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Abstract
We present a method to control collisions between ultracold neutral atoms in the electronic
ground state and trapped ions. During the collision, the neutral atom is resonantly excited by a
laser to a low-field-seeking Rydberg state, which is repelled by the ion. As the atom is reflected
from the ion, it is de-excited back into its electronic ground level. The efficiency of shielding is
analyzed as a function of laser frequency and power, initial atom-ion collision energy, and
collision angle. The suitability of several Rydberg levels of Na and Rb for shielding is discussed.
Useful applications of shielding include the suppression of unwanted chemical reactions between
atoms and ions, a prerequisite for controlled atom-ion interactions.
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(Some figures may appear in colour only in the online journal)

1. Introduction

The developing field of hybrid systems of cold, trapped atoms
and ions (for reviews see, e.g. [1–3]) has brought forth a
number of proposals for novel experiments. For many of
these, including proposals described in [4–8], any reactions
between atoms and ions are unwanted and need to be
suppressed.

One way to prevent atoms and ions from reacting with
each other is to keep them at a sufficiently large distance by
tightly confining them in individual traps [9]. Another
approach is optical shielding, a method that has been intro-
duced about twenty years ago as a tool to reduce inelastic
losses in samples of ultracold neutral atoms [10–16]. There, a
blue-detuned laser induces a transition of a colliding atom
pair to an electronically excited repulsive molecular potential.
Collisional suppression of up to a factor of 30 has been
demonstrated [15]. Recently, the emergence of cold mole-
cules has stimulated a renewed interest in optical shielding
[17, 18] and reaction control, see e.g. [19]. These proposed
schemes for shielding rely on Rydberg-dressing, i.e. laser-
admixing of Rydberg levels to the ground state. In this

approach, large dipolar interactions between Rydberg atoms
are utilized to generate strong repulsion. Rydberg-dressing
was also recently proposed for suppressing collisions between
ultracold neutral atoms and ions [20], where the Rydberg-
dressing operates on a forbidden S to S transition. As the
particles approach each other, the electric field of the ion
increasingly admixes P-character into the Rydberg S-level,
leading to increasing optical coupling between the Rydberg
level and the S ground level. This generates a repulsive ac-
Stark-shift potential barrier at small internuclear separations.

In the present work, we propose a distinct optical
shielding scheme for atom-ion collisions. Our method is
based on an adiabatic optical transition of the atom from its
ground state towards a low-field-seeking Rydberg state, as the
atom traverses the ion’s electric field. We analyze the effi-
ciency of the shielding process as a function of laser fre-
quency, laser power, the initial collision energy and the
collision angle. Our proposed scheme offers particularly
interesting opportunities when the atomic ground state is
optically coupled into a manifold of Rydberg Stark states
which contains avoided crossings. In this case, the collision
dynamics occurs on coupled potential landscapes, with mixed
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adiabatic and non-adiabatic evolution as well as tunneling
playing an important role.

2. Generic shielding scheme

We consider an atom in the electronic ground state ∣ ñg which
collides with a trapped ion in a two-body collision, see
figure 1. The atom-ion pair is located in an intense con-
tinuous-wave (cw) laser field. The distance between atom and
ion is denoted r. When r reaches the shielding distance rs the
atom is resonantly excited to a Rydberg state ∣ ñe by the laser
field. The Rydberg state has a large low-field-seeking electric
dipole moment which leads to a repulsion of the collision
partners, such that the atom is effectively reflected off a
potential wall at distance rs. After the reflection the atom is
adiabatically de-excited back to the ground state. The col-
lision takes place on a time scale that is much shorter than the
natural lifetime of the Rydberg state of several μs. Therefore,
spontaneous radiative decay of the Rydberg atom is
negligible.

In a first approach, we estimate the shielding efficiency of
this scheme using a simple two-channel model with ground
state ∣ ñg and excited Rydberg state ∣ ñe . The ground-state
channel ∣ ñg has a constant potential energy Vg=0 (the
interaction between the ground-state atom and the ion is
neglected). We assume for now that the potential energy of
the low-field-seeking Rydberg channel ∣ ñe has a constant
slope dVe/dr, as depicted in figure 2(a). The optical coupling
Ω of the two channels leads to an avoided crossing around rs.
For this situation Ve can be expressed as Ve=(r− rs)
dVe/dr. Using the rotating wave approximation the interac-
tion Hamiltonian in the rotating frame is then
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For sufficiently small atom-ion collision energy Ecoll, the
atom adiabatically passes the avoided crossing between Ve

and Vg. The atom enters on Vg. After adiabatic passage into

Ve, the atom moves up on the Ve potential and slows down.
After reflection, on its way out, the atom passes the avoided
crossing again, in the same adiabatic fashion. This returns the
atom into the ground state Vg. As a consequence, the exci-
tation of the atom from Vg into Ve and back down from Ve into
Vg are two sequential adiabatic transitions that result in
shielding. Quantitatively, we solve the radial Schrödinger
equation

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟( ) ( ) ( )

( )
( )

( )
m

j

j
- + Y = Y =
 d

dr
V r r E r E

r

r2
. 2I coll coll

g

e

2 2

2

Here, μ is the reduced mass of atom and ion, and Ψ(r) is the two-
component wave function of the system. For simplicity, we
assume that the atom-ion collision takes place in an s-partial
wave, and that the laser coupling between the atomic ground and
Rydberg state is isotropic. We calculate scattering solutions for

Figure 1. Blue shielding scheme using a Rydberg level. In a collision
a neutral ground state atom approaches an ion. At a distance r≈rs a
cw laser adiabatically excites the neutral atom to a Rydberg level.
The Rydberg atom is in a low-field-seeking state and is strongly
repelled by the electric field of the ion. Effectively, the atom is
reflected from a potential barrier around the ion. As the reflected
atom leaves, it is adiabatically de-excited back into the ground state.

Figure 2. (a) Illustration of the blue shielding scheme exploiting an
avoided crossing. Shown are the potential energies in a photon-
dressed picture of the neutral atom at a distance r from the ion. Vg

(blue dashed line) denotes the potential energy curve for the atom in
the ground state. Ve (dashed purple curve) is the curve for a low-
field-seeking, repelled Rydberg state. The coupling of the two levels
by the laser leads to an avoided crossing at rs. The adiabatic potential
energy curves are VU (black solid line) and VL (red solid line).
(b) Reflection probability as a function of the scaled coupling
strength W̄ for a collision energy Ecoll=1 mK×kB and slopes
dVe/dr given in the legend. The black (orange) solid line
corresponds to the probability PLZ (PLZ

2 ) for one (two) adiabatic
passages through the crossing according to the Landau–Zener
formula, respectively (see text).
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this one-dimensional problem with an incident probability flux in
the ∣ ñg -channel. The Schrödinger equation is numerically inte-
grated for a chosen collision energy Ecoll, as described in
sections A.1 and A.2 of the appendix. From the solution Ψ(r) we
find the incoming and outgoing fluxes by first expressing the
wave function components as je,g=ae

ikr+be− ikr with =k
m E2 coll , at a location r?rs. For example, for the ground

state, the coefficients are a=(djg/dr+ikjg)/(2ike
ikr) and

b=(djg/dr−ikjg)/(−2ike
− ikr). The reflection probability of

the incident ground-state atoms from the blue shielding potential
is ∣ ∣ ∣ ∣a b2 2. Inspired by the Landau–Zener theory for avoided
crossings [21, 22], we plot this in figure 2(b) as a function of a
scaled coupling strength

⎛
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 E
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2

3
coll

e2

1 4
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for a collision energy Ecoll=1 mK×kB and several slopes
dVe/dr (see legend). We note that in a range of reflection
probabilities between about 10% and 90% all curves for the
different slopes dVe/dr are quite similar. They can therefore
approximately be described by a universal function. Indeed, the
squared Landau–Zener probability for adiabatic transfer

( ( ¯ ))p= - - WP 1 exp 4LZ
2 2 2 describes the data quite well

[21, 22]. This goes along with two adiabatic passages, forth and
back, as indicated by the green arrow in figure 2(a).

A possible candidate for Rydberg shielding as described
is Na. Figure 3(a) shows a Stark map of the n=16 hydrogen-
like manifold (i.e. levels with orbital angular momentum
quantum number L>1) as well as the 17P-level which is a
low-field seeker. Here, n denotes the principal quantum
number. The 17P-level has a natural lifetime of about 5 μs,
including decay due to black body radiation [23]. By
choosing a laser frequency we set both the ion electric field at
which the transition to 17P is resonantly driven as well as the
slope dVe/dr. The electric field of a singly charged ion is
related to the internuclear distance via Ef = e/(4πε0r

2).3 Here,
e is the elementary electric charge, and ε0 is the dielectric
constant of the vacuum. As an example for possible shielding
parameters for Na we consider laser excitation to an energy of
−420 cm−1 in figure 3(a), which is blue-detuned by 1 cm−1

from the zero-field location of the 17P state. In that case, the
shielding radius is rs≈200 nm [blue arrow in figure 3(a)]
and dVe/dr≈−h× 0.6 GHz nm−1. For a Rabi frequency
Ω=2π×400MHz the scaled coupling strength is W̄ » 2,
and the reflection probability is >90% [see figure 2(b)].

The situation is richer and more interesting in atomic
species with high-field-seeking P states, such as Rb. A Stark
map for Rb 17P is shown in figure 3(b). While high-field-
seeking states are normally not suitable for Rydberg shielding
with our scheme, even in that case shielding can still be
achieved by utilizing avoided crossings between the
17PJ-states and the n=14 hydrogen-like manifold.
Figure 3(b) shows several such avoided crossings. Close to
the crossings, the low-field-seeking n=14 hydrogen-like

states exhibit substantial P-character, making them excitable
from the atomic ground state ∣ ñg and enabling efficient
shielding schemes.

In the following we will study in detail how Rydberg
shielding works right at the location of these avoided cross-
ings. In figure 3(b) the first avoided crossings occur at an
electric field of about 2100 V cm−1. This corresponds to a
reflection distance rs of about 80 nm. In order to resonantly
couple to these avoided crossings, a laser wavelength of about
301.7 nm is needed. In principle, rs can be tuned over a large
range by choosing an appropriate avoided crossing in another
manifold with a different n-quantum number. We find that
» ´r n0.079 nms eff

2.59, where neff=n−δ(n) is the effective
principal quantum number and δ(n) is the quantum defect4.

Figure 3. (a) Stark spectrum of Na in the vicinity of the low-field-
seeking state 17P. (b) Stark spectrum of Rb in the vicinity of the
high-field-seeking states 17PJ, which have a (zero-field) fine-
structure splitting of about 1 cm−1. Avoided crossings of the 17PJ-
states with low-field-seeking states of the n=14-manifold occur
within the cyan-shaded area.

3 This procedure ignores the fact that the electric field of the ion is
inhomogeneous. An approach where the inhomogeneity is correctly taken
into account is given in section 3.2.

4 The quantum defect for the nP3 2 state of 87Rb is given by
( ) ( )d d d d= + -n n0 2 0

2, where ( )d = 2.6416737 100 and δ2=
0.2950(7)[24].
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For n-quantum numbers between 13 and 26, the shielding
radius rs ranges from 33 to 269 nm.

3. A case study

In the previous section we have briefly sketched the physics
behind Rydberg shielding, which has involved a number of
simplifications and assumptions. We now proceed with a
more realistic case study, which requires more detail.

3.1. Ground state polarization potential, centrifugal barrier and
collision energy

In equation (1) we have neglected the interaction potential Vg

between ground state atom and ion. This is indeed justified for
our purpose as we show in the following. The long-range tail
of Vg (see e.g. [1]) is given by

( ) ( ) ( )
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= - +
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l l
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2
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2
, 4g

4
4

2

2

where the first term represents the polarization potential of the
ground state ∣ ñg in the ion electric field. The second term is the
centrifugal potential for the internuclear motion of the ion-atom
system with l denoting the quantum number of the partial wave.
For the 87Rb 5S1/2 state, C4=αe2/(4πε0)

2 with the static
dipolar polarizability α=4πε0×4.74×10−29 m3 [25].

In current experiments, the collision energy of a cold ion
in a Paul trap colliding with an ultracold atom is typically on
the order of 1 mK×kB, due to effects of micromotion of the
ion. This is indeed much larger than the ≈10 μK×kB depth
of the polarization potential at the shielding distance
rs≈80 nm. Therefore, the polarization potential in the
ground state can be safely neglected.

At the same shielding distance (rs≈80 nm) the cen-
trifugal potential reaches a height of 1 mK×kB for l=38.
Therefore, a large number of partial waves are involved in a
typical atom-ion shielding experiment. Nevertheless, if
shielding works for the s-wave it will also work for the
higher partial waves because the centrifugal potential only
helps the shielding. Further, the thermal energy of 1
mK×kB is orders of magnitude lower than the variation of
the Rydberg levels over the relevant range of r. Therefore,
we can quite generally restrict ourselves to the discussion of
only the s-wave. Doing so, we neglect mixing of partial
waves, which occurs because the atom-ion interaction is in
general not spherically symmetric. However, this mixing is
not relevant for shielding and therefore beyond the scope of
this work.

Finally, we would like to mention that besides resonantly
coupling the ground state and the Rydberg state the shielding
laser also produces an optical dipole potential for the neutral
ground state atoms. This dipole potential is repulsive and
amounts to ∼2 mK×kB [26] for the typically needed laser
intensities in our shielding scheme. Since this is on the order
of the collision energy, it needs to be considered in exper-
imental work. In principle, the repulsive dipole potential can

be compensated by applying an additional attractive dipole
trap (e.g. based on a 1064 nm laser).

3.2. Interaction between a Rydberg atom and an ion

In section 2 the interaction between a Rydberg atom and an
ion was approximated at several instances. We now refine
the model by taking into account the inhomogeneity of the
electric field of the ion. The field of the ion polarizes the
Rydberg atom by mixing various orbital angular momentum
states. This turns the Rydberg atom into an electric multipole
which is either attracted or repelled by the ion. For con-
venience we use in this section a coordinate system where the
Rydberg atom is located at the origin. The ion is located at (0,
0, −r) (in Cartesian coordinates). Thus, the angle Θ in
figure 1 is zero and the z-axis (quantization axis) is the
internuclear axis. The relative Rydberg-electron coordinates
are denoted (re, θe, fe). Multipole expansion [27] of the
electrostatic potential energy of the Rydberg electron and the
positively charged point-like Rydberg atom nucleus within
the field of the ion yields

( ) ( )åpe
p

q f= -
+

+
=

¥

+
V

e

l

r

r
Y

4

4

2 1
, . 5e ion ion

l

e
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l l e e,

2
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Note that =Y Yl l0 0*. The lowest-order term in equation (5)
corresponds to l=1 and treats the atom-ion interaction as if
the ion produced a locally homogeneous electric field at the
location of the atom. This would give rise to a level pattern
equivalent to that of the usual Stark effect, as in figure 3, with
the electric field at the Rydberg-atom center, ( )pee r4 0

2 ,
plotted on the x-axis. In our improved model, we include all
terms in the sum of equation (5) up to l=6. It is found that
higher-order terms lead to negligible contributions. We obtain
the potential energy curves (PECs) Ve,k(r) for the Rydberg-
atom-ion system by solving the Schrödinger equation for the
electron motion

( ( ))∣ ( )⟩ ( )∣ ( )⟩ ( )+ =+H V r e r V r e r , 6e ion ion k e k k0 , ,
^ ^

using a dense grid of internuclear separations r that are held
fixed in each calculation. Here, Ĥ0 is the Hamiltonian of the
unperturbed Rydberg atom including fine structure and k is a
label for the numerous PECs of the system. The electronic
eigenstates ∣ ( )ñe rk have good magnetic quantum numbers mJ.
The total angular momentum J becomes good at large enough
atom-ion distances r. In the framework of the Born–Oppen-
heimer approximation, the PECs Ve,k(r) govern the radial
(vibrational) dynamics of the Rydberg-atom-ion system.
Figures 4(a) and (b) present numerical calculations of the
Ve,k(r) potentials for

87Rb, again for the hydrogen-like n=14
manifold, together with the fine-structure-split levels 17P3/2

and 17P1/2. The fine structure also causes the (much smaller)
doublet structure within the hydrogenic n=14 manifold.
Shown are the results for magnetic quantum numbers
mJ=±3/2 (a) and mJ=±1/2 (b) of the Rydberg atom.
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3.3. Transition electric dipole moments and Rabi frequency

Figures 4(c)–(e) show calculations of the transition electric-
dipole matrix elements

( ) ( ) ∣( ) ∣ ( )= á - ñd e e r m e r g m, , 7i k k J e i,

for transitions from the electronic ground state ∣ ñg m, where
m=±1/2 is the magnetic quantum number of the angular
momentum J=1/2.5 To easily distinguish the m-quantum
numbers for excited and ground states, we do not attach an
index J to m for the ground state. The re,i are the spherical
components of the electron coordinates (see section A.3 of the
appendix for more details). The index iä{+1, 0, −1}
indicates whether we consider a σ+, π, σ−-transition,
respectively. The matrix elements di(ek) are only nonzero for
mJ=i+m. For now the quantization axis z coincides with
the atom-ion internuclear axis. The results in figures 4(c)–(e)
are given in units of ea0, where a0 is the Bohr radius. The
signs of the dipole matrix elements are fixed by ensuring that

for every state ∣ ñek the amplitude of the 17P3/2 component is
positive. For the energetically degenerate states ∣  ñe m,k J and
∣  ñg m, one finds

∣ ∣ ∣ ∣ ( )á ñ = á - - ñ-e m r g m e m r g m, , , , , 8k J e i k J e i, ,

i.e. di(ek)=d−i(ek). As expected, the transition matrix ele-
ments di(ek) vary markedly as a function of r, particularly in
the vicinity of the avoided crossings. This is a consequence
of the r-dependence of the mixing between the 17PJ-states
and the hydrogen-like Rydberg levels. The Rabi frequency Ω

for the coupling of the ground state ∣ ∣bñ = å ñg g m,m m to the
Rydberg state ∣ ñe m,k J is given by

( ) ( ) ( )å b
W =




m
d e

, 9J
i m

i i k m

,

where i, i ä {+1, 0, −1}, are the spherical components of
the light field driving σ+, π, σ−-transitions, respectively.

We now consider the internuclear axis z′ between ion and
Rydberg atom to form an angle Θ with the lab frame’s
quantization axis, z, which is defined by the propagation
direction of the laser. For simplicity, we assume that a rota-
tion by Θ about the y-axis rotates the lab frame into the
molecular frame {x′, y′, z′} (see figure 1 and appendix A.3). In
the molecular frame (primed frame) the atomic ground state
∣ ∣bñ = å ñg g m,m m becomes ∣ ∣bñ = å ¢ ¢ñ¢ ¢g g m,m m . The coef-
ficients in the molecular frame, b¢ ¢m , are related to those in the lab
frame, βm, via ( )( )b b¢ = å -Q¢ ¢dm m m m m,

1 2 . Here, ( )( ) -Q¢dm m,
1 2

are the elements of Wigner’s small d-matrix. The spherical
components of the electric field transformed from the lab frame
into the molecular frame are denoted ¢ i (see appendix A.3). The
Rabi frequency becomes

( ) ( ) ∣( ) ∣ ( )å
b

W Q ¢ =
¢ ¢

á ¢ - ¢ ¢ñ
¢

¢




m e r m e r g m, , , . 10J
i m

i m
k J e i

,
,

Clearly, Ω depends on ¢mJ , the magnetic quantum number of the
excited state in the molecular frame, the PEC with index k, and
the internuclear separation r, all of which are essentially deter-
mined in the experiment by the excitation laser frequency. We
also see that, in contrast to our previous assumption in section 2,
Ω does in general depend on the angle Θ. Furthermore, when
calculating Ω we have to take into account that the Rydberg
states (PECs) come in degenerate pairs of ∣ ¢ñmJ . Therefore, the
effective optical coupling Ω into the excited manifold spanned by
∣ ¢ñmJ is given by the quadrature sum of the corresponding Rabi
frequencies, i.e.

( ) ( ) ( ) ( )W Q = W Q ¢ + W Q - ¢m m, , . 11J J
2 2

For further discussion see appendixA.3. Figure 5 shows a few
examples for Ω (Θ) for various light polarizations and ¢mJ . The
coupling-laser intensity is IL=400mW μm−2. We use the
dipole matrix elements di(ek) at the internuclear separations r that
correspond to the local maxima of the PECs for the avoided
crossings CI–CIII in figure 4. These crossings can potentially be
used for ion-atom shielding, which will be explained in detail in
the next section. As a simple rule, shielding will work better
the largerΩ is and the more isotropicΩ is. Generally, we note the
symmetry of the curves in figure 5 about Θ=π/2, which is due

Figure 4. (a) and (b) Potential energy curves Ve,k versus internuclear
separation r for a structureless, singly charged ion interacting with a
87Rb Rydberg atom. The internuclear axis is the quantization axis.
mJ is the magnetic quantum number of the Rydberg atom. Shown are
17PJ states and levels of the n=14 hydrogen-like manifold. The
level crossings Ci are discussed in the text. (c)–(e) Calculated
transition electric dipole moments di(ek) for transitions from the
electronic ground state ∣ ñg . The color coding for (c) is the same as in
(a) and for (d), (e) it is the same as in (b).

5 Due to hyperfine interaction, the quantum state of a ground state 87Rb atom
is normally described in terms of the quantum numbers F, mF corresponding
to the total angular momentum

  
= +F J I with nuclear spin


I . Pure

m=±1/2 states can be prepared by working with the spin stretched
states ∣ = =  ñF m2, 2F .

5
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to the fact that Ω(Θ) has the form of equation (11). The magenta
solid line is for coupling to the CI-crossing with a circularly
polarized laser. For Θ=0, the laser drives a σ+-transition
from ∣ = ñg m, 1 2 to ∣ = ñe m, 3 2J with a Rabi frequency
Ω=2π×1.11GHz, which, as we will see in the next section, is
sufficient for successful shielding. At Θ=90°, Ω drops to half
of its value at Θ=0. This can be mainly explained by the fact
that atΘ=90° a sizable fraction of the light is π-polarized in the
molecular frame, and π-polarized light cannot drive a transition
from the J=1/2 ground state to the mJ=3/2 Rydberg state.

The red continuous line is for the crossing CII, where the
excited state is a ∣ ∣¢ =m 1 2J manifold. We use a circularly
polarized laser driving a σ−-transition at Θ=0. Overall, the
coupling Ω is weaker than for CI, but it exhibits similar
angular dependence. The relative loss at Θ=90° is slightly
stronger than for CI. The loss is due to an interference effect
where σ and π transition paths from the ground state in the
rotated frame, ∣ ñg = (∣ ∣ )¢ = ñ - ¢ = - ñg m g m, 1 2 , 1 2 2 ,
to either ∣ ¢ =  ñe m, 1 2k J destructively interfere. In order to
make the coupling more isotropic we now try using linear
polarization (dashed and dotted red lines) instead of circular
polarization. The polarization direction of the laser light now
breaks the rotational symmetry about the z-axis which exists
for circularly polarized light. Therefore, we now analyze the
dependence on the angle Θ for two cases: (1) polarization in
y-direction (red dashed line) and (2) polarization in x-direc-
tion (red dotted line). The dashed line is flat and therefore Ω is
independent on Θ with respect to rotation about the y-axis.
The dotted line, however, exhibits an increased anisotropy. At
angle Θ=0 the Rabi frequency Ω for the dashed and dotted

lines is by a factor of 1 2 smaller than for circular polar-
ization (red solid line), because only one of the two circular
components of the linear polarization contributes to the cou-
pling towards the ∣ ∣ =m 1 2J Rydberg manifold.

The green line in figure 5 is for σ−laser light at Θ=0,
coupling to avoided crossing CIII. From figure 4 we gather
that for this case only π-transitions have sizable transition
moments di(ek). Therefore, at Θ=0, Ω almost vanishes. At
Θ=90° where the light polarization has a strong π-comp-
onent in the rotated frame the coupling is maximal.

Hence, among the examples studied the crossing CI with
a σ+ drive is the best choice, since it has the strongest overall
coupling and a comparatively small angular anisotropy.

For completeness, it needs to be checked whether cou-
pling to other PECs is negligible because this can lead to
complications and losses. For example, the CI crossing is
energetically close to the avoided crossing CIV, as can be seen
in figure 4, which also exhibits sizable transition matrix ele-
ments. However, closer inspection shows that the two
potential curves are still split by about h×6 GHz, which
should be enough to treat them separately.

We note, however, that coupling to other PECs can also
be an interesting feature. For this, we consider crossing CIV in
figure 4. In order to reach CIV an atom would have to cross the
17P1/2 level (black dashed line) at a distance of about 90 nm.
At this point some incoming flux can be coupled to the 17P1/2

level, which will continue following the dashed PEC, adia-
batically pass the crossing CIII, and will be reflected on the
inward up-slope of the dashed PEC at r∼80 nm. On exit, i.e.
at the crossing at 90 nm, the wave on the dashed PEC will
interfere with the (partially) reflected wave from the crossing
CIV. This opens up the possibility to interferometrically
control the total reflection probability or to tune the phase of
the net reflected wave. We can estimate that the coupling to
the 17P1/2 PEC can be sizable by using equation (3),
Ω≈2π×1 GHz and that the slope of the PEC at r∼90 nm
is dVe/dr≈8 GHz nm−1×h. Further exploration of this
topic is beyond the scope of the present paper.

To summarize, we find that for certain avoided crossings
and coupling-laser polarizations the optical coupling Ω(Θ)
varies by less than a factor of 2 to 3, still leading to robust
shielding for a sufficiently large optical coupling Ω. As briefly
mentioned before in section 3.1, the angular dependence in Ω

will lead to an anisotropic effective scattering potential
between atom and ion. This will cause mixing of different
partial waves. However, such a mixing is not of interest here
and beyond the scope of this work. Therefore, in the fol-
lowing we will carry out calculations where we ignore the
angular dependence of Ω.

4. Numerical solution for shielding

We now investigate the collision dynamics by numerically
solving the Schrödinger equation for the scattering problem.
For this, we consider only two coupled channels: (1) The
atomic ground state with potential energy Vg(r), and (2) the

Figure 5. Calculated angular dependence of the Rabi frequency Ω at
the avoided crossings marked CI, CII or CIII in figure 4. The atoms
are prepared in the ground state ∣ = ñS m5 , 1 21 2 in the lab frame.
The laser intensity is IL=400 mW μm−2. The indicated polariza-
tions are relative to the lab-frame’s z-axis. ∣ ∣¢mJ specifies the addressed
Rydberg manifold ∣  ¢ñe m,k J in the molecular frame. The internuclear
separations r in the calculation correspond to the PEC maxima at the
CI, CII and CIII avoided crossings, and are 76.8 nm, 73.7 nm and
83.4 nm, respectively. The dashed and dotted red lines are for a
linearly polarized laser. The red dashed line shows the case when the
polarization points in y-direction, while for the red dotted line it
points in x-direction.
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Rydberg state with potential energy Ve(r). The two channels
are coupled via a laser with the Rabi frequency

( ) ( ) ( )eW = ´ r d r I c2i L 0 , which depends on the rela-
tive distance of the atom and the ion. Here, c is the speed of
light. As discussed at the end of section 3.3 we assume here
the coupling strength to be spherically symmetric. Within the
rotating wave approximation the coupled potentials for the
two-level system can be written as

⎛
⎝⎜

⎞
⎠⎟

( ) ( )
( ) ( )

( )=
W

W



V

V r r

r V r

2

2
, 12I

g

e

generalizing equation (1). With the new VI we numerically
solve the Schrödinger equation (2) using the same method as
before, see sections A.1 and A.2 of the appendix. Here, the
two components of the wave function are denoted by jU and
jL, where the subscript indicates the energetically lower
branch (L) and the energetically upper branch (U), respec-
tively. The task is to calculate scattering solutions for flux
entering from large internuclear distance in channel U. This
flux can then be reflected, transmitted, or it can non-adiaba-
tically leak into channel L.

Figure 6(a) shows an example for the resulting potential
curves VU, VL (solid lines) as well as the uncoupled energies
Vg, Ve (dashed lines), corresponding to the avoided crossing
CII of figure 4(b). The laser has a detuning of Δ=
−2π×500 MHz from the tip of Ve, i.e. the tip of CII. Fur-
thermore, we choose a laser intensity of 343 mW μm−2 which
corresponds to a maximal Rabi frequency of Ω=2π×
730 MHz at r=73.7 nm. We choose a collision energy of
Ecoll=1 mK×kB which is defined at  ¥r . Figure 6(c)

shows the PECs for identical conditions except that Δ=
2π×500 MHz. While in figure 6(a) there are two avoided
crossings between Vg and Ve, there is no crossing in
figure 6(c).

The numerical solutions (real parts) for the scattering
wave functions for the potential curves in figures 6(a) and (c)
are shown in plots (b) and (d), respectively. The distortion of
the wave functions jU at around r=74 nm indicates that the
non-adiabatic coupling takes place only in the vicinity of the
avoided crossing, as expected. Furthermore, it can be clearly
seen that the amplitude of jU is much smaller to the left of the
barrier than to the right, indicating efficient shielding.

We quantify the reflection by comparing incoming,
reflected and leaking probability currents. For this, we choose
locations r far away from the barrier and express the scat-
tering wave functions for each scattering channel qä{U, L}
in terms of ( ) ( )j = + -a r e b r eq q

ik r
q

ik rq q , as described in
section 2. The outward and inward currents are ( ) =j rout q,

∣ ( )∣ ma r kq q
2 and ∣ ( )∣ m= j b r kin q q q,

2 , respectively, with

( ( ))m= - k E V r2q coll q . As shown in figure 6(a), we
label the incident current as ji=jin,U(r> 76 nm), the reflected
current as jr=jout,U(r>76 nm), the transmitted current as
jt=jin,U(r<72 nm), and the currents corresponding to non-
adiabatic leakage into the L-channel as jl1=jin,L(r<72 nm)
and ( )= >j j r 76 nml out L2 , .

In table 1 we list the reflection, transmission and adia-
batic-loss percentages for the two examples in figures 6(a)
and (c). For the sake of the discussion, the parameters for the
two examples have been chosen such that there are still siz-
able tunneling and leakage currents. As becomes clear from
table 1, the case Δ>0 yields better shielding. We will show
further below that the shielding efficiency can be nearly 100%
when globally increasing the coupling strength Ω by a factor
of 2, e.g. by increasing the laser power by a factor of 4.

Besides the reflection probability Pr=jr/ji it is convenient
to define a second measure, η, for the shielding efficiency

( ) ( ) ( )h = + + = -j j j j j j j , 13r t l l r i r1 2

which gives the ratio of (good) reflected flux to (bad) flux lost in
unwanted channels. Figure 7(a) shows log10(η) as a function of
Δ and Ω for a collision energy of 1 mK×kB. The solid black
contours labeled by ‘0’, ‘1’ and ‘2’ correspond to a reflection
probability of Pr=50%, 91% and 99%, respectively. Quite
generally, the shielding efficiency η increases with coupling
strength Ω. Furthermore, for a given Ω, shielding is best for
Δ≈Ω (see dashed black line). If Δ becomes too large, the
repulsive barrier becomes so small, that either strong tunneling

Figure 6. (a) Calculated potential energies with coupling (VU and VL,
solid lines) and without coupling (Ve and Vg, dashed lines) for
Δ=2π×−500 MHz, Ω=2π×730 MHz at the peak of VU, and
Ecoll=1 mK×kB, in a photon-dressed picture. ji, jr, jt are the
incoming, reflected and transmitted currents, respectively. jl1 and jl2
are the currents that non-adiabatically leak into channel VL. (b) Real
parts of the calculated scattering wave functions jU (black solid line)
and jL (red solid line). (c) and (d) are calculations using the same
parameters as in (a) and (b), except that Δ=2π×500 MHz.

Table 1. Ratios of probability currents for the scattering solutions in
figure 6. Case (a) refers to figures 6(a) and (b), while case (c) refers
to figures 6(c) and (d).

Current ratio Case (a) Case (c)

jr/ji 52% 71%
jt/ji 3% 7%
( jl1+jl2)/ji 45% 22%
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through the barrier occurs or flux even passes over the barrier.
Figure 7(b) illustrates this in a plot of the transmission prob-
ability Pt=jt/ji. Pt increases with Δ and decreases with Ω. We
have numerically checked that the transmission probability
function Pt(Ω, Δ) shown in figure 7(b) can be approximately
reproduced in the shown range with the well-known expression
for 1D-tunneling

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟( ) ( ) ( )ò

m
W D = - -


P V r E dr, exp 2

2
, 14t

T

T

U coll
p

p

1

2

where Tp1 and Tp2 are the classical turning points of the
potential barrier VU(r). This means that within the shown
parameter range, the transmission is dominated by tunneling,
and non-adiabatic transitions onto VL only play a minor role.
For Δ>0, we find that the tunneling barrier VU is approxi-
mately described by a Lorentzian profile

( ) ( )
( ) ( )

( )»
G

G + -
V r V

r r

2

2
, 15U

s
0

2

2 2

with height ( )= -D + W + D V 0.50
2 2 and width G =

( )W  V k2 H
2

0 . Here, kH is the negative curvature of the
potential curve Ve at its local maximum. For tunneling through
such a Lorentzian barrier analytical results for the transmission
probability Pt can be derived, as described in section A.4 of the
appendix.

Next, we discuss non-adiabatic transitions which leak flux
to the lower PEC VL. Figure 7(c) shows the probability for this
leakage Pl=( jl1+jl2)/ji as a function of Ω and Δ. In the
range shown, Pl decreases monotonically with increasing Ω and
Δ. While it is plausible that a larger Ω generally improves the
adiabaticity, we note that for vanishing Ω the leakage also will
vanish because the PECs Ve and Vg are not coupled anymore.
However, a vanishing Ω is not of interest for our discussion
here. The dependence of Pl on Δ in figure 7(c) can be under-
stood as follows. For Δ<0 a decrease of ∣ ∣D decreases the
slope dVe/dr at the crossing, which increases the adiabaticity
according to our discussion in section 2. For Δ>0 there is an
inherent momentum mismatch for coupling flux from the upper
to the lower channel, which suppresses non-adiabaticity. The
mismatch and therefore the adiabaticity increase with Δ.

From the discussion in section 2 where the avoided
crossing with a linear PEC is studied one might expect that
for Δ<0 the leakage Pl is a Landau–Zener-like function of
the scaled quantity W̄. However, this is only valid for

∣ ∣W D and small enough Ecoll. In the parameter range
discussed here, we find that Pl roughly scales as

( ) ( )» + W + D P c c E c Eexp , 16l s s1 2 3

where m= E k0.5s H is an energy scale as determined by
the negative curvature = -k d V drH e

2 2 of the barrier at its

Figure 7. (a) Shielding efficiency η as a function of laser detuning Δ and coupling strength Ω for a collision energy of 1 mK×kB. The
dashed black line indicates the best choice of Δ to reach optimal shielding for a given Ω. (b) and (c) show the transmitted fraction Pt and
the non-adiabatic leaking fraction Pl versus Δ and Ω. (d) shows η versus Ω and collision energy Ecoll. Ecoll is in units of K×kB.
Δ=2π×1 GHz. ºlg log10 is the decadic logarithm. The plots above and on the right hand side of each contour plot are cuts as indicated
by the corresponding lines in the contour plots.
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peak, see section A.4 of the appendix for details. The coef-
ficients ci vary slowly with Ω and Δ. For a small enough
collision energy Ecoll, Pl scales like a power law, i.e.
Pl∝(Ecoll/Es)

α. Here, α is a slowly varying function of
W Es and D Es. This means that the coefficients ci in

equation (16) can be expanded as

( ) ( )= +c c c E Eln . 17i i i coll s,1 ,2

Figure 7(d) shows the shielding efficiency η versus the
initial collision energy Ecoll and Ω. Here, Δ is set to
Δ=2π×1 GHz. As expected, shielding improves as the
collision energy is lowered, because both tunneling and non-
adiabaticity are increasingly suppressed.

Similar as for the non-adiabatic leakage, η exhibits
approximately power law scaling, ( )h µ aE Ecoll s , as long as
the collision energies Ecoll are small enough. As before, the
exponent α depends on ÿΩ/Es and ÿΔ/Es.

5. Conclusion

In conclusion, we propose a method for shielding a cold
neutral atom and an ion from a collision at close range. When
the particles reach an interparticle distance on the order of
100 nm the neutral atom is resonantly excited to a low-field-
seeking Rydberg level which is repelled by the ion. Upon
leaving the neutral atom is de-excited back in an adiabatic
way, so that no spontaneous scattering of photons occurs. We
find that this shielding scheme is particularly interesting when
employing an avoided crossing of two Rydberg levels. We
discuss how shielding depends on the Rabi frequency of the
laser, on the laser detuning from the avoided crossing of a
Rydberg level, on the collision energy, and on the collision
angle. At collision energies of about 1 mK×kB typically
Rabi frequencies on the order of Ω=2π×1 GHz are nee-
ded for efficient shielding. The shielding efficiency can be
varied from zero to nearly 100% by adjusting the laser
intensity and frequency. In future work one may investigate
the coupling between different partial waves caused by the
anisotropy of the shielding potential, as well as matter-wave
interference between multiple avoided crossings as a method
for collision control.
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Appendix

A.1. Numerical solution of the Schrödinger equation

Here, we describe how we determine the scattering solution of
the Schrödinger equation (2) for the interaction potential of
equation (12). We are looking for a particular solution for

which ground state atom and ion approach each other with
collision energy Ecoll (defined at = ¥r ). After switching to
the adiabatic basis (see section A.2 of the appendix) the
Schrödinger equation is numerically integrated starting from a
suitable position r0 on the left of the avoided crossing towards
increasing r. The position r0 is chosen to be sufficiently far
away from the avoided crossing such that the coupling of the
ground state channel and the Rydberg channel is negligible.
According to the boundary condition of having the incoming
wave in the ground state and approaching from = ¥r , the
wave function components jU and jL at r0 must be outgoing
with respect to the avoided crossing, i.e. ( )µ -ik rexp q with
the local wavenumber ( ( ))m= - k E V r2q coll q 0 for qä
{U, L}. This determines the derivatives of the wave function
components at this point to be djq/dr=−ikqjq. We sepa-
rately carry out two integrations with two linearly indepen-
dent starting vectors ( ( ) ( ))j jr r,U L

T
0 0 . Afterwards, the two

solutions are linearly combined to provide the desired final
solution which fits the boundary condition.

Finding the scattering solution for the interaction poten-
tial of equation (1) is analogous, apart from setting
djU/dr(r0)=kUjU(r0) with ( ( ) )m= - k E r E2U U coll0 .
After the numerical solution of the Schrödinger equation the
wave functions can be expressed again in the non-adiabatic
basis ∣ ñg and ∣ ñe as described in section A.2 of the appendix.

A.2. Adiabatic basis for solving the Schrödinger equation

In order to numerically integrate the Schrödinger equation (2) it
can be advantageous from a numerical point of view to locally
express the two-component wave function Ψ=(jg, je)

T in a
basis for which the interaction Hamiltonian VI is diagonal.
This is done by the following transformation ˆ Y = F º-

S
1

( )j j,U L
T (see [28]), where Ŝ diagonalizes VI by

⎛
⎝⎜

⎞
⎠⎟ˆ ˆ ( )

( ) ( )=-
S V S

V r
V r

0
0

. 18I
U

L

1

We note that Ŝ is unitary, i.e. ˆ ˆ†=-
S S

1
. This basis change

transforms the Schrödinger equation into

⎛
⎝⎜

⎛
⎝⎜

⎞
⎠⎟

⎞
⎠⎟

ˆ ( )
( ) ( )

m
- + + F = F
 d

dr
R

V r
V r

E
2

0
0

, 19U

L
coll

2 2

2

where ˆ ˆ ˆ= +R R R1 2 is the non-adiabaticity operator with

⎛
⎝⎜

⎞
⎠⎟

ˆ ˆ ˆ
( )

m
= - -

R i S
dS

dr

d

dr
, 201

2
1

⎛
⎝⎜

⎞
⎠⎟

ˆ ˆ ˆ
( )

m
= - -

R S
d S

dr2
. 212

2
1

2

2

Expressing R̂1 and R̂2 in terms of matrices,

⎛
⎝⎜

⎞
⎠⎟ˆ ( )=

-
R

R R
R R

d

dr
, 22d nd

nd d
1

1 1

1 1

⎛
⎝⎜

⎞
⎠⎟ˆ ( )=

-
R

R R
R R

, 23d nd

nd d
2

2 2

2 2
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we obtain the coupled Schrödinger equation in the following
form,

⎡
⎣⎢

⎤
⎦⎥

( )

( )

j m
j

j

j
j

=- - - -

- -


d

dr
E V R R

d

dr

R
d

dr
R

2

, 24

U
coll U d U d

U

nd
L

nd L

2

2 2 2 1

1 2

⎡
⎣⎢

⎤
⎦⎥

( )

( )

j m
j

j

j
j

=- - - +

+ -


d

dr
E V R R

d

dr

R R
d

dr

2

. 25

L
coll L d L nd

U

nd U d
L

2

2 2 2 1

2 1

The non-diagonal elements of R̂ mix the channels U and L. They
are only appreciable close to the avoided crossing.

A.3. Rabi frequency Ω for arbitrary collision angles

Here, we calculate the Rabi frequency Ω along with the
effective transition dipole matrix element di(ek) for an optical
transition from the atomic ground state to a Rydberg state for
the case when the quantization axis z is not collinear with the
internuclear axis z′ of atom and ion. Let the ground state atom
be in the state ∣ ∣bñ = å ñg g m,m m . Here, the angular
momentum J=1/2 is not indicated. The electrical field of
the laser is ( )


=   , ,x y z . The light field can be decom-

posed into the spherical components:

( ) ( )= - - =   i a
1

2
, 26x y1 1

( )= =   a , 27z0 0

( ) ( )= + =- -   i a
1

2
, 28x y1 1

where = + +   x y z
2 2 2 and the {ai} are relative ampli-

tudes of the light polarization components ( ∣ ∣å =a 1i i
2 ).

The rotation from the lab frame {x, y, z} into the mole-
cular frame {x′, y′, z′}, for which the internuclear axis z′ is the
quantization axis, is effected by a rotation vector


Q with

magnitude Θ (see also figure 1). For simplicity the frames are
chosen such that the y, y′-axes point along


Q. The atomic

ground state in the molecular frame is

∣ ( ) ∣ ( )( ) bñ = å -Q ¢ñ¢ ¢g d g m, . 29m m m m m, ,
1 2

Here, ( )( ) -Q¢dm m,
1 2 is given via ( )˜

( ) Qdm m,
1 2 = ˜ ∣ ( )∣á - Q ñg m i J g m, exp ,y

representing Wigner’s (real-valued) small d-matrix for J=1/2.
Jy is the y-component of the angular momentum operator. We
would like to point out, that throughout the paper a prime (′)
inside a bra or ket, e.g. ∣ ¢ñg m, , has a double meaning: (a) it
creates a new variable name (here, m′) and (b) it indicates that the
quantum numbers are determined in the molecular frame. Bras or
kets without prime are in the lab frame. The polarization ampli-
tudes {ai} of the light in the lab frame transform into{ }¢ai for the
primed-frame

( ) ( )( )å¢ = -Qa d a , 30i
k

i k k,
1

where the rotation matrix elements are for J=1 and the rotation
also is about the y-axis.

The atom-light interaction Hamiltonian is given by

·

( )

 
=-
= - å
= - å






H er
e r

e r a , 31

AL e

i e i i

i e i i

,

,

where

( ) ( )= - +r x iy
1

2
, 32e e e,1

( )=r z , 33e e,0

( ) ( )= --r x iy
1

2
, 34e e e, 1

are the spherical components of

re. The components re,1, re,0,

re,−1 can be viewed as operators which induce σ+, π,
σ−-transitions, respectively, so that the m-quantum number of
the atom changes by 1, 0, −1, respectively.

In the rotated coordinate system {x′, y′, z′} the Hamil-
tonian for atom-light interaction reads

( )å= - ¢ ¢H e r a , 35AL
i

e i i,

with polarization amplitudes { }¢ai as defined in equation (30).
The ket for a molecular Rydberg state with angular momen-
tum ¢mJ about the internuclear axis is ∣ ¢ñe m,k J , where the
label k specifies the PEC. We note that also the internuclear
separation r is implicitly fixed. The transition matrix element
from the ground state ∣ ñg (which is a 5S1/2 state) to the
Rydberg state ∣ ¢ñe m,k J is given by

⟨ ∣ ∣ ⟩ ⟨ ∣ ( ) ( ) ∣ ⟩

⟨ ∣( ) ∣ ⟩

( ) ( )
( )

( )

( ) ( )/

å

å

b

¢ = - -Q

= -

´ -Q -Q

¢ ¢

¢ ¢ ¢

¢

¢





e m H g e m e r d a g

e m e r g m

d a d

, ,

, ,

.

36

k J AL k J
i n

e i i n n

i m m n
k J e i

i n n m m m

,
, ,

1

, , ,
,

,
1

,
1 2

The term ⟨ ∣( ) ∣ ⟩ ( )¢ - ¢ ¢ =e m e r g m d e, ,k J e i i k, is the electric
dipole transition matrix element, as defined in equation (7) and
calculated earlier in section 3.3. We note that due to rotational
invariance, ⟨ ∣ ∣ ⟩ ⟨ ∣ ∣ ⟩¢ ¢ ¢ =e m r g m e m r g m, , , ,k J e i k J e i, , , when ¢ =mJ

mJ and m′=m. The Rabi frequency ( )W ¢mJ is given by

( ) ∣ ∣ ( )W ¢ º á ¢ ñ m e m H g m, , . 37J k J AL

Due to the degeneracy of the Rydberg states ∣ ¢ñe m,k J and
∣ - ¢ñe m,k J the effective optical coupling strength is

( ) ( ) ( )W = W ¢ + W - ¢m m , 38J J
2 2

coupling to the superposition state

∣ ⟩ ∣ ⟩
( )

W ¢ + W - ¢

W + W

¢ - ¢

¢ - ¢

e m e m, ,
. 39m k J m k J

m m
2 2

J J

J J
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A.4. Approximate analytic expression for the tunneling
amplitude

Here, we derive an approximate, analytical expression for the
tunneling probability Pt through the barrier in channel U for
the case Δ>0. The textbook expression for the transmission
probability through a barrier is

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟ ( )ò

m
= - -


P V E drexp 2

2
, 40t

T

T

coll
p

p

1

2

where Tp1 and Tp2 are the classical turning points. As in
section A.5 of the appendix we make the approximations that
Ω is independent of r, that Ve=−0.5 kH (r− rs)

2−ÿΔ is
simply harmonic and that Vg=0. For Δ>0, the adiabatic
potential VU then approximately has the shape of a Lorentzian

( ) ( )
( ) ( )

( )»
G

G + -
V r V

r r

2

2
, 41U

s
0

2

2 2

with height ( )= -D + W + D V 0.50
2 2 which for

Ω=Δ goes over into the well-known expression for the
light shift, V0=Ω2ÿ/(4Δ).

The width of the barrier is given by G =
( )W  V k2 H

2
0 which for the same limit, Ω=Δ, goes

over into G = D k8 H . The classical turning points are

- = = - +
b

GT T r1p p s1 2 2

1 , using β=Ecoll/V0. The int-

egral of equation (40) can be analytically solved, yielding

⎛
⎝⎜

⎞
⎠⎟

( ) ( ) ( )m
b

b
b= -

G -


P
V

Cexp
2 1

, 42t
0

where

( ) ( )

[ ( ) ( ) ( )] ( )

òb
g

g
g g g

=
-
+

= - - - + -

-
C

y

y
dy

E K

1

1

2
1 . 43

1

1 2

2

Here, γ=(1−β)/β, and the functions K and E are the
complete elliptic integrals for the first and second kind,
respectively. C(β) can be approximated by the simple
expression ( ) ( )b b p» +C 0.226 ln 2 in the relevant range
0.01�β�0.99.

A.5. Harmonic barrier model

We consider here the special case where the potential barrier
Ve [see e.g. figures 6(a) and (c)] is purely harmonic and
radially symmetric, i.e. ( )= - - - DV k r r0.5e H s

2 , and the
coupling Ω between ground and excited state does not depend
on r. We ignore the 1/r4 dependence of the polarization
potential of the ground state and set Vg=0. The radial
Schrödinger equation for s-waves then reads

⎛
⎝⎜

⎞
⎠⎟( )

( )
m

- Y +
W

W
Y = Y

 


d

dr V r
E

2

0 2
2

. 44
e

coll

2 2

2

Similar as for a harmonic oscillator, ‘Hooke’s constant’ kH
introduces an energy scale m= E k0.5s H , and a length

scale ( )m= l E1 2s s . In units of these two scales the

Schrödinger equation becomes

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟˜

˜
˜ ˜ ˜

˜ ( )- Y +
W

W - - D
Y = Y

d

dr r
E

0 2

2
, 45coll

2

2 2

where ˜ ( )= -r r r ls s, W̃ = W Es, D̃ = D Es, and
˜ =E E Ecoll coll s. Thus, the solution of the problem, along with
the transmissivity and reflectivity of the barrier, and the non-
adiabaticity of the crossing, only depend on the three
dimensionless parameters ˜ ˜ ˜W D E, , coll.
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