variable R (HOTVR) [73] is a new cuto�-based algorithm for the

identification of jets originating from hadronic decays of boosted heavy objects. It introduces a new

jet clustering technique with a variable R and removal of soft contributions during the clustering.

The clustering is similar to other standard sequential clustering algorithms such as the CA algorithm,

where particles are sequentially added. However, instead of a fixed R, HOTVR uses a pT-dependent
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R (RHOTVR), defined as:

RHOTVR =

8>>>><
>>>>:

Rmin, for ⇢/pT < Rmin

Rmax, for ⇢/pT > Rmax

⇢/pT, elsewhere

. (6.3)

The value of ⇢ is chosen to correspond to a typical energy scale of the event (O(100)GeV). In the

case of ⇢! 0, the algorithm is identical to the CA algorithm for R = Rmin, whereas for ⇢! 1 it is

identical to the CA algorithm for R = Rmax. Higher values of ⇢ result in larger jet sizes. The param-

eters Rmin and Rmax are introduced for robustness of the algorithm with respect to detector e�ects.

Inspired by ref. [73], at each clustering step, the invariant mass mi j between two subjets i and

j is calculated. If mi j is greater than a threshold, µ, the following condition is verified:

✓mi j > max(mi,mj), (6.4)

where mi and mj are the masses of the two subjets, and ✓ is a parameter that determines the strength

of the condition and ranges from 0 to 1. If the condition in eq. (6.4) is not fulfilled, the subjet with

the lower mass is discarded; otherwise depending on the relative pT di�erence of the subjets they

are either combined into a single subjet or the softer one is discarded. The algorithm continues

until no other subjet is found. The detailed description of the HOTVR algorithm is presented in

ref. [73]. Table 2 lists the values of HOTVR parameters used in CMS. In the CMS implementation,

HOTVR jets are clustered using PUPPI corrected PF candidates.

Table 2. Summary of the HOTVR parameters used in CMS. The pTsub is the minimum pT threshold of each
subjet.

Rmin Rmax ⇢ [GeV] µ [GeV] pTsub [GeV] ✓

0.1 1.5 600 30 30 0.7

The HOTVR clustering algorithm is currently being explored in CMS for t quark identification.

The jets returned by HOTVR (i.e., “HOTVR jets”) are required to have mass consistent with mt ,

namely 140 < mHOTVR < 220 GeV, and at least three subjets, Nsub, HOTVR � 3, the minimum

pairwise mass of which should be mdisub, min > 50 GeV. In addition, the pT of the hardest subjet

must be less than 80% of the HOTVR jet pT. Lastly, to further improve the discrimination,

⌧32 < 0.56 is required. The shape comparison of the main variables of the HOTVR algorithm for

signal and background, for di�erent parton pT ranges, is shown in figure 4.

6.3 Energy correlation functions

A new set of N-prong identification algorithms, the generalized energy correlation functions

(ECFs) [74], are now used by the CMS Collaboration. The ECFs explore the energy distribu-

tion inside a jet by aiming to quantify the number of centers of hard radiation using an axis-free

approach, di�ering from the axis-dependent definition used by N-subjettiness, which reduces the de-

pendence of the observable on the jet pT. This allows the exploration of complementary information

between the two techniques.
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Figure 4. Shape comparison of the main variables of the HOTVR algorithm for signal and background jets,
in two di�erent regions of the jet pT as displayed in the plots.

For a jet containing NC particles, an ECF is defined as:

qe
β

N
=

’

1i1<i2< · · ·<iN NC

"
÷

1kN

p
ik
T

p
J
T

#
q÷

m=1

(m)

min
i j<ik 2{i1,i2, · · · ,iN }

n
∆R

β

i j ,ik

o
, (6.5)

where 1  i1 < i2 < · · · < iN  NC range over the jet constituents. The symbols p
ik
T

and p
J
T

are the pT of the constituent ik and the pT of the jet, respectively. The notation min(m) refers to

the mth smallest element, and ∆Ri j ,ik
is the angular distance between constituents ij and ik . The

parameters N and q must be positive integers, and the exponent � must be positive as well. For

a concrete example, we calculate the ECF corresponding to q = 2,N = 3, � = 1. This ECF tests

the compatibility of a jet with three centers of hard radiation, but only considering the two smallest

angles (q = 2):

2e
1
3 =

’

1a<b<cM

p
a
Tp

b
Tp

c
T

(p
J
T)

3
min{∆Rab∆Rac,∆Rab∆Rbc,∆Rbc∆Rac}. (6.6)

Moreover, there is the possibility to select subsets of the jet that contain large energy fractions and

pairwise opening angles only if the size of the subset is less than or equal to the number of the

centers of radiation in the jet. In general, a jet with N centers of radiation has eN � eM , for M > N .
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6.3.1 The ECFs for 3-prong decay identification

The ratios of type (N = 4)/(N = 3) can identify the hadronic 3-body decays, such as those of t

quarks. Reference [74] proposes to use the specific ratio N3 for this purpose:

N
(β)

3
=

2e
β

4

(1e
β

3
)
2
. (6.7)

Since a jet contains NC ⇠ O(pT/GeV) constituents, and the sum has
�NC

N

�
terms, it is prohibitively

expensive to compute e(N = 4) on high-pT jets. For example, about 10–15% of CA15 jets with

pT ⇠ 500 GeV have more than 100 particles. However, we find that these functions are dominated

by the hardest particles, and therefore limiting to the 100 hardest particles makes the calculation

tractable without significant performance degradation.

In our reconstruction, the ECF ratios are calculated for jets after the SD grooming is applied,

which improves the stability of ECF as a function of jet mass and pT. An example of the ECF

ratios is shown in the left plot of figure 5 for simulated t quark and QCD jets. The ECF ratios are

measured in data in ref. [9] showing reasonable agreement with the expectation from simulation.

While N3 is designed to have comparable performance with ⌧32, its dependence on pT is reduced.
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Figure 5. Comparison of the distribution of N
(2)

3
(left) and the N3-BDT (CA15) discriminant (right) in t

quarks jets (signal) and jets from QCD multijet processes (background).

Therefore, a set of ECFs is chosen based on the improvement in the performance of the t tagging

algorithm, while in parallel maintaining small dependence on jet pT. Despite the fact that the terms

of the ECFs are dimensionless, the angular component of ECF function is modified according to the

boost of the parent particle. Hence, scale invariant ECF ratios are constructed by only considering

those ratios that satisfy:

ae
α
N

(be
β

M
)
x

, where M  N and x =
a↵

b�
. (6.8)

Only ratios that are not highly correlated among themselves are considered for the t quark tagging

algorithm, and ECF ratios that are not well described by simulation are discarded. The following
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11 ECF ratios are finally selected:

1e
(2)

2
⇣
1e

(1)

2

⌘2
,

1e
(4)

3

2e
(2)

3

,
3e

(1)

3
⇣
1e

(4)

3

⌘3/4
,

3e
(1)

3
⇣
2e

(2)

3

⌘3/4
,

3e
(2)

3
⇣
3e

(4)

3

⌘1/2
,

1e
(4)

4
⇣
1e

(2)

3

⌘2
,

1e
(2)

4
⇣
1e

(1)

3

⌘2
,

2e
(1/2)

4
⇣
1e

(1/2)

3

⌘2
,

2e
(1)

4
⇣
1e

(1)

3

⌘2
,

2e
(1)

4
⇣
2e

(1/2)

3

⌘2
,

2e
(2)

4
⇣
1e

(2)

3

⌘2
.

(6.9)

In addition to the ECFs, two jet substructure observables are employed to further distinguish t

quark jets from light quarks or gluons. The first observable is ⌧32 calculated for CA15 jets, after

applying the SD grooming, defined as ⌧SD
32 and the second is the frec variable of the HEPTopTagger

algorithm [75–77], which quantifies the di�erence between the reconstructed W boson and t quark

masses and their expected values, and is defined as:

frec = min
i, j

����
mi j/m123

mW/mt
� 1

���� , (6.10)

where i, j range over the three chosen subjets, mi j is the mass of subjets i and j, and m123 is the

mass of all three subjets.

The ECF-based t quark tagger, referred to as “N3-BDT (CA15)”, is based on a boosted decision

tree (BDT) [78] with the 11 ECF ratios, the ⌧SD
32 , and the frec as inputs. The N3-BDT (CA15)

algorithm was trained using jets with 110 < mSD < 210 GeV. To avoid possible bias in the

identification performance due to di�erences in the pT spectrum of the signal (t quarks) and

background (light quarks or gluons) jets, their contributions are reweighted such that they have a

flat distribution in jet pT.

Figure 5 (right) shows a comparison of the N3-BDT (CA15) discriminant distribution between

signal and background jets. The final N3-BDT (CA15) algorithm also requires at least one of the

two subjets returned by the SD method to be identified as a b jet by the CSVv2 algorithm using the

loose working point. The ECF BDT tagger is used for t quark jet identification in the context of

dark matter production in association with a single t quark in the pT > 250 GeV range [79].

6.3.2 The ECFs for 2-prong decay identification

The use of ECFs is also explored for the identification of 2-prong decays, such as hadronic decays

of W/Z/H bosons. In this case, the signal jets have a stronger 2-point correlation than a 3-point

correlation and the discriminant variable N
1
2 can be used to separate jets originating from W/Z/H

bosons. The N2 variable is constructed via the ratio

N
1
2 ⌘ N

1
2 =

2e
1
3

(1e
1
2)

2
, (6.11)

and shows similar performance to N-subjettiness ratio ⌧21, with the advantage that it is more stable

as a function of the jet mass and pT. This method is referred to as “mSD + N2”.

A decorrelation procedure is further applied to avoid distorting the jet mass distribution when a

selection based on N2 is made. We design a transformation from N2 to N
DDT
2 , where DDT stands for
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“designed decorrelated tagger” described in ref. [15]. The transformation is defined as a function

of the dimensionless scaling variable ⇢ = ln(m
2
SD/p

2
T) and the jet pT:

N
DDT
2 (⇢, pT) = N2(⇢, pT) � N

(X%)

2
(⇢, pT), (6.12)

where N
(X%)

2
is the X percentile of the N2 distribution in simulated QCD events. This ensures that

the selection N
DDT
2 < 0 yields a constant QCD background e�ciency of X% across the mass and

pT range considered with no loss in performance. The value X = 5 is used throughout this paper,

following the choice in [80]. The distributions of N2 and N
DDT
2 in signal and background jets are

shown in figure 6. Signal jets have smaller values and background jets have larger values. The N
DDT
2

is used for V tagging with pT in excess of 500 GeV in the search for light dijet resonances [80].
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Figure 6. Distributions of the mSD + N2 (left) and mSD + N
DDT
2 (right) in signal and background jets.

The mSD + N
DDT
2 observable was used and validated in several analyses, including the ones

described in refs. [80, 81].

6.4 The double-b tagger

The standard b tagging tools, such as the CSVv2 discussed in section 4, can be applied to the subjets

returned by the SD algorithm applied to AK8 jets. Characteristic examples are the mSD + ⌧32 + b

and N3-BDT (CA15) algorithms. However, these tools have limitations in certain topologies, for

example when the two subjets become very collimated. The “double-b” tagger was developed to

specifically target Higgs decays to pairs of b quarks in the boosted regime [20]. While it utilizes

many of the variables used in the standard CSVv2 b tagging algorithm, it also employs variables

related to the track properties, such as the track impact parameter and its significance, the positions

of secondary vertices, and information from the two-secondary-vertex system, among others listed

in ref. [20]. An important feature of the double-b algorithm is that it uses the N-subjettiness axes,

defined in eq. (6.2), for N = 2, to group the tracks to the direction of the partons giving rise to the

two subjets. The double-b variables are then used as inputs to a BDT. A key feature of the double-b

algorithm is that it is designed to minimize the dependence of the BDT discriminant on the jet mass
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and pT, thus making it suitable for other topologies such as decays of boosted Z bosons to bottom

quarks [81].

The performance of the double-b tagger in simulation is detailed in ref. [20] using H boson

jets as signal, and single-b, double-b jets from gluon splitting to a pair of b quarks, and light-flavor

quark or gluon jets. The H ! bb identification e�ciency is ⇠25% (⇠70%) for ⇠1% (⇠10%)

misidentification rate [20].

The double-b tagger performance in data is studied in [20] using data in a recent inclusive

search for the Higgs boson in the bb decay mode [81]. In that analysis, the Z boson was observed

for the first time in the single-jet topology and bb decay mode, with a rate consistent within

uncertainties with the SM expectation, validating the double-b tagging algorithm for the Higgs

boson measurements and future searches.

The double-b tagger will serve as a reference for the performance of the new methods explored

in CMS.

6.5 Boosted event shape tagger

The boosted event shape tagger (BEST) [82] is a multi-classification algorithm designed to discrim-

inate hadronic decays of high-pT t quarks and W/Z/H bosons from jets arising from b quarks, light

flavor quarks, and gluons. The original algorithm was demonstrated using generator-level particles

and e�ciently separated jets originating from W/Z/H bosons, t quarks, and b jets. The algorithm

has been extended and deployed for use in the CMS experiment, adding an additional category to

discriminate jets from light-flavor quarks and gluons.

The BEST algorithm obtains discrimination on a jet-by-jet basis by transforming the entire set

of jet constituents four times, each with a di�erent boost vector. The boost vectors are obtained by

assuming the jet originating from one of the heavy objects under consideration (W/Z/H/t). The

jet momentum is held constant while the mass of the jet is adjusted to the theoretical value of

the corresponding particle. This results in four distributions of constituents that can be used to

discriminate between particle origins. If a jet did originate from one of the hypothesized heavy

objects, its jet constituents will, in general, be more isotropic in the rest frame of that particle. By

examining the di�erences between heavy object hypotheses, discrimination is obtained between the

categories of interest (W/Z/H/t/b/other).

In total, 59 quantities are used to train a neural network (NN) and classify the AK8 jets.

The variables are listed in table 3. For each boost transformation, we calculate the following

observables: Fox-Wolfram moments [83]; aplanarity, sphericity, and isotropy quantities based on

the eigenvalues of sphericity tensor, as defined in ref. [84]; and jet thrust [85]. Additionally, in each

boost hypothesis, AK4 subjets are clustered from the constituents and used to compute pairwise

subjet masses for the leading three subjets, as well as the combined mass of the leading four subjets

m1234. These AK4 subjets are also used to compute the longitudinal asymmetry AL , defined as the

ratio of the sum of longitudinal components of the AK4 subjet momenta to the sum of the total AK4

subjet momenta. In addition to these quantities evaluated for each set of jet constituents, the mSD,

rapidity, charge, ⌧32, ⌧21, and the CSVv2 discriminant for each subjet provide additional inputs for

each set of boosted jet constituents.

The NN is trained with the ������-����� package [86] using the MLPC��������� module. The

network architecture is fully connected and consists of 3 hidden layers with 40 nodes in each layer
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Table 3. List of input quantities used for the training and evaluation of the BEST algorithm on AK8 jets.

BEST training quantities

Jet charge Fox-Wolfram moment H1/H0 (t,W,Z,H) m12 (t,W,Z,H)

Jet ⌘ Fox-Wolfram moment H2/H0 (t,W,Z,H) m23 (t,W,Z,H)

Jet ⌧21 Fox-Wolfram moment H3/H0 (t,W,Z,H) m13 (t,W,Z,H)

Jet ⌧32 Fox-Wolfram moment H4/H0 (t,W,Z,H) m1234 (t,W,Z,H)

Jet soft-drop mass Sphericity (t,W,Z,H) AL (t,W,Z,H)

Subjet 1 CSV value Aplanarity (t,W,Z,H)

Subjet 2 CSV value Isotropy (t,W,Z,H)

Maximum subjet CSV value Thrust (t,W,Z,H)

using a rectified linear unit (ReLU) [87] activation function. The six output nodes correspond to

the 6 particle species of interest. We use 500 000 jets to train the network, split evenly between the

6 training samples. The training is performed using the A��� [88] optimizer to minimize the cross

entropy loss with a constant learning rate of 0.001. Cross entropy is a measure of the di�erence

(entropy) between two probability distributions and it is used for optimizing a classification model.

The BEST W/Z/H/t/b/other multi classification is currently used for tagging high-pT jets in the

search for vector-like quark pair production [69].

6.6 Identification using particle-flow candidates: ImageTop

Recent studies, e.g., in ref. [89], have shown that jet identification algorithms deploying ML methods

directly on the jet constituents yield significantly improved performance compared to traditional

algorithms.

To this end, the “ImageTop” t quark identification algorithm was developed. The ImageTop

algorithm closely follows the network framework described in ref. [89], which is an optimization

based on the DeepTop framework described in ref. [90]. This tagging approach uses standard

image recognition techniques based on two-dimensional convolutional neural networks (CNNs) to

discriminate t quark jets from QCD jets. This is performed by pixelizing the jet energy deposits and

define di�erent channels based on relevant detector information. Before pixelization, the centroid of

the jet is shifted to the origin and then a rotation is performed to make the major principal axis verti-

cal. The image is then flipped along both the horizontal and vertical axes as appropriate such that the

maximum intensity is in the lower-left quadrant. After this, the image intensity is normalized and the

image is pixelized using 37⇥37 pixels with a total ∆⌘ = ∆� = 3.2, with channels split into neutral

pT, track pT, number of muons, and of tracks as an analogue to colors used in image recognition. The

network architecture uses a layer of 128 feature maps with a 4⇥4 kernel followed by a second convo-

lutional layer of 64 feature maps each. Then a max-pooling layer with a 2⇥2 reduction factor is used,

followed by two more consecutive convolutional layers with 64 features maps followed by another

max-pooling layer. A zero-padding in each convolutional layer is used to correct for image-border

e�ects. In the last pooling layer, the 64 maps are flattened into a single one that is passed into a set of

three fully connected dense layers, one of 64 neurons, and two more with 256 neurons. The training
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is performed using the Tensorflow [91] software package using the A��D���� optimizer [92] with

a learning rate of 0.3, a minibatch size of 128, and the binary cross entropy loss function.

The tagger is modified to use the PF candidates contained in the AK8 jets as inputs, with the

colors being the pT of the PF candidates for the full greyscale image, and a separate color for each PF

candidate flavor, namely charged and neutral hadrons, photons, electrons, and muons. The pixelized

greyscale images used in the ImageTop network for QCD and t quark jets are shown in figure 7.

The characteristic flavor of the t quark decay is included by applying the DeepFlavor [93] b tagging

algorithm to the SD subjets of the AK8 jet. The subjet b tagging outputs include the probability

of the jet to originate from the following six sources: b quark, bb pair, leptonic b decays, c quark,

light-flavor quark, or gluon. These output probabilities calculated for both subjets along with mSD,

are used as inputs (13 in total) into a 64-neuron dense layer and merged with the previous flattened

CNN layer and finally input into three fully connected layers of 256 neurons each. The factorization

of the b flavor discrimination is important for the versatility of the network, allowing for the flavor

identification to be easily removed or validated in parallel, which can be necessary for the validation

of objects with no SM analog. The diagram of the CMS application of this NN can be seen in figure 8.
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Figure 7. The pixelized images used in the ImageTop network with PF candidate colors summed together
(“greyscale”) for QCD (left) and t quark (right) jets. The x and y axes are the pixel number, and roughly scale
with ∆R. The Z axis is the intensity of the greyscale image in the given pixel, related to the PF candidate
pT, and has been normalized to unity. This figure shows an ensemble of overlaid images after the image post
processing; we can see clear di�erences between the QCD jet energy and t quark deposition patterns.

The training is performed for jets in the pT > 600 GeV region. To sustain the ImageTop

performance over a wide range of pT(jet), the image is adaptively zoomed based on pT(jet) to

account for the increased collimation of the t quark decay products at high Lorentz boosts and

maintain a static pixel size. The functional form of the zoom is extracted from the average ∆R of

the three generator-level hadronic t quark decay products, and the jet energy deposits are corrected

to make this constant on average, as evaluated from a fit using the inverse jet pT functional form

f (pT) = 0.066 + 264/pT.
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Forcing the algorithm to be decorrelated with the jet mass, inevitably leads to a loss of

discrimination power, and the resulting algorithm is a balance between performance and mass

independence. Because the training of DeepAK8-MD is carried out only on jets with 30 < mSD <

250 GeV, jets with mSD outside this range should be removed when using DeepAK8-MD.

7 Performance in simulation

As presented in section 6, a variety of algorithms have been developed by the CMS Collaboration

to identify the hadronic decays of W/Z/H/ bosons and t quarks. To gain an initial understanding of

the tagging performance and the complementarity between the di�erent approaches, the algorithms

were studied in simulated events. The performance of the algorithms is evaluated using the signal

and background e�ciencies, ✏S and ✏B, respectively, as a figure of merit. The e�ciencies ✏S and

✏B are defined as:

✏S =
N

tagged
S

N
total
S

and ✏B =
N

tagged
B

N
total
B

, (7.1)

where N
tagged
S

(N tagged
B

) is the number of signal (background) jets satisfying the identification criteria

of each algorithm, and N
total
S (N total

B ) is the total number of generated particles considered to be

signal (background). Hadronically decaying W/Z/H bosons or t quarks are signal, whereas quarks

(excluding t quarks) and gluons from the QCD multijet process are background.

First, for each algorithm, the ✏B as a function of ✏S is evaluated in terms of a receiver operating

characteristic (ROC) curve. Figures 11–14 summarize the ROC curves of all algorithms for the

identification of t quarks, and W, Z, and H bosons, respectively. The comparisons are performed

at low and high values of the generated particle pT. The fiducial selection criteria applied to

the generator-level particles are displayed in the plots. For the cuto�-based algorithms, namely

mSD + ⌧32, mSD + ⌧32 + b, mSD + ⌧21, mSD + N2, and mSD + N
DDT
2 , all selections except the selection

on ⌧32, ⌧21, or N2, are applied, as described in sections 6.1 and 6.3.2.

In t tagging, the addition of the subjet b tagging in the mSD + ⌧32 algorithm reduces the

misidentification probability for t quarks by up to ⇠50% depending on the pT. The performance

of the HOTVR algorithm lies between mSD + ⌧32 and mSD + ⌧32 + b, and the N3-BDT (CA15)

algorithm shows improved performance compared to these algorithms, particularly in the low-pT

range. The improved performance stems from the usage of the ECFs, which provide complementary

information to ⌧32. Particularly in the low-pT region, the gain is mainly due to the use of larger-cone

jets (i.e., jets clustered with R = 1.5). The BEST algorithm targets the high-pT regime and shows

similar performance to the ECF algorithm in this regime. The best discrimination is achieved

with algorithms based on lower-level information, namely the ImageTop and DeepAK8 algorithms.

ImageTop and DeepAK8-MD yield comparable performance in the low and high pT regions. The

best performance in terms of ROC curves is achieved with the nominal version of DeepAK8 over

the entire pT region.

Various arguments contribute to the significantly improved performance of ImageTop and

DeepAK8 with respect to the other algorithms. First, the usage of lower-level variables as inputs to

the network exploits the high granularity of the CMS detector. Second, the architectures of these

algorithms provide quark-gluon discrimination information. Moreover, information about the jet
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Figure 11. Comparison of the identification algorithms for hadronically decaying t quark in terms of ROC
curves in two regions based on the pT of the generated particle; left: 300 < pT < 500 GeV, and Right:
1000 < pT < 1500 GeV. Additional fiducial selection criteria applied to the jets are listed on the plots.
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Figure 12. Comparison of the identification algorithms for hadronically decaying W boson in terms of ROC
curves in two regions based on the pT of the generated particle; left: 300 < pT < 500 GeV, and Right:
1000 < pT < 1500 GeV. Additional fiducial selection criteria applied to the jets are listed on the plots.

flavor content is extracted, which is particularly important for t quark and Z/H boson identification.

The flavor identification in jets from boosted object decay is very challenging because the decay

products overlap and traditional b tagging algorithms perform significantly less well. The usage of

the type of the PF candidates, and the secondary vertices in the case of DeepAK8, provides a more

precise description of the flavor content inside the jet.

Similar conclusions hold for the identification of hadronically decaying W and Z bosons. The

BEST, DeepAK8, and DeepAK8-MD algorithms show enhanced performance compared with the

simpler mSD + ⌧21 algorithm. The gain in terms of misidentification rate can be as large as an

order of magnitude in the case of DeepAK8. The smaller relative gain of DeepAK8 over BEST
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Figure 13. Comparison of the identification algorithms for hadronically decaying Z boson in terms of ROC
curves in two regions based on the pT of the generated particle; left: 300 < pT < 500 GeV, and Right:
1000 < pT < 1500 GeV. Additional fiducial selection criteria applied to the jets are listed on the plots.

0 0.1 0.2 0.3 0.4 0.5 0.6

Signal efficiency

4−10

3−10

2−10

1−10

1

B
a
c
k
g
ro

u
n
d
 e

ff
ic

ie
n
c
y

 (13 TeV)

CMS
Simulation 

DeepAK8

DeepAK8-MD

double-b

Higgs boson vs. QCD multijet

| < 2.4
gen
η < 500 GeV, |

gen

T
300 < p

 < 140 GeV
AK8

SD
90 < m

0 0.2 0.4 0.6 0.8 1

Signal efficiency

4−10

3−10

2−10

1−10

1

B
a
c
k
g
ro

u
n
d
 e

ff
ic

ie
n
c
y

 (13 TeV)

CMS
Simulation 

DeepAK8

DeepAK8-MD

BEST

double-b

Higgs boson vs. QCD multijet

| < 2.4
gen
η < 1500 GeV, |

gen

T
1000 < p

 < 140 GeV
AK8

SD
90 < m

Figure 14. Comparison of the identification algorithms for hadronically decaying H boson in terms of ROC
curves in two regions based on the pT of the generated particle; left: 300 < pT < 500 GeV, and Right:
1000 < pT < 1500 GeV. The H boson decays to a pair of b quarks. Additional fiducial selection criteria
applied to the jets are listed on the plots.

for discriminating between W or Z bosons, and t quarks occurs because flavor information for the

W and Z bosons is not as critical as for t quarks. The mSD + N2 and mSD + N
DDT
2 show weaker

performance compared with the mSD + ⌧21 algorithm.

The double-b, BEST, DeepAK8, and DeepAK8-MD algorithms are used to identify hadronic

decays of the H boson. In figure 14, the H boson decays to a pair of b quarks. The performance of

the BEST algorithm lies between the double-b algorithm and DeepAK8. The gain with DeepAK8

is expected just as in t quark identification for similar arguments.
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Figure 15. Alternative versions of DeepAK8 trained using a subset of the input features. The details about
each version are discussed in the text. The performances of the three versions of DeepAK8 are compared
for t quark (upper) and Z boson (lower) identification. For the latter, the left plot corresponds to Z bosons
decaying to a pair of b quarks, and the right plot to a pair of light-flavor quarks.

To gain a deeper understanding of the DeepAK8 performance, two alternative versions of

DeepAK8 were trained using a subset of the input features. Three sets of input features were

studied and compared. The “Particle (kinematics)” set consists of only the kinematic information

on the PF candidates, e.g., the four-momenta and the distances to the jet and subjet axes. This set

serves as a baseline to evaluate the performance using only substructure of the jets. The “Particle

(w/o Flavor)” set includes additional experimental information for each PF candidate, such as the

electric charge, particle identification, and track quality information. Compared with the nominal

DeepAK8 algorithm, input features that contribute to the identification of heavy-flavor quarks, such

as the displacement of the tracks, the association of tracks to the reconstructed vertices, and the SV

features, are not included in the “Particle (w/o Flavor)” set. The performances of the three versions

of DeepAK8 are compared in figure 15 for t quark and Z boson identification. In both cases,

the addition of experimental information brings sizable improvement in performance. Although
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the additional features contributing to heavy-flavor identification lead to no improvement for the

identification of Z bosons decaying to a pair of light-flavor quarks, a significant improvement

is observed for Z bosons decaying to a pair of b quarks, as well as t quark decays, showing the

strong complementarity between heavy-flavor identification and jet substructure for heavy-resonance

identification where heavy-flavor quarks are involved in the decay.

7.1 Robustness of tagging algorithms

In addition to the performance of the algorithms in pure discrimination, an important ingredient is

their robustness to changes in jet kinematics and data-taking conditions. To quantify this, we study

the ✏S and ✏B of the algorithms as a function of the pT of the generated particle and the number of

reconstructed vertices (NPV) in the event. For these studies, a common working point is defined,

corresponding to ✏S = 30 (50)% for t quark (W/Z/H boson) with 500 < pT(generated particle) <

600 GeV. Working points used in CMS analyses vary from analysis to analysis, since they are

optimized to achieve the best sensitivity for the targeted signal processes. For example, CMS

employs a t quark tagging working point at approximately 40% signal e�ciency in the search for

BSM tt production [56], a W tagging working point at approximately 20% signal e�ciency in the

search for BSM diboson production [66], and an H tagging working point at approximately 30%

signal e�ciency in the search for H boson pair production [99].

The distributions of the ✏S and ✏B as a function of pT of the generated particle for the di�erent

particle identification scenarios are displayed in figures 16 and 17, respectively. In the low-pT range

for the t tagging case, the ✏S for the algorithms using AK8 jets increases rapidly until pT & 600 GeV,

where a large fraction of jets contain all the t decay products. As expected, the N3-BDT (CA15)

and HOTVR algorithms have a stable ✏S as a function of the generator-level particle pT. Similar

behavior is observed for the t quark misidentification rate.

In the case of the W and Z boson tagging, the ✏S for the mSD + ⌧21 algorithm decreases as a

function of pT(generated particle), whereas the BEST, DeepAK8, and DeepAK8-MD algorithms

exhibit improvements in ✏S as a function of pT(generated particle). The drop in ✏S for mSD + ⌧21 is a

result of the correlation between mSD+⌧21 and the jet pT, leading to a shift in the jet mass distribution

to higher values. The mSD+N2 algorithm shows similar behavior to BEST and DeepAK8 algorithms,

whereas the ✏S in the case of mSD+N
DDT
2 is stable as a function of pT(generated particle). In contrast

to N-subjettiness, the ECF observable uses an axis-free approach, which is more e�cient in the

case of highly collimated decay products.

The misidentification rate has a nontrivial behavior for most algorithms. In the case of

DeepAK8 and DeepAK8-MD the ✏B value decreases with pT(generated particle), which is mainly

a result of the use of low-level features as inputs to the algorithm. For mSD + N2, the ✏B increases

with pT(generated particle), whereas for mSD + N
DDT
2 , it is, by design, significantly more stable. In

the case of mSD + ⌧21, the decrease of ✏B as a function of pT(generated particle) is mainly caused by

the strong shift of the mSD shape of the background jets to larger values as a result of the selection

on ⌧21. This will be discussed in more detail in section 7.2. Finally, for the BEST, the ✏B decreases

up to pT(generated particle) ⇠ 1000 GeV, and then increases again. This is a feature of the training

of the BEST algorithm, stemming from an imbalance in the relative fraction of jets between the

low- and high-pT regimes.
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Figure 16. The e�ciency ✏S as a function of the generated particle pT for a working point corresponding to
✏S = 30 (50)% for t quark (W/Z/H boson) identification. Upper left: t quark, upper right: W boson, lower
left: Z boson, lower right: H boson. The error bars represent the statistical uncertainty in each specific bin,
due to the limited number of simulated events. Additional fiducial selection criteria applied to the jets are
listed in the plots.

In the case of H tagging, the BEST and DeepAK8 algorithms have stable ✏S for

pT(generated particle) & 600 GeV, whereas for the double-b algorithm the ✏S starts to decrease

around this pT regime. There are two main reasons for this behavior. First, the double-b al-

gorithm exploits axis-dependent observables, similar to ⌧21, which are less e�cient at high pT

where the decay products become highly collimated. Second, the selection on the tracks used to

construct the variables used for the training of the double-b algorithm, discussed in section 6.4,

is suboptimal in the very high-pT regime. The e�ciency ✏B for both double-b and DeepAK8

decreases as a function of pT(generated particle), whereas for BEST it shows a modest increase for

pT(generated particle) & 1000 GeV, for the same reasons as in the W and Z boson tagging case.

The dependence of the algorithms on NPV is also examined using simulated events. Figure 18

shows the distribution of ✏S, and figure 19 that of ✏B, as a function of NPV for generated particles

with 500 < pT < 1000 GeV, operating at a working point with ✏S = 30 (50)% for t quark (W/Z/H
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Figure 17. The distribution of ✏B as a function of the generated particle pT for a working point corresponding
to ✏S = 30 (50)% for t quark (W/Z/H boson) identification. Upper left: t quark, upper right: W boson, lower
left: Z boson, lower right: H boson. The error bars represent the statistical uncertainty in each specific bin,
due to the limited number of simulated events. Additional fiducial selection criteria applied to the jets are
listed in the plots.

boson) identification as defined above. The algorithms make use of jets that employ PUPPI for

pileup mitigation, which results in a roughly constant ✏S and ✏B for all di�erent pileup scenarios.

7.2 Correlation with jet mass

A set of studies was performed to understand the correlation of the algorithms with the jet mass.

This understanding benefits from the theoretical progress made in jet substructure studies [3], which

can result in reduced systematic uncertainties [15]. The jet mass is one of the most discriminating

variables, and many analyses require a smoothly falling background jet mass spectrum under a

signal peak (e.g., in ref. [100]). Figure 20 displays the normalized mSD distribution for jets obtained

from the QCD multijet sample, inclusively and after applying a selection with each algorithm.

The working point chosen corresponds to ✏S = 30 (50)% for t quark (W/Z/H boson). The results

are shown for one region of the generated particle pT distribution, but similar behavior is seen
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Figure 18. The e�ciency ✏S as a function of the number of primary vertices (NPV) for generated particles
with 500 < pT < 1000 GeV at a working point corresponding to ✏S = 30 (50)% for t quark (W/Z/H boson)
identification. Upper left: t quark, upper right: W boson, lower left: Z boson, lower right: H boson. The
error bars represent the statistical uncertainty in each specific bin, due to a limited number of simulated
events. Additional fiducial selection criteria applied to the jets are listed in the plots.

for other pT regions as well. By design, the BEST and the nominal version of the DeepAK8

algorithms lead to significant sculpting of the background jet mass shape, but this does not a�ect

analyses unless the jet mass distribution is explicitly used in signal extraction, e.g., ref. [101]. An

alternative way of presenting the sculpting of the background jet mass introduced by each tagging

algorithm is displayed in figure 21. The figure shows the normalized ratio of the background jet

mass distributions for the passing and failing jets for each algorithm, after selecting a working point

corresponding to ✏S = 30 (50)% for t quark (W/Z/H boson). For the mass decorrelated versions of

the algorithms, the ratio typically shows very little dependence on mSD.

To quantify the level of mass sculpting we use the Jensen-Shannon divergence (JSD) [102],

which is a symmetrized version of the Kullback-Leibler divergence (KLD) [103], and provides a
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Figure 19. The e�ciency ✏B as a function of the number of primary vertices (NPV) for generated particles
with 500 < pT < 1000 GeV at a working point corresponding to ✏S = 30 (50)% for t quark (W/Z/H boson)
identification. Upper left: t quark, upper right: W boson, lower left: Z boson, lower right: H boson. The
error bars represent the statistical uncertainty in each specific bin, due to the limited number of simulated
events. Additional fiducial selection criteria applied to the jets are listed in the plots.

metric for the similarity of the shape between distributions. The KLD is defined as:

KLD(P | |Q) =
’

i

P(i)log10

P(i)

Q(i)
, (7.2)

where P(i) and Q(i) are the normalized mass distributions of the background jets that fail and pass

a selection with a given algorithm, respectively, and the symbol | | represents the divergence of P

from Q. The index i runs over the bins of the distributions.

The JSD metric is defined as:

JSD(P | |Q) =
1

2
(KLD(P | |M)) + KLD(Q | |M)), where M =

P +Q

2
. (7.3)

Lower values of JSD indicate larger similarity between the mass distributions of jets passing and

failing a selection on a given algorithm.
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Figure 21. Normalized ratio of the QCD background jet mass distribution for the passing and failing jets with
600 < pT < 1000 GeV, by each algorithm. The working point chosen corresponds to ✏S = 30 (✏S = 50)% for
t quark (W/Z/H boson) identification. Upper left: t quark, upper right: W boson, lower left: Z boson, lower
right: H boson. The error bars represent the statistical uncertainty in each specific bin, which is related to
the limited number of simulated events. Additional fiducial selection criteria applied to the jets are listed on
the plots.

events. Most algorithms show modest dependence on jet pT, except for ImageTop-MD, where the

mass dependence increases rapidly when pT . 600 GeV as the training was only performed for jets

with pT > 600 GeV. The DeepAK8-MD and mSD + N
DDT
2 algorithms for W tagging also show

modestly increased mass dependence in the pT range of 1200 and 1600 GeV, respectively. The

dependence of the mass mitigation techniques on NPV was also studied and was small.

8 Performance in data and systematic uncertainties

In this section, the validation of the algorithms using data is presented. The validation is performed

in two steps. In the first step, we focus on studying the overall modeling of key variables in simulation

and their agreement with data, as well as the dependence on the simulation details. The second step
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Figure 22. The JSD as a function of successively tighter selections (expressed in terms of ✏B) for the various
t (left) and W (right) tagging algorithms. Lower values of JSD indicate larger similarity of the mSD in
QCD multijet events passing and failing the selection on the tagging algorithm. Additional fiducial selection
criteria applied to the jets are listed in the plots.
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Figure 23. The JSD, as a function of the jet pT for the various t (left) and W (right) tagging algorithms. Lower
values of JSD indicate larger similarity of the mSD in QCD multijet events passing and failing the selection
on the tagging algorithm. Additional fiducial selection criteria applied to the jets are listed in the plots.

is to use these results to extract corrections to the simulation so that the algorithms perform similarly

in simulation and data. Di�erences in the performance between data and simulation are corrected

by scale factors (SF) extracted by comparing the e�ciencies in data and simulation. To account for

e�ects not captured in the SF, multiple sources of systematic uncertainties are considered. The data

and simulated samples used for these studies are described in section 5.

In this paper, we focus on the calibration of the t quark and W/Z boson tagging algorithms.

The calibration of tagging algorithms where Z and H bosons decay to a pair of bottom or charm

quarks requires alternative methods that go beyond the scope of this paper. Since it is challenging
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to obtain a pure Z or H boson sample, the calibration of such taggers relies on the use of a proxy jet,

i.e., a jet obtained in the dijet sample with characteristics similar to signal jets. Data-to-simulation

correction factors are extracted based on these proxy jets, which are then applied to signal jets.

Therefore, the proxy jets should be selected to have similar characteristics to the signal jets. To this

end, jets arising from gluon splitting to bb or cc are used as proxy jets from a sample dominated

by QCD multijet events. Such approaches have been followed in refs. [20, 81, 104].

8.1 Systematic uncertainties

A number of sources of systematic e�ects can a�ect the modeling of the performance of the algo-

rithms in data by the simulation. These include systematic uncertainties in the parton showering

model, renormalization and factorization scales, PDFs, jet energy scale and resolution, p
miss
T un-

clustered energy, trigger and lepton identification, pileup modeling, and integrated luminosity, as

well as statistical uncertainties of simulated samples.

Parton shower uncertainties for signal jets are evaluated using samples with the same event

generators but a di�erent choice for the modeling of the parton showering. For background jets, a

sample produced using an alternative generator for both the hard scattering and the parton shower

is used. The details of the samples are discussed in section 3. Changes in renormalization (µR)

and factorization (µF ) scales are estimated by varying the scales separately by a factor of two up

and down, relative to the choices of the scale values used in the sample generation. The uncertainty

related to the choice of the PDFs is obtained from the standard deviation in 100 replicas of the

NNPDF3.0 PDF set [31]. The jet energy scale and resolution are changed within their pT- and ⌘-

dependent uncertainties, based on the studies presented in ref. [51]. Their e�ects are also propagated

to p
miss
T . The e�ect of the uncertainty in the measurement of the unclustered energy (i.e., contribution

of PF candidates not associated to any of the physics objects) is evaluated based on the momentum

resolution of each PF candidate, which depends on the type of the candidate [52]. Uncertainties in

the measurement of the trigger e�ciency and in the energy/momentum scale and resolution of the

leptons are propagated in the SF extraction. The uncertainty in the pileup weighting procedure is

determined by varying the minimum bias cross section used to produce the pileup profile by ±5%

from the measured central value of 69.2 mb [105, 106]. The limited size of the simulated samples

and the size of the data control samples are also considered.

The uncertainties described above contribute in di�erent ways to the modeling of jet kinematics

and the extraction of SF. Because many of the algorithms detailed in this paper use jet substructure

and jet constituent information, either directly or as input to multivariate techniques, the uncertainties

in the choice of parton shower are significant. Di�erent parton showers directly a�ect the number,

momentum, and distribution of jet constituents, influencing the observables used as inputs to

the multivariate techniques, and eventually propagating to the outputs of those algorithms. The

magnitude of this source of systematic uncertainty is from 10–30%. The uncertainty in the value of

µR and µF chosen for event generation also has a sizable impact (5–15%), because this changes the

amount of radiation that can enter into a reconstructed jet. These dominant components contribute

a total combined uncertainty of 10–50%, depending on the specific jet kinematics of interest.

Additional sources of systematic uncertainties, with smaller impact, are also considered. For

example, the trigger and lepton identification uncertainties are a few percent, and do not include

uncertainties in the kinematic distributions. The identification of leptons, especially muons, is
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nearly fully e�cient, and the trigger is selected to ensure full e�ciency in the regime of interest.

The jet energy scale and resolution uncertainties are similar, including shape components, and are

between 1 and 5% for the high-pT jets studied here. Uncertainties related to pileup modeling and

the integrated luminosity measurement have an e�ect smaller than 3%.

These uncertainties partially cancel in the SF measurement, as will be discussed in section 8.4.

8.2 The t quark and W boson identification performance in data

The single-µ event selection discussed in section 5.1 provides a sample dominated by semileptonic

tt events. One of the t quarks decays to a W b̃oson that decays leptonically (to pass the selection),

and the other provides a hadronic decay to be used in validating the algorithms.

To study possible dependence of the tagging e�ciency on the parton showering scheme,

we consider two alternative simulated tt samples. As discussed in section 3, both samples are

generated with the same generator (i.e., ������), but one uses ������ for the modeling of the

parton showering, whereas the other uses ������++. The total SM expectation from simulation

using the latter tt sample will be referred to as “SM (Herwig)”. As we will see, the choice of the

parton showering generator has only a small impact on the overall agreement between data and

simulation in signal jets.

To account for the di�erences in the design of the algorithms, the large-R jets discussed in

section 5.1 are either AK8, CA15, or HOTVR jets. For brevity we focus mainly on results using

AK8 jets, unless otherwise stated, but similar conclusions can be drawn from all three jet collections.

The data-to-simulation comparisons of basic jet kinematic and substructure variables: pT(jet),

mSD, the N-subjettiness ratios ⌧32 and ⌧21, and the N2 and N
DDT
2 , are shown in figure 24. Figure 25

displays the main observables of the HOTVR algorithm, mHOTVR, mmin,HOTVR and Nsub,HOTVR,

in data and simulation. The next set of comparisons includes tagging algorithms that are based

on high-level jet substructure observables and explore ML techniques to improve performance,

namely the BEST and the N3-BDT (CA15) algorithms. Figure 26 shows the t quark and W boson

identification probabilities of BEST and the t tagging discriminant for the N3-BDT (CA15), in

data and simulation. The last set of comparisons is related to the ImageTop and the DeepAK8

algorithms, which both explore lower-level observables. Figure 27 displays the distributions of the

t quark identification probability for the two versions of ImageTop, and the t quark and W boson

identification probabilities for DeepAK8 algorithms.

Because the selection applied to events shown in figures 24–27 results in a sample with low

purity of fully merged t quark decay products, we also study the same distributions after applying a

tighter requirement on the jet momenta: pT > 500 GeV. This selection results in a sample consisting

of a higher fraction of fully merged t quark jets, relative to the jet component from the decay of a

boosted W boson jet. Figures 28–31 show the same distributions for this high-pT selection.

The total background yield is normalized to the observed number of data events. The systematic

uncertainties discussed in section 8.1 are also considered and are shown via the shaded dark-grey

band in the figures. Overall, the shapes in data are compatible with the expectation from simulation

within uncertainties for all the algorithms.
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Figure 24. Distribution of the jet pT (upper left), jet mass, mSD (upper right), the N-subjettiness ratios ⌧32

(middle left) and ⌧21 (middle right), and the N2 (lower left) and N
DDT
2 (lower right) in data and simulation

in the single-µ signal sample. The pink line corresponds to the simulation distribution obtained using the
alternative tt sample. The background event yield is normalized to the total observed data yield. The lower
panel shows the data to simulation ratio. The solid dark-gray (shaded light-gray) band corresponds to the
total uncertainty (statistical uncertainty of the simulated samples), the pink line to the data to simulation
ratio using the alternative tt sample, and the vertical black lines correspond to the statistical uncertainty of
the data. The vertical pink lines correspond to the statistical uncertainty of the alternative tt sample. The
distributions are weighted according to the top quark pT weighting procedure described in the text.
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Figure 25. Distribution of the main observables of the HOTVR algorithm, HOTVR jet pT (upper left),
mHOTVR (upper right), mmin,HOTVR (lower left), and Nsub,HOTVR (lower right) in data and simulation in the
single-µ signal sample. The pink line corresponds to the simulation distribution obtained using the alternative
tt sample. The background event yield is normalized to the total observed data yield. The lower panel shows
the data to simulation ratio. The solid dark-gray (shaded light-gray) band corresponds to the total uncertainty
(statistical uncertainty of the simulated samples), the pink line to the data to simulation ratio using the
alternative tt sample, and the vertical black lines correspond to the statistical uncertainty of the data. The
vertical pink lines correspond to the statistical uncertainty of the alternative tt sample. The distributions are
weighted according to the top quark pT weighting procedure described in the text.
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Figure 26. Distribution of the t quark (upper left) and W boson (upper right) identification probabilities
for the BEST algorithm, and the N3-BDT (CA15) discriminant in data and simulation in the single-µ signal
sample. The pink line corresponds to the simulation distribution obtained using the alternative tt sample.
The background event yield is normalized to the total observed data yield. The lower panel shows the data to
simulation ratio. The solid dark-gray (shaded light-gray) band corresponds to the total uncertainty (statistical
uncertainty of the simulated samples), the pink line to the data to simulation ratio using the alternative tt

sample, and the vertical black lines correspond to the statistical uncertainty of the data. The vertical pink
lines correspond to the statistical uncertainty of the alternative tt sample. The distributions are weighted
according to the top quark pT weighting procedure described in the text.
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Figure 27. Distribution of the ImageTop (upper left) and ImageTop-MD (upper right) discriminant in data
and simulation in the single-µ sample. The plots in the middle row show the t quark (left) and W boson (right)
identification probabilities in data and simulation for the DeepAK8 algorithm. The corresponding plots for
DeepAK8-MD are displayed in the lower row. The pink line corresponds to the simulation distribution
obtained using the alternative tt sample. The background event yield is normalized to the total observed data
yield. The lower panel shows the data to simulation ratio. The solid dark-gray (shaded light-gray) band cor-
responds to the total uncertainty (statistical uncertainty of the simulated samples), the pink line to the data to
simulation ratio using the alternative tt sample, and the vertical black lines correspond to the statistical uncer-
tainty of the data. The vertical pink lines correspond to the statistical uncertainty of the alternative tt sample.
The distributions are weighted according to the top quark pT weighting procedure described in the text.
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Figure 28. Distribution of the jet pT (upper left), the jet mass, mSD (upper right), the N-subjettiness ratios ⌧32

(middle left) and ⌧21 (middle right), and the N2 (lower left) and N
DDT
2 (lower right) in data and simulation in

the single-µ signal sample after applying a jet momentum cut pT > 500 GeV. The pink line corresponds to the
simulation distribution obtained using the alternative tt sample. The background event yield is normalized to
the total observed data yield. The lower panel shows the data to simulation ratio. The solid dark-gray (shaded
light-gray) band corresponds to the total uncertainty (statistical uncertainty of the simulated samples), the
pink line to the data to simulation ratio using the alternative tt sample, and the vertical black lines correspond
to the statistical uncertainty of the data. The vertical pink lines correspond to the statistical uncertainty of
the alternative tt sample. The distributions are weighted according to the top quark pT weighting procedure
described in the text.
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Figure 29. Distribution of the main observables of the HOTVR algorithm, HOTVR jet pT (upper left),
mHOTVR (upper right), mmin,HOTVR (lower left) and Nsub,HOTVR (lower right) in data and simulation in the
single-µ signal sample, after applying a jet momentum cut pT > 500 GeV. The pink line corresponds to the
simulation distribution obtained using the alternative tt sample. The background event yield is normalized to
the total observed data yield. The lower panel shows the data to simulation ratio. The solid dark-gray (shaded
light-gray) band corresponds to the total uncertainty (statistical uncertainty of the simulated samples), the
pink line to the data to simulation ratio using the alternative tt sample, and the vertical black lines correspond
to the statistical uncertainty of the data. The vertical pink lines correspond to the statistical uncertainty of
the alternative tt sample. The distributions are weighted according to the top quark pT weighting procedure
described in the text.
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Figure 30. Distribution of the t quark (upper left) and W boson (upper right) identification probabilities
for the BEST algorithm, and the N3-BDT (CA15) discriminant in data and simulation in the single-µ signal
sample, after applying a jet momentum cut pT > 500 GeV. The pink line corresponds to the simulation
distribution obtained using the alternative tt sample. The background event yield is normalized to the total
observed data yield. The lower panel shows the data to simulation ratio. The solid dark-gray (shaded
light-gray) band corresponds to the total uncertainty (statistical uncertainty of the simulated samples), the
pink line to the data to simulation ratio using the alternative tt sample, and the vertical black lines correspond
to the statistical uncertainty of the data. The vertical pink lines correspond to the statistical uncertainty of
the alternative tt sample. The distributions are weighted according to the top quark pT weighting procedure
described in the text.
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Figure 31. Distribution of the ImageTop (upper left) and ImageTop-MD (upper right) discriminant in data
and simulation in the single-µ sample. The plots in the middle row show the t quark (left) and W boson (right)
identification probabilities in data and simulation for the DeepAK8 algorithm after applying a jet momentum
cut pT > 500 GeV. The corresponding plots for DeepAK8-MD are displayed in the lower row. The pink line
corresponds to the simulation distribution obtained using the alternative tt sample. The background event
yield is normalized to the total observed data yield. The lower panel shows the data to simulation ratio.
The solid dark-gray (shaded light-gray) band corresponds to the total uncertainty (statistical uncertainty of
the simulated samples), the pink line to the data to simulation ratio using the alternative tt sample, and the
vertical black lines correspond to the statistical uncertainty of the data. The vertical pink lines correspond
to the statistical uncertainty of the alternative tt sample. The distributions are weighted according to the top
quark pT weighting procedure described in the text.
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8.3 Misidentification probability in data

The misidentification probability of the algorithms is studied in the dijet and single-� data samples.

The two samples di�er in the relative fraction of light-flavor quarks and gluons in the final state.

To study the dependence of the misidentification probability on the choice of the event generator

and the parton showering scheme, we consider two di�erent simulated samples to model the QCD

multijet background. The nominal sample uses M��G���� for the event generation and ������

(P8) for the parton showering and hadronization, whereas the alternative sample uses ������++ for

event generation and the modeling of the parton showering. More information on the generation of

these samples is discussed in section 3. The total SM contribution estimated using the ������++

QCD multijet sample is referred to as “SM (Herwig)”. As in section 8.2, we will focus on results

using jets with R = 0.8, unless otherwise stated. To account for possible di�erences in the pT

distribution of the QCD multijet and �+jet simulated events, the total background yield is weighted

to match the pT distribution in data, following the procedure discussed in section 3.

The distributions of mSD, jet pT, the N-subjettiness ratios ⌧32 and ⌧21, and the N2 and N
DDT
2 , in

the dijet sample are displayed in figure 32. For this event selection, the shapes of the mSD and the

N-subjettiness ratios are described well by simulation, whereas there is disagreement between data

and simulation for high values of N2 and N
DDT
2 . A better description of the data, particularly for

N
DDT
2 , is achieved with the ������++ QCD multijet sample, which hints that the disagreement is

related to the description of the parton shower. For the other observables we observe similar level

of agreement between the two generators.

The same set of variables is presented in figure 33 for the single-� sample. From previous

measurements [8], the mSD agrees very well with simulation except at low masses. The modeling

of the N-subjettiness and N2 ratios is poorer in the single-� sample.

Figures 34 and 35 show the distribution of the main observables of the HOTVR algorithm,

namely mHOTVR, mmin,HOTVR, and Nsub,HOTVR, in data and simulation, in the dijet and single-�

samples, respectively. In both samples, mHOTVR and mmin,HOTVR show good agreement between

data and simulation. The Nsub,HOTVR distribution in data is softer than in simulation. Similar

conclusions hold using ������++ to simulate the QCD multijet events. The di�erence is more

pronounced in the single-� sample. The Nsub,HOTVR is particularly sensitive to the precise modeling

of the parton showering.

The distribution of the t quark and W boson identification probabilities for BEST and the t

quark tagging discriminant for the N3-BDT (CA15) algorithm in the dijet sample are presented in

figure 36, and the equivalent plots for the single-� selection are shown in figure 37. In both samples

the agreement between data and simulation is reasonable. Some disagreement is observed in the

very high values (&0.95) for the t quark identification probability of the BEST algorithm in the

single-� sample. The disagreement is observed in the region of the t quark probability greater than

0.95, which is significantly higher than the recommended operating points. Some disagreement is

observed between the nominal QCD multijet simulated sample and the alternative sample for large

values of the W boson probability of the BEST algorithm, with the nominal sample showing better

agreement with the data.

The distributions of the ImageTop and DeepAK8 discriminants are shown in figures 38 and 39

for jets in the dijet and single-� samples, respectively. The overall agreement between data and

– 45 –



2
0
2
0
 
J
I
N
S
T
 
1
5
 
P
0
6
0
0
5

simulation in the single-� is better than in the dijet sample. Moreover, the discrepancy in the shape

is mainly observed at the very low values of the discriminant and is more enhanced in the t tagging

case. The dijet sample is dominated by jets initiated by gluons, especially at low values of the

discriminant. In addition, ImageTop and DeepAK8 are very sensitive to mismodeling of quarks or

gluons in the simulation, and so exhibit more sample dependence. QCD multijet events simulated

using ������++ generally show better agreement with the data.

8.4 Corrections to simulation

The measurement of the t quark and W boson tagging e�ciencies in data are performed in the

single-µ sample using a “tag-and-probe” method [107]. The muon, in combination with the b-

tagged jet, is used as the “tag”. In the opposite hemisphere of the event, the jet is considered as the

“probe jet”.

The total SM sample is decomposed into three categories based on the spatial separation of the

partons from the t quark decay with respect to the AK8 jet, following the discussion in section 4.

The “Merged t quark” category includes cases where the three partons and the jet have ∆R < 0.6.

The “Merged W boson” category includes cases where only the two partons from the W boson

decay are within ∆R < 0.6 of the jet and the b quark from the top quark decay is outside the jet

cone. Any other topology falls in the “Nonmerged” category. In the cases of the HOTVR and

N3-BDT (CA15) algorithms, the matching requirement is adjusted from 0.6 to 1.2.

The jet mass distributions in simulation of each one of the three categories are used to derive

templates to fit the jet mass distribution in data. For a given working point, the fit is done for all

three categories simultaneously for both the “passing” and “failing” events. The fit is performed in

the range from 50 to 250 GeV with a bin width of 10 GeV. The sources of systematic uncertainties

discussed in section 8.1 are considered and are treated as nuisance parameters in the fit. After

calculating the e�ciencies in data (✏Data) and simulation (✏Simulation), the SF is determined as the

ratio of ✏Data over ✏Simulation.

The SFs are extracted di�erentially in jet pT for the t quark and W boson tagging working

points discussed in section 7.1. For the case of t quark identification the following exclusive jet pT

regions are considered: 300–400, 400–480, 480–600, and 600–1200 GeV. To increase the purity of

“Merged W boson” candidates, we consider regions with lower jet pT: 200–300, 300–400, 400–550,

and 550–800 GeV. The e�ects of the systematic sources discussed in section 8.1 are propagated to

uncertainties in the SF. The mSD distributions after performing the maximum likelihood fit for data

and simulation in the passing and failing categories for DeepAK8-MD for 400 < pT < 480 GeV

are displayed in figure 40.

The SFs measured for each of the t quark and W boson identification algorithms are summarized

in figure 41. The SFs are typically consistent with unity, within the uncertainties. The largest SF

is measured for the identification of t quarks using DeepAK8-MD. The statistical and parton

shower uncertainties dominate the SF measurement. The algorithms designed to avoid strong

dependence on the mass, such as the DeepAK8-MD, have typically smaller uncertainties than the

other algorithms. The e�ect of systematic uncertainties is more pronounced in algorithms that

utilize a larger set of observables to increase discrimination power. These algorithms (i.e., BEST,

ImageTop, and DeepAK8) are more sensitive to the simulation details. The features are more

evident in the W boson case, due to the larger sample size of the “Merged W boson” category
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Figure 32. Distribution of the jet pT (upper left), the jet mass, mSD (upper right), the N-subjettiness ratios
⌧32 (middle left) and ⌧21 (middle right), and the N2 (lower left) and N

DDT
2 (lower right) in data and simulation

in the dijet sample. The pink line corresponds to the simulation distribution obtained using the alternative
QCD multijet sample. The background event yield is normalized to the total observed data yield. The lower
panel shows the data to simulation ratio. The solid dark-gray (shaded light-gray) band corresponds to the
total uncertainty (statistical uncertainty of the simulated samples), the pink line to the data to simulation ratio
using the alternative QCD multijet sample, and the vertical black lines correspond to the statistical uncertainty
of the data. The vertical pink lines correspond to the statistical uncertainty of the alternative QCD multijet
sample. The distributions are weighted so that the jet pT distribution of the simulation matches the data.
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Figure 33. Distribution of the jet pT (upper left), the jet mass, mSD (upper right), the N-subjettiness ratios
⌧32 (middle left) and ⌧21 (middle right), and the N2 (lower left) and N

DDT
2 (lower right) in data and simulation

in the single-� sample. The background event yield is normalized to the total observed data yield. The
lower panel shows the data to simulation ratio. The solid dark-gray (shaded light-gray) band corresponds
to the total uncertainty (statistical uncertainty of the simulated samples), and the vertical lines correspond
to the statistical uncertainty of the data. The distributions are weighted so that the jet pT distribution of the
simulation matches the data.
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Figure 34. Distribution of the main observables of the HOTVR algorithm, HOTVR jet pT (upper left),
mHOTVR (upper right), mmin,HOTVR (lower left) and Nsub,HOTVR (lower right) in data and simulation in the
dijet sample. The pink line corresponds to the simulation distribution obtained using the alternative QCD
multijet sample. The background event yield is normalized to the total observed data yield. The lower panel
shows the data to simulation ratio. The solid dark-gray (shaded light-gray) band corresponds to the total
uncertainty (statistical uncertainty of the simulated samples), the pink line to the data to simulation ratio using
the alternative QCD multijet sample, and the vertical black lines correspond to the statistical uncertainty of
the data. The vertical pink lines correspond to the statistical uncertainty of the alternative QCD multijet
sample. The distributions are weighted so that the jet pT distribution of the simulation matches the data.
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Figure 35. Distribution of the main observables of the HOTVR algorithm, HOTVR jet pT (upper left),
mHOTVR (upper right), mmin,HOTVR (lower left) and Nsub,HOTVR (lower right) in data and simulation in the
single-� sample. The background event yield is normalized to the total observed data yield. The lower
panel shows the data to simulation ratio. The solid dark-gray (shaded light-gray) band corresponds to
the total uncertainty (statistical uncertainty of the simulated samples), and the vertical lines correspond to
the statistical uncertainty of the data. The distributions are weighted so that the jet pT distribution of the
simulation matches the data.

compared to the “Merged t quark” category, which allows for more precise comparisons due to

increased number of events.

The misidentification rate as a function of the jet pT, is displayed in figures 42 and 43 for the

t and W tagging algorithms. To study the dependence of the misidentification probability on the

matrix element generator, and on the parton showering, we use an additional simulation sample for

the QCD multijet background, which uses ������++ for both the hard scattering generation and

parton showering. In some cases, the misidentification probabilities show a significant dependence

(up to⇠25%) on the simulation details, particularly for the ImageTop and DeepAK8 algorithms. The
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Figure 36. Distribution of the t quark (upper left) and W boson (upper right) identification probabilities
for the BEST algorithm, and the N3-BDT (CA15) discriminant in data and simulation in the dijet sample.
The background event yield is normalized to the total observed data yield. The pink line corresponds to
the simulation distribution obtained using the alternative QCD multijet sample. The background event yield
is normalized to the total observed data yield. The lower panel shows the data to simulation ratio. The
solid dark-gray (shaded light-gray) band corresponds to the total uncertainty (statistical uncertainty of the
simulated samples), the pink line to the data to simulation ratio using the alternative QCD multijet sample, and
the vertical black lines correspond to the statistical uncertainty of the data. The vertical pink lines correspond
to the statistical uncertainty of the alternative QCD multijet sample. The distributions are weighted so that
the jet pT distribution of the simulation matches the data.
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Figure 37. Distribution of the t quark (upper left) and W boson (upper right) identification probabilities for
the BEST algorithm, and the N3-BDT (CA15) discriminant in data and simulation in the single-� sample.
The background event yield is normalized to the total observed data yield. The background event yield is
normalized to the total observed data yield. The lower panel shows the data to simulation ratio. The solid
dark-gray (shaded light-gray) band corresponds to the total uncertainty (statistical uncertainty of the simulated
samples), and the vertical lines correspond to the statistical uncertainty of the data. The distributions are
weighted so that the jet pT distribution of the simulation matches the data.

main source of this dependence is the description of gluon content; these are the only algorithms that

have access to quark-gluon separation to improve the performance. Di�erences in the quark/gluon

content can have large e�ects on the uncertainties.

The misidentification probability is also studied in the single-� sample. Overall the performance

in data and simulation agrees better in this sample than in the dijet sample. This can be attributed

to the fact that the single-� sample has a larger fraction of light-flavor quarks, which are better

modeled in simulation [18].
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Figure 38. Distribution of the ImageTop (upper left) and ImageTop-MD (upper right) discriminant in data
and simulation in the dijet sample. The plots in the middle row show the t quark (left) and W boson (right)
identification probabilities in data and simulation for the DeepAK8 algorithm. The corresponding plots for
DeepAK8-MD are displayed in the lower row. The pink line corresponds to the simulation distribution
obtained using the alternative QCD multijet sample. The background event yield is normalized to the total
observed data yield. The lower panel shows the data to simulation ratio. The solid dark-gray (shaded
light-gray) band corresponds to the total uncertainty (statistical uncertainty of the simulated samples), the
pink line to the data to simulation ratio using the alternative QCD multijet sample, and the vertical black
lines correspond to the statistical uncertainty of the data. The vertical pink lines correspond to the statistical
uncertainty of the alternative QCD multijet sample. The distributions are weighted so that the jet pT

distribution of the simulation matches the data.
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Figure 39. Distribution of the ImageTop (upper left) and ImageTop-MD (upper right) discriminant in data
and simulation in the single-� sample. The plots in the middle row show the t quark (left) and W boson
(right) identification probabilities in data and simulation for the DeepAK8 algorithm. The corresponding
plots for DeepAK8-MD are displayed in the lower row. The background event yield is normalized to the
total observed data yield. The lower panel shows the data to simulation ratio. The solid dark-gray (shaded
light-gray) band corresponds to the total uncertainty (statistical uncertainty of the simulated samples), and
the vertical lines correspond to the statistical uncertainty of the data. The distributions are weighted so that
the jet pT distribution of the simulation matches the data.

– 54 –



2
0
2
0
 
J
I
N
S
T
 
1
5
 
P
0
6
0
0
5

0

20

40

60

80

100

120

140

160

180

200

220

E
v
e

n
ts

 /
 b

in

Data

Merged t quark

Merged W boson

Nonmerged

Total SM

Pre-fit

Post-fit

CMS

 (13 TeV)-135.9 fb

60 80 100 120 140 160 180 200 220 240

 [GeV]SDm

0.5

1

1.5

D
a
ta

 /
 P

o
s
t-

fi
t 0

100

200

300

400

500

E
v
e

n
ts

 /
 b

in

Data

Merged t quark

Merged W boson

Nonmerged

Total SM

Pre-fit

Post-fit

CMS

 (13 TeV)-135.9 fb

60 80 100 120 140 160 180 200 220 240

 [GeV]SDm

0.5

1

1.5

D
a
ta

 /
 P

o
s
t-

fi
t

Figure 40. The mSD distribution in data and simulation in the passing (left) and failing (right) categories for
DeepAK8-MD for the jet pT in the 400–800 GeV range. The solid lines correspond to the contribution of
each category after performing the maximum likelihood fit as described in the text. The dashed lines are the
expectation from simulation before the fit. The lower panel shows the data to simulation ratio. The vertical
black lines correspond to the total uncertainty, including the statistical uncertainty of the data, after the fit.
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Figure 42. The ratio of the misidentification rate of t quarks in data and simulation in the dijet (upper and
middle rows) and the single-� (lower row) samples. The QCD multijet process is simulated using M��G����

for the hard process and ������ for parton showering (upper) and ������++ for both (middle). The vertical
lines correspond to the statistical uncertainty of the data and the simulated samples.
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9 Summary

A review of the heavy-object tagging methods recently developed in CMS has been presented.

The variety of tagging strategies is diverse, including algorithms based on more traditional theory-

inspired high-level per-jet observables with and without multivariate techniques, as well as methods

based on lower-level information from individual particles. New tagging approaches, such as the

Energy Correlation Functions (ECF) tagger and the Boosted Event Shape Tagger (BEST), utilize

multivariate methods (i.e., boosted decision trees and deep neural networks) on physically motivated

high-level observables and attain enhanced performance. Two novel tagging algorithms, ImageTop

and DeepAK8, are developed based on candidate-level information, allowing the exploitation of

more information, where lower-level information is processed using advanced machine-learning

methods. Moreover, the BEST and DeepAK8 algorithms are developed to provide multi-class

tagging capabilities. Finally, dedicated versions of the algorithms that are only weakly correlated

with the jet mass are developed. Such tools are particularly important for analyses that rely on the

jet mass sidebands to estimate the background contribution under the heavy resonance mass. The

mass-decorrelated algorithms (mSD + N
DDT
2 , ImageTop-MD, and DeepAK8-MD) typically show

weaker discriminating power than their counterparts. However, they can yield better sensitivity in

some physics analyses because of smaller uncertainties in background estimations.

The performances of the various tagging algorithms are directly compared using simulation in

a jet pT range from 200 to 2000 GeV. Overall, the application of machine-learning techniques for

jet tagging shows strong improvement compared to cuto�-based methods. The approaches based

on low-level information yield the best performance, with as much as an order of magnitude gain

in background rejection for the same signal e�ciency. Another important aspect essential for the

application of the new techniques in physics analysis is the systematic uncertainties associated to

each algorithm. Those based on low-level features and advanced machine-learning techniques are

typically prone to larger systematic uncertainties. However, these uncertainties are usually small

enough to preserve the significant improvements observed. The techniques have also been validated

in collision data, with scale factors extracted, including systematic uncertainties. The performances

of these tagging algorithms are in good agreement between data and simulation.
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