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[WIP] Crowdsourcing Classroom Observations
to Identify Misconceptions in Data Science

Project Overview

Societal needs for converting the vast amounts of data into meaningful information drive the
current demand for the field of data science. Asa developing field, consensus on curricular content
and learning objectives has yet to be reached, particularly weighing the disciplinary contributions
of computer science, mathematics, statistics, and other domain knowledge areas. This need fueled
the rapid growth of data science education training the next generation of data-centric workers.
Inttially, data science teaching practices drew from data science's parent disciplines (e.g.,computer
science, mathematics and statistics). However, because little consensus exists on the appropriate
blend of these fields, pedagogical practices need to be critically evaluated for their effectiveness
in the new context of data science education.

The Investigations of Student Difficulties in Data Science Instruction project addresses the early
development of concept inventory topics which present the most difficulty for students to learn
within data science. In particular, this project addresses three primary research objectives: (1)
identify student misconceptions in data science courses; (2) document students’ prior knowledge
and identify courses that teach early data science concepts; and (3) confirm expert identification
of foundational data science concepts, and their importance for introductory-level data science
curricula.

During the first year of this grant we progressed on items (1) and (3). For objective (1) we
developed and launched a pilot assessment, the difficulty protocol, for identifying student
difficulties within data science courses. The difficulty protocol includes weekly reflective
responses from faculty, teaching assistants, and students engaged in data science courses offered
at the three participating institutions. For objective (3) we collected approximately 200 survey
responses validating important data science concepts from the existing body of knowledge
presented by the Edison Project [1]. Faculty and industry practitioners from data science and
closely related fields comprised the survey respondents.

Preliminary results of our overall efforts will be presented at the ASEE National Conference and
Exposition in the NSF Grantees poster session, however this paper focuses on the development
and analysis of the difficulty protocol. Asa work in progress, our data, analyses, and findings are
not yet final and are subject to change as we progress through additional phases of the project.

Theories of Difficulty and Misconceptions

As an emerging field, data science presents complex questions around appropriate educational
objectives, resources, and curricular norms. Given the ubiquity of data science it is critical that
current industrial and academic definitions of what data science is, and what it means to practice
data science, be examined and embedded in early curricular offerings. Notably ahead of efforts in
the United States, the European Union established and publicly discussed data science curricula



through the Edison Project [1]. The Edison Project includes a complete undergraduate curriculum
including course learning objectives, goals, and more. Developed in consultation with European
industrial interests and having undergone several revisions, the Edison Project developed a data
science body of knowledge which serves as a foundation for a concept inventory in the field.
However, there is still sparse literature of theories or investigations around learning difficulties
within data science.

The identification of misconceptions and difficult concepts within data science allows researchers
to begin carefully examining teaching practices in data science. For example, Freeman et al. [2]
and other work by Handelsman et al. [3,4] demonstrate the positive impacts of active learning
methods on student’s grades in STEM classes, drawing extra attention to the significantly lower
failure rates in STEM courses that use active learning methods. Similarly, opinion pieces like “The
worst way to teach” by David M. Bressoud [5], advocate for educators choosing active learning
methods in their classrooms over the traditional lecture-based methods. Much of this scholarship
of teaching and learning work was spurred by having an effective method for consistently
assessing student learning and earlier documentation of student misconceptions.

Crowdsourcing A Difficulty Protocol

A significant part of this research program investigates student difficulty within and
misconceptions of data science in actual classrooms. Typically the best way to understand student
behavior in a classroom is through direct observation, but gleaning the nuances of their behavior
requires extended observations. As such, an extended, direct observation is impractical. Extensive
work shows that student self-reports alone can be unrelable. Students may under- or over-report
their degree of misunderstanding based on any number of external factors, or they may legitimate ly
not know the degree of their misunderstandings relative to certain topics. Instead of relying only
on student self-observations, this study uses a triangulated approach incorporating instructors,
teaching assistants, and students each completing a weekly reflection. The reflection asks about
the difficulties or misunderstandings experienced in the classroom during the past week. The
protocol consists of five items that are tailored to the instructor, TA, and student audiences, but
generally consist of:

1. What topics did you cover this week? [Open Answer]
What kinds of activities did your students focus on this week out of class? [Select All That
Apply]

3. What questions did students raise this week? [Open Answer]

4. By observation, what concepts or processes did students struggle with? [Open Answer]

5. Which student questions were surprising to you? [Open Answer]

In the fall 2019 term, Smith College piloted the difficulty protocol with one faculty member and
five students in an introductory data science course. Even in the relatively small dataset, patterns
are beginning to emerge where students report difficulty around selection and context and the
mstructor reports center more on presumed difficulty with high-level concepts and specific
application functionality. Further analysis will be presented at the conclusion of the spring
semester once additional data has been collected and analyzed.
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