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Abstract

Uncertainties exist in both physics-based and data-driven models. Variance-

based sensitivity analysis characterizes how the variance of a model output is

propagated from the model inputs. The Sobol index is one of the most widely

used sensitivity indices for models with independent inputs. For models with

dependent inputs, different approaches have been explored to obtain sensitiv-

ity indices in the literature. Typical approaches are based on procedures of

transforming the dependent inputs into independent inputs. However, such

transformation requires additional information about the inputs, such as the

dependency structure or the conditional probability density functions. In this

paper, data-driven sensitivity indices are proposed for models with dependent

inputs. We first construct ordered partitions of linearly independent polyno-

mials of the inputs. The modified Gram-Schmidt algorithm is then applied to

the ordered partitions to generate orthogonal polynomials with respect to the

empirical measure based on observed data of model inputs and outputs. Using

the polynomial chaos expansion with the orthogonal polynomials, we obtain

the proposed data-driven sensitivity indices. The sensitivity indices provide in-

tuitive interpretations of how the dependent inputs affect the variance of the

output without a priori knowledge on the dependence structure of the inputs.

Four numerical examples are used to validate the proposed approach.
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1. Introduction

Uncertainties exist in both physics-based and data-driven models. Uncer-

tainty quantification (UQ) methods to characterize and reduce those uncer-

tainties are increasingly popular in engineering studies. As an aspect of UQ,

sensitivity analysis (SA) quantifies how output uncertainties are propagated

from input uncertainties. Two general ways of conducting SA are local sensitiv-

ity analysis (LSA) and global sensitivity analysis (GSA). LSA analyzes how a

small perturbation near an input space value could influence the output. On the

contrary, GSA investigates how the input variability influences the output vari-

ability over the entire input space. In recent studies, variance-based sensitivity

analysis, as a form of GSA, is utilized to understand system uncertainties in var-

ious applications such as material mechanics [1], building energy [2], structural

mechanics [3], hydrogeology [4], and manufacturing [5].

Conducting variance-based sensitivity analysis for models with independent

inputs has been studied widely. Monte Carlo simulation and surrogate models

are two general ways to obtain sensitivity indices for models with independent

inputs. Surrogate models have been shown to be more computationally efficient

compared with Monte Carlo simulation [6]. Polynomial chaos expansion (PCE)

and Kriging (also known as Gaussian process regression) are the two surrogate

models which have been used to compute sensitivity indices most commonly

in the literature [6, 7]. Thanks to the orthogonal property of a PCE model,

sensitivity indices for independent inputs can be directly obtained using PCE

coefficients [8, 9, 7]. PCE-based sensitivity indices appear in various fields in-

cluding fluid dynamics [10], structural reliability [11], and vehicle dynamics [12].

For models with dependent inputs, a limited number of approaches are avail-

able in the literature to conduct variance-based sensitivity analyses. Generalized
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Sobol sensitivity indices have been proposed in Chastaing et al. [13] based on

the hierarchically orthogonal functional decomposition (HOFD). However, the

unboundedness of the resulting sensitivity indices makes their interpretation for

dependent inputs not as straightforward as the Sobol indices for models with

independent inputs [14]. A different framework is proposed in [15] to obtain

sensitivity indices for models with correlated inputs. However, it requires the

knowledge of model structure between the inputs and the outputs. An alter-

native way of obtaining sensitivity indices for models with dependent inputs

is to transform dependent inputs into independent inputs [16, 17, 18]. Even

though the transformation-based methods generate interpretable sensitivity in-

dices, they require strong assumptions on the dependency or distributions of

the inputs.

The main contribution of this paper is the development of a data-driven

method to obtain interpretable sensitivity indices for models with dependent

inputs without invoking any assumptions on the inputs. We first propose the

modified Gram-Schmidt based polynomial chaos expansion (mGS-PCE). The

mGS-PCE increases the numerical robustness of constructing orthogonal poly-

nomials for arbitrarily distributed inputs compared with the GS-PCE in [10].

Then, we propose a method to obtain data-driven sensitivity indices for models

with dependent inputs by constructing ordered partitions of orthonormal poly-

nomials of the inputs. This method estimates some of the sensitivity indices

in [16] and [17] without invoking the assumptions therein. Lastly, we propose

conditional order-based sensitivity indices, which explain the model output vari-

ability in a hierarchical manner.

The remainder of the paper is organized as follows: Section 2 reviews the

background knowledge about Sobol indices and PCE models. Section 3 intro-

duces the modified Gram-Schmidt algorithm and our data-driven method to

obtain sensitivity indices for models with dependent inputs using PCE models.

In Section 4, four numerical examples, where the inputs are dependent, are used

to validate our proposed method. Section 5 provides a few concluding remarks

and a discussion on future research directions.
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2. Technical background

This section briefly reviews sensitivity indices in the existing literature for

models with independent inputs and those with dependent inputs. We first in-

troduce the Hoeffding functional decomposition and the Sobol indices for inde-

pendent inputs. We then review the full sensitivity indices and the uncorrelated

sensitivity indices defined for models with dependent inputs. Lastly, we intro-

duce PCE models and explain how PCE coefficients can be used to calculate

sensitivity indices.

2.1. Hoeffding decomposition and sensitivity indices for independent inputs

Suppose we have n independent random inputs X = (X1, X2, · · · , Xn) with

their density µ(X). For the output Y = f(X) that is square-integrable with

respect to µ(X), its Hoeffding decomposition is defined as follows [19, 13]:

f(X) =
∑︂

u⊆{1,2,...,n}

fu(Xu), (1)

where f∅ = f0 and f0 is a constant and Xu = (Xj)j∈u. Each summand

fu(Xu), u ̸= ∅, in Eq. (1) satisfies∫︂
fu(Xu)µ(Xi) dXi = 0, ∀i ∈ u.

such that

f0 =
∫︂
f(X)µ(X) dX.

In addition, the summands in Eq. (1) are orthogonal to each other as follows:∫︂
fu(Xu)fv(Xv)µ(X) dX = 0, ∀u, v ⊆ {1, 2, . . . , n}, v ̸= u.

Based on the Hoeffding decomposition, the variance of Y is decomposed as

follows [8, 9]:
V ar(Y ) =

∫︂
f2(X)µ(X) dX − f2

0

=
∑︂

u⊆{1,2,...,n}
u ̸=∅

Du(Y ),
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where
Du(Y ) =

∫︂
f2

u(Xu)µ(Xu) dXu

= V ar(E(Y |Xu))−
∑︂
v⊂u
v ̸=u
v ̸=∅

Dv(Y ).

For example, Di(Y ) = V ar(E(Y | Xi)) and Dij(Y ) = V ar(E(Y | Xi, Xj)) −

Di(Y )−Dj(Y ).

Based on the variance decomposition, the Sobol index for set u is defined as

Su = Du(Y )
V ar(Y ) ,

which measures the sensitivity of the output variance with respect to the inputs

in Xu. For a particular input variable Xi, the first-order Sobol index SXi and

total Sobol index STXi are defined as follows:

SXi = Di(Y )
V ar(Y ) ,

STXi
=

∑︂
u∋i

Su.

SXi
represents the percentage of the output variance that is propagated from

the input Xi. STXi represents the percentage of the output variance that is

propagated from the input Xi and its interactions with the other variables.

2.2. Sensitivity indices for dependent inputs

This study focuses on sensitivity indices proposed in [16, 17, 18] because they

are bounded and do not require the knowledge of the model structure between

the inputs and the output in contrast to those considered in [20, 13, 15], as

discussed earlier.

In [16], the Gram-Schmidt algorithm is employed to decorrelate the inputs

when the dependences are characterized solely by the inputs’ first-order condi-

tional moments. Then the full sensitivity indices and the uncorrelated sensitivity

indices (also called independent sensitivity indices in [17]) are defined. On the

other hand, in order to calculate these sensitivity indices when conditional prob-

ability density functions (cPDFs) of the inputs are known, the inverse Rosenblatt
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transformation or the inverse Nataf transformation is applied to transform the

dependent inputs into the independent inputs [17, 18].

Suppose dependent inputs (X1, X2, . . . , Xn) are transformed into indepen-

dent inputs (X̄1, X̄2, . . . , X̄n), for example, under the assumptions of [16] such

that X̄1 = X1 and X̄i = Xi − E
(︁
Xi | X̄1, . . . , X̄i−1

)︁
, ∀i = 2, . . . , n. Intuitively

speaking, X̄1 keeps all information concerning X1 including its dependent part

with the other inputs. X̄i contains all information concerning Xi except its

dependent part with X̄1, . . . , X̄i−1. Thus, X̄n only contains information of Xn

excluding its dependent part with all the other inputs. These constructed in-

dependent inputs allow for calculating the first-order Sobol indices (SX̄i
) and

total Sobol indices (STX̄i
). Then the sensitivity indices with respect to the

dependent inputs are defined as follows [16]:

S̄X1 = SX̄1
is the first-order full contribution of X1 to the variance of the

output.

STX1 = STX̄1
is the total full contribution of X1 to the variance of the

output.

Su
Xn

= SX̄n
is the first-order uncorrelated contribution of Xn to the vari-

ance of the output.

STu
Xn

= STX̄n
is the total uncorrelated contribution of Xn to the variance

of the output.

By permuting the order of the inputs, different sensitivity indices can be fur-

ther calculated. Suppose the initial input variables are ordered as (Xi, Xi+1, . . . , Xn,-

X1, . . . , Xi−1), and the constructed independent inputs are (X̄i, X̄i+1, . . . , X̄n, X̄1, . . . ,-

X̄i−1). Then the full sensitivity indices (S̄Xi
= SX̄i

and STXi
= STX̄i

) and

the uncorrelated sensitivity indices (Su
Xi−1

= SX̄i−1
and STu

Xi
= STX̄i−1

) are

defined. S̄Xi is called the first-order full sensitivity index and STXi
is called

the total full sensitivity index. Su
Xi

is called the first-order uncorrelated sensi-

tivity index and STu
Xi

is called the total uncorrelated sensitivity index.
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2.3. PCE and PCE-based sensitivity indices

As a way of calculating sensitivity indices, PCE is known to be more compu-

tationally efficient than Monte Carlo simulations [8, 9]. The original PCE, which

is proposed in [21], provides Hermite polynomials for independent Gaussian ran-

dom variables. Several types of PCE have been proposed under the assumption

of independence between model inputs, including the generalized PCE (gPCE)

[22], the multi-element generalized PCE (ME-gPCE) [23], the moment-based

arbitrary PCE (aPCE) [24] and the Gram-Schmidt based PCE (GS-PCE) [10].

The GS-PCE for models with independent inputs is extended to models

with multivariate dependent inputs in Navarro et al. [14]. It is regarded as

the pioneering work in constructing an orthogonal polynomial basis for arbi-

trary dependent inputs. Rahman [25] theoretically validates the Gram-Schmidt

orthogonalization process to construct an orthogonal polynomial basis for the

PCE with dependent inputs.

2.3.1. PCE model

PCE uses a finite number of orthonormal polynomial terms of n random

inputs in X to approximate the output Y as follows:

Y = f(X) ≈
P∑︂

i=0
θiψi(X), (2)

where θi, i = 0,1,2,. . . ,P , are called PCE coefficients and ψi, i = 1,2,. . . ,P are

orthonormal polynomials.

P + 1 =
(︃
n+ p

n

)︃
(3)

is the number of polynomial terms, where p is the highest polynomial degree

in the PCE model. As p increases, the accuracy of approximating a complex

output function improves. In this paper, we estimate the PCE coefficients by

solving an overdetermined linear system of equations in the least-squares sense

as proposed in [26].

Thanks to the properties of orthonormal polynomials, we can approximate

the lower order moments of output Y directly using the PCE coefficients in (2)
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as follows:

E(Y ) ≈ θ0,

V ar(Y ) ≈
P∑︂

i=1
θ2

i .
(4)

The approximation errors converge to zero as P increases [27].

2.3.2. PCE-based sensitivity indices

For independent inputs, the multivariate orthonormal polynomials ψi(X)

can be directly constructed as the products of univariate orthonormal polyno-

mials as follows [8, 9, 7]:

ψi(X) = ψαi
(X) =

n∏︂
j=1

ψαij
(Xj),

where αi = (αi1, αi2, . . . , αin) and ψαij
(Xj) represents the αij−th order or-

thonormal polynomial in input Xj .

Define Au as the set of multi-indices depending exactly on the subset of

variables Xu, u ⊆ {1, 2, . . . , n} as follows:

Au = {αi ∈ Nn : αij ̸= 0⇔ j ∈ u, |αi| ≤ p} ,

where

|αi| =
n∑︂

j=1
αij .

Suppose θαi
is the PCE coefficient with respect to the polynomial term

corresponding to αi. Then the first-order Sobol index for Xj and the total

Sobol index for Xj can be estimated for j = 1, . . . , n as follows [8, 9, 7]:

SXj ≈
∑︁

αi∈A{j}
θ2

αi∑︁P
i=1 θ

2
i

,

STXj
≈

∑︂
Au∋j

SAu
,

where

SAu
≈

∑︁
αi∈Au

θ2
αi∑︁P

i=1 θ
2
i

.
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Using these PCE-based Sobol indices, we can also obtain the sensitivity indices

for dependent inputs, which were described earlier.

3. Methodology

In the previous section, we discussed the current methods proposed in [16]

and [17] of obtaining the sensitivity indices for models with dependent inputs un-

der certain assumptions on the inputs. In this section, we propose a data-driven

method to estimate the sensitivity indices for models with dependent inputs us-

ing a PCE model based on the orthonormal polynomials constructed from the

modified Gram-Schmidt algorithm. First, we show how to construct orthonor-

mal polynomials using the modified Gram-Schmidt algorithm. Then we propose

a data-driven method to estimate the first-order full sensitivity indices and the

total uncorrelated sensitivity indices for models with dependent inputs. Then we

propose an alternative total full sensitivity index and an alternative first-order

uncorrelated sensitivity index, which can be also calculated using the proposed

method. These alternative indices have different interpretations than those in

[16] and [17] because our decorrelation process does not eliminate dependences

in inputs. In addition, we propose conditional order-based sensitivity indices

and illustrate how they can be used to reduce the PCE model complexity by

excluding higher order interaction terms.

3.1. Modified Gram-Schmidt algorithm

In [14], orthonormal polynomials are constructed using the Gram-Schmidt

algorithm for general multivariate correlated variables. Even though the Gram-

Schmidt algorithm behaves the same as the modified Gram-Schmidt algorithm

mathematically, the modified Gram-Schmidt algorithm is less sensitive to nu-

meric rounding errors and performs more stably than the Gram-Schmidt algo-

rithm [28]. Therefore, we propose to use the modified Gram-Schmidt algorithm

to construct orthonormal polynomial basis {ψi(X)}P
i=1 based on the initial P

linearly independent polynomials (ei)i∈{1,2,...,P } as follows [29]:
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Algorithm 1 Modified Gram-Schmidt Algorithm
1: for i = 1, 2, . . . , P do

2: ϕi(X)← ei(X)

3: for k = 1, 2, . . . , i− 1 do

4: ϕi(X)← ϕi(X)− ⟨ϕi(X), ψk(X)⟩ψk(X)

5: end for

6: ψi(X)← ϕi(X)
||ϕi(X)||2

7: end for

The inner product in the algorithm is defined with respect to the empirical mea-

sure in this paper. The inner product is numerically evaluated using the obser-

vations of X in a given dataset. Note that the proposed data-driven method

assumes neither any distributional knowledge of X nor the ability to easily

sample from its distribution. Thus, we do not use a Monte Carlo approach to

evaluate the inner product although it may be an option for the problems that

permit the sampling.

The difference between the standard Gram-Schmidt algorithm and the modi-

fied Gram-Schmidt algorithm is at the line 4 in Algorithm 1, where the standard

Gram-Schmidt algorithm performs

ϕi(X)← ϕi(X)− ⟨ei(X), ψk(X)⟩ψk(X).

Note that different orthonormal polynomials are constructed from different

permutations of the initial polynomials. In the following section, we discuss how

to permute the order of the initial polynomials in order to obtain data-driven

sensitivity indices for models with dependent inputs.

3.2. Sensitivity indices

As we discussed in the previous section, PCE models can be constructed for

models with dependent inputs based on the modified Gram-Schmidt algorithm.

In this section, we first propose how to use PCE models to estimate the full

sensitivity indices and the uncorrelated sensitivity indices based on data. Then
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we define the conditional order-based sensitivity indices and present how they

can be used to exclude higher order interaction terms in a PCE model. For easy

reference, we include in Appendix A.1 a list of sensitivity index symbols used

in this paper.

3.2.1. Full sensitivity indices

Constructing orthonormal polynomials using the modified Gram-Schmidt

algorithm requires a linearly independent set of polynomials. A PCE model

with n inputs and the highest polynomial order p is composed of P + 1 terms of

polynomials as we defined in Eqs. (2) and (3). Assume polynomials in the set

S =
{︄

n∏︂
l=1

Xjl

l : jl ∈ {0, 1, . . . p},
n∑︂

l=1
jl ≤ p

}︄
(5)

are linearly independent.

Orthonormal polynomials can be constructed using the modified Gram-

Schmidt algorithm with respect to a specific order of the polynomials. Suppose

we order the polynomials in S as (St0, St11, St1\St11, St2, St3, . . . , Stn), where

St0 = {1}, St11 and Sti are defined as follows:

St11 =
{︂
Xj1

1 : j1 ∈ {1, . . . p}
}︂
,

Sti =

⎛⎝S\ i−1⋃︂
j=0

Stj

⎞⎠ ⋂︂ {︄
n∏︂

l=1
Xjl

l : ji ∈ {1, 2, . . . , p}, jl ̸=i ∈ {0, 1, . . . , p},
n∑︂

l=1
jl ≤ p

}︄
.

(6)

(St0, St11, St1\St11, St2, St3, . . . , Stn) is an ordered partition of the set S. In the

partition, St0, St11, St1\St11, and Sti, i = 2, 3, . . . , n are ordered in sequence

but the polynomials in each set can be in any arbitrary order. Note that St1
contains all the polynomial functions of X1 and the interaction terms between

X1 and the rest of the inputs. St2 contains all the polynomial functions of X2

and the interaction terms between X2 and the rest of the inputs except X1. St3
contains all the polynomial functions of X3 and the interaction terms between

X3 and the rest of the inputs except X1 and X2.

For example, St11 and Sti, i = 1, 2, 3 for constructing a PCE model with

inputs {X1, X2, X3} and the highest polynomial order p = 3 are defined as
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follows:

St11 =
{︁
X1, X

2
1 , X

3
1
}︁
,

St1 =
{︁
X1, X

2
1 , X

3
1 , X1X2, X

2
1X2, X1X

2
2 , X1X3, X

2
1X3, X1X

2
3 , X1X2X3

}︁
,

St2 =
{︁
X2, X

2
2 , X

3
2 , X2X3, X

2
2X3, X2X

2
3
}︁
,

St3 =
{︁
X3, X

2
3 , X

3
3
}︁
.

After constructing the orthonormal polynomials using the ordered partition

(St0, St11, St1\St11, St2, St3, . . . , Stn), the first-order full sensitivity index S̄X1

for X1 can be estimated as follows:

S̄X1 ≈
∑︁

j∈St11
θ2

j

V ar(Y ) , (7)

where θj ’s are the PCE coefficients corresponding to the orthonormal polyno-

mials in the set St11.

In addition, we propose an alternative total full sensitivity index

STX1 =
∑︁

u∋X1
Du(Y )

V ar(Y )

and estimate it using

STX1 ≈
∑︁

j∈St1
θ2

j

V ar(Y ) . (8)

This total full sensitivity index is different from the one defined in [16], which is

obtained after transforming the dependent inputs into the independent inputs.

Instead, the total full sensitivity index in Eq. (8) has dependent effects of X1

with other inputs. By permuting the order of the input (X1, X2, X3, . . . , Xn) as

(Xi, Xi+1, . . . , Xn, X1, . . . , Xi−1), any S̄Xi and STXi can be estimated.

We also define the conditional total sensitivity indices for models with de-

pendent inputs as follows:

STX2|X1 =
∑︁

u∋{X1,X2}
Du(Y )−

∑︁
u∋X1

Du(Y )
V ar(Y ) is the total contribution of in-

put X2 to the variance of output Y after taking account of the total full

contribution of X1.
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STX3|X1,X2 =
∑︁

u∋{X1,X2,X3}
Du(Y )−

∑︁
u∋{X1,X2}

Du(Y )
V ar(Y ) is the total contri-

bution of input X3 to the variance of output Y after taking account of the

total full contributions of X1 and X2.
...

STXn|X1,X2,...,Xn−1 =
∑︁

u∋{X1,X2,...,Xn}
Du(Y )−

∑︁
u∋{X1,X2,...,Xn−1}

Du(Y )

V ar(Y ) is

the total contribution of input Xn to the variance of output Y after taking

account of the total full contributions of X1, X2, . . . , Xn−1.

We estimate the conditional total sensitivity indices using

STXi|X1,X2,...,Xi−1 ≈
∑︁

j∈Sti
θ2

j

V ar(Y )

for i = 2, 3, . . . , n

When inputs can be grouped such that inputs from different groups have

neither dependence nor interaction across groups, the total Sobol index of a

group can be estimated based on the conditional total sensitivity indices. For

example, if the first d inputs are independent of and have no interactions with

the rest of the inputs,
∑︁d

i=1 STXi estimates the total Sobol index of the first d

inputs. Eq. (10) for Example 3 in Section 4 illustrates how this sensitivity index

can be used in practice.

3.2.2. Uncorrelated sensitivity indices

In order to estimate the total uncorrelated sensitivity index of X1, we con-

sider the ordered partition of S as (St0, St−1, St11, St1\St11), where St0 = {1}

and St−1 =
⋃︁n

j=2 Stj . St11 and Sti, i = 1, 2, . . . , n are defined in Eq. (6). Then

the orthonormal polynomials can be constructed with respect to this ordered

partition. As we obtain the PCE coefficients corresponding to the orthonormal

polynomials in the set St1, the total uncorrelated sensitivity index (STu
X1

) can

be estimated using Eq. (8).

In addition, we propose an alternative first-order uncorrelated sensitivity

index (Su
X1

) and estimate it using Eq. (7). The proposed first-order uncor-

related sensitivity index is different from the one defined in [16] because the
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latter is estimated after decorrelating X1 with all the other inputs. Note that

the proposed first-order uncorrelated sensitivity index is estimated by decor-

relating the polynomials of the inputs. By permuting the order of the inputs

(X1, X2, X3, . . . , Xn) as (Xi, Xi+1, . . . , Xn, X1, . . . , Xi−1), any Su
Xi

and STu
Xi

can be estimated.

Note that the first-order full (resp. uncorrelated) sensitivity indices are

always smaller or equal to the total full (resp. uncorrelated) sensitivity indices,

but the first-order full (resp. uncorrelated) sensitivity indices are not necessarily

larger or smaller than the total uncorrelated (resp. full) sensitivity indices.

3.2.3. Conditional order-based sensitivity indices

In order to reduce the complexity of a PCE model and select appropriate

interaction terms in the PCE model, we propose the conditional order-based

sensitivity indices.

Suppose we order the polynomials in the polynomial set S in Eq. (5) as

(Sc0, Sc11, Sc12, . . . , Sc1p, Sc22, Sc23, . . . , Sc2p, . . . , Sckk, Sckk+1,

. . . , Sckp), where k = min(n, p), Sc0 = {1}, and Scij , i = 1, 2, . . . , k; j =

i, i+ 1, . . . , p, are defined as follows:

Scij =
{︄

n∏︂
l=1

Xjl

l : jl ∈ {0, 1, . . . p},
n∑︂

l=1
1jl ̸=0 = i,

n∑︂
l=1

jl = j

}︄
,

where

1jl ̸=0 =

⎧⎪⎨⎪⎩1 jl ̸= 0

0 jl = 0
.

Define Sci = ∪p
j=iScij , i ≤ min(n, p), then Sc1 contains all the polynomial

functions of Xi, i = 1, 2, . . . , n. Sc2 contains all the two-way interaction terms.

Sc3 contains all the three-way interaction terms. Note that (Sc0, Sc11, Sc12, . . . , Sc1p,

Sc22, Sc23, . . . , Sc2p, . . . , Sckk, Sckk+1, . . . , Sckp), where k = min(n, p), is an or-

dered partition of the set S. In the partition, Sc0, Sc11, Sc12, . . . , Sc1p, Sc22,-

Sc23, . . . , Sc2p, . . . , Sckk, Sckk+1, . . . , Sckp, are ordered in sequence but the poly-

nomials in each set Scij can be in any arbitrary order.

14



For example, Sc11, Sc12, Sc13, Sc22, Sc23, and Sc33 for constructing a PCE

model with inputs {X1, X2, X3} and the highest polynomial order p = 3 are

defined as follows:

Sc11 = {X1, X2, X3} ,

Sc12 =
{︁
X2

1 , X
2
2 , X

2
3
}︁
,

Sc13 =
{︁
X3

1 , X
3
2 , X

3
3
}︁
,

Sc22 = {X1X2, X2X3, X1X3} ,

Sc23 =
{︁
X2

1X2, X
2
1X3, X1X

2
2 , X1X

2
3 , X

2
2X3, X2X

2
3 ,

}︁
,

Sc33 = {X1X2X3} .

We define the conditional order-based sensitivity indices as follows:

S̃1 =
∑︁n

i=1
Di(Y )

V ar(Y ) is the first order sensitivity index of the output Y with

respect to the inputs X.

S̃2|1 =
∑︁

i<j
Dij(Y )

V ar(Y ) is the second order sensitivity index of the output Y

with respect to the inputs X after taking account of the first order sensi-

tivity index.

S̃3|1,2 =
∑︁

i<j<k
Dijk(Y )

V ar(Y ) is the third order sensitivity index of the output

Y with respect to the inputs X after taking account of the first order

sensitivity index and the second order sensitivity index.
...

S̃k|1,2,...,k−1 = D1,2,3,...,k(Y )
V ar(Y ) is the kth order sensitivity index of the output

Y with respect to the inputs X after taking account of the first order

sensitivity index through the (k − 1)th order sensitivity index.

As we can obtain the PCE coefficients corresponding to the orthonormal poly-

nomials constructed from (Sc0, Sc11, Sc12, . . . , Sc1p, Sc22, Sc23, . . . , Sc2p, . . . ,

Sckk, Sckk+1, . . . , Sckp), where k = min(n, p), using the modified Gram-Schmidt
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algorithm, the above sensitivity indices can be estimated as follows:

S̃1 ≈
∑︁

j∈Sc1
θ2

j

V ar(Y ) ,

S̃i|1,...,i−1 ≈
∑︁

j∈Sci
θ2

j

V ar(Y ) , i = 2, . . . ,min(n, p),

where θj ’s are the PCE coefficients corresponding to the orthonormal polyno-

mials in the set Sci for i ≤ min(n, p). Note that for a full PCE model, Sci

contains
(︁

n
i

)︁(︁
p
i

)︁
polynomial terms.

The conditional order-based sensitivity indices serve the purpose of identify-

ing up to which order of interaction of inputs significantly influences the output

variance. Specifically, if the cumulative sum of conditional order-based sensitiv-

ity indices,
∑︁d

i=1 S̃i, is close to one for a certain polynomial order, d ≤ min(n, p),

it indicates that the interaction terms of orders higher than d can be excluded

in the PCE model. Using a simple procedure of inspecting the cumulative sum

for different d’s, we can identify and remove unnecessary high-order interaction

terms from the PCE model. In constrast to the existing methods of constructing

a sparse PCE model [30, 31, 32, 33], this procedure keeps the effect hierarchy

principle [34] while improving the parsimony of the PCE model. Example 3 in

Section 4 illustrates how this procedure can be used to determine the highest

polynomial order.

While the conditional order-based sensitivity indices are useful for effective

PCE modeling and, in turn, PCE-based sensitivity analyses, the new sensitivity

indices do not directly serve the traditional purposes of sensitivity indices. In

contrast, for example, the first-order full sensitivity indices and the total uncor-

related sensitivity indices directly help determine influential and non-influential

inputs, respectively, in terms of their contributions to the output variance (also

known as factor prioritization and factor fixing, respectively, in [35]; see also

[16]).
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4. Numerical examples

To validate the proposed data-driven sensitivity indices, this section presents

four examples where inputs are dependent. We present our experiment results

based on 500 replications with 95% confidence intervals wherever applicable.

The confidence intervals are computed using 10, 000 bootstrap samples of the

500 replications to improve upon the accuracy of the empirical confidence inter-

val computed from the 500 replications [36].

4.1. Example 1

We use a benchmark example in [16] as our first validation case. In this case,

inputs follow a three-dimensional multivariate normal distribution as follows:⎛⎜⎜⎜⎝
X1

X2

X3

⎞⎟⎟⎟⎠ ∼ N
⎡⎢⎢⎢⎣

⎛⎜⎜⎜⎝
0

0

0

⎞⎟⎟⎟⎠,
⎛⎜⎜⎜⎝

1 ρ12 ρ13

ρ12 1 ρ23

ρ13 ρ23 1

⎞⎟⎟⎟⎠
⎤⎥⎥⎥⎦ .

The output Y is simply modeled using a linear model Y = X1 +X2 +X3.

Table 1: Sample mean of sensitivity indices and 95% confidence intervals.

(ρ12, ρ13, ρ23) Input
S̄Xi STu

Xi

Analytical method† Proposed method‡ Analytical method† Proposed method‡

(0.5,0.8,0) X1 0.945 0.945 (0.945, 0.945) 0.020 0.020 (0.020, 0.020)

X2 0.402 0.401 (0.400, 0.402) 0.055 0.055 (0.054, 0.055)

X3 0.579 0.579 (0.578, 0.579) 0.026 0.026 (0.026, 0.026)

(-0.5,0.2,-0.7) X1 0.490 0.491 (0.490, 0.492) 0.706 0.707 (0.706, 0.707)

X2 0.040 0.041 (0.040, 0.041) 0.375 0.374 (0.373, 0.374)

X3 0.250 0.250 (0.249, 0.251) 0.480 0.480 (0.479, 0.481)

(-0.49,-0.49,-0.49) X1 0.007 0.007 (0.007, 0.007) 0.974 0.974 (0.974, 0.974)

X2 0.007 0.007 (0.006, 0.007) 0.974 0.974 (0.974, 0.974)

X3 0.007 0.007 (0.007, 0.007) 0.974 0.974 (0.973, 0.974)

Note: †The value presented in [16] differs by up to 0.01 due to rounding. ‡The

proposed method does not require any distributional assumption. The sample means of

the sensitivity indices and 95% bootstrap confidence intervals (using 10,000 bootstrap

samples) are calculated based on 500 simulation replications where each replication

uses 500 random observations.
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Table 1 shows the first-order full sensitivity index S̄Xi and total uncorrelated

sensitivity index STu
Xi

for each input based on the analytical method [16]. These

true indices are compared with the estimated indices from the proposed method.

This example validates that the proposed method can estimate the first-order

full sensitivity index and total uncorrelated sensitivity index based only on data

without the knowledge of the distribution of dependent inputs and the model

structure. Note that in this example, the total full sensitivity index is the same

as the first-order full sensitivity index (i.e., STXi
= S̄Xi

) and that the first-

order uncorrelated sensitivity index equals the total uncorrelated sensitivity

index (i.e., Su
Xi

= STu
Xi

) because there is no interaction effect. Thus, STXi
and

Su
Xi

are not presented.

4.2. Example 2

In this example from [18], the output Y is a non-linear function of four

dependent inputs: Y = X1X2 + X3X4. Here, (X1, X2) ∈
[︁
0, 1

]︁2 is uniformly

distributed within the triangle X1 +X2 ≤ 1 and (X3, X4) ∈
[︁
0, 1

]︁2 is uniformly

distributed within the triangle X1 +X2 ≥ 1. Due to the symmetry of the model,

the sensitivity indices of Y with respect to X1 and X3 are equal to those with

respect to X2 and X4, respectively.

As shown in Table 2, the proposed method yields the estimates that are

close to the analytical values of S̄Xi and STu
Xi

. In contrast to the benchmark

method in [18] that requires the knowledge of joint probability distribution of the

inputs, the proposed method is purely data-driven. ST{X1,X2} (or, ST{X3,X4})

is estimated using
∑︁2

i=1 STXi
by permuting the inputs as (X1, X2, X3, X4) (or,

(X3, X4, X1, X2)).

Figure 1 shows intricate working of the model by revealing how each input

influences the output variance. The total full (uncorrelated) sensitivity index

STXi
(STu

Xi
) can be decomposed into the first-order full (uncorrelated) sensi-

tivity index S̄Xi
(Su

Xi
) and the rest of the total effect, STXi

− S̄Xi
(STu

Xi
−Su

Xi
),

which accounts for all the interactions of Xi. The gap between the two lines

on the left (right) graph in Figure 1 shows the magnitude of STXi
− S̄Xi
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Table 2: Sample mean of sensitivity indices and 95% confidence intervals.

Method S̄X1 STu
X2

ST{X1,X2} S̄X3 STu
X4

ST{X3,X4}

Analytical method† 0.033 0.067 0.100 0.233 0.666 0.900

Benchmark method‡ 0.032 0.071 0.103 0.226 0.669 0.895

(0.028, 0.037) (0.066,0.077) (0.095,0.114) (0.209,0.248) (0.639,0.705) (0.848, 953)

Proposed method∗ 0.035 0.066 0.101 0.233 0.663 0.896

(0.034, 0.036) (0.066,0.067) (0.100,0.103) (0.231,0.235) (0.661,0.666) (0.892, 901)

Note: †The value is provided in [18]. ‡The value is estimated using the method

proposed in [18] and the confidence interval is calculated based on 16,380 random ob-

servations under the assumption that the joint probability distribution of the inputs

is known. *The proposed method does not require any distributional assumption.

The sample means of sensitivity indices and 95% bootstrap confidence intervals (using

10, 000 bootstrap samples) are calculated based on 500 replications. In each replica-

tion, sensitivity indices are calculated using 500 random observations.

(STu
Xi
− Su

Xi
), indicating how much of the total effect of Xi is attributed to

the interaction effects compared to the first-order effect when we consider the

full (uncorrelated) contribution of Xi.

4.3. Example 3

For the third example, we modified the example in [37] to have a more

complex structure and involve multiple types of probability distributions as

follows: ⎛⎜⎜⎜⎜⎜⎜⎝
X1

X2

X3

X4

⎞⎟⎟⎟⎟⎟⎟⎠ ∼N

⎡⎢⎢⎢⎢⎢⎢⎣

⎛⎜⎜⎜⎜⎜⎜⎝
0

0

0

0

⎞⎟⎟⎟⎟⎟⎟⎠ ,

⎛⎜⎜⎜⎜⎜⎜⎝
1 0 0 0

0 1 0 0

0 0 1 0.3

0 0 0.3 1

⎞⎟⎟⎟⎟⎟⎟⎠

⎤⎥⎥⎥⎥⎥⎥⎦ ,

X ∼U(0, 1),

X5 =θ1X + U(0, 1),

X6 =θ2X + θ3X
2 + U(0, 1),

Y =X1X2 +X3X4 +X5X6.

(9)

Here, (X1, X2, X3, X4) follows a multivariate Gaussian distribution with the pa-

rameters as above. The inputs X5 and X6 are dependent on each other, but
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Figure 1: The left-hand side graph shows the full sensitivity indices for dependent input vari-

ables and the right-hand side graph shows the uncorrelated sensitivity indices for dependent

input variables in Example 2.

their dependency cannot be explained by their first-order conditional moments.

In this experiment, we set (θ1, θ2, θ3) = (0.4, 0.6, 1) and obtain 10,000 random

observations. Because the cumulative sum of the first two conditional order-

based sensitivity indices is
∑︁2

i=1 S̃i = 1, we exclude third- and higher-order

interaction terms in the PCE model to make it sparse. As for the two-way

interaction terms, as shown in Figure 2, most of the corresponding PCE co-

efficients are nearly zero except for the polynomial terms, X1X2, X3X4, and

X5X6. It indicates that X1X2, X3X4, and X5X6 are the only interaction terms

in the true model. Various sparse PCE approaches [30, 31, 32, 33] can be addi-

tionally applied here to construct a sparser PCE model with only the important

orthonormal polynomials of inputs.

Because {X1, X2}, {X3, X4}, and {X5, X6} are mutually independent, we

can infer from the conditional order-based sensitivity indices that the output

Y is composed of three non-interacting functions f12(X1, X2), f34(X3, X4), and

f56(X5, X6). Thanks to this special structure, we can directly calculate the total

sensitivity indices for {X1, X2}, {X3, X4}, and {X5, X6}. Without permuting
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Figure 2: PCE coefficients v.s. the two-way interaction terms in the PCE model in Example

3. The significant interaction terms, X1X2, X3X4, and X5X6, are identified.

the order of the input variables, the total Sobol indices can be calculated as

follows:
ST{X1,X2} = STX1 + STX2 ,

ST{X3,X4} = STX3 + STX4 ,

ST{X5,X6} = STX5 + STX6 ,

(10)

where STXi
is the conditional total full sensitivity index defined in Section 3.2.1.

We validate the sensitivity indices from the proposed method with the values

from an analytical method (see Appendix A.2). We also calculate ST{X1,X2} and

ST{X3,X4} using the benchmark method in [16] assuming the knowledge that

(X1, X2, X3, X4) is multivariate Gaussian distributed and {X1, X2}, {X3, X4},

and {X5, X6} are mutually independent. Then, ST{X5,X6} is calculated based

on the fact that ST{X1,X2} + ST{X3,X4} + ST{X5,X6} = 1.

As shown in Table 3, the sensitivity indices from our method are close to

. those from the benchmark method and the analytical values. Note that,

in contrast to the benchmark method, the proposed method is a data-driven

approach that does not impose any assumption on the inputs.

4.4. Example 4

As the fourth example, we consider the 23-bar horizontal truss example in

[38]. The output of interest, Y , is a downward vertical displacement at the mid

span of the structure subject to random loads. As depicted in Figure 3, the un-

certainty of Y depends on the ten random inputs in X = (E1, E2, A1, A2, P1, . . . , P6):
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Table 3: Sample means of sensitivity indices and 95% confidence intervals.

Method

Input set
ST{X1,X2} ST{X3,X4} ST{X5,X6}

Analytical method 0.402 0.438 0.160

Proposed method∗ 0.402 0.438 0.160

(0.401, 0.404) (0.437, 0.439) (0.159, 0.160)

Benchmark method[16] 0.403† 0.439† (0.158)‡

(0.402, 0.404) (0.438, 0.440) (0.157, 0.160)

Note: †The value is obtained using the sample variance to estimate V ar(Y ) in the

denominator of the sensitivity index instead of using the PCE coefficients from the

benchmark method (see Eq. (4)) because the latter estimation suffers a non-negligible

bias in this example that does not satisfy the assumption of the benchmark method.

‡The value cannot be obtained directly from the benchmark method, but we calcu-

late the value based on the assumption that the user knows that X5 and X6 are

independent of the rest of the inputs and that (X1, X2, X3, X4) follows a multivari-

ate Gaussian distribution. *The proposed method does not require any assumption.

The sample means of sensitivity indices and 95% bootstrap confidence intervals (using

10,000 bootstrap samples) are calculated based on 500 replications. In each replica-

tion, sensitivity indices are calculated using 5,000 random observations of the inputs

and output in Eq. (9).

namely, uncertain Young modulus Ei, i = 1, 2, and uncertain cross-sectional area

Ai, i = 1, 2, for two different groups of bars (horizontal for i = 1 and diagonal

for i = 2), and the random loads Pi, i = 1, 2, · · · , 6. The inputs Ei, i = 1, 2, and

Ai, i = 1, 2, are assumed to be mutually independent and follow the following

distributions:
E1, E2 ∼ LN (2.1× 1011, 2.1× 1010) [Pa],

A1 ∼ LN (2.0× 10−3, 2.0× 10−4) [m2],

A2 ∼ LN (1.0× 10−3, 1.0× 10−4) [m2],

where LN (µ, σ) denotes the lognormal distribution with mean µ and standard

deviation σ.
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Figure 3: Scheme of the horizontal truss model modified from [39]. The downward vertical

displacement at the mid span of the structure Y depends on Young modulus Ei, i = 1, 2,

cross-sectional area Ai, i = 1, 2 for both horizontal and diagonal bars, and the random loads

Pi, i = 1, 2, · · · , 6.

The dependent inputs Pi, i = 1, 2, · · · , 6, have the following Gumbel marginal

distribution function with mean µ = 5 × 104 [N] and standard deviation σ =

7.5× 103 [N]:

Fi(x;α, β) = e−e−(x−α)/β , i = 1, 2, . . . , 6,

where β =
√

6σ/π, α = µ−γβ, and γ ≈ 0.5772 is the Euler-Mascheroni constant.

The dependence between the inputs Pi, i = 1, . . . , 6, is encoded in the C-vine

copula with the following density:

c
(G)
X (u1, . . . , u6) =

6∏︂
j=2

c
(GH)
1j;θ=1.1(u1, uj), (11)

where c(GH)
1j;θ=1.1 is the density of the pair-copula between P1 and Pj , j = 2, . . . , 6.

GH represents the Gumbel-Hougaard family whose bivariate copula is

C
(GH)
θ (u, v) = exp

(︃
−

(︂
(− log u)θ + (− log v)θ

)︂1/θ
)︃
, θ ∈ [1,∞) .

The parameter θ decides the dependence between two loads (i.e., the larger

parameter θ the stronger dependence). In this case, P1 is equally and positively

correlated with each of P2, . . . , P6. Thus, P2, . . . , P6 are positively correlated

with each other although they are conditionally independent given P1 (see a

sample correlation matrix for the loads in Appendix A.3). The output Y is

simulated using the response surface model (see Appendix A.4) in [39], which

was constructed based on a finite element analysis. The explicit relationship

between Y and X in the response surface model allows us to evaluate the

estimated sensitivity indices.

This realistic problem with dependent inputs has neither analytically known

sensitivity indices nor any benchmark methods that attempted to estimate the
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sensitivity indices (see [31] for a related sensitivity analysis with independent

inputs). Implementing a brute-force Monte Carlo approach is computationally

challenging, if not infeasible, because the analytical expressions of the sensi-

tivity indices involve variances of conditional expectations that condition on

(multiple combinations of) multiple inputs. A similar challenge lies in even es-

timating Sobol indices for independent inputs and is studied extensively in the

literature [40, 41, 42]. No Monte Carlo method has satisfactorily addressed the

computational challenge yet. Extending the existing Monte Carlo methods for

independent inputs to handle dependent inputs is left for future work.

In this study, we examine the estimated sensitivity indices to confirm that

they agree with their expected physical interpretations. As it is shown in Table

4, P2 (resp. P3) and P5 (resp. P4) have almost the same sensitivity indices for S̄,

ST , Su, and STu. This can be explained by a) the physical symmetry between

P2 (resp. P3) and P5 (resp. P4) with respect to the location at which the output

Y is measured (see Figure 3 and the response surface model in Appendix A.4)

and b) their symmetric correlations with other inputs (recall the copula density

in Eq. (11) and see Appendix A.3). On the other hand, the differences between

the full sensitivity indices (i.e., S̄ and ST ) for P1 and P6 can be explained by

the fact that P1 has over 5 times stronger correlations than P6 with P2, . . . , P5

(see Appendix A.3). In contrast, the uncorrelated sensitivity indices (i.e., Su

and STu) for P1 and P6 are the same (up to 4 decimal places) because the

uncorrelated effects of P1 and P6 on Y should be very similar (see the coefficients

of the response surface model in Appendix A.4.). The sensitivity indices for all

the other inputs are similarly confirmed to be consistent with their expected

physical interpretations based on the response surface model, which reflects the

physical relationship between Y and X, and the dependence structure of X.

In addition, although not directly comparable due to different settings, still

the first and total uncorrelated sensitivity indices (i.e., Su and STu) have similar

magnitudes as the first and total Sobol indices (i.e., S and ST ) reported in Table

5 of [7] and Table 2 of [31], respectively, for all ten inputs. Both articles [7, 31]

assumed that P1 through P6 are independent, and directly computed Y using a
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Table 4: Sample means of sensitivity indices and 95% confidence intervals.

Input

Sensitivity indices
S̄ ST Su ST u

E1 0.324 (0.321, 0.327) 0.371 (0.367, 0.374) 0.286 (0.284, 0.288) 0.312 (0.310, 0.314)

E2 0.013 (0.012, 0.014) 0.036 (0.035, 0.037) 0.009 (0.008, 0.009) 0.009 (0.008, 0.009)

A1 0.325 (0.322, 0.328) 0.370 (0.367, 0.374) 0.285 (0.283, 0.287) 0.310 (0.308, 0.312)

A2 0.013 (0.012, 0.014) 0.037 (0.036, 0.038) 0.008 (0.008, 0.008) 0.008 (0.008, 0.008)

P1 0.065 (0.063, 0.068) 0.096 (0.093, 0.099) 0.004 (0.004, 0.004) 0.004 (0.004, 0.004)

P2 0.060 (0.058, 0.062) 0.088 (0.085, 0.090) 0.033 (0.033, 0.033) 0.035 (0.035, 0.036)

P3 0.105 (0.103, 0.108) 0.135 (0.132, 0.138) 0.068 (0.067, 0.068) 0.073 (0.072, 0.073)

P4 0.102 (0.010, 0.105) 0.130 (0.128, 0.133) 0.068 (0.067, 0.068) 0.073 (0.072, 0.073)

P5 0.057 (0.055, 0.059) 0.084 (0.082, 0.087) 0.033 (0.033, 0.033) 0.035 (0.035, 0.036)

P6 0.017 (0.016, 0.018) 0.043 (0.042, 0.045) 0.004 (0.004, 0.004) 0.004 (0.004, 0.004)

Note: The sample means of sensitivity indices and 95% bootstrap confidence intervals

(using 10, 000 bootstrap samples) are calculated based on 500 replications. In each

replication, sensitivity indices are calculated using 500 random observations of the

inputs and outputs in Eq. (12).

finite element model.

5. Conclusion

In this paper, data-driven sensitivity indices for a model with dependent

inputs are proposed using the PCE without imposing any strong assumptions

on the model inputs. The modified Gram-Schmidt algorithm with the empirical

measure is utilized to construct orthonormal polynomials for a PCE model on

the merit of numerical stability. The proposed data-driven method yields the

full sensitivity indices and the uncorrelated sensitivity indices by constructing

ordered partitions of orthonormal polynomials of inputs for a PCE model. The

proposed conditional order-based sensitivity indices for a model with dependent

inputs help reduce the complexity of a PCE model while keeping the effect

hierarchy principle. Four numerical examples validate the proposed method.

The proposed method requires polynomials of inputs, which are fed into the

modified Gram-Schmidt algorithm, to be linearly independent. This suggests a

future research direction because there are multiple ways of constructing linearly

independent polynomials from a linearly dependent polynomial basis. How to
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build a theoretically and practically desirable basis warrants more investigation.

Appendix

A.1. List of sensitivity indices

STu
Xi

Total uncorrelated sensitivity index of the output Y with respect to the

input Xi.

STXi
Total Sobol index of the output Y with respect to the input Xi.

Su
Xi

First-order uncorrelated sensitivity index of the output Y with respect to

the input Xi.

SXi
First-order Sobol index of the output Y with respect to the input Xi.

S̄Xi
First-order full sensitivity index of the output Y with respect to the input

Xi.

STXi Total full sensitivity index of the output Y with respect to the input Xi.

S̃k|1,2,...,k−1 The kth order sensitivity index of the output Y with respect to the

inputs X after taking account of the first order sensitivity index through

the (k − 1)th order sensitivity index.

A.2. Analytical method for calculating the sensitivity indices in Example 3 in

Section 4

The following lemma is used for the analytical method in Example 3 in

Section 4.

Lemma 1. Suppose⎛⎝X1

X2

⎞⎠ ∼N

⎡⎣⎛⎝ µ1

µ2

⎞⎠ ,

⎛⎝ σ2
1 ρσ1σ2

ρσ1σ2 σ2
2

⎞⎠⎤⎦ .
Then, V ar(X1X2) = µ2

1σ
2
2 + µ2

2σ
2
1 + σ2

1σ
2
2 + 2µ1µ2ρσ1σ2 + ρ2σ2

1σ
2
2 .
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Proof. We can express X1 and X2 as follows:

X1 = µ1 + rσ1Z + (1− r2) 1
2σ1Y1,

X2 = µ2 + rσ2Z + (1− r2) 1
2σ2Y2,

where r = √ρ, Z ∼ N (0, 1), and Yi ∼ N (0, 1), i = 1, 2. We have the covariance

among Z and Yi, i = 1, 2 as follows:

Cov(Z, Yi) = 0, for i = 1, 2,

Cov(Y1, Y2) = 0.

Therefore, we have

V ar(X1X2) = E(X2
1X

2
2 )− [E(X1X2)]2

= E(X2
1 )E(X2

2 ) + Cov(X2
1 , X

2
2 )− [E(X1)E(X2) + Cov(X1, X2)]2

= (σ2
1 + µ2

1)(σ2
2 + µ2

2) + Cov(r2σ2
1Z

2 + 2µ1rσ1Z, r
2σ2

2Z
2 + 2µ2rσ2Z)−

(µ1µ2 + r2σ1σ2)2

= µ2
1σ

2
2 + µ2

2σ
2
1 + σ2

1σ
2
2 + 2µ1µ2ρσ1σ2 + ρ2σ2

1σ
2
2 .

We now present how to analytically calculate the sensitivity indices in Exam-

ple 3. From (9), {X1, X2}, {X3, X4}, and {X5, X6} are mutually independent.

We have
V ar(Y ) = V ar(X1X2 +X3X4 +X5X6)

= V ar(X1X2) + V ar(X3X4) + V ar(X5X6).

Based on Lemma 1, we can easily obtain V ar(X1X2) and V ar(X3X4). As

for V ar(X5X6), X5 and X6 can be expressed as follows:

X5 = θ1U1 + U2,

X6 = θ2U1 + θ3U
2
1 + U3,

where Ui ∼ U(0, 1), i = 1, 2, 3 and Ui’s are mutually independent for i = 1, 2, 3.

Because

V ar(X5X6) = E(X2
5X

2
6 )− [E(X5X6)]2

= Cov(X2
5 , X

2
6 ) + E(X2

5 )E(X2
6 )− [Cov(X5, X6) + E(X5)E(X6)]2,
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using the property that Ui’s are mutually independent for i = 1, 2, 3, it is

straightforward to express V ar(X5X6) as a function of (θ1, θ2, θ3) and the mo-

ments of Ui, i = 1, 2, 3.

After calculating V ar(X1X2), V ar(X3X4), and V ar(X5X6), we can calcu-

late ST{X1X2}, ST{X3X4}, and ST{X5X6} as follows:

ST{X1X2} = V ar(X1X2)
V ar(X1X2) + V ar(X3X4) + V ar(X5X6) ,

ST{X3X4} = V ar(X3X4)
V ar(X1X2) + V ar(X3X4) + V ar(X5X6) ,

ST{X5X6} = V ar(X5X6)
V ar(X1X2) + V ar(X3X4) + V ar(X5X6) .

A.3. The correlation matrix for the loads in Example 4 in Section 4

The correlation matrix for the loads listed below is estimated using 106

random observations.

Table 5: A correlation matrix for the six loads estimated based on 106 random observations

generated based on the C-vine copula in Eq. (11).

P1 P2 P3 P4 P5 P6

P1 1.000 0.172 0.173 0.171 0.176 0.173

P2 0.172 1.000 0.032 0.031 0.033 0.032

P3 0.173 0.032 1.000 0.032 0.034 0.031

P4 0.171 0.031 0.032 1.000 0.033 0.031

P5 0.176 0.033 0.034 0.033 1.000 0.032

P6 0.173 0.032 0.031 0.031 0.032 1.000
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A.4. The response surface model used for simulating the output Y in Example

4 in Section 4

The response surface model used to simulate the output Y is provided in

[39] as follows:

Y = 2.8070 + 1.2598E′
1 + 0.2147E′

2 + 1.2559A′
1 + 0.2133A′

2 − 0.1510P ′
1 − 0.4238P ′

2−

0.6100P ′
3 − 0.6100P ′

4 − 0.4238P ′
5 − 0.1510P ′

6 − 0.1978E′2
1 − 0.0362E′2

2 − 0.2016A′2
1 −

0.0346A′2
2 + 0.0023P ′2

1 + 0.0008P ′2
2 + 0.0036P ′2

3 + 0.0036P ′2
4 + 0.0008P ′2

5 + 0.0023P ′2
6 −

0.0042E′
1E

′
2 − 0.3022E′

1A
′
1 − 0.0110E′

1A
′
2 + 0.0381E′

1P
′
1 + 0.0871E′

1P
′
2 + 0.1232E′

1P
′
3+

0.1232E′
1P

′
4 + 0.0871E′

1P
′
5 + 0.0346E′

1P
′
6 + 0.0041E′

2A
′
1 + 0.0110A′

1A
′
2 + 0.0261A′

1P
′
1+

0.0831A′
1P

′
2 + 0.1172A′

1P
′
3 + 0.1172A′

1P
′
4 + 0.0832A′

1P
′
5 + 0.0296A′

1P
′
6,

(12)

where E′
i, i = 1, 2, A′

i, i = 1, 2, and P ′
i , i = 1, 2, 3, 4, 5, 6 are the standardized

inputs. For example, E′
1 = E−µE1

σE1
, where µE1 is the mean of E1 and σE1 is the

standard deviation of E1.

Acknowledgements

The authors would like to thank the Editor and two anonymous reviewers

for their feedback that helped significantly improve this article. This work

was supported in part by the National Science Foundation (NSF) under Grant

CMMI-1824681.

References

References

[1] Z. Kala, Sensitivity and reliability analyses of lateral-torsional buckling

resistance of steel beams, Archives of Civil and Mechanical Engineering

15 (4) (2015) 1098–1107.

[2] D. G. Sanchez, B. Lacarrière, M. Musy, B. Bourges, Application of sensi-

tivity analysis in building energy simulations: Combining first- and second-

order elementary effects methods, Energy and Buildings 68 (2014) 741–750.

29



[3] J. Xu, F. Kong, A cubature collocation based sparse polynomial chaos

expansion for efficient structural reliability analysis, Structural Safety 74

(2018) 24–31.

[4] G. Deman, K. Konakli, B. Sudret, J. Kerrou, P. Perrochet, H. Benabderrah-

mane, Using sparse polynomial chaos expansions for the global sensitivity

analysis of groundwater lifetime expectancy in a multi-layered hydrogeo-

logical model, Reliability Engineering & System Safety 147 (2016) 156–169.

[5] M. Fesanghary, E. Damangir, I. Soleimani, Design optimization of shell and

tube heat exchangers using global sensitivity analysis and harmony search

algorithm, Applied Thermal Engineering 29 (5) (2009) 1026–1031.

[6] B. Sudret, Meta-models for structural reliability and uncertainty quan-

tification, in: Asian-Pacific Symposium on Structural Reliability and its

Applications, Singapore, 2012, pp. 1–24.

[7] L. Le Gratiet, S. Marelli, B. Sudret, Metamodel-based sensitivity analy-

sis: polynomial chaos expansions and Gaussian processes, in: R. Ghanem,

D. Higdon, H. Owhadi (Eds.), Handbook of Uncertainty Quantification,

Springer International Publishing, 2017, pp. 1289–1325.

[8] B. Sudret, Global sensitivity analysis using polynomial chaos expansions,

in: P. Spanos, G. Deodatis (Eds.), Proc. 5th Int. Conf. on Comp. Stoch.

Mech (CSM5), Rhodos, Greece, 2006.

[9] B. Sudret, Global sensitivity analysis using polynomial chaos expansions,

Reliability Engineering & System Safety 93 (7) (2008) 964–979.

[10] J. A. Witteveen, S. Sarkar, H. Bijl, Modeling physical uncertainties in

dynamic stall induced fluid–structure interaction of turbine blades using

arbitrary polynomial chaos, Computers & Structures 85 (11) (2007) 866–

878.

30



[11] S. Marelli, B. Sudret, An active-learning algorithm that combines sparse

polynomial chaos expansions and bootstrap for structural reliability anal-

ysis, Structural Safety 75 (2018) 67–74.

[12] G. Kewlani, J. Crawford, K. Iagnemma, A polynomial chaos approach to

the analysis of vehicle dynamics under uncertainty, Vehicle System Dynam-

ics 50 (5) (2012) 749–774.

[13] G. Chastaing, F. Gamboa, C. Prieur, Generalized Hoeffding-Sobol decom-

position for dependent variables-application to sensitivity analysis, Elec-

tronic Journal of Statistics 6 (2012) 2420–2448.

[14] M. Navarro, J. Witteveen, J. Blom, Polynomial chaos expansion for general

multivariate distributions with correlated variables, arXiv:1406.5483 (2014)

1–24.

[15] K. Zhang, Z. Lu, L. Cheng, F. Xu, A new framework of variance based

global sensitivity analysis for models with correlated inputs, Structural

Safety 55 (2015) 1–9.

[16] T. A. Mara, S. Tarantola, Variance-based sensitivity indices for models

with dependent inputs, Reliability Engineering & System Safety 107 (2012)

115–121.

[17] T. A. Mara, S. Tarantola, P. Annoni, Non-parametric methods for global

sensitivity analysis of model output with dependent inputs, Environmental

Modelling & Software 72 (2015) 173–183.

[18] S. Tarantola, T. A. Mara, Variance-based sensitivity indices of computer

models with dependent inputs: The Fourier amplitude sensitivity test, In-

ternational Journal for Uncertainty Quantification 7 (6) (2017) 511–523.

[19] I. M. Sobol, Sensitivity estimates for nonlinear mathematical models, Math-

ematical Modelling and Computational Experiments 1 (4) (1993) 407–414.

31



[20] S. Kucherenko, S. Tarantola, P. Annoni, Estimation of global sensitivity

indices for models with dependent variables, Computer Physics Communi-

cations 183 (4) (2012) 937–946.

[21] N. Wiener, The homogeneous chaos, American Journal of Mathematics

60 (4) (1938) 897–936.

[22] D. Xiu, G. E. Karniadakis, The Wiener–Askey polynomial chaos for

stochastic differential equations, SIAM Journal on Scientific Computing

24 (2) (2002) 619–644.

[23] X. Wan, G. E. Karniadakis, Multi-element generalized polynomial chaos

for arbitrary probability measures, SIAM Journal on Scientific Computing

28 (3) (2006) 901–928.

[24] S. Oladyshkin, W. Nowak, Data-driven uncertainty quantification using the

arbitrary polynomial chaos expansion, Reliability Engineering & System

Safety 106 (2012) 179–190.

[25] S. Rahman, A polynomial chaos expansion in dependent random variables,

Journal of Mathematical Analysis and Applications 464 (1) (2018) 749–775.

[26] M. Berveiller, B. Sudret, M. Lemaire, Stochastic finite element: a non

intrusive approach by regression, European Journal of Computational Me-
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