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Many methods have been developed for planning the motion of robotic arms for picking and placing,
ranging from local optimization to global search techniques, which are effective for sparsely placed
objects. Dense clutter, however, still adversely affects the success rate, computation times, and quality
of solutions in many real-world setups. The proposed method achieves high success ratio in clutter
with anytime performance by returning solutions quickly and improving their quality over time. The
method first explores the lower dimensional end effector’s task space efficiently by ignoring the arm,
and build a discrete approximation of a navigation function. This is performed online, without prior
knowledge of the scene. Then, an informed sampling-based planner for the entire arm uses Jacobian-
based steering to reach promising end effector poses given the task space guidance. This process is also
comprehensive and allows the exploration of alternative paths over time if the task space guidance is
misleading. This paper evaluates the proposed method against alternatives in picking or placing tasks
among varying amounts of clutter for a variety of robotic manipulators with different end-effectors.
The results suggest that the method reliably provides higher quality solution paths quicker, with a
higher success rate relative to alternatives.
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1. Introduction

A variety of robotic tasks, such as warehouse automation and service robotics, motivate compu-
tationally efficient and high-quality solutions to prehensile manipulation. Typical applications
involve the need to pick and place a variety of objects from tabletop or shelf-like storage units.
Such manipulation challenges are demonstrated in Fig.

Consider a tabletop and shelf manipulation challenge, as shown in Fig. (left). Many existing
methods are capable of finding collision-free motions in such tabletop challenges [1][2][3]. Prior
work [4] has shown that large amounts of clutter can significantly reduce the viable valid grasps
on an object. While traditional strategies successfully find solutions in the tabletop setting,
more cluttered environments like the shelf results in a massive degradation of performance,
as highlighted in Fig. (right). One possible explanation is that the clearance of the solutions
found in cluttered scenes is low, where clearance refers to the minimum distance between the
robot geometries and the rest of the environment. This work accordingly refers to scenes with
low clearance as densely cluttered, which have narrow passages in the workspace that make the
motion planning problem harder. Nevertheless, coming up with high-quality motion planning
solutions to such challenges in a reasonable amount of time remains an important objective.

In problems where solutions exist in cluttered workspace, there is a need to effectively guide the
search process. The key insight is that in manipulation tasks, goals are typically end-effector cen-
tric i.e., grasping configurations. Consequently, heuristic guidance in manipulation tasks should
reason about the end-effector. Additionally, the planning algorithm has to be designed to effec-
tively use such guidance to find high-quality solutions quickly.

There has been significant recent interest [5][6][7] in applying machine learning techniques
to high-dimensional motion planning problems. Components of motion planning that can be
learned include local maneuvers (i.e. sequences of controls/actions with durations) and effective
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Figure 1. Typical real world manipulation scenarios in table and shelf environments, where the dense clutter surrounding
the grasped object creates several challenging aspects in the planning problem.
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Figure 2. (left) Two manipulation challenges in a simulated table and shelf environment. (right) The success rate of three
motion planning methods IK-CBiRRT[8], Grasp-RRT[9], and CHOMP[2] typically used in such scenarios is evaluated in these
environments, and the average over 50 trials is reported. A success is counted when the planner returns a solution within
30 seconds.

heuristics. With such an objective in mind, a desirable motion planner must have an abstractions
for using maneuvers and heuristics. In order to train such a learning framework, the generation
of data in these cluttered scenarios first needs the algorithm to solve a vast majority of these
problems effectively. Such an algorithm, can then not only generate the data efficiently but also
improve over time using the learned maneuvers and heuristics, thereby yielding a way to frame
the motion planning challenge in clutter into a lifelong learning and execution loop.

Towards solving such a challenge, this work proposes the Jacobian Informed Search Tree (JIST)
method, which is a heuristic-guided sampling-based search algorithm for prehensile manipulation
planning in the presence of dense clutter. The key idea is to plan around the constraints induced
on the end-effector by the presence of clutter, so as to guide the motions of the arm towards
areas which lead to a solution. The features of this algorithm include:

- designing and exploiting an effective heuristic for guiding the arm by solving the motion
planning problem for just the end effector;

- applying the pseudo-inverse Jacobian as a steering process which allows the arm to be
guided by the heuristic; and

- incorporating task space guided maneuvers (i.e. controls for the arm) effective in clutter
into an asymptotically optimal motion planner.

Experiments first indicate that the local primitive, which uses the pseudo-inverse of the ma-
nipulator’s Jacobian, is computationally efficient and has high success ratio in coming up with
high-quality local paths. Then, the performance of JIST is compared against other state-of-the-
art planners for picking and placing tasks, including both trajectory optimization (CHOMP-HMC)
and sampling-based methods (Grasp-RRT, IK-CBiRRT). The results indicate that JIST, in contrast
to the alternatives, can quickly and reliably compute high-quality solutions in the presence of
dense clutter in unknown scenes, for a variety of robotic platforms, without requiring parameter
tuning.

This archival version of JIST expands on prior work [10], and provides a more complete picture
of the approach with several improvements and additions.

(1) The experimental section has been extended to evaluate the effectiveness of different steer-
ing methods motivating the choice of the pseudo-inverse Jacobian as the desired steering
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process.

(2) Two additional cluttered environments have also been included in the experiments on a
Motoman robotic manipulator.

(3) An execution on the real Motoman robotic manipulator is demonstrated.

(4) A brief discussion of the algorithmic properties (i.e. completeness and optimality) of the
proposed algorithm is provided, along with a proof sketch.

2. Background and Relative Contribution

The proposed method draws inspiration from both broad categories of approaches for planning
arm motion: a) local optimization and b) global search.

Local optimization follows a locally valid gradient towards finding a solution. Artificial po-
tential fields incrementally move the current robot configuration by following such a gradient
towards the goal. For arm planning [I1], workspace virtual forces are mapped to torques through
the manipulator’s Jacobian. The framework allows for a hierarchy of objectives that a redundant
arm can potentially try to satisfy [12]. The typical limitation is the presence of local minima,
which can be avoided through integration with a global planner [13] or defining a navigation
function [14]. The latter is difficult to find for complex geometric problems [15]. JIST uses gra-
dient information to locally guide the exploration of the arm’s path. This is performed in the
context of a global search process so as to achieve stronger guarantees.

Trajectory optimization methods define a gradient over the entire trajectory, and are capable
of finding smooth solutions for high DOF systems in sparse setups [2][16][L7]. Such methods use
precomputed signed distance fields for defining obstacle avoidance gradients in the workspace.
The accuracy and cost of computing these fields depend upon resolution. JIST similarly aims
for high-quality solutions but avoids dependency on parameters and better handles clutter.

Global heuristic search approaches aim to search the configuration space of a robotic arm given
a discretization, frequently by focusing the search in the most promising subset or projection
of that space [I8][19][20]. Heuristics that have been used in the context of manipulation tasks
include reachability [21] or geometric task-based reasoning [22]. JIST first solves the manipulation
problem for a free-flying end effector geometry, and then uses this as a heuristic during the search
in the arm’s configuration space.

Sampling-based planners [23][24] aim to scale better in high dimensions, while providing guar-
antees, such as asymptotic optimality [25][26]. They incrementally explore the arm’s configu-
ration space through sampling. A variety of sampling-based planners has been developed for
robotic arms [27][28][29], some of which use the pseudo-inverse of the Jacobian matrix for steer-
ing [3] or inverse kinematics solvers [30]. Using the pseudo-inverse Jacobian has been shown to
be a probabilistically complete projection onto the grasping manifold [31]. The current method
follows the sampling-based framework to maintain desirable guarantees, while properly guiding
the search to quickly acquire high-quality solutions in terms of end-effector’s displacement.

Some approaches deal with integrated grasp and motion planning [32][33][34]. This work fo-
cuses on motion planning aspects and uses the output of grasping planners [35][36] [37][38], i.e.,
grasps to set the goals of the corresponding picking challenges, which are frequently defined as
end effector poses relative to a target object.

3. Problem Setup

Consider a robot arm with d degrees of freedom, which must solve pick and place tasks involving
a target object o in a workspace with a set of static obstacles O.
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3.1 Goal Task Space Motion Planning

Definition 1 (C-space). An arm’s configuration q is a point in the robot’s C-space: C pyy C R,
The colliding C-space (Cops C Cryu) corresponds to configurations where the arm collides with
O or o in their detected poses. The free C-space is then defined as: Cpree = Cpun \ Cops-

The motion planning problem to be solved in manipulation setups is frequently not defined
directly in Cypq.. Instead, the task relates to the arm’s end effector pose.

Definition 2 (Pose Space). The end effector’s pose space E C SE(3) corresponds to the reachable
subset of poses for the arm’s end effector.

The pose space E can be computed given the forward kinematics of the robotic arm FK :
Cuy — E. The inverse kinematics function corresponds to the inverse mapping: IK : E — Cpyy.
For redundant manipulators, dim(E) < dim(C), so IK describes a mapping to self-motion
manifolds of the manipulator [3I], composed of states, which all have the same end effector
pose.

Definition 3 (Goal-Constrained Task Space (GCTS)). Given a set of goal poses Egoqr C E for
the end effector, the arm’s goal task space Qgout C Cyruy denotes the robot configurations that
bring the end effector to a pose in the set Egoqr: Qgoal = {V ¢ € Cpun | FK(q) € Egoar }-

For a redundant arm, even a discrete pose set Ey,q gives rise to a continuous submanifold of
solutions Qgeq;. Given the above definition, the objective is to solve the following:

Definition 4 (Motion Planning with a GCTS). Given a start arm configuration qsart € Cfree
and a set of goal poses for the end effector Egoqr C E, a solution path is a continuous curve
7 :[0,1] = Cppee, so that m(0) = gstare and 7(1) € Qgoar. Given the space of all solution paths
I1, the objective is to find the path ™ = argmin, g C(m), which minimizes a cost function C
defined over II.

3.2 Defining Goal Poses for Pick and Place Instances
For picking, the goal is to move the end effector to a pose that allows for a stable grasp.

Assumption 1. A grasping planner produces a set of stable, collision-free grasps for the arm’s
end effector and the target object o given sensing information.

A database of grasps can be computed in the object’s frame [35][36][37][38] and evaluated in
terms of their stability offline [39]. In particular, the grasp generation process follows previous
work [40]. The current work considers this module to be a black-box, where the proposed ap-
proach only requires information online about the relative configuration of the end-effector and
the target object that defines a prehensile grasp. This information forms the goal specification
for the motion planning problem the proposed algorithm attempts to solve.

Pose Estimation and Modeling: Note that some grasping modules are model-based and depend
on the detection of the target object model and its 6D pose [41][42] in order to place the object
model appropriately in the world. In the current work, we assume that the grasping module
uses the necessary information from such perception modules to provide our method with the
valid grasping poses of the end-effector. In order to check the validity of these grasps and object
placements, beyond just stability, collisions must also be accounted for. The current work chooses
not to focus on this and assumes the existence of such a collision checking module that is aware
of the obstacle geometries, as well as the objects in the scene (either in the form of models at
poses or unstructured point clouds). It should be noted that an awareness of the pose of the
object once it is picked is necessary during planning for placement since the collision checking
must occur with the geometry of the object attached to the end-effector at the specific grasp.
These are typical assumptions that lets us focus on the algorithmic challenges.

Online, the grasps are transformed given the object pose p, and collision checked, given the



October 23, 2019

Advanced Robotics ar’'gmp

end effector’s geometry and the obstacles O. Nevertheless, states that correspond to grasps are
on the boundary of Cyc. with Cyps, which result in very hard motion planning problems.

Note on clearance: The notion of clearance (distance of a configuration from the nearest
obstacle) is a well studied property [25] of a motion planning problem. Motion planning literature
is typically confined to the study of problems that lie in the d-interior of the space (i.e., the subset
of the configuration space that is at least § > 0 away from obstacles). This measure becomes
infinitesimally small over time. The problem of planning for manipulation however require start
or goal states in contact with the target object or resting surface, with a clearance of 0. This
is not introduced by clutter but by the nature of grasping configurations, or stable placement
poses that makes contact between the robot and obstacle geometries.

The goal set for picking instances is defined for “pre-grasp” poses: each grasp returned by the
grasping planner is transformed by moving the end effector away from the grasping configuration
in a line as shown in Fig. |3| This line is defined by projecting from the end-effector’s frame to
the target object’s surface. A solution returned by the planner that brings the end effector to
a “pre-grasp” pose, needs to be appended with a motion so that the end effector achieves the
actual grasp.

—

Figure 3. Visualization of offsets for a) Pre-grasp pose, b) post-grasp state, c) object pre-placement. In the cases illustrated
in the paper, the pre-grasp pose offsets were along the normal from the palm of a fingered gripper, or along the contact
surface for a suction based gripper, and out of the normal of a resting surface for placement offsets.

A similar setup is used for placing, where in the initial state the target object is immobilized
by the end effector. In this case, the arm-object system can be considered as the robot and the
end effector is the object itself.

In the current work, these offset poses of the end-effector are moved away from the target
object (for grasps), and the resting surface (for placements) by 2e¢m. Such an offset is handled by
some grasping module aware of the end-effector and the grasp, and is not a focus of this work.
The proposed motion planner generates motion plans to and from these configurations that now
have non-zero clearance. An additional step is necessary at the beginning or end of the solution,
amounting to moving the end-effector along the offset.

It is important to note the difference between the notion of theoretical zero-clearance and
clutter. The aforementioned need to introduce offsets is not unique to our method but affects
sampling-based planning methods in the context of object manipulation, inasmuch as being
theoretically required in an empty tabletop scene with a single object. Clutter refers to the
presence of other obstacles around the manipulation targets, which typically arises in real-
world scenes. A high DOF manipulator deftly maneuvering into a narrow shelf containing several
objects to a pre-grasp offset pose for a target object need not touch any of the obstacles, but will
necessarily pass very close to them, and consequently have low clearance. It is these cluttered
motion planning instances, with small but non-zero clearances inspired from realistic scenes,
which prove problematic and therefore are the focus of this work.

Assumption 2. For placement, a task planner produces a set of stable object placements on a
support surface.

Again, it is helpful to avoid defining problems that bring the robot close to the boundary
of Cfree. Thus, if the initial state has the object on a resting surface, the state is transformed
so that the object is raised away from the surface. For a goal object placement, the pose is
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transformed so that the object is again raised away from the surface. Planning solutions from
“post-grasp” states to “pre-placement” goal poses are again extended so that the robot moves
the object from the grasp state to the actual goal placement.

3.3 Algorithmic Considerations

This section delves into the algorithmic choices made in the proposed method. While motion
planning for a high-dimensional manipulator is a well studied problem, and indeed a natural
extension of typical high-dimensional robotic motion planning, it has been demonstrated that
practical performance is severely limited in cluttered scenarios (Fig [2) where the manipulator
has to plan to grasping poses. The current work explores and evaluates certain design choices
that can lead to efficient, high-quality solutions to such problems.

3.8.1 FEnd-Effector Guidance

It has been established that the problem at hand is closely tied to the motions of the end effec-
tor. The goals to a manipulation problem can be defined in terms of end-effector constraints(i.e.,
picks and placements). Previous work [43] has shown that the end-effector is an important con-
sideration for human observers who pay more attention to the end effector rather than the rest of
the arm during a manipulator’s motion. The careful choice of end-effector [40] also heavily affects
the success of a manipulation problem, both for picking and planning to picks. This work focuses
on solving the problem for the end-effector and using the search process for the end-effector as
a guiding heuristic in the higher dimensional configuration space.

3.3.2 Cost Function

The current work proceeds to define a distance function appropriate for this setting, that
minimizes end effector displacement, which was shown to be useful in the context of manipulation
in clutter [4]. Another benefit of this is that paths that minimize end effector motion tend to
look more natural to human observers [43].

A standard approach for computing distances in SE(3) is to apply a weighted Euclidean dis-
tance function, depending on the kinematics of the system.Other variations apply some weighted
combination of the translational and the rotational component of the distance. Both cases re-
quire parameter tuning, and also introduces additional complications arising from symmetries in
rotation. Ideally, the distance function used should be parameter-less and should appropriately
capture rotational symmetries. Finally, in order to allow sampling-based motion planners to
readily apply this distance function and maintain its properties, it should satisfy the properties
of a metric space.

Towards these objectives, this work employs the robot displacement metric (DISP) [44], which
is a model-aware distance metric for SE(3), that can be approximated efficiently by the C—DIST
algorithm [45]. Given the convex-hull H of the end-effector’s model, the DISP distance D of two
poses e;,e; € SE(3) is:

D(ei, ej) = mazpen||p(ei) — p(ej)]l2 (1)

With slight abuse of notation, the expression D(q,e) between ¢ € Cy,y; and end effector pose
e € E will denote the distance D(FK(q), e). It follows that the distance between g;, q; € Cyyuy is
D(FK(qi), FK(qj)) Then, the cost of a path  is:

k

C(m) =Y D(n(i),x(i + 1)) (2)

1=0

where k is a discretization along w. For the remainder of the paper, unless otherwise stated,
distances will refer to Eq. [T}, and costs will refer to Eq. [2|
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3.3.8 Effective Exploitation

The end-effector and the manipulator lie in different spaces SE(3) and C-space respectively.
The utilization of the end-effector guidance must

- drive the arm along the end-effector heuristic in (SE(3)), i.e., the arm needs to be controlled
while moving the end-effector in a pre-defined way

- such motions of the arm need to produce paths that have high-quality DISP cost, so that
the discovered solutions demonstrate practical performance

Jacobians are a standard formulation [46] for controlling a robot in a high-dimensional C-
space using gradients that exist in a lower dimensional embedding. This work accordingly uses
a controller that performs successive Jacobian steps that move the end-effector in a desired
direction. Further details of the exact way the current work uses this steering method, as well
as its benefits, is described further on.

3.8.4 FEzploration

Despite narrowing down on the kind of heuristic appropriate for the problem, as well as a
way to utilize that heuristic for practical performance, the motion planning for manipulation
problem still lies in the C-space of the arm.

There are three bottlenecks specifically related to completeness guarantees which need to be
addressed:

- Jacobians can have singularities [46] (i.e., there are parts of the space where arm controls
are undefined for moving the end-effector in specific ways). The algorithm must have
means to explore alternative ways to make progress from such parts of the space, in order
to achieve completeness.

- Redundant manipulators are high-dimensional arms that have more degrees of freedom
than necessary to achieve SFE(3) poses for the end-effector. This leads to non-unique so-
lutions for the arm, while moving the end-effector. Asymptotically, all such solutions have
to be explored in order to guarantee completeness.

- Both the previous concerns make it unreliable to commit to a single end-effector path and
attempt to track it with the arm. Therefore, the heuristic needs to be designed to provide
a diverse set of end-effector targets which can make progress towards the goal.

Accordingly, the method uses Jacobians to steer the arm as part of a set of greedy (i.e. lowest
end-effector displacement cost) maneuvers which make progress towards a variety of promising
end-effector waypoints. In order to ensure coverage of the entire space for completeness, these
maneuvers are used as a part of a sampling-based framework [47], which conveniently provides
asymptotic optimality guarantees as well. It should be noted that this work[47] was co-developed
with the current work and proposed as the generalized framework that addresses kinodynamic
problem domains where such composition of maneuvers vastly improve practical performance.

This work focuses on the study of manipulation in clutter problem, involving designing and
using heuristics within the sampling-based framework, and evaluating the efficacy of the approach
in addressing the problem.

4. Jacobian Informed Search Tree

This section describes a process for exploring the end effector’s space E and how the correspond-
ing information is used to guide the exploration of the arm’s space Cyyy -



October 23, 2019

Advanced Robotics ar’'gmp

4.1 Ezxploring the End Effector’s Pose Space

A simple way to estimate how far the end effector is at pose e € E from the set Eyoq is
to consider the minimum SE(3) distance from e to all goal poses Egoq. Nevertheless, in the
presence of clutter, these distances are not informative of the end effector’s path cost so as to
reach goal poses.

To take clutter into account, this work proposes the offline construction and online search
of a roadmap Ree(Vee, Eee) in E as shown in Fig. @ The roadmap vertices V. correspond to
reachable end effector poses given the arm’s kinematics, while the edges store local connection
paths for the free-flying end effector. The goal poses Egoq; and the start pose esiart = F K (qstart)
are attached to R.., which is then searched online for a path from Eg,q to eser. Performing
the search in this direction produces a multi-start search tree rooted at Eg,q;. During the online
search, only collisions between the end effector, the obstacles O, and the object o, but not the
arm, are taken into account. This allows for quick estimations of the costs to reach Egju;. These
costs are used later as heuristics to guide a search procedure in the arm’s C-space.

% Start Conflguratlon Goal Grasps

Figure 4. (left) Offline construction of Ree without any prior scene knowledge. Each vertex represents a reachable end-
effector pose of the manipulator. Distances between pairs of vertices are computed using DISP, with connectivity following
the PRM* [25] algorithm. (right) Online search of Re. which takes into account the obstacles present in the scene, finding
collision-free end-effector poses which connect the starting end-effector pose to the set of goal pre-grasps. The search-tree
which arises from this process is utilized as a heuristic for guiding the motions of the arm in the proposed method.

4.1.1  Offtine Construction of Reachability Roadmap

The end effector reachability roadmap Ree(Vee, Eee) is constructed offline without knowledge of
the workspace and reflects the robot’s reachability. A sampling-based process is followed similar
to PRM* [25]. A random arm state g, € Cyyy is sampled and the corresponding end effector pose
FK(q,) € E is stored as a vertex. As in PRM*, each vertex is connected with an edge to its
k-nearest neighbors, where k& =log|V,.| and nearness is defined by the distance D(g,,e). Each
edge stores an interpolation in SE(3) between the two vertex poses according to a discretization
defined by an estimation the end-effector’s maximum velocity. This estimate is computed given
an upper bound limit of the arm’s joint velocities.

4.1.2  Online Computation of Distances to Goal Poses

Given knowledge of the workspace, R is searched for collision-free end effector paths from
the goal poses Egqq; to the start pose egqrt. The poses Egoq and egqr¢ are added as vertices on
Rc. and are connected to their closest log|Ve| neighbors.

Then, a multi-start, multi-objective A* (MSMO,A*) search procedure is performed on Rec.
Upon initialization, the priority queue of the search includes all goal poses Eg,q. Then, each
search node corresponds to a path from a pose in Eg,q; to a vertex u € V.. The priority queue
sorts nodes so as to minimize the following two ordered objectives:

e fi(u), the number of colliding poses along the path from Egqq to u, given the roadmap’s edge
discretization;
hd f2(u) = QQ(U) + hZ(U)v where g is C(W(Egoaly eu)) and hy is D(ew estart)'
Once a vertex u has been expanded, it is added to the “closed list” Lgjyseq. If there is a collision-
free end effector path from Egoq to estart, the above search will report the shortest path. Then,
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Figure 5. An illustration of the JIST framework for solving manipulation queries: (left) the closed list Ljpseq is constructed
using a multi-start, multi-objective A* on Ree starting from Egoq; to FK(gstart); (middle) JIST expands arm paths from
the start configuration gstqrt guided by the costs stored in Lijoseq; (right) the best path found 7* is kept track of as the
solution trajectory, with subsequent solutions from JIST improving upon it.

the go cost of vertices u in Lgjpseq corresponds to an estimate of the distance along the shortest
collision free path from u to Egyq, i.€., g2 is a discrete approximation of a navigation function in
E given the presence of obstacles. The proposed approach uses these g values to heuristically
guide the exploration in Cy,y;. In dense clutter, if the roadmap’s resolution does not permit
collision-free paths, the algorithm returns the path with the minimum number of collisions given
its discretization. In this case, the go values of vertices in Lgjpseq Will guide the arm exploration
along the shortest, least colliding solutions for the end effector.

4.2 Generating Arm Paths

This section describes how to generate paths for the arm given the vertices u € V. stored in
the “closed list” Lejoseq and the cost estimates g from u to Egoq . First, an overview of the
algorithm is presented. Then, each module is described in depth, presented along with pseudo-
code. Finally, the steering process used in the algorithm is explained. An illustration of the steps
of the algorithm can be seen in Figure

Algorithm 1: JIST (gstart; Egoal, Ree, N, k)

1 Leosed <= MSMO_A*(Ree, Gstarts Egoat) ; // Builds the closed-list heuristic
2 0 // Initialize optimal found solution
3 T < {qstart} ; // Initialize tree
4 Qnew < Gstart ; // Initialize newly added node
5 Acand(qnew) < NULL ; // Initialize candidate actiomns
6 for N iterations do

7 gsel < NodeSelection(qpew, Lelosed) ; // Selects the arm node ¢, to extend
8 apest < EdgeGeneration(Acand(dsel)) ; // Selects the action to execute from

Gsel
9 TreeExtension(gnew, @sels Gvest) ; // Steers from gsq by executing apest

10 return 7*;

4.2.1  Owverview

The high-level algorithm is outlined in Alg. [I| which is inspired by a search strategy [20]
capable of utilizing heuristic guidance. It receives as input the starting arm configuration gssqrt,
the goal poses Eyqq;, the end effector reachability roadmap R, the number of iterations IV, and
the maximum number k of greedy edge expansions per iteration.

The method first executes multi-start, multi-objective A* search over R.. as described in
Section [4.1.2] which constructs the closed list Ljpseq. This list provides cost estimates to the
goal poses Egyq for each vertex in R, visited during the search, which will be used as the
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heuristic during the tree search. The algorithm is initialized (lines 3-5) with the initial arm
configuration and an empty action set. The method then performs NV iterations of the following
three high-level procedures: NodeSelection, EdgeGeneration, and TreeExtension.

C-space | Planning Spaces Chpace |_Node Selection

Pre-grasping

states ® random sample

~-._ heuristic

@ & ————@ - —— — =@
Pre-grasp =
[osace [P -
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Figure 6. Some of the important aspects of the JIST algorithm are illustrated in this figure. (Top Left:) The search uses
information from both the configuration space of the arm, and the end-effector space. Every configuration in the C-space
maps to a point in the end-effector’s space. Multiple states, like the pre-grasping states, can map to the same end-effector
point for a redundant manipulator. (Top Right:) During the online search, JIST builds a search tree that traverses both
spaces. Jacobian extensions (orange) will tend to optimize connections in the end-effector space (DISP cost), and fallback
exploratory steering (green) optimizes the connections in the configuration space of the arm. In the vicinity of a random
sample, the selection process prefers nearby tree-nodes with a good f-value i.e., sum of cost to reach the goal and the heuristic
[47). (Bottom Left:) A search tree (red lines) obtained over the end-effector roadmap provides guidance towards the targets
from gge;. The search tree is traversed towards the goal, and among these end-effector poses and their neighbors on the
roadmap a set of promising end-effector targets are selected as candidate greedy maneuvers (orange dotted). A fraction of
the maneuvers will also be exploratory fallback maneuvers in the C-space (green dotted). (Bottom Right:) The algorithm
makes quick progress towards the goal in cluttered scenes and finds high-quality solutions in terms of DISP.

4.2.2  Node Selection

This process is responsible for selecting the portion of the tree to extend. Pseudocode is given
for it in Alg. [2|, and a visualization of the process is shown in Fig. |§| (Top Right). The heuristic

Algorithm 2: NodeSelection(qpew, Lclosed)

=

h(gnew) + HeuristicLookup (FK(qnew); Lelosed) ; // heuristic computed from Leosed
if Gnew # 0 and h(gnew) < h(parent(gnew)) then
Qsel < Qnew ; // the selected node is chosen as (pew

w N

else
L dsel < SearchSelection(); // heuristic-guided sampling in the arm space

ov

of the new node, if it exists, is first computed (line 1). Here the heuristic value h(q) of an end
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effector configuration ¢ corresponds to an estimate of the cost to reach Egqq;. In theory, h(q) could
be computed by solving a MSMO_A™ on the end effector reachability roadmap Re.. In practice
this would increase the computation time of the algorithm significantly, due to the sheer volume
of searches that would need to be performed for each new ¢ added to the search tree. Instead, we
propose an approximation using L.j,seq Which already has costs stored as part of the closed list
generated during the initial MSMO_A". This is a one-time computation cost incurred, and allows
computing h(q) to be simplified. By finding the nearest end effector configuration to F K (q) in
Leiosed, its corresponding cost can be used as the heuristic value of q.

If a node was added during the previous iteration, and its heuristic value is better than its
parent on the tree, then the newly added node is selected for expansion (line 3). If there was no
progress made in the previous iteration towards reaching Ey,q;, the SearchSelection subroutine
(line 5) instead uses a probabilistic selection process, where the probability of selecting a node
depends on the node’s corresponding sum of cost from the root and heuristic cost to reach the
goal. All nodes are guaranteed to have a non-zero probability of being selected; however, nodes
with better costs and heuristic sum have a greater probability.

4.2.8 FEdge Generation

This process is responsible for generating the actions to extend edges from the selected node.
Pseudocode is given for it in Alg. [3| and a visualization of the process is shown in Fig. @] (Bottom
Left).

Algorithm 3: EdgeGeneration(A cand(dsel))

/* If the action set A,;,4(¢ser) has not been generated yet */
1 if Acund(gset) = NULL then
2 L Acand(Qsel) — GreedyEdgeS(QselaLcloseda /i);

/* Else if there are no more greedy actions in A und(Gsel) */

3 else if A un4a(gser) = 0 then
4 | Acand(gser) < FallbackEdges(gser);

5 pest <— argmin h(a, Legsed) ; // select the lowest heuristic action
€A cand
6 Acand(set) < Acand(qsel) \ Qpest ; // apest is removed from the candidate action
set

Once a configuration g4 is selected for expansion, the set A.q,q is the set of actions that
can be used to extend edges of the tree out of ¢4, which can correspond either to target poses
for the end effector or joint velocities for the arm. The first time that node g is selected for
expansion (line 1), the subroutine GreedyEdges is used to generate target poses for extending
the tree out of g (line 2). If all such greedy extensions have been already considered out of ¢
(meaning that there are no more actions left), then the algorithm generates fallback actions in
Acong (line 4).

Greedy Edge Generation: These greedy edges are guided by the information stored in
the Lgjosed, which contains end effector poses explored during the online search of Re.. First,
the nearest end effector pose €pear € Lejosed 1S found relative to FK(qse;). The method obtains
poses to steer towards by examining the adjacent vertices of e,cqr on Ree, which also belong to
Leosed, and whose heuristic is lower than gg;. The number of target poses added is controlled by
parameter k. Experimental indications show that a value k = 2xlog|Ve.| works well in practice.
The method then updates e;,¢q, to its predecessor from the closed set, and attempts to add target
poses until either xk poses have been discovered, or there are no other predecessors available. In
the latter case, the remaining target poses are sampled directly from the set Eg,q;. Overall, this
is a greedy procedure, which traces along the search tree produced by the A*, while examining
nearby poses, which have also been expanded during the A* search.
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Fallback Edge Generation: Every time a node is selected and all greedy edges out of it
have been expended, the method reverts to considering two fallback strategies for generating
edges. The first strategy corresponds to a random control in terms of joint velocities executed
for a random duration. The second strategy randomly selects a goal state ggour € Qgoas already
discovered by the algorithm as a target to steer towards.

JIST iterates over the generated actions A.q,q, which are ordered to promote the lowest h
(line 5) in terms of the resulting pose (i.e. the pose obtained by executing the action). The best
action apest is then considered for TreeExtension, and is thereby removed from the candidate
action set (line 6).

4.2.4 Tree Extension

This process is responsible for performing steering and ensuring that the tree maintains its
properties in terms of probabilistic completeness and asymptotic optimality. Pseudocode is given
for it in Alg. 4 and a visualization of the process is shown in Fig. [6] (Bottom Right).

Algorithm 4: TreeExtension(qpew)

1 Qnew < Steer(QSelvabest) ; // generates a path to gpew
2 if BaB(gnew, ) or CC(gse; — Gnew) then

3 L Gnew < 0 ; // the new node violates the criteria and is discarded
4 if gpew # () then

5 7 < AddEdge(T, ¢sei = Gnew) ; // checks edge for a new optimal solution
6 L Acand(qnew) < NULL; // initialize new node’s action set

The tree extension begins by using a specific steering method depending on whether apeq is
a greedy or fallback action (described in more detail in the following section). This produces a
path whose terminal state is gpey (line 1). The configuration gne,, must meet two requirements
to be added to the tree as a node (line 2): (a) A branch and bound process (BaB), which rejects
edges from the trees whose total cost is greater than the best solution cost found, guarantees that
dnew has smaller path cost relative to the length of the best solution found 7*; (b) A collision
checker CC verifies whether the path from gs; tO Gnew is in collision. If the node gnen passes
these checks (line 5), then it is added to the tree T. If the addition of g, permits a path to the
goal whose cost is lower than the current best path, then the new path is recorded as 7* (line
5) and the newly added node is initialized with an empty action set (line 6).

4.2.5 Steering

For the fallback edges, the steering subroutine executes the random controls for a random
duration, thereby simplifying the proof of the algorithmic properties (described in more detail
in Section . The greedy edges consist of target end effector poses. This work uses a steering
method based on the pseudo-inverse of the manipulator Jacobian matrix to achieve the target
poses. Given an arm configuration ¢ = (qi,...,qq¢)7 and the corresponding end effector pose
e = FK(q), the Jacobian matrix is J(q) = g—;.

For a target end effector pose egrget, let Ae = €4qrget — € denote the desired change in position
of the end effector. The objective of the Jacobian-based steering process J'steering is to compute
the joint controls which solve Ae = JAgq. The method uses the pseudo-inverse of the Jacobian,
J*, s0 as to minimize || JAg—Ae||?, where Ag = J* Ae. To account for singularities, damping [45]
and clamping are also employed. Thus, at time ¢, for the configuration ¢; and the corresponding
end effector pose e;, the control update rule for JTsteering is:

AQt = J+(Qt) : (etarget - et) (3)
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Since the objective is to minimize DISP, the gradient followed by the above rule reduces
the distance of the end effector to the target pose. Any configuration ggoq1 € Qgoas discovered
through J*steering is kept track of. A benefit of using JTsteering is that it satisfies the necessary
properties of the projection operator [3I] needed to ensure coverage of Qgoq. J'steering is used
in the connection of the goal poses described in Section

5. Outline of Properties

This section provides a sketch of the asymptotic arguments that can be made about the DISP
solution quality of the algorithm. Note that all the arguments rely on the guarantees that a
random tree covers Cy,.. asymptotically optimally for the Euclidean distance metric, and pseudo-
inverse Jacobians can cover the manifold that contains all the target configurations. By showing
that the DISP can be conservatively bounded, it follows that our choice of fallback maneuvers
that create a random tree with random controls will converge to solutions that asymptotically
have a DISP cost of zero variation w.r.t the optimal solution.

Proposition 1. JIST is guaranteed to eventually reach the optimal grasping state.

Proof Sketch: Prior work [31] has argued that a pseudo-inverse projection operator can be used
to guarantee a probabilistically complete mapping of Cy,; to the end effector pose space E. Using
J* steering ensures asymptotically complete coverage of Qgoqs Over the end-effector roadmap, as
the size of the roadmap also approaches inf. O

Proposition 2. The cost of a path that observes the optimal solution path converges to the
optimal cost.

Proof Sketch: A sequence of finite hyperballs of radius d can be constructed to tile the optimal
solution path that has the lowest cost. The existence of a § > 0 is guaranteed by the assumptions
of §-clearance of the optimal solution. A path that observes the optimal path is contained in the
tiling of these hyperballs of some non-zero volume and bears a Euclidean cost. It is expected
that for any choice of §, the path contained inside this tiling 75 has a finite bounded variation
[25] w.r.t. the optimal 7*. In essence this is the sum of the Euclidean distances between pairs of
progressing points along the two paths, i.e., |m1 — m2| gy = fol |\m1[7] = m[7]||07 + (||m1]] — [|72]])
where the first term is the pairwise difference, the second term is called the total variation, and
|| - || refers to the standard Euclidean arc length [25].

This measure approaches 0 as § approaches 0, i.e., |75 — 7*|| gy — 0, as 6 — 0. It needs to be
shown though whether this also implies that the cost is bounded in terms of our distance metric
of interest DISP.

Assume the problem does not involve degenerate motions in the optimal path, i.e., ones con-
necting identical start and goal configurations. DISP forms a metric space [45] when com-
puted over the end effector geometry. For a robotic arm with bounded reachability and a
bounded Cyyy, there must exist a finite constant K. that bounds the ratio between the Eu-
clidean cost and DISP cost for the straight line between any pair of points in Cyyy, i.e.,

K. s.t. % < K.V qi,q5 € Cruu, ¢ # qj-

Assuming Lipschitz continuity of curves in C full; the DISP bounded variation of the observing
path is bounded w.r.t. the Euclidean bounded variation as D(ms — 7*)py < K.|7m5 — 7| Bv.
It follows that D(ns — n*)py — 0, as 6 — 0, and converges with a reducing ¢ tiling. Given
the bounded continuity assumptions and for finite costs of the observing path and non-zero
costs of the optimal path, this convergence holds for DISP. Without additional rigor, it can be
argued that this heavily implies D(m5) — D(7*) as 6 — 0. The proof of this stronger notion of
asymptotic optimality is left as future work.

Note that the previous work showed the convergence of the bounded variation for a reducing
radius § affected by the number of samples n. We are only interested in part of the result that
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implies that as § reduces, the bounded variation of the paths inside the § tiling reduces. The
proof techniques necessary for connectivity between the non-zero volume hyperballs will arise
from the naive random tree being able to trace any such sequence [49]. O

Proposition 3. JIST is asymptotically optimal.

Proof Sketch: A Markov chain is constructed and it “observes” an optimal path and has an ab-
sorption state corresponding to the goal region. Then, if the probability of transitioning between
Markov states is non-zero, the method surely reaches the absorbing state with infinite tries [50]
(Theorem 11.3). Given a covering ball sequence for an optimal path 7* with some ¢ clearance,
JIST satisfies the following conditions:

(1) The subroutine SearchSelection ensures that the probability of selecting a node is always
non-zero.

(2) There is a non-zero probability of moving from one covering ball to the next once a node
is selected in a random tree with random controls. Prior work (Theorem 17 in [49]) proves
this given assumptions about smooth system dynamics. This is guaranteed to have positive
probability when the propagation is not biased during expansion. This is achieved by Alg.
through the random controls with random duration as fallback edges. This ensures that
the Euclidean cost of the path converges.

(3) The optimal goal state is guaranteed to be discovered and optimally connected to the
search tree by Proposition

(4) The DISP cost variance of the discovered path w.r.t. to the optimal path will asymptotically
reduce to 0, by Proposition

O
Bringing it all together, the algorithm is expected to converge to the optimal DISP solution
asymptotically. Practically, a random tree has a very poor rate of convergence, which makes
the specification of asymptotic optimality of the proposed method a theoretical curiosity. The
emphasis of the current work is on the use of greedy maneuvers to converge to high quality
solutions very quickly. The inspection of the more detailed properties that take into account
the greedy maneuvers of J'steering that make progress towards goals on a lower dimensional
manifold is left as future work.

6. Experiments

This section first evaluates various steering methods for reaching target poses in the presence of
clutter. Then, JIST is experimentally compared against other planning algorithms in a variety
of cluttered benchmarks.

6.1 Steering Method Evaluation

Steering is typically used to connect nearby robot configurations inside a motion planning
method. While our proposed approach reverts to the use of C geodesic connections between
manipulator configurations over the fallback maneuvers, the greedy maneuvers should employ
a steering method that is most likely to yield a collision free solution quickly. The existence
of clutter in the target applications indicates that typical sweeping motions in the workspace
generated by C interpolation increases the likelihood of colliding with the obstacles. In order to
validate the hypothesis that steering methods which reason about the end-effector reduces the
likelihood of collisions the following study has been conducted.

Accordingly this study measures the effectiveness of different ways to steer a robotic arm from
configuration ¢ to a target end-effector pose e in the local vicinity of FK(q).

Setup: We study two different environments, a cluttered table and a shelf, as shown in Figure
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Figure 7. The environments considered in the experiments with the target object removed: (left) a cluttered table and
(right) a shelf with tight openings. The highlighted sections represent possible target object placements.

Iﬂ Within each environment, we first generate a set of target poses Eqyq by sampling in SE(3)
within a bounded region. This bounded region is selected so as to bias the samples in areas of
the workspace that are cluttered (e.g. inside a bin in the shelf or directly above the table). If the
sampled pose e produces an arm configuration ¢ = I K (e) which is collision-free, then the pose
e is added to the evaluation set, along with any collision-free IK solutions of ¢. This process is
repeated until 50,000 end effector poses are generated. Note that the selection of end effector
here can have a direct impact on the collision-free check of the arm. To remove this dependence
on end effector geometry, the arm is evaluated without any end effector attached. Consequently
all IK calls are made relative to the last joint of the arm.

For each g € C.yq;, the process involves steering to each e € E,,,; using the following methods:

- local: computes a straight-line interpolation in Cy,y from ¢ to the first random solution
of IK (e);

- seeded: seeds the I K-solver for e with the arm configuration q - otherwise the method is
similar to local;

- IK-track: computes a straight-line interpolation in E from FK(q) to e, and calls K on
each pose seeded with the previous I K solution;

- J*steering: as described in the end of Section [4]

The TRAC-IK library [51] was used as the IK solver and for the computation of the manipu-
lator’s Jacobian matrix.

Metrics: The following metrics are used to evaluate the performance of the steering methods
in the trials - each metric reported is an average over all trials. Reachability Rate represents
whether the method successfully reached the target end effector pose. For each successful path,
Computation Time (in seconds), cumulative Cyp,y Length, cumulative DISP Path Length, and
Collision Free Rate (the fraction of the path which is collision free) is reported.

Remarks: As shown in Table in terms of computation time and reachability rate, the
local and seeded steering methods are very efficient. These methods, however, tend to produce
long paths, especially in terms of DISP. What happens is that the local and seeded methods
frequently cause arm reconfigurations during the steering. This results in many configurations
along the path to collide with obstacles, rendering these methods less useful. Note that since no
planning is involved in any of the methods, nearly all paths collided. Nevertheless, the frequency
of collisions along such paths is informative. The I K-track method, produces the lowest DISP
length trajectories but has a very low reachability rate due to a higher probability of not finding
IK solutions, along with being the most computationally expensive. Overall, the JTsteering
method provided the best trade-off. It has low computational cost, results in low DISP length
paths, which are collision-free with very high probability, and has a relatively high reachability
rate. When used in the context of greedy maneuvers in the proposed algorithm JIST the use of
JTsteering will increase the likelihood of the algorithm succeeding during the greedy phase of
the search.
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Table 1.  Statistics for computing a trajectory from an initial configuration g to a target pose e averaged over 50,000 trials
Steering Trials in Table Environment
local seeded | IK-track | JTsteering

Reachability Rate 1.0 1.0 0.332 0.785
Computation Time | 0.0016 | 0.0013 0.008 0.0045
Cuy Path Length 5.46 3.745 2.97 3.35
DISP Length 1.95 1.168 0.401 0.421
Collision Free Rate | 0.785 0.860 0.945 0.959

Steering Trials in Shelf Environment
local | seeded | IK-track | J'steering

Reachability Rate 1.0 1.0 0.345 0.785
Computation Time | 0.00138 | 0.0008 0.006 0.0042
Ctuu Path Length 5.65 3.645 2.81 3.15
DISP Length 2.07 1.147 0.335 0.338
Collision Free Rate | 0.663 0.792 0.995 0.993
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Figure 8. Number of successes over time (top), average solution costs over time (middle), and representative solution
pre-grasps (bottom) for 50 trials on the Motoman+ReFlex (0,1), Motoman+Vacuum (2,3,4). For the same underlying
manipulator these benchmarks evaluate the performance of the algorithms to plan to pre-grasp poses, with a Reflex hand
and a Vacuum gripper. A target object is placed in the shelf and tabletop environment, surrounded by different degrees of
clutter. The number of successes over time indicate both the final completeness of the algorithms, as well as how quickly
they discover the initial solution. The average solution cost over time represents the rate at which the algorithms converge
to the high-quality solutions. The proposed approach JIST outperforms the competing methods in terms of both metrics.

6.2 Manipulation Benchmarks

Algorithms: JIST is compared against other planners for solving manipulation challenges.
Recent work [34] has utilized CBiRRT [I] for solving grasping problems. Accordingly, this work
compares against an IK-based variant of CBiRRT, which uses IK on the Eg,q; to construct roots
of the goal tree. Grasp-RRT corresponds to an RRT variant, which utilizes JTsteering to discover
grasp states during the goal biasing phase [3]. CHOMP-HMC corresponds to an OpenRave [52]
probabilistically complete implementation of CHOMP[2].

Setup: A common planning software was used for the sampling-based planners [53]. All meth-
ods were evaluated on a single Intel Xeon E5-4650 processor with 8 GB of RAM. Experiments
were conducted on a variety of robotic manipulators: Kuka LBR iiwaa, Rethink Baxter, and
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Motoman SDA10F. Three types of end effectors were evaluated: the ReFlex hand, a parallel-
jaw, and a vacuum suction-cup. Each benchmark involved computing a trajectory for one of the
arms to a set of goal end effector poses. These goals are computed following prior work [40],
where a maximum of 100 attempts to generate viable grasps per benchmark is allowed. Then,
as described in Section 3.2, an offset is introduced to the grasps. For pick benchmarks, the poses
correspond to pre-grasps 2 cm away from the actual grasps. For place benchmarks, the goal
poses corresponded to pre-placements for the object 5 cm above the resting surface.

Metrics: The number of planning successes and solution quality were measured over time,
and an average over 50 runs was reported at each time interval. A success was counted if the
planner computed a collision-free trajectory from the start state to the goal end effector pose
within the time limit of 30 seconds. Solution quality was measured using cumulative DISP over
the solution path.

Initialization: Both JIST and CHOMP required some additional initialization prior to attempt-
ing to solve any of the benchmarks. JIST required R, to be first computed offline (without
knowledge of the scene). For the experiments, the size of R, was 25,000 vertices, and the max-
imum number of maneuvers k was set to 20. For CHOMP each environment had a signed-distance
field constructed for it, and also had its parameters tuned per benchmark. Specifically, the
parameters (n_iter, hmec_resample_lambda, lambda, obs_factor) for the Table benchmarks were
(20,0.02,10,25) respectively, and for the Shelf benchmarks (100,0.02,1000,200) respectively. Both
CHOMP and IK-CBiRRT were provided with reachable, collision-free arm configurations computed
using IK at the goal poses.

6.2.1 Pick Benchmarks

The results for success rate and solution cost over time are shown in Figure [§] for the Motoman
robot. Although the alternative methods do not inherently optimize the DISP cost function,
these comparisons still illustrate several important conclusions. Across all experiments, JIST
converged to a 100% success rate within the time limit of 30 seconds, with an average initial
solution time breakdown shown in Figure [J] (left).

Initial Solution Time Breakup Initial Solution Time Breakup

Time(s)
R

0

2 3

1 1
Pick Benchmarks Place Benchmarks

Figure 9. Breakdown in time for the initial collision-free solution using JIST for pick (left) and place (right) benchmarks.
The A* time represents how much time it took to compute the closed list L.joseq using MSMO_A".

Remarks: Although the parameters of CHOMP were tuned for each benchmark (as described
in Initialization), it was not able to reach 100% success rate within the time limit. It is possible
that with further tuning, these rates could be improved - however, the proposed method did not
require any parameter tuning to produce the presented results. Furthermore, both the initial
solution costs of JIST and the variance of solutions costs were the lowest. Together this shows
that the proposed heuristic was effective both in computing feasible motion plans quickly and in
guiding the search to produce high quality initial solutions. An interesting side-note here regard-
ing CHOMP is that when initialized with solution configurations found by JIST the performance
of CHOMP improved significantly. This indicates that solutions out of JIST can serve as better
initializations for trajectory optimization methods.

The average clearance (i.e. shortest distance between the robot and the obstacles) of solutions
found by all methods in the table environment was 5.7 cm, whereas in the shelf environment it
was 2.2 cm. Accordingly, the table benchmarks were the easiest for all methods to solve. This is
also seen in the initial solution times of JIST where on average the MSMO_A" spent more time
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Figure 10. Success Rates, Solution Costs, and Example Picks for the Kuka+ReFlex (5), Baxter+Parallel (6) benchmarks
to showcase applicability to different systems. The results indicate that JIST maintains its performance despite differences
in kinematics between the Kuka, Baxter, and Motoman robots.

in the table benchmarks (1,2) than in the shelf benchmarks (0,3,4). This is primarily due to the
fact that overhand grasps over the table were viable solutions. However, in the shelf benchmarks,
JIST maintains its high performance despite the clutter severely reducing the overall clearance
and viable grasps.

6.2.2 Application to Different Systems

Two additional pick benchmarks were evaluated on a Kuka LBR iiwaa, and a Rethink Baxter
robotic arm. The results, as shown in Fig[I0] indicate that the performance trends observed in
the Motoman trials are consistent across different robotic platforms. On average JIST reported
the first solution at 3.76s and 3.06s for benchmarks 5 and 6 respectively.

6.2.3 Place Benchmarks

The results for the place benchmarks are shown in Figure with average solution times
shown in Figure [9] On average, JIST spent longer in the tree expansion portion of the method,
relative to the pick benchmarks due to the attached target object causing more collisions. Despite
this initial slowdown, JIST still managed to converge to a 100% success rate before all other
methods, while also still providing the lowest cost solutions.

6.2.4 Real World Demonstration

Fig |12 showcases an execution of a trajectory computed by the proposed method, demonstrat-
ing the sort of motion planning problem in clutter that JIST solves. We replicate the setup of
Pick Benchmark 4, placing the objects in the top middle bin of a Kiva Pod shelving unit. The
target object is a Crayola box inside the shelf which is partially occluded behind the Elmer Glue
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Figure 11. Success Rates, Solution Costs, and Example Placements for the Vacuum Place Benchmarks in the Table (0)
and the Shelf (1) environments.

Figure 12. The solution path produced by JIST is executed on the system in an open-loop fashion, and corresponding
frames of this execution along with the timestamps are shown here. The Motoman begins executing a motion plan (top left)
computed for reaching an object located behind some clutter, ending with a grasp (bottom right).

Bottles in front of it and a Cheezit box on the side[]

An initial solution was returned after 2.41 seconds of computation time, with an initial DISP
cost of 3.05. The planner was then run for the remainder of the 30 seconds, and the best solution
found (with DISP cost 2.02) was executed in an open loop fashion on a Yaskawa Motoman
SDA10f robotic manipulator. The narrowness of the bin through which the arm must reach
through, along with the proximity of clutter, should be noted as it creates a very narrow passage
with low clearance. Despite this challenge, JIST manages to find a feasible, high quality solution
- the end-effector goes straight to the target object, while the arm minimizes reconfigurations.

IExact specifications of each benchmark including object poses, arm stats, and meshes, are available upon request.
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7. Discussion

This paper presented the Jacobian Informed Search Tree (JIST) algorithm, which is an asymp-
totically optimal, informed sampling-based planner for controlling an arm in densely cluttered
scenes so as to achieve desired end effector configurations. The method optimizes a cost function
representing the displacement of the end-effector, and uses a heuristic computed by effectively
searching the end effector’s task space. JIST employs Jacobian-based steering to bias the expan-
sion of the tree towards end effector poses that appear promising given the heuristic guidance.
The method was shown to have high success rate , even in densely cluttered scenes, with fast
initial solution times and high quality solutions across a variety of robot manipulators. An in-
creased focus on integrated task and motion planning challenges, means that JIST can prove to
be an efficient underlying motion planning primitive for complex manipulation tasks that can
involve many objects, and arms [54 [55].

JIST currently optimizes over the a single cost function minimizing end-effector motions.
Future work can look into multi-objective optimization metrics that can introduce additional
constraints that can affect the quality, and validity of the path like smoothness, task-specific
constraints etc. JIST also provides a valuable tool for use in bootstrapping machine learning
methods [56], which typically require not only large amounts of data, but also good coverage
of the task space [57]. Since JIST is capable of finding high-quality solutions in even the most
constraining of environments, learning approaches can better increase their success rates by
utilizing solutions computed by our approach. Furthermore, the proposed framework can take
advantage of learning approaches, by augmenting the maneuver generation and heuristics, which
could greatly reduce overall computation time. This improved version of the method could again
then be used to train the learning process, and this cycle of alternating could lead to significant
performance increases, indicating a life-long learning hierarchy.
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