

1 **Microampere electric current caused bacterial
2 membrane damage and two-way leakage in short time**

3
4 Venkata Rao Krishnamurthi¹, Ariel Rogers¹, Janet Peifer¹, Isabelle I. Niyonshuti², Jingyi
5 Chen^{2,3}, Yong Wang^{1,3,4,*}

6
7 ¹Department of Physics, ²Department of Chemistry and Biochemistry, ³Microelectronics
8 Photonics Program, ⁴Cell and Molecular Biology Program, University of Arkansas,
9 Fayetteville, Arkansas, 72701, United States.

10
11 *Corresponding author: yongwang@uark.edu

13 **Abstract**

14 Physical agents such as low electric voltage and current have recently gained attention
15 for antimicrobial treatment due to their bactericidal capability. Although microampere
16 electric current was shown to suppress the growth of bacteria, it remains unclear to what
17 extent the microampere current damaged the bacterial membrane. Here, we investigated
18 the membrane damage and two-way leakage caused by microampere electric current (\leq
19 100 μ A) with a short exposure time (30 min). Based on MitoTracker staining, propidium
20 iodide staining, filtration assays, and quantitative single-molecule localization microscopy,
21 we observed significant membrane damage, which allowed two-way leakage of ions,
22 small molecules, and proteins. This study paves the way to new development and
23 antimicrobial applications of ultra-low electric voltage and current.

26 **Importance**

27 Although electric voltage and current have been studied for a long time in terms of their
28 ability to suppress the growth of bacteria and kill bacteria, increasing interest has been
29 aroused more recently due to the prevalence of antibiotic resistance of microbes in the
30 past decades. Toward understanding the antimicrobial mechanism of low electric voltage
31 and current, previous studies showed that treating bacteria with milliampere electric
32 currents (≥ 5 mA) for ≥ 72 hours led to significant damage of the bacterial membrane,
33 which likely resulted in leakage of cellular contents and influx of toxic substances through
34 the damaged membrane. However, it remains unclear to what extent membrane damage
35 and two-way (i.e. inward and outward) leakage are caused by lower (i.e., microampere)
36 electric current in a shorter time frame. In this work, we set out to answer this question.
37 We observed that the membrane damage was caused by microampere electric current in
38 half an hour, which allowed two-way leakage of ions, small molecules, and proteins.

39

40

41

42 **Keywords:** Ultra-low electric current, super-resolution fluorescence microscopy, single-
43 molecule localization microscopy, membrane damage, leakage

44 Introduction

45 As antibiotic resistance of bacteria has become one of the biggest threats to public health
46 (1), alternatives to antibiotics have been attracting broad interest and attention (2, 3).
47 Physical methods, such as sunlight/UV, fire, drying, high temperature, and high pressure,
48 have played important roles in sterilization and disinfection from very early times of human
49 history (4). Since the 1960s, electric voltage, current, and field have been explored as
50 physical means for suppressing the growth of, and/or killing, bacteria. While most of the
51 early studies focused on the bactericidal effects of high electric voltage and current (5–
52 8), it was found, more recently, that low electric voltage and current can also effectively
53 kill bacteria and biofilms (9–27). For example, Pareillexu and Sicard investigated the
54 effects of low electric current ranging from 10 to 200 milliampere (mA) on the viability of
55 *Escherichia coli* (*E. coli*) bacteria and found that current as low as 25 mA could kill the
56 bacteria (27). The lethal activity of mA current was confirmed by other reports (9, 17–19,
57 25, 26). In addition, many studies showed that ultra-low electric current at microampere
58 (μ A) was also bactericidal (10, 13, 18, 20, 21, 24); even electric field (without current) can
59 inhibit the growth of planktonic bacteria (16). Furthermore, electric current at μ A and/or
60 mA have been shown to be effective for treating biofilms (11, 12, 14, 15, 18, 22–24, 28).
61

62 Efforts have been made toward understanding the antimicrobial mechanisms of low
63 electric voltage and current. Possible mechanisms include membrane damage and
64 disruption, reduction in ATP production and enzymatic activities (17, 26), and generation
65 of reactive oxygen species (ROS) (13–15). Membrane damage caused by high electric
66 voltage has been well known for a long time. For example, electroporation is a commonly
67 used microbiological technique to deliver DNA and proteins into bacteria and cells by
68 applying high electric voltage at kilovolts (kV) (29–31). More recently, transmission
69 electron microscopy showed that treating bacteria at low electric current of 5 mA for \geq 72
70 hours led to significant damage, based on which leakage of cellular contents and influx
71 of toxic substances through the damaged membrane were suggested (17). An interesting
72 follow-up question is to what extent membrane damage and two-way (i.e. inward and
73 outward) leakage are caused by microampere electric current in a shorter time frame.
74 Although previous results showed that microampere electric current were effective for
75 suppressing the growth of bacteria, this question remains unclear.
76

77 In this work, we set out to answer this question by investigating possible membrane
78 damage of bacteria after subjecting them to microampere electric current of \leq 100 μ A

79 (corresponding to voltage ≤ 2.5 V) for 30 min. The effect of the electric current on the
80 bacterial membrane was first examined by MitoTracker staining and fluorescence
81 microscopy. In addition, propidium iodide (PI) staining and filtration assays were carried
82 out to assess the two-way leakage of ions, small molecules, and proteins due to the
83 membrane damage caused by the microampere electric current. Furthermore,
84 quantitative single-molecule localization microscopy, which allowed us to localize, and
85 count the number of, histone-like nucleoid structuring (H-NS) proteins inside individual
86 bacteria, was performed to evaluate the changes in the organization and clustering of the
87 H-NS proteins and to quantify the leakage of the H-NS proteins out of the bacteria caused
88 by microampere electric current.

89 **Materials and Methods**

90 **Bacterial strain and growth**

91 Two K-12 derived *E. coli* strains were used in this study: the first strain is MG1655 (from
92 the Yale Coli Genetic Stock Center) (32, 33), and the second strain has the *hns* gene on
93 the bacterial DNA fused to the gene for mEos3.2 fluorescent protein, which was derived
94 from the EosFP fluorescent protein from the stony coral *Lobophyllia hemprichii* (34, 35).
95 The second strain expresses fluorescent H-NS-mEos3.2 fusion proteins, allowing us to
96 perform fluorescence-based filtration assays and quantitative single-molecule localization
97 microscopy (34, 36–39), as described below. The bacteria stocks were stored at -80°C
98 as glycerol stocks following standard protocols (40, 41). The purity of the stocks was
99 regularly monitored by phenotypic characterizations based on colony morphology and
100 growth curve. The bacterial morphology was also regularly monitored under a brightfield
101 or phase contrast microscope. In addition, for the *E. coli* strain expressing fluorescent
102 proteins, the fluorescence of the bacteria and the emission of individual fluorescent
103 proteins were regularly monitored.

104
105 The bacteria were grown at 37°C overnight with orbital rotation at 250 rpm in defined M9
106 minimal medium (autoclave-sterilized), supplemented with 1% glucose (filter-sterilized
107 using a 0.22 μ m filter), 0.1% casamino acids (filter-sterilized using a 0.22 μ m filter), 0.01%
108 thiamine (filter-sterilized using a 0.22 μ m filter) and appropriate antibiotics (none for
109 MG1655; chloramphenicol at a final concentration of 34 μ g/mL for the strain expressing
110 H-NS-mEos3.2 proteins) (36–38, 42). On the second day, the overnight culture was
111 diluted by 50 – 100 times into fresh medium so that the OD₆₀₀ was 0.05 (36–38, 42). The

112 fresh cultures were grown again at 37°C in culture tubes equipped with two sterile
113 aluminum electrodes with orbital rotation at 250 rpm without electric voltage or current
114 (i.e., the wires were shorted, Fig.1A). The resistance of the bacterial cultures ($\approx 32 \text{ k}\Omega$)
115 was measured using a multimeter. When the fresh bacterial culture reached $\text{OD}_{600} \approx 0.3$,
116 low DC voltage was applied to the culture for 30 min (0V – untreated negative control,
117 0.5, 1, 1.5, 2, and 2.5 V, Fig. 1B). The corresponding currents were 0, 16, 31, 47, 63, and
118 78 μA , respectively. After the 30 min treatment, the bacteria were quantified as described
119 below.

120 **Colony-forming-unit (CFU) assay**

121 For the CFU assays, the untreated and treated bacteria were diluted by a factor of 4×10^5
122 or 4×10^6 in fresh LB medium and plated on agar plates. The plates were incubated at
123 37°C overnight, followed by imaging the plates with a gel documentation system (Analytik
124 Jena US LLC, Upland, CA) and manually counting the number of colonies on each plate.
125 Four replicates were performed for each sample.

126 **MitoTracker staining and quantification**

127 To stain the bacterial membrane, MitoTracker Green FM dye (Thermo Fisher Scientific,
128 Waltham, MA) was added to the untreated and treated bacteria at a final concentration of
129 300 nM, and incubated in a shaking incubator (250 rpm, 37°C) for 30 min (43). 8 μL of
130 the stained bacteria were transferred to 5mm X 5mm agarose pads (3% in 1X PBS, ~1
131 mm thick) for mounting. The agarose pads with bacteria were flipped and attached to
132 clean coverslips (cleaned by sonication sequentially in 1 M NaOH, 100% ethanol, and
133 ultra-pure water). Chambers were then constructed by sandwiching rubber o-rings
134 between the coverslips and cleaned microscope slides. The chambers were sealed using
135 epoxy glue and then mounted on a microscope for fluorescence imaging (excitation = 488
136 nm). From the acquired images, the average fluorescence intensities of 100 bacteria
137 treated at each voltage were measured using ImageJ (44–46).

138 **Propidium iodide (PI) staining and quantification**

139 To measure possible inward leakage due to membrane damage, the untreated and
140 treated bacteria were first fixed by 3.7% formaldehyde (Sigma-Aldrich, St. Louis, MO) and
141 stained with PI (G-Biosciences, St. Louis, MO) (47, 48). The PI-stained bacteria were
142 mounted on agarose pads and prepared for fluorescence imaging similar to the

143 MitoTracker experiments, except that the excitation wavelength was 532 nm. The stained
144 cells were counted, and their percentages were calculated based on the acquired
145 fluorescence images.

146 **Filtration assays**

147 Filtration assays to assess the leakage of cellular contents due to membrane damage
148 were performed similar to that of Chen and others (2013) (49). Briefly, the untreated and
149 treated bacteria (the strain expressing H-NS-mEos3.2 fusion proteins) were filtered by
150 0.2 μ m filters (VWR International LLC, Radnor, PA), resulting in filtrates containing leaked
151 cellular contents if membrane damage occurred, in addition to proteins and molecules
152 from the culture media. For each sample, the filtrate was aliquoted into 96-well plate (200
153 μ L per well), followed by measuring the absorbance at 280 nm and fluorescence at 525
154 nm (excitation = 498 nm) on a multi-mode microplate reader (Synergy H1, BioTek,
155 Winooski, VT). The relative change in the absorbance was estimated by $\delta A_{280} =$
156 $\left(\frac{A_{280}^+}{A_{280}^-} - 1\right) \times 100\%$, where A_{280}^- and A_{280}^+ were the absorbances at 280 nm of the filtrates
157 for bacteria before and after microampere current treatment, respectively. Similarly, the
158 relative change in the fluorescence intensities of the filtrates was estimated by $\delta F =$
159 $\left(\frac{F^+}{F^-} - 1\right) \times 100\%$, where F^- and F^+ were the fluorescence of the filtrates for samples
160 before and after microampere current treatment, respectively.

161 **Quantitative single-molecule localization microscopic assay**

162 Quantitative single-molecule localization microscopy (50) was performed on the bacteria
163 subjected to microampere electric currents, following our previous work (36–38, 42).
164 Briefly, the untreated and treated bacteria were first fixed by 3.7% formaldehyde for 30
165 min at room temperature and harvested by centrifugation (1000 g for 10 min). The
166 harvested cells were resuspended in 1X phosphate-buffered saline (PBS) buffer and
167 washed three times in 1X PBS buffer. The prepared bacteria were then mounted on
168 agarose pads for imaging. The single-molecule localization microscope was home-built
169 on an Olympus IX-73 inverted microscope with an Olympus TIRF 100X N.A.=1.49 oil
170 immersion objective. The microscope and data acquisition were controlled by Micro-
171 Manager (51, 52). A 405 nm laser and a 532 nm laser from a multi-laser system (iChrome
172 MLE, TOPTICA Photonics, Farmington, NY) were used to “activate” and excite the H-NS-
173 mEos3.2 fusion proteins in the bacteria. Emissions from the fluorescent proteins were
174 collected by the objective and imaged on an EMCCD camera (Andor Technology Ltd –

175 Oxford Instruments, Concord, MA) with an exposure time of 30 ms (the actual time interval
176 between frames was 45 ms). The effective pixel size of acquired images was 160 nm,
177 while the field of view was 256 X 256 pixels.

178

179 The resulted movies (20,000 frames) were analyzed with RapidStorm (53), generating
180 x/y positions, x/y widths, intensity, and background for each detected fluorescent spot. If
181 the intensity of a spot was below 4000 (i.e., too dim) or above 50000 (i.e., too bright), or
182 if the width of a spot was below 200 nm (i.e., too narrow) or above 600 nm (i.e., too wide),
183 the spot was rejected and excluded from later analysis (54). The positions of the spots
184 surviving the rejection criteria were further corrected for sample-drift using a mean cross-
185 correlation algorithm (55). The localizations that appeared in adjacent frames and within
186 10 nm to each other were regrouped as a single molecule (56). The resultant localizations
187 were used for reconstruction of super-resolved images and for further quantitative
188 analysis.

189

190 The localizations of H-NS molecules from each acquisition were first manually segmented
191 into individual bacterial cells using custom MATLAB programs (36). Analysis and
192 quantification of the spatial organization of H-NS proteins were performed on individual
193 cells. Following the segmentation of cells, the number of localizations per bacterium N_p
194 was counted (36). In addition, Voronoi-based quantification and clustering analysis were
195 performed using custom MATLAB programs following Levet et al. (57), from which we
196 estimated the molecular density of H-NS proteins ρ , the mean inter-neighbor distances
197 Δ_{ave} , the number of clusters per bacterium N_{cl} , the number of proteins per cluster N_{pc} ,
198 the area of clusters of H-NS proteins A_{cl} , and the fraction of proteins forming clusters ϕ_{cl}
199 (36, 57).

200 **Results**

201 **Membrane damage caused by microampere electric currents**

202 Microampere electric current was applied to the bacterial culture by applying low electric
203 DC voltage. As the resistance (R) of the bacterial culture was measured to ≈ 32 k Ω , DC
204 voltage (V) in the range of 0 – 2.5 V resulted in current (I) of 0 – 78 μ A ($I = V / R$). After
205 treatment for 30 min, we performed CFU assays and found that the number of live cells
206 decreased after subjecting the bacteria to low electric voltage/current (Fig. 2A), confirming
207 the antimicrobial effect of low electric voltage/current. In addition, we stained the bacterial

208 membrane by MitoTracker Green FM dye (43). As shown in Figs. 2B and 2C, the intensity
209 of the bacterial membrane became higher after subjecting the bacteria to the
210 microampere electric current. To quantify this observation, we estimated the mean
211 intensities of the bacteria and examined the dependence of the mean intensity on the
212 voltage (Fig. 2D). The intensity increased slightly at 0.5 V or 16 μ A, indicating changes in
213 the bacterial membrane. The average intensity increased \geq 4-fold when cells were
214 exposed to voltage \geq 1.5 V (or current \geq 47 μ A), and many bacterial cells showed
215 extremely high brightness (up to 19 times brighter) compared to the negative control,
216 suggesting that many of the treated cells had significant changes in their membrane.
217 Although controversy exists (58, 59), previous studies showed that the fluorescence of
218 membrane-incorporated MitoTracker Green dye depends on the membrane potential (60,
219 61); it is possible that the microampere electric current altered the bacterial membrane
220 potential.

221 **Inward leakage due to membrane damage caused by microampere electric
222 currents**

223 It was previously proposed that membrane damage caused by low electric current
224 allowed the influx of toxicants (17). To test this possibility with microampere electric
225 current, propidium iodide (PI) (47, 48) was used to stain the DNA of the bacteria after
226 treatment by microampere electric current. The rationale being that electrically induced
227 membrane damage would allow PI to enter the bacteria to stain DNA, influx of ions and
228 other small organic molecules would also be possible. Representative images of
229 untreated (0 V or 0 μ A) and treated (0.5 – 2.5 V or 16 – 78 μ A) bacteria are shown in Fig.
230 3A, where the fluorescent images from PI staining (red) are superposed on the inverted
231 phase contrast images (blue). It was observed that more bacteria were stained by PI at
232 higher voltages and currents. Quantifying the percentage of PI-stained bacteria (P_{pi})
233 showed that the percentage of membrane-damaged bacteria increased quickly from 20%
234 to \approx 80% at 1.5 – 2 V or 47 – 63 μ A (Fig. 3B). This observation confirmed that the
235 membrane damage caused by microampere electric current were significant enough to
236 enable inward leakage of at least ions and small molecules with a size of \leq 1 nm.

237 **Outward leakage due to membrane damage caused by microampere electric
238 currents**

239 Our PI-staining result showed that influx of ions and small organic molecules (\leq 1 nm)
240 was possible due to membrane damage caused by microampere electric current, which

241 also implied that small cellular contents, including amino acids, could leak out of the
242 bacteria. Another question is whether biological macromolecules, such as proteins and
243 nucleic acids, could also leak out. To answer this question, we adopted a filtration assay
244 that was used to study the membrane damage caused by carbon nanotubes (49). From
245 the relative changes in the absorbance (δA_{280}) of the filtrates for the bacteria before and
246 after microampere current treatment, we observed a slight increase, ~1% (Fig. 4A),
247 providing weak evidence of possible outward leakage of macromolecules. Because the
248 “background” from the culture media could contribute significantly to the absorbance, it is
249 likely that the measured increase in δA_{280} was underestimated.

250

251 To lower the “background” due to the culture media, a modified filtration assay based on
252 fluorescence was performed using an *E. coli* strain that expresses histone-like nucleoid
253 structuring (H-NS) proteins fused to mEos3.2 fluorescent proteins (34). By quantifying the
254 relative changes in the fluorescence intensities (δF) of the filtrates, we observed an
255 increase of ~10% for the bacteria treated at 2.5 V or 78 μ A. This observation suggested
256 that the membrane damage caused by the microampere electric currents were significant
257 enough to allow proteins to leak out of the bacteria.

258 **Quantification of protein leakage by single-molecule localization microscopy**

259 The filtration assays suggested that proteins leaked out of bacteria after treating the
260 bacteria by $\leq 100 \mu$ A DC current. To further confirm such protein leakage, we measured
261 the number of the histone-like nucleoid structuring (H-NS) proteins inside individual
262 bacteria before and after microampere current treatment for 30 min using single-molecule
263 localization microscopy (SMLM) (50, 54, 62, 63). SMLM is one type of super-resolution
264 fluorescence microscopy that localizes individual molecules of interest with a precision of
265 ≤ 10 nm (64); therefore, it not only produces super-resolved images with high spatial
266 resolution, but also provides a convenient way to count the number of molecules. Without
267 applying sophisticated algorithms (65–67), the number of molecules of interest is on
268 average proportional to the intensity in the super-resolved images or the number of
269 localizations obtained by SMLM (42).

270

271 We performed single-molecule localization microscopy on untreated and treated bacteria,
272 using the *E. coli* strain expressing H-NS-mEos3.2 fusion proteins, as mEos3.2 fluorescent
273 proteins are photoactivable and allow super-resolution imaging (34, 36). Representative
274 images of H-NS proteins in untreated and treated bacteria are shown in Fig. 5A. For the

untreated negative control, H-NS proteins were organized as clusters inside the bacteria (first column in Fig. 5A and 5B), consistent with previously reported results (36, 37, 39). After subjecting the bacteria to DC voltage of 1 – 2.5 V (or current of 31 – 78 μ A), the intensities on the super-resolved images became significantly dimmer (columns 3–6 in Fig. 5A and 5B). As the intensity in super-resolved images correlates with the probability of localizing the molecules of interest, this result indicates that less H-NS proteins were present in the bacteria after treating the bacteria with microampere electric current.

To quantify this result, we segmented the bacteria (36) and counted the number of localizations of H-NS proteins in each cell, N_p . Due to the stochastic nature in the activation and detection of the mEos3.2 fluorescent proteins, N_p is expected to be proportional to, on average, the number of H-NS proteins in the bacteria (36, 42). The histograms of N_p are shown in the inset of Fig. 5C, where the baselines of the histograms were vertically shifted for better visualization of the differences. It is clear that the peaks of the N_p distributions translated to the left as the applied voltage increased, suggesting that the number of H-NS proteins per bacterial cell decreased when subjecting the bacteria to low DC voltage and current. We also calculated the mean of N_p and standard error of the mean (SEM) for each sample. Note that, as the distributions of N_p were bell-shaped in the linear-log scale (inset of Fig. 5C), we estimated the mean of $\log(N_p)$ and then calculated the mean of N_p from $N_p = \exp(\log(N_p))$. As shown in Fig. 5C, the average number of H-NS proteins per cell decreased nearly linearly. It is also noted that the observed decrease in the number of H-NS proteins per bacterial cell is unlikely due to cellular responses (e.g., lower expression level of H-NS proteins) for several reasons. First, the treatment time (30 min) is relatively short, comparing to the degradation time of proteins in bacteria (~ hours) (68). Second, our previous work on H-NS proteins in bacteria treated by antimicrobial silver ions and silver nanoparticles showed that the number of H-NS proteins did not decrease within several hours (36). Therefore, the microscopic data on individual bacteria directly suggested that H-NS proteins leaked out of the bacteria after microampere electric current treatment.

We examined how the spatial organization of the H-NS proteins was affected by the electric treatment based on Voronoi diagram tessellation (36, 57). We computed the molecular density (ρ) of the H-NS proteins and observed that the distribution of ρ shifted to the left, indicating the density decreased as the applied voltage increased (inset of Fig. 5D), which is expected as a result of the decrease of the number of H-NS proteins per

310 cell. Interestingly, the mean of the molecular density started to decrease at 1.5 – 2 V (or
311 47 – 63 μ A) as shown in Fig. 5D, which is different from the dependence of the number
312 of H-NS proteins per cell on the applied electric voltage and current (Fig. 5C). We also
313 observed a shift to the right in the distribution of the mean inter-neighbor distances Δ_{ave}
314 (inset of Fig. 5E), suggesting that the inter-molecular distances for some H-NS proteins
315 became larger when bacteria were treated by low DC voltage and current, consistent to
316 the result of the molecular density. In addition, we identified the clusters of H-NS proteins
317 based on Voronoi diagrams (36, 57) and counted the number of clusters per bacterial cell
318 (N_{cl}) and the number of proteins per cluster (N_{pc}). We found that both N_{cl} and N_{pc}
319 decreased after treating the bacteria with DC voltages and currents (Fig. 5F).
320 Furthermore, by quantifying the area of clusters of H-NS proteins, we observed that the
321 H-NS clusters became smaller (Fig. 5G). Lastly, we examined the fraction of H-NS
322 proteins forming clusters in individual bacteria, $\phi_c = N_{cp}/N_p$, where N_p is the number of
323 localizations (i.e., detected proteins) per cell, and N_{cp} the number of proteins that form
324 clusters in the cell. We observed that the clustering fraction decreased from 10% for the
325 negative control to 0% at 2.5 V or 78 μ A (Fig. 5H).

326 **Conclusions and Discussions**

327 To summarize, we investigated the membrane damage of bacteria and the two-way
328 leakage caused by microampere electric current. We observed that bacteria subjected to
329 $\geq 47 \mu$ A current for 30 min showed much higher intensities with MitoTracker staining,
330 suggesting that the bacterial membrane was altered by the microampere electric current.
331 The membrane damage caused by microampere current was large enough to allow PI
332 molecules to enter the bacteria, suggesting that inward leakage of ions and small
333 molecules was possible. In addition, we found based on filtration assays and super-
334 resolution fluorescence microscopy that the membrane damage was significant enough
335 to allow proteins to leak out of the cells. More importantly, using histone-like nucleoid
336 structuring (H-NS) proteins as an example, we quantified the decrease in the number of
337 H-NS proteins per bacterial cell and characterized the changes in the spatial organization
338 of the H-NS proteins caused by the electric treatment. This study highlights that treating
339 bacteria with electric current at $\leq 100 \mu$ A for 30 min caused significant membrane damage
340 and led to two-way leakages of ions, small molecules and proteins.

341
342 It was noted previously that the bactericidal effects of electric voltage and current are
343 complex, and involve various interactions between the bacteria, electricity, electrode

344 materials and medium (17). For example, in addition to the electrical effects, metal ions
345 released from the electrodes into the medium are likely to affect the growth of bacteria,
346 which has been shown in the literature (69). In addition, ROS generated by the electric
347 voltage and current could be another significant contributor (13–15). The current study
348 did not aim to distinguish the contributions of these different effects, while these are
349 interesting questions worth pursuing in future investigations. On the other hand, we argue
350 that heating by the electric voltage/current is unlikely to cause damage to the bacteria in
351 this study, because the used electric power is very low. Considering the resistance of the
352 bacterial culture was $\approx 32 \text{ k}\Omega$, the electric power was below $200 \mu\text{W}$; at this power, it
353 would take more than one day to heat up the bacterial culture (5 mL) by one degree.

354

355 It is worthwhile to highlight that the electric power leading to serious membrane damage
356 of bacteria is very low, which is expected to facilitate the use of microampere electric
357 current (and low electric voltage) for antimicrobial applications. For example, commonly
358 used household batteries can provide the needed voltages to kill bacteria. More
359 importantly, solar panels have an output power of $\sim 10 \text{ mW per cm}^2$ (70); therefore, a solar
360 panel of 1 cm^2 can easily generate the needed electric power for damaging bacterial
361 membranes, suppressing the growth of bacteria and/or killing bacteria. We anticipate that
362 this study intrigues new development and antibiotic applications of low electric current.

363

364 **Acknowledgment**

365 We thank Dr. Joshua N. Milstein for the generous gift of the *E. coli* strain expressing
366 mEos3.2-HNS fusion proteins. This work was supported by the University of Arkansas,
367 the Arkansas Biosciences Institute (Grant No. ABI-0189, No. ABI-0226, No. ABI-0277),
368 and the National Science Foundation (Grant No. 1826642). A.R. and J.P. were supported
369 through the Research Experience for Undergraduate program funded by the National
370 Science Foundation (Grant No. 1460754). We are also grateful for supports from the
371 Arkansas High Performance Computing Center (AHPCC), which is funded in part by the
372 National Science Foundation (Grants No. 0722625, 0959124, 0963249, 0918970) and
373 the Arkansas Science and Technology Authority.

374

375 **References**

376

377 1. World Health Organization. 2014. World Health Statistics 2014. World Health
378 Organization.

379 2. François B, Jafri HS, Bonten M. 2016. Alternatives to antibiotics. *Intensive Care Med*
380 42:2034–2036.

381 3. Allen HK, Trachsel J, Looft T, Casey TA. 2014. Finding alternatives to antibiotics.
382 *Ann N Y Acad Sci* 1323:91–100.

383 4. Blancou J. 1995. History of disinfection from early times until the end of the 18th
384 century. *Rev Sci Tech* 14:21–39.

385 5. Rosenberg B, Vancamp L, Krigas T. 1965. Inhibition of cell division in *escherichia*
386 *coli* by electrolysis products from a platinum electrode. *Nature* 205:698–699.

387 6. Sale A, Hamilton W. 1967. Effects of high electric fields on microorganismsl. Killing
388 of bacteria and yeasts. *Biochim Biophys Acta Gen Subj* 148:781–788.

389 7. Hülsheger H, Potel J, Niemann EG. 1981. Killing of bacteria with electric pulses of
390 high field strength. *Radiat Environ Biophys* 20:53–65.

391 8. Hülsheger H, Potel J, Niemann EG. 1983. Electric field effects on bacteria and yeast
392 cells. *Radiat Environ Biophys* 22:149–162.

393 9. Blenkinsopp SA, Khoury AE, Costerton JW. 1992. Electrical enhancement of biocide
394 efficacy against *Pseudomonas aeruginosa* biofilms. *Appl Environ Microbiol*
395 58:3770–3773.

396 10. Liu WK, Tebbs SE, Byrne PO, Elliott TS. 1993. The effects of electric current on
397 bacteria colonising intravenous catheters. *J Infect* 27:261–269.

398 11. Costerton JW, Ellis B, Lam K, Johnson F, Khoury AE. 1994. Mechanism of electrical
399 enhancement of efficacy of antibiotics in killing biofilm bacteria. *Antimicrob Agents
400 Chemother* 38:2803–2809.

401 12. Stoodley P, deBeer D, Lappin-Scott HM. 1997. Influence of electric fields and pH on
402 biofilm structure as related to the bioelectric effect. *Antimicrob Agents Chemother*
403 41:1876–1879.

404 13. Liu WK, Brown MR, Elliott TS. 1997. Mechanisms of the bactericidal activity of low
405 amperage electric current (DC). *J Antimicrob Chemother* 39:687–695.

406 14. Stewart PS, Wattanakaroon W, Goodrum L, Fortun SM, McLeod BR. 1999.
407 Electrolytic generation of oxygen partially explains electrical enhancement of
408 tobramycin efficacy against *Pseudomonas aeruginosa* biofilm. *Antimicrob Agents
409 Chemother* 43:292–296.

410 15. Brinkman CL, Schmidt-Malan SM, Karau MJ, Greenwood-Quaintance K, Hassett
411 DJ, Mandrekar JN, Patel R. 2016. Exposure of bacterial biofilms to electrical current
412 leads to cell death mediated in part by reactive oxygen species. *PLoS One*
413 11:e0168595.

414 16. Giladi M, Porat Y, Blatt A, Wasserman Y, Kirson ED, Dekel E, Palti Y. 2008.
415 Microbial growth inhibition by alternating electric fields. *Antimicrob Agents
416 Chemother* 52:3517–3522.

417 17. Valle A, Zanardini E, Abbruscato P, Argenzio P, Lustrato G, Ranalli G, Sorlini C.
418 2007. Effects of low electric current (LEC) treatment on pure bacterial cultures. *J
419 Appl Microbiol* 103:1376–1385.

420 18. Schmidt-Malan SM, Karau MJ, Cede J, Greenwood-Quaintance KE, Brinkman CL,
421 Mandrekar JN, Patel R. 2015. Antibiofilm Activity of Low-Amperage Continuous and
422 Intermittent Direct Electrical Current. *Antimicrob Agents Chemother* 59:4610–4615.

423 19. del Pozo JL, Rouse MS, Mandrekar JN, Sampedro MF, Steckelberg JM, Patel R.
424 2009. Effect of electrical current on the activities of antimicrobial agents against
425 *Pseudomonas aeruginosa*, *Staphylococcus aureus*, and *Staphylococcus
426 epidermidis* biofilms. *Antimicrob Agents Chemother* 53:35–40.

427 20. Del Pozo JL, Rouse MS, Euba G, Kang C-I, Mandrekar JN, Steckelberg JM, Patel
428 R. 2009. The electricidal effect is active in an experimental model of *Staphylococcus
429 epidermidis* chronic foreign body osteomyelitis. *Antimicrob Agents Chemother*
430 53:4064–4068.

431 21. van der Borden AJ, van der Mei HC, Busscher HJ. 2005. Electric block current
432 induced detachment from surgical stainless steel and decreased viability of
433 *Staphylococcus epidermidis*. *Biomaterials* 26:6731–6735.

434 22. Kim YW, Subramanian S, Gerasopoulos K, Ben-Yoav H, Wu H-C, Quan D, Carter
435 K, Meyer MT, Bentley WE, Ghodssi R. 2015. Effect of electrical energy on the
436 efficacy of biofilm treatment using the bioelectric effect. *npj Biofilms and
437 Microbiomes* 1:15016.

438 23. Caubet R, Pedarros-Caubet F, Chu M, Freye E, de Belém Rodrigues M, Moreau
439 JM, Ellison WJ. 2004. A radio frequency electric current enhances antibiotic efficacy
440 against bacterial biofilms. *Antimicrob Agents Chemother* 48:4662–4664.

441 24. van der Borden AJ, van der Werf H, van der Mei HC, Busscher HJ. 2004. Electric
442 current-induced detachment of *Staphylococcus epidermidis* biofilms from surgical
443 stainless steel. *Appl Environ Microbiol* 70:6871–6874.

444 25. Rabinovitch C, Stewart PS. 2006. Removal and inactivation of *Staphylococcus
445 epidermidis* biofilms by electrolysis. *Appl Environ Microbiol* 72:6364–6366.

446 26. Ranalli G, Iorizzo M, Lustrato G, Zanardini E, Grazia L. 2002. Effects of low electric
447 treatment on yeast microflora. *J Appl Microbiol* 93:877–883.

448 27. Pareilleux A, Sicard N. 1970. Lethal effects of electric current on *Escherichia coli*.
449 *Appl Microbiol* 19:421–424.

450 28. Davis CP, Weinberg S, Anderson MD, Rao GM, Warren MM. 1989. Effects of
451 microamperage, medium, and bacterial concentration on iontophoretic killing of
452 bacteria in fluid. *Antimicrob Agents Chemother* 33:442–447.

453 29. Neumann E, Schaefer-Ridder M, Wang Y, Hofsneider PH. 1982. Gene transfer
454 into mouse lymphoma cells by electroporation in high electric fields. *EMBO J* 1:841–845.

455 30. Dower WJ, Miller JF, Ragsdale CW. 1988. High efficiency transformation of *E. coli*
456 by high voltage electroporation. *Nucleic Acids Res* 16:6127–6145.

457 31. Crawford R, Torella JP, Aigrain L, Plochowietz A, Gryte K, Uphoff S, Kapanidis AN.
458 2013. Long-lived intracellular single-molecule fluorescence using electroporated
459 molecules. *Biophys J* 105:2439–2450.

460 32. Guyer MS, Reed RR, Steitz JA, Low KB. 1981. Identification of a sex-factor-affinity
461 site in *E. coli* as gamma delta. *Cold Spring Harb Symp Quant Biol* 45 Pt 1:135–140.

462 33. Jensen KF. 1993. The *Escherichia coli* K-12 “wild types” W3110 and MG1655 have
463 an rph frameshift mutation that leads to pyrimidine starvation due to low pyrE
464 expression levels. *J Bacteriol* 175:3401–3407.

465 34. Zhang M, Chang H, Zhang Y, Yu J, Wu L, Ji W, Chen J, Liu B, Lu J, Liu Y, Zhang J,
466 Xu P, Xu T. 2012. Rational design of true monomeric and bright photoactivatable
467 fluorescent proteins. *Nat Methods* 9:727–729.

468 35. Wiedenmann J, Ivanchenko S, Oswald F, Schmitt F, Röcker C, Salih A, Spindler K-
469 D, Nienhaus GU. 2004. EosFP, a fluorescent marker protein with UV-inducible
470 green-to-red fluorescence conversion. *Proc Natl Acad Sci USA* 101:15905–15910.

471 36. Alqahtany M, Khadka P, Niyonshuti I, Krishnamurthi VR, Sadoon AA, Challapalli SD,
472 Chen J, Wang Y. 2019. Nanoscale reorganizations of histone-like nucleoid
473 structuring proteins in *Escherichia coli* are caused by silver nanoparticles.
474 *Nanotechnology* 30:385101.

475 37. Sadoon AA, Wang Y. 2018. Anomalous, non-Gaussian, viscoelastic, and age-
476 dependent dynamics of histonelike nucleoid-structuring proteins in live *Escherichia*
477 *coli*. *Phys Rev E* 98:042411.

478 38. Sadoon AA, Khadka P, Freeland J, Gundampati RK, Manso RH, Ruiz M,
479 Krishnamurthi VR, Thallapuram SK, Chen J, Wang Y. 2020. Silver Ions Caused
480 Faster Diffusive Dynamics of Histone-Like Nucleoid-Structuring Proteins in Live
481 Bacteria. *Appl Environ Microbiol* 86.

482 39. Mazouchi A, Milstein JN. 2016. Fast Optimized Cluster Algorithm for Localizations
483 (FOCAL): a spatial cluster analysis for super-resolved microscopy. *Bioinformatics*
484 32:747–754.

485 40. Koh CM. 2013. Storage of bacteria and yeast. *Meth Enzymol* 533:15–21.

486 41. Gorman R, Adley CC. 2004. An evaluation of five preservation techniques and
487 conventional freezing temperatures of -20 degrees C and -85 degrees C for long-
488 term preservation of *Campylobacter jejuni*. *Lett Appl Microbiol* 38:306–310.

489 42. Wang Y, Penkul P, Milstein JN. 2016. Quantitative Localization Microscopy Reveals
490 a Novel Organization of a High-Copy Number Plasmid. *Biophys J* 111:467–479.

491 43. Poglano J, Ho TQ, Zhong Z, Helinski DR. 2001. Multicopy plasmids are clustered
492 and localized in *Escherichia coli*. *Proc Natl Acad Sci USA* 98:4486–4491.

493 44. Schneider CA, Rasband WS, Eliceiri KW. 2012. NIH Image to ImageJ: 25 years of
494 image analysis. *Nat Methods* 9:671–675.

495 45. Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T,
496 Preibisch S, Rueden C, Saalfeld S, Schmid B, Tinevez J-Y, White DJ, Hartenstein
497 V, Eliceiri K, Tomancak P, Cardona A. 2012. Fiji: an open-source platform for
498 biological-image analysis. *Nat Methods* 9:676–682.

499 46. Rasband WS. 1997. ImageJ. Computer software, U. S. National Institutes of Health,
500 Bethesda, Maryland, USA.

501 47. Rosenberg M, Azevedo NF, Ivask A. 2019. Propidium iodide staining
502 underestimates viability of adherent bacterial cells. *Sci Rep* 9:6483.

503 48. Boulos L, Prévost M, Barbeau B, Coallier J, Desjardins R. 1999. LIVE/DEAD
504 BacLight : application of a new rapid staining method for direct enumeration of viable
505 and total bacteria in drinking water. *J Microbiol Methods* 37:77–86.

506 49. Chen H, Wang B, Gao D, Guan M, Zheng L, Ouyang H, Chai Z, Zhao Y, Feng W.
507 2013. Broad-spectrum antibacterial activity of carbon nanotubes to human gut
508 bacteria. *Small* 9:2735–2746.

509 50. Betzig E, Patterson GH, Sougrat R, Lindwasser OW, Olenych S, Bonifacino JS,
510 Davidson MW, Lippincott-Schwartz J, Hess HF. 2006. Imaging intracellular
511 fluorescent proteins at nanometer resolution. *Science* 313:1642–1645.

512 51. Edelstein A, Amodaj N, Hoover K, Vale R, Stuurman N. 2010. Computer control of
513 microscopes using μ Manager. *Curr Protoc Mol Biol Chapter 14:Unit14.20.*

514 52. Edelstein AD, Tsuchida MA, Amodaj N, Pinkard H, Vale RD, Stuurman N. 2014.
515 Advanced methods of microscope control using μ Manager software. *J Biol Methods*
516 1.

517 53. Wolter S, Löschberger A, Holm T, Aufmkolk S, Dabauvalle M-C, van de Linde S,

518 Sauer M. 2012. rapidSTORM: accurate, fast open-source software for localization
519 microscopy. *Nat Methods* 9:1040–1041.

520 54. Huang B, Wang W, Bates M, Zhuang X. 2008. Three-dimensional super-resolution
521 imaging by stochastic optical reconstruction microscopy. *Science* 319:810–813.

522 55. Wang Y, Schnitzbauer J, Hu Z, Li X, Cheng Y, Huang Z-L, Huang B. 2014.
523 Localization events-based sample drift correction for localization microscopy with
524 redundant cross-correlation algorithm. *Opt Express* 22:15982–15991.

525 56. Coltharp C, Kessler RP, Xiao J. 2012. Accurate construction of photoactivated
526 localization microscopy (PALM) images for quantitative measurements. *PLoS One*
527 7:e51725.

528 57. Levet F, Hosy E, Kechkar A, Butler C, Beghin A, Choquet D, Sibarita J-B. 2015. SR-
529 Tesseler: a method to segment and quantify localization-based super-resolution
530 microscopy data. *Nat Methods* 12:1065–1071.

531 58. Pendergrass W, Wolf N, Poot M. 2004. Efficacy of MitoTracker Green and
532 CMXrosamine to measure changes in mitochondrial membrane potentials in living
533 cells and tissues. *Cytometry A* 61:162–169.

534 59. Poot M, Pierce RH. 1999. Detection of changes in mitochondrial function during
535 apoptosis by simultaneous staining with multiple fluorescent dyes and correlated
536 multiparameter flow cytometry. *Cytometry* 35:311–317.

537 60. Keij JF, Bell-Prince C, Steinkamp JA. 2000. Staining of mitochondrial membranes
538 with 10-nonyl acridine orange, MitoFluor Green, and MitoTracker Green is affected
539 by mitochondrial membrane potential altering drugs. *Cytometry* 39:203–210.

540 61. Buckman JF, Hernández H, Kress GJ, Votyakova TV, Pal S, Reynolds IJ. 2001.
541 MitoTracker labeling in primary neuronal and astrocytic cultures: influence of
542 mitochondrial membrane potential and oxidants. *J Neurosci Methods* 104:165–176.

543 62. Bates M, Huang B, Dempsey GT, Zhuang X. 2007. Multicolor super-resolution
544 imaging with photo-switchable fluorescent probes. *Science* 317:1749–1753.

545 63. van de Linde S, Löschberger A, Klein T, Heidbreder M, Wolter S, Heilemann M,
546 Sauer M. 2011. Direct stochastic optical reconstruction microscopy with standard
547 fluorescent probes. *Nat Protoc* 6:991–1009.

548 64. Huang B, Bates M, Zhuang X. 2009. Super-resolution fluorescence microscopy.
549 *Annu Rev Biochem* 78:993–1016.

550 65. Lee S-H, Shin JY, Lee A, Bustamante C. 2012. Counting single photoactivatable
551 fluorescent molecules by photoactivated localization microscopy (PALM). *Proc Natl
552 Acad Sci USA* 109:17436–17441.

553 66. Nino D, Rafiei N, Wang Y, Zilman A, Milstein JN. 2017. Molecular Counting with

554 Localization Microscopy: A Bayesian Estimate Based on Fluorophore Statistics.
555 Biophys J 112:1777–1785.

556 67. Nino D, Djayakarsana D, Milstein JN. 2019. Nanoscopic stoichiometry and single-
557 molecule counting. Small Methods 1900082.

558 68. Nath K, Koch AL. 1970. Protein degradation in *Escherichia coli*. I. Measurement of
559 rapidly and slowly decaying components. J Biol Chem 245:2889–2900.

560 69. Bal W, Protas AM, Kasprzak KS. 2011. Genotoxicity of metal ions: chemical insights.
561 Met Ions Life Sci 8:319–373.

562 70. Haeberlin A, Zurbuchen A, Walpen S, Schaeerer J, Niederhauser T, Huber C, Tanner
563 H, Servatius H, Seiler J, Haeberlin H, Fuhrer J, Vogel R. 2015. The first batteryless,
564 solar-powered cardiac pacemaker. Heart Rhythm 12:1317–1323.

565