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Abstract

Uncertainties exist in both physics-based and data-driven models. Variance-
based sensitivity analysis characterizes how the variance of a model output is
propagated from the model inputs. The Sobol index is one of the most widely
used sensitivity indices for models with independent inputs. For models with
dependent inputs, different approaches have been explored to obtain sensitiv-
ity indices in the literature. Typical approaches are based on procedures of
transforming the dependent inputs into independent inputs. However, such
transformation requires additional information about the inputs, such as the
dependency structure or the conditional probability density functions. In this
paper, data-driven sensitivity indices are proposed for models with dependent
inputs. We first construct ordered partitions of linearly independent polyno-
mials of the inputs. The modified Gram-Schmidt algorithm is then applied to
the ordered partitions to generate orthogonal polynomials with respect to the
empirical measure based on observed data of model inputs and outputs. Using
the polynomial chaos expansion with the orthogonal polynomials, we obtain
the proposed data-driven sensitivity indices. The sensitivity indices provide in-
tuitive interpretations of how the dependent inputs affect the variance of the
output without a priori knowledge on the dependence structure of the inputs.

Four numerical examples are used to validate the proposed approach.
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1. Introduction

Uncertainties exist in both physics-based and data-driven models. Uncer-
tainty quantification (UQ) methods to characterize and reduce those uncer-
tainties are increasingly popular in engineering studies. As an aspect of UQ),
sensitivity analysis (SA) quantifies how output uncertainties are propagated
from input uncertainties. Two general ways of conducting SA are local sensitiv-
ity analysis (LSA) and global sensitivity analysis (GSA). LSA analyzes how a
small perturbation near an input space value could influence the output. On the
contrary, GSA investigates how the input variability influences the output vari-
ability over the entire input space. In recent studies, variance-based sensitivity
analysis, as a form of GSA, is utilized to understand system uncertainties in var-
ious applications such as material mechanics [I], building energy [2], structural
mechanics [3], hydrogeology [4], and manufacturing [5].

Conducting variance-based sensitivity analysis for models with independent
inputs has been studied widely. Monte Carlo simulation and surrogate models
are two general ways to obtain sensitivity indices for models with independent
inputs. Surrogate models have been shown to be more computationally efficient
compared with Monte Carlo simulation [6]. Polynomial chaos expansion (PCE)
and Kriging (also known as Gaussian process regression) are the two surrogate
models which have been used to compute sensitivity indices most commonly
in the literature [0, [7]. Thanks to the orthogonal property of a PCE model,
sensitivity indices for independent inputs can be directly obtained using PCE
coefficients [8, [0, [7]. PCE-based sensitivity indices appear in various fields in-
cluding fluid dynamics [I0], structural reliability [I1], and vehicle dynamics [12].

For models with dependent inputs, a limited number of approaches are avail-

able in the literature to conduct variance-based sensitivity analyses. Generalized



Sobol sensitivity indices have been proposed in Chastaing et al. [I3] based on
the hierarchically orthogonal functional decomposition (HOFD). However, the
unboundedness of the resulting sensitivity indices makes their interpretation for
dependent inputs not as straightforward as the Sobol indices for models with
independent inputs [I14]. A different framework is proposed in [I5] to obtain
sensitivity indices for models with correlated inputs. However, it requires the
knowledge of model structure between the inputs and the outputs. An alter-
native way of obtaining sensitivity indices for models with dependent inputs
is to transform dependent inputs into independent inputs [16], [I7, [I8]. Even
though the transformation-based methods generate interpretable sensitivity in-
dices, they require strong assumptions on the dependency or distributions of
the inputs.

The main contribution of this paper is the development of a data-driven
method to obtain interpretable sensitivity indices for models with dependent
inputs without invoking any assumptions on the inputs. We first propose the
modified Gram-Schmidt based polynomial chaos expansion (mGS-PCE). The
mGS-PCE increases the numerical robustness of constructing orthogonal poly-
nomials for arbitrarily distributed inputs compared with the GS-PCE in [I0].
Then, we propose a method to obtain data-driven sensitivity indices for models
with dependent inputs by constructing ordered partitions of orthonormal poly-
nomials of the inputs. This method estimates some of the sensitivity indices
in [16] and [I7] without invoking the assumptions therein. Lastly, we propose
conditional order-based sensitivity indices, which explain the model output vari-
ability in a hierarchical manner.

The remainder of the paper is organized as follows: Section [2] reviews the
background knowledge about Sobol indices and PCE models. Section [3] intro-
duces the modified Gram-Schmidt algorithm and our data-driven method to
obtain sensitivity indices for models with dependent inputs using PCE models.
In Section[d] four numerical examples, where the inputs are dependent, are used
to validate our proposed method. Section [5| provides a few concluding remarks

and a discussion on future research directions.



2. Technical background

This section briefly reviews sensitivity indices in the existing literature for
models with independent inputs and those with dependent inputs. We first in-
troduce the Hoeffding functional decomposition and the Sobol indices for inde-
pendent inputs. We then review the full sensitivity indices and the uncorrelated
sensitivity indices defined for models with dependent inputs. Lastly, we intro-
duce PCE models and explain how PCE coefficients can be used to calculate

sensitivity indices.

2.1. Hoeffding decomposition and sensitivity indices for independent inputs
Suppose we have n independent random inputs X = (X3, Xo, -+, X,,) with
their density p(X). For the output Y = f(X) that is square-integrable with
respect to p(X), its Hoeffding decomposition is defined as follows [19, [13]:
fX) = > fulXw), (1)
uC{1,2,...;n}
Each summand

where fy = fo and fp is a constant and X, = (X
fu(Xy),u # 0, in Eq. satisfies

)jéu'

/ (X (X)) dXi =0, Vi€

such that
fo= [ FXom(x) ax.

In addition, the summands in Eq. are orthogonal to each other as follows:

/fu(Xu)fv(Xv),u(X) dX =0, Yu,vC{l,2,...,n},v#u.

Based on the Hoeffding decomposition, the variance of Y is decomposed as
follows [l []:
Var(¥) = [ £X)u(X) X - £}
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where
DY) = [ X )u(X)dX,

=Var(E(Y | X.)) = Y Dy(Y).
vCu
i

For example, D;(Y) = Var(E(Y | X;)) and D;;(Y) = Var(E(Y | X;, X)) —
Di(Y) — D;(Y).
Based on the variance decomposition, the Sobol index for set u is defined as

Y Var(y)’
which measures the sensitivity of the output variance with respect to the inputs
in X,,. For a particular input variable X;, the first-order Sobol index Sx, and

total Sobol index ST, are defined as follows:

g — D;(Y)
X = Var(Y)’
STx, =Y S
ud1

Sx, represents the percentage of the output variance that is propagated from
the input X;. STx, represents the percentage of the output variance that is

propagated from the input X; and its interactions with the other variables.

2.2. Sensitivity indices for dependent inputs

This study focuses on sensitivity indices proposed in [16] [17, 18] because they
are bounded and do not require the knowledge of the model structure between
the inputs and the output in contrast to those considered in [20] I3} I5], as
discussed earlier.

In [I6], the Gram-Schmidt algorithm is employed to decorrelate the inputs
when the dependences are characterized solely by the inputs’ first-order condi-
tional moments. Then the full sensitivity indices and the uncorrelated sensitivity
indices (also called independent sensitivity indices in [17]) are defined. On the
other hand, in order to calculate these sensitivity indices when conditional prob-

ability density functions (cPDFs) of the inputs are known, the inverse Rosenblatt



transformation or the inverse Nataf transformation is applied to transform the
dependent inputs into the independent inputs [17] [18].

Suppose dependent inputs (X1, Xo,...,X,,) are transformed into indepen-
dent inputs (X1, Xs,...,X,), for example, under the assumptions of [I6] such
that X; = X; and X; = X, — E(XZ- | X1, 7)_(@‘71)7 Vi =2,...,n. Intuitively
speaking, X keeps all information concerning X including its dependent part
with the other inputs. X, contains all information concerning X; ezcept its
dependent part with )_(1, el X 1. Thus, X, only contains information of X,
excluding its dependent part with all the other inputs. These constructed in-
dependent inputs allow for calculating the first-order Sobol indices (Sx,) and
total Sobol indices (ST%, ). Then the sensitivity indices with respect to the

dependent inputs are defined as follows [16]:

S’Xl = 55(1 is the first-order full contribution of X; to the variance of the

output.

STx, = STk, is the total full contribution of X; to the variance of the

output.

S%, = Sx, is the first-order uncorrelated contribution of X, to the vari-

ance of the output.

STy, = ST, is the total uncorrelated contribution of X, to the variance

of the output.

By permuting the order of the inputs, different sensitivity indices can be fur-

ther calculated. Suppose the initial input variables are ordered as (X;, X;41, ..., Xn,-

X1,...,X;_1), and the constructed independent inputs are (Xi, Xigtroo o Xn X1, ...

Xi—1). Then the full sensitivity indices (Sx, = Sx, and STx, = STx,) and
and STy, = STk, ) are
defined. Sy, is called the first-order full sensitivity index and STy, is called

the uncorrelated sensitivity indices (S%, | = Sx, |

the total full sensitivity index. S%. is called the first-order uncorrelated sensi-

tivity index and ST, is called the total uncorrelated sensitivity index.

)



2.3. PCE and PCE-based sensitivity indices

As a way of calculating sensitivity indices, PCE is known to be more compu-
tationally efficient than Monte Carlo simulations [8,[9]. The original PCE, which
is proposed in [21], provides Hermite polynomials for independent Gaussian ran-
dom variables. Several types of PCE have been proposed under the assumption
of independence between model inputs, including the generalized PCE (gPCE)
[22], the multi-element generalized PCE (ME-gPCE) [23], the moment-based
arbitrary PCE (aPCE) [24] and the Gram-Schmidt based PCE (GS-PCE) [10].

The GS-PCE for models with independent inputs is extended to models
with multivariate dependent inputs in Navarro et al. [I4]. It is regarded as
the pioneering work in constructing an orthogonal polynomial basis for arbi-
trary dependent inputs. Rahman [25] theoretically validates the Gram-Schmidt
orthogonalization process to construct an orthogonal polynomial basis for the

PCE with dependent inputs.

2.3.1. PCE model
PCE uses a finite number of orthonormal polynomial terms of n random

inputs in X to approximate the output Y as follows:

.
Y = f(X) =) 0ii(X), (2)
1=0

where 6;, 1 = 0,1,2,...,P, are called PCE coefficients and ¥;, i = 1,2,... P are

orthonormal polynomials.

P+1<”:p> (3)

is the number of polynomial terms, where p is the highest polynomial degree
in the PCE model. As p increases, the accuracy of approximating a complex
output function improves. In this paper, we estimate the PCE coefficients by
solving an overdetermined linear system of equations in the least-squares sense
as proposed in [26].

Thanks to the properties of orthonormal polynomials, we can approximate

the lower order moments of output Y directly using the PCE coefficients in



as follows:
E(Y) ~ 90,

P
Var(Y) = Z 62
i=1

The approximation errors converge to zero as P increases [27].

2.3.2. PCE-based sensitivity indices
For independent inputs, the multivariate orthonormal polynomials ;(X)
can be directly constructed as the products of univariate orthonormal polyno-

mials as follows [8 @] [7]:

n

'l;[}l(X) = ¢a1(X) = Hwai_j (Xj)a

j=1
where a; = (i1, 9, ..., i) and Yaui; (Xj) represents the o;;—th order or-
thonormal polynomial in input X;.
Define %, as the set of multi-indices depending exactly on the subset of

variables X,,u C {1,2,...,n} as follows:

o, ={a; e N" 1 q;; #0 7 € u, |ay| < p},
where
n
il = .
j=1
Suppose 0y, is the PCE coeflicient with respect to the polynomial term

corresponding to o;. Then the first-order Sobol index for X; and the total

Sobol index for X can be estimated for j =1,...,n as follows [8 [9} [7]:
Zaiegf{j} 9(217,
Sx; ~ T—P 5
=1
STx, ~ Y Sz,
du%j
where

S'Q{ ~ ZaiGMH 9(211
WX =P 5
) Zi:l 912



Using these PCE-based Sobol indices, we can also obtain the sensitivity indices

for dependent inputs, which were described earlier.

3. Methodology

In the previous section, we discussed the current methods proposed in [16]
and [I7] of obtaining the sensitivity indices for models with dependent inputs un-
der certain assumptions on the inputs. In this section, we propose a data-driven
method to estimate the sensitivity indices for models with dependent inputs us-
ing a PCE model based on the orthonormal polynomials constructed from the
modified Gram-Schmidt algorithm. First, we show how to construct orthonor-
mal polynomials using the modified Gram-Schmidt algorithm. Then we propose
a data-driven method to estimate the first-order full sensitivity indices and the
total uncorrelated sensitivity indices for models with dependent inputs. Then we
propose an alternative total full sensitivity index and an alternative first-order
uncorrelated sensitivity index, which can be also calculated using the proposed
method. These alternative indices have different interpretations than those in
[16] and [I7] because our decorrelation process does not eliminate dependences
in inputs. In addition, we propose conditional order-based sensitivity indices
and illustrate how they can be used to reduce the PCE model complexity by

excluding higher order interaction terms.

3.1. Modified Gram-Schmidt algorithm

In [I4], orthonormal polynomials are constructed using the Gram-Schmidt
algorithm for general multivariate correlated variables. Even though the Gram-
Schmidt algorithm behaves the same as the modified Gram-Schmidt algorithm
mathematically, the modified Gram-Schmidt algorithm is less sensitive to nu-
meric rounding errors and performs more stably than the Gram-Schmidt algo-
rithm [28]. Therefore, we propose to use the modified Gram-Schmidt algorithm
to construct orthonormal polynomial basis {t;(X)}f_; based on the initial P

linearly independent polynomials (€;);c(; o, py as follows [2]:



Algorithm 1 Modified Gram-Schmidt Algorithm
1: fori=1,2,...,P do

$i(X) < ei(X)

33 fork=12,...,i—1do

0i(X) < 9i(X) — (d:(X), Y1 (X)) r(X)

5.  end for

) ?i(X)
i X) < o

N

=

@

7: end for

The inner product in the algorithm is defined with respect to the empirical mea-
sure in this paper. The inner product is numerically evaluated using the obser-
vations of X in a given dataset. Note that the proposed data-driven method
assumes neither any distributional knowledge of X nor the ability to easily
sample from its distribution. Thus, we do not use a Monte Carlo approach to
evaluate the inner product although it may be an option for the problems that
permit the sampling.

The difference between the standard Gram-Schmidt algorithm and the modi-
fied Gram-Schmidt algorithm is at the line 4 in Algorithm 1, where the standard

Gram-Schmidt algorithm performs
0i(X) + ¢i(X) — (ei(X), Y1 (X)) ¥u(X).

Note that different orthonormal polynomials are constructed from different
permutations of the initial polynomials. In the following section, we discuss how
to permute the order of the initial polynomials in order to obtain data-driven

sensitivity indices for models with dependent inputs.

8.2. Sensitivity indices

As we discussed in the previous section, PCE models can be constructed for
models with dependent inputs based on the modified Gram-Schmidt algorithm.
In this section, we first propose how to use PCE models to estimate the full

sensitivity indices and the uncorrelated sensitivity indices based on data. Then

10



we define the conditional order-based sensitivity indices and present how they
can be used to exclude higher order interaction terms in a PCE model. For easy
reference, we include in Appendix A.1 a list of sensitivity index symbols used

in this paper.

3.2.1. Full sensitivity indices

Constructing orthonormal polynomials using the modified Gram-Schmidt
algorithm requires a linearly independent set of polynomials. A PCE model
with n inputs and the highest polynomial order p is composed of P+ 1 terms of
polynomials as we defined in Egs. and . Assume polynomials in the set

n n
S—{HX;I:jle{o,l,...p},ijgp} (5)
1=1 =1
are linearly independent.

Orthonormal polynomials can be constructed using the modified Gram-
Schmidt algorithm with respect to a specific order of the polynomials. Suppose
we order the polynomials in S as (Stg, St11,5t1\St11, Sta, Sts, ..., St,), where
Sto = {1}, St11 and St; are defined as follows:

Sty = {X{l e {1,...p}},

i—1 n n
§=0 =1 =1
(6)

(Sto, St11, St1\St11, Sta, Sts, ..., St,) is an ordered partition of the set .S. In the
partition, Stg, Sti1, St1\St11, and St;,i = 2,3,...,n are ordered in sequence
but the polynomials in each set can be in any arbitrary order. Note that St;
contains all the polynomial functions of X; and the interaction terms between
X7 and the rest of the inputs. St contains all the polynomial functions of Xy
and the interaction terms between X5 and the rest of the inputs except X;. St
contains all the polynomial functions of X3 and the interaction terms between
X3 and the rest of the inputs except X7 and Xs.

For example, St1; and St;,i = 1,2,3 for constructing a PCE model with
inputs {X7, X2, X3} and the highest polynomial order p = 3 are defined as

11



follows:

Stll = {X17X127Xi%} )

Sty = {X1, X7, X7, X1 X0, X7 Xo, X1 X3, X1 X5, X7 X3, X1 X3, X1 X2 X3},

Sty = {X23X227X237X2X37X22X37X2X§} )

Sty = {X3, X3, X5}

After constructing the orthonormal polynomials using the ordered partition
(Sto, St11,St1\St11, Sta, Sts, ..., Sty,), the first-order full sensitivity index Sy,
for X7 can be estimated as follows:

2
ZJEStu ej

Var(Y) ’ @

SXIR‘J

where 0;’s are the PCE coefficients corresponding to the orthonormal polyno-
mials in the set Stq1.
In addition, we propose an alternative total full sensitivity index

2usx, Du(Y)

5Tx = Var(Y)

and estimate it using
2
ZjEStl ej (8)
Var(Y) -’

This total full sensitivity index is different from the one defined in [I6], which is

S’ij—‘le

obtained after transforming the dependent inputs into the independent inputs.
Instead, the total full sensitivity index in Eq. has dependent effects of X
with other inputs. By permuting the order of the input (X7, Xs, X3,...,X,,) as
(X, Xit1, .o, Xy X1, ..., X1), any S’Xi and ST'x, can be estimated.

We also define the conditional total sensitivity indices for models with de-

pendent inputs as follows:

— D.(Y)- Du(Y)
ST x,1x, = DRIEESES Var(y)zusxl is the total contribution of in-

put X5 to the variance of output Y after taking account of the total full

contribution of Xj.

12



= , D.(Y)~— D,(Y) | )
ST x41x1,%, = 20 20.55) VM(Y)Z“B{X“X” is the total contri-

bution of input X3 to the variance of output Y after taking account of the

total full contributions of X; and Xs.

ST X, X1, Xa e Xy = ' Var() = is

the total contribution of input X, to the variance of output Y after taking

account of the total full contributions of X1, Xo, ..., X, _1.

We estimate the conditional total sensitivity indices using

STjX¢‘X17X2,...,Xi71 ~ M
Var(Y)

fori=2,3,...,n

When inputs can be grouped such that inputs from different groups have
neither dependence nor interaction across groups, the total Sobol index of a
group can be estimated based on the conditional total sensitivity indices. For
example, if the first d inputs are independent of and have no interactions with
the rest of the inputs, Z?Zl ST, estimates the total Sobol index of the first d
inputs. Eq. for Example 3 in Sectionillustrates how this sensitivity index

can be used in practice.

3.2.2. Uncorrelated sensitivity indices

In order to estimate the total uncorrelated sensitivity index of X7, we con-
sider the ordered partition of S as (Stg, St_1, St11, St1\St11), where Stg = {1}
and St_; = U?:z Stj. Stiy and St;,i =1,2,...,n are defined in Eq. (6). Then
the orthonormal polynomials can be constructed with respect to this ordered
partition. As we obtain the PCE coefficients corresponding to the orthonormal
polynomials in the set St;, the total uncorrelated sensitivity index (ST%,) can
be estimated using Eq. (§).

In addition, we propose an alternative first-order uncorrelated sensitivity
index (S%,) and estimate it using Eq. . The proposed first-order uncor-

related sensitivity index is different from the one defined in [I6] because the

13



latter is estimated after decorrelating X; with all the other inputs. Note that
the proposed first-order uncorrelated sensitivity index is estimated by decor-
relating the polynomials of the inputs. By permuting the order of the inputs
(X1, X9, X3,...,Xp) as (X, Xig1, -, Xn, X1, ..., Xi-1), any S%, and STy,
can be estimated.

Note that the first-order full (resp. uncorrelated) sensitivity indices are
always smaller or equal to the total full (resp. uncorrelated) sensitivity indices,
but the first-order full (resp. uncorrelated) sensitivity indices are not necessarily

larger or smaller than the total uncorrelated (resp. full) sensitivity indices.

3.2.3. Conditional order-based sensitivity indices

In order to reduce the complexity of a PCE model and select appropriate
interaction terms in the PCE model, we propose the conditional order-based
sensitivity indices.

Suppose we order the polynomials in the polynomial set S in Eq. as
(Sco, Sc11, Serz, ..., Seip, Scag, Scas, ..., Scap, ..., Sk, SCri+1,
..., Sckp), where k = min(n,p), Scg = {1}, and S¢;5,i = 1,2,...,k; j =

1,2+ 1,...,p, are defined as follows:

Scij = {Hlel {01, ph Y L0 =1, i :j},
=1 =1 =1
where
L 51#0

0 51=0

Ljz0 =

Define S¢; = U?ZiScij,z’ < min(n, p), then Sc; contains all the polynomial
functions of X;,i =1,2,...,n. Scy contains all the two-way interaction terms.
Scs contains all the three-way interaction terms. Note that (Scg, Sci1, Seiz, ..., Seip,
Scaa, Scas, ..., Scap, ..., SCrk, SCrit1, - - ., Sckp), where k = min(n, p), is an or-
dered partition of the set S. In the partition, Scg, Sci1, Sciz, ..., Scip, Scaa,-
Scaz, ..., Scap, ..., Scik, Schk41, - - -, Scip, are ordered in sequence but the poly-

nomials in each set Sc;; can be in any arbitrary order.

14



For example, Scy1, Scia, Sci3, Scas, Scag, and Scss for constructing a PCE
model with inputs {X;, X5, X3} and the highest polynomial order p = 3 are
defined as follows:

Seyp = { X1, Xo, X3},

Scip = {X7,X3,X3},

Seis = { X7, X3, X3},

Scay = {X1 X2, X2 X3, X1 X3},

Seas = { X7 Xo, X7 X5, X1 X3, X1 X3, X7 X5, X>2X3, },
Sezz = {X1X2X35}.

We define the conditional order-based sensitivity indices as follows:

e L, DY) | PR .
S, = #},g) is the first order sensitivity index of the output Y with
respect to the inputs X.

- ZKj Di(Y) . e e

Sopn = Va1 the second order sensitivity index of the output Y

with respect to the inputs X after taking account of the first order sensi-
tivity index.
S . Zi<].<kDijk(Y) s the third ord e . ind f th

31,2 = = Varyy S the third order sensitivity index of the output
Y with respect to the inputs X after taking account of the first order

sensitivity index and the second order sensitivity index.

Sk|1,2,...,k71 = %(Y’“)(Y) is the k*" order sensitivity index of the output

Y with respect to the inputs X after taking account of the first order

sensitivity index through the (k — 1) order sensitivity index.

As we can obtain the PCE coefficients corresponding to the orthonormal poly-
nomials constructed from (Sco, Sci1, Scig, ..., Scip, Scaz, Scas, ..., Scap, . . .,

Stk SCri+1, - - -, SCkp), where k = min(n, p), using the modified Gram-Schmidt

15



algorithm, the above sensitivity indices can be estimated as follows:

~ ZjEScl 6?
Var(Y) ’

S» . ~ ZjESci 07
i|1,...,0—1 VCL’I"(Y) )

where 6;’s are the PCE coefficients corresponding to the orthonormal polyno-

e

i=2,...,min(n,p),

mials in the set S¢; for ¢ < min(n,p). Note that for a full PCE model, S¢;
contains (%) (%) polynomial terms.

The conditional order-based sensitivity indices serve the purpose of identify-
ing up to which order of interaction of inputs significantly influences the output
variance. Specifically, if the cumulative sum of conditional order-based sensitiv-
ity indices, Z?:l S;, is close to one for a certain polynomial order, d < min(n, p),
it indicates that the interaction terms of orders higher than d can be excluded
in the PCE model. Using a simple procedure of inspecting the cumulative sum
for different d’s, we can identify and remove unnecessary high-order interaction
terms from the PCE model. In constrast to the existing methods of constructing
a sparse PCE model [30} 311 [32] [33], this procedure keeps the effect hierarchy
principle [34] while improving the parsimony of the PCE model. Example 3 in
Section [4] illustrates how this procedure can be used to determine the highest
polynomial order.

While the conditional order-based sensitivity indices are useful for effective
PCE modeling and, in turn, PCE-based sensitivity analyses, the new sensitivity
indices do not directly serve the traditional purposes of sensitivity indices. In
contrast, for example, the first-order full sensitivity indices and the total uncor-
related sensitivity indices directly help determine influential and non-influential
inputs, respectively, in terms of their contributions to the output variance (also

known as factor prioritization and factor fixing, respectively, in [35]; see also

[16]).
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4. Numerical examples

To validate the proposed data-driven sensitivity indices, this section presents

four examples where inputs are dependent. We present our experiment results

based on 500 replications with 95% confidence intervals wherever applicable.

The confidence intervals are computed using 10,000 bootstrap samples of the

500 replications to improve upon the accuracy of the empirical confidence inter-

val computed from the 500 replications [36].

4.1. Example 1

We use a benchmark example in [I6] as our first validation case. In this case,

inputs follow a three-dimensional multivariate normal distribution as follows:

X1 0 1 pi2 p13
Xo | ~ N 01 P12 P23
X3 0 p13 p23 1

The output Y is simply modeled using a linear model Y = X7 + X5 4+ X35.

Table 1: Sample mean of sensitivity indices and 95% confidence intervals.

Sx, STy
(Pr2: p13: p22) fnput Analytical method!  Proposed method* | Analytical method® f!‘oposed method?
(0.5,0.8,0) X1 0.945 0.945 (0.945,0.945) 0.020 0.020 (0.020, 0.020)
X, 0.402 0.401 (0.400, 0.402) 0.055 0.055 (0.054,0.055)
X3 0.579 0.579 (0.578,0.579) 0.026 0.026 (0.026,0.026)
(-0.5,0.2,-0.7) Xy 0.490 0.491 (0.490, 0.492) 0.706 0.707 (0.706,0.707)
Xs 0.040 0.041 (0.040,0.041) 0.375 0.374 (0.373,0.374)
X3 0.250 0.250 (0.249,0.251) 0.480 0.480 (0.479,0.481)
(-0.49,-0.49,-0.49) | X 0.007 0.007 (0.007,0.007) 0.974 0.974 (0.974,0.974)
X, 0.007 0.007 (0.006,0.007) 0.974 0.974 (0.974,0.974)
X3 0.007 0.007 (0.007,0.007) 0.974 0.974 (0.973,0.974)

Note: 1The value

proposed method does not require any distributional assumption. The sample means of

presented in [I6] differs by up to 0.01 due to rounding. {The

the sensitivity indices and 95% bootstrap confidence intervals (using 10,000 bootstrap

samples) are calculated based on 500 simulation replications where each replication

uses 500 random observations.
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Tableshows the first-order full sensitivity index Sx, and total uncorrelated
sensitivity index ST, for each input based on the analytical method [16]. These
true indices are compared with the estimated indices from the proposed method.
This example validates that the proposed method can estimate the first-order
full sensitivity index and total uncorrelated sensitivity index based only on data
without the knowledge of the distribution of dependent inputs and the model
structure. Note that in this example, the total full sensitivity index is the same
as the first-order full sensitivity index (i.e., STy, = Sx,) and that the first-
order uncorrelated sensitivity index equals the total uncorrelated sensitivity
index (i.e., S%, = ST¥, ) because there is no interaction effect. Thus, ST'x, and

S, are not presented.

4.2. Example 2

In this example from [I8], the output Y is a non-linear function of four
dependent inputs: Y = X1 X + X3Xy. Here, (X1, X5) € [O, 1]2 is uniformly
distributed within the triangle X; + X5 < 1 and (X3, X4) € [0, 1] % is uniformly
distributed within the triangle X; + X5 > 1. Due to the symmetry of the model,
the sensitivity indices of Y with respect to X; and X3 are equal to those with
respect to Xo and Xy, respectively.

As shown in Table [2| the proposed method yields the estimates that are
close to the analytical values of Sx, and ST%.. In contrast to the benchmark
method in [I8] that requires the knowledge of joint probability distribution of the
inputs, the proposed method is purely data-driven. STyx, x,} (or, STix, x,})
is estimated using Z?:l ST x, by permuting the inputs as (X1, X2, X3, X4) (or,
(X3, X4, X1, X5)).

Figure [l shows intricate working of the model by revealing how each input
influences the output variance. The total full (uncorrelated) sensitivity index
STx, (ST%,) can be decomposed into the first-order full (uncorrelated) sensi-
tivity index Sx, (S%.) and the rest of the total effect, STx, — Sx, (ST%, —S% ),
which accounts for all the interactions of X;. The gap between the two lines

on the left (right) graph in Figure [I| shows the magnitude of STy, — S X,
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Table 2: Sample mean of sensitivity indices and 95% confidence intervals.

Method Sx, STY, ST(x, xa} Sx, STY, ST, %4}
Analytical method’ 0.033 0.067 0.100 0.233 0.666 0.900
0.032 0.071 0.103 0.226 0.669 0.895
Benchmark method?
(0.028, 0.037)  (0.066,0.077)  (0.095,0.114)  (0.209,0.248)  (0.639,0.705)  (0.848, 953)
0.035 0.066 0.101 0.233 0.663 0.896

Proposed method*

(0.034, 0.036)  (0.066,0.067) (0.100,0.103)  (0.231,0.235)  (0.661,0.666) (0.892, 901)

Note: 1The value is provided in [I§]. {The value is estimated using the method
proposed in [I8] and the confidence interval is calculated based on 16,380 random ob-
servations under the assumption that the joint probability distribution of the inputs
is known. *The proposed method does not require any distributional assumption.
The sample means of sensitivity indices and 95% bootstrap confidence intervals (using
10,000 bootstrap samples) are calculated based on 500 replications. In each replica-

tion, sensitivity indices are calculated using 500 random observations.

(ST%, — SY%,), indicating how much of the total effect of X; is attributed to
the interaction effects compared to the first-order effect when we consider the

full (uncorrelated) contribution of X;.

4.3. Example 8
For the third example, we modified the example in [37] to have a more

complex structure and involve multiple types of probability distributions as

follows:
X1 0 10 0 O
Xo N 0 7 01 0 O ’
X3 0 0 0 1 03
X4 0 0 0 03 1
X ~U(0, 1), ©)
X5 =6, X +U(0, 1),
Xe =0, X + 603 X* +U(0, 1),
Y =X1Xo + X3X4 + X5 X6.

Here, (X1, X5, X3, X4) follows a multivariate Gaussian distribution with the pa-

rameters as above. The inputs X5 and Xg are dependent on each other, but
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Figure 1: The left-hand side graph shows the full sensitivity indices for dependent input vari-
ables and the right-hand side graph shows the uncorrelated sensitivity indices for dependent

input variables in Example 2.

their dependency cannot be explained by their first-order conditional moments.
In this experiment, we set (61,6s2,65) = (0.4,0.6,1) and obtain 10,000 random
observations. Because the cumulative sum of the first two conditional order-
based sensitivity indices is Z?:l S; = 1, we exclude third- and higher-order
interaction terms in the PCE model to make it sparse. As for the two-way
interaction terms, as shown in Figure [2| most of the corresponding PCE co-
efficients are nearly zero except for the polynomial terms, X; X5, X3X4, and
X5 Xg. It indicates that X Xo, X35X4, and X5Xg are the only interaction terms
in the true model. Various sparse PCE approaches [30] BT 32, [33] can be addi-
tionally applied here to construct a sparser PCE model with only the important
orthonormal polynomials of inputs.

Because {X1, X2}, {X3, X4}, and {X5, X} are mutually independent, we
can infer from the conditional order-based sensitivity indices that the output
Y is composed of three non-interacting functions fi2(X1, X2), f34(X3, X4), and
J56(X5, X6). Thanks to this special structure, we can directly calculate the total
sensitivity indices for {X7, Xo}, {X3, X4}, and {X5, Xg}. Without permuting
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Figure 2: PCE coefficients v.s. the two-way interaction terms in the PCE model in Example

3. The significant interaction terms, X1 Xa, X3X4, and X5X¢, are identified.

the order of the input variables, the total Sobol indices can be calculated as

follows:
ST{X17X2} = STX1 + STXQ,

STix, x,3 = STx, + STx,, (10)
ST(xs,xe1 = ST x, + ST x,
where ST x, is the conditional total full sensitivity index defined in Section
We validate the sensitivity indices from the proposed method with the values
from an analytical method (see Appendix A.2). We also calculate STy x, x,} and
ST(x,,x,} using the benchmark method in [I6] assuming the knowledge that
(X1, X2, X3, X4) is multivariate Gaussian distributed and {X, Xo}, { X3, X4},
and {X5, X} are mutually independent. Then, ST(x;,xe} 1s calculated based
on the fact that STyx, x,1 + STix, x4 + 5T x5,x63 = 1-
As shown in Table [3] the sensitivity indices from our method are close to
those from the benchmark method and the analytical values. Note that,
in contrast to the benchmark method, the proposed method is a data-driven

approach that does not impose any assumption on the inputs.

4.4. Example 4

As the fourth example, we consider the 23-bar horizontal truss example in
[38]. The output of interest, Y, is a downward vertical displacement at the mid
span of the structure subject to random loads. As depicted in Figure|3] the un-
certainty of Y depends on the ten random inputs in X = (Ey, Ea2, A1, Ao, Py, ..., Fs):
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Table 3: Sample means of sensitivity indices and 95% confidence intervals.

Input set

Method STix1,x2) STix5,x4) STx5,x6)
Analytical method 0.402 0.438 0.160
Proposed method™ 0.402 0.438 0.160

(0.401, 0.404)  (0.437, 0.439)  (0.159, 0.160)
Benchmark method [16] 0.403" 0.439" (0.158)*

(0.402, 0.404)

(0.438, 0.440)

(0.157, 0.160)

Note: 1The value is obtained using the sample variance to estimate Var(Y') in the
denominator of the sensitivity index instead of using the PCE coefficients from the
benchmark method (see Eq. ) because the latter estimation suffers a non-negligible
bias in this example that does not satisfy the assumption of the benchmark method.
iThe value cannot be obtained directly from the benchmark method, but we calcu-
late the value based on the assumption that the user knows that X5 and Xg are
independent of the rest of the inputs and that (X1, X2, X3, X4) follows a multivari-
ate Gaussian distribution. *The proposed method does not require any assumption.
The sample means of sensitivity indices and 95% bootstrap confidence intervals (using
10,000 bootstrap samples) are calculated based on 500 replications. In each replica-
tion, sensitivity indices are calculated using 5,000 random observations of the inputs

and output in Eq. @

namely, uncertain Young modulus F;, 7 = 1, 2, and uncertain cross-sectional area
A;,i = 1,2, for two different groups of bars (horizontal for ¢ = 1 and diagonal
for i = 2), and the random loads P;,i =1,2,---,6. The inputs F;,i = 1,2, and
A;, i = 1,2, are assumed to be mutually independent and follow the following

distributions:
Ey, By ~ LN(2.1 x 10M,2.1 x 10'9) [Pal,

Ay~ LN(2.0 x 1072,2.0 x 107%) [m?],
Ay ~ LN(1.0 x 1073,1.0 x 10™%) [m?],

where LN (u, o) denotes the lognormal distribution with mean p and standard

deviation o.
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Figure 3: Scheme of the horizontal truss model modified from [39]. The downward vertical
displacement at the mid span of the structure Y depends on Young modulus E;,i = 1,2,
cross-sectional area A;,i7 = 1,2 for both horizontal and diagonal bars, and the random loads

Pi=1,2---,6.

The dependent inputs P;,7 = 1,2, --- , 6, have the following Gumbel marginal
distribution function with mean p = 5 x 10* [N] and standard deviation o =
7.5 x 10% [N]:

Fi(z;a,f)=e ¢ "B i=1,2,...,6,

where 3 = /60 /7, @ = p—vf3, and v =~ 0.5772 is the Euler-Mascheroni constant.
The dependence between the inputs P;,¢ = 1,...,6, is encoded in the C-vine

copula with the following density:

6
g gH
C(X)(uh..-,%) = Hcgj;9)=1.1(u17uj)v (11)
j=2
where ngiu is the density of the pair-copula between Py and P;, j = 2,...,6.

GH represents the Gumbel-Hougaard family whose bivariate copula is

C(gg%)(u,v) = exp (— ((—log w)? + (- logv)9)1/9> , Bell,0).

The parameter € decides the dependence between two loads (i.e., the larger
parameter 6 the stronger dependence). In this case, P; is equally and positively
correlated with each of P, ..., Ps. Thus, Ps,..., Ps are positively correlated
with each other although they are conditionally independent given P; (see a
sample correlation matrix for the loads in Appendix A.3). The output Y is
simulated using the response surface model (see Appendix A.4) in [39], which
was constructed based on a finite element analysis. The explicit relationship
between Y and X in the response surface model allows us to evaluate the
estimated sensitivity indices.

This realistic problem with dependent inputs has neither analytically known

sensitivity indices nor any benchmark methods that attempted to estimate the
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sensitivity indices (see [3I] for a related sensitivity analysis with independent
inputs). Implementing a brute-force Monte Carlo approach is computationally
challenging, if not infeasible, because the analytical expressions of the sensi-
tivity indices involve variances of conditional expectations that condition on
(multiple combinations of) multiple inputs. A similar challenge lies in even es-
timating Sobol indices for independent inputs and is studied extensively in the
literature [40], 4], 42). No Monte Carlo method has satisfactorily addressed the
computational challenge yet. Extending the existing Monte Carlo methods for
independent inputs to handle dependent inputs is left for future work.

In this study, we examine the estimated sensitivity indices to confirm that
they agree with their expected physical interpretations. As it is shown in Table
P, (tesp. Ps) and P (resp. Pj) have almost the same sensitivity indices for S,
ST, S*, and ST“. This can be explained by a) the physical symmetry between
P, (resp. Ps3) and Ps (resp. Py) with respect to the location at which the output
Y is measured (see Figure [3[and the response surface model in Appendix A.4)
and b) their symmetric correlations with other inputs (recall the copula density
in Eq. and see Appendix A.3). On the other hand, the differences between
the full sensitivity indices (i.e., S and ST ) for P; and Pgs can be explained by
the fact that P, has over 5 times stronger correlations than Ps with P, ..., Ps
(see Appendix A.3). In contrast, the uncorrelated sensitivity indices (i.e., S
and ST") for P; and Ps are the same (up to 4 decimal places) because the
uncorrelated effects of P; and Ps on Y should be very similar (see the coefficients
of the response surface model in Appendix A.4.). The sensitivity indices for all
the other inputs are similarly confirmed to be consistent with their expected
physical interpretations based on the response surface model, which reflects the
physical relationship between Y and X, and the dependence structure of X.

In addition, although not directly comparable due to different settings, still
the first and total uncorrelated sensitivity indices (i.e., S* and ST*) have similar
magnitudes as the first and total Sobol indices (i.e., S and ST') reported in Table
5 of [7] and Table 2 of [31], respectively, for all ten inputs. Both articles [7], 3]
assumed that P; through Py are independent, and directly computed Y using a

24



Table 4: Sample means of sensitivity indices and 95% confidence intervals.

S ST s ST
Input
Ey 0.324 (0.321, 0.327)  0.371 (0.367, 0.374)  0.286 (0.284, 0.288)  0.312 (0.310, 0.314)
E> 0.013 (0.012, 0.014)  0.036 (0.035, 0.037)  0.009 (0.008, 0.009)  0.009 (0.008, 0.009)
Ay 0.325 (0.322, 0.328)  0.370 (0.367, 0.374)  0.285 (0.283, 0.287)  0.310 (0.308, 0.312)
Az 0.013 (0.012, 0.014)  0.037 (0.036, 0.038)  0.008 (0.008, 0.008)  0.008 (0.008, 0.008)
P, 0.065 (0.063, 0.068)  0.096 (0.093, 0.099)  0.004 (0.004, 0.004) 0.004 (0.004, 0.004)
P, 0.060 (0.058, 0.062)  0.088 (0.085, 0.090)  0.033 (0.033, 0.033)  0.035 (0.035, 0.036)
Py 0.105 (0.103, 0.108)  0.135 (0.132, 0.138)  0.068 (0.067, 0.068)  0.073 (0.072, 0.073)
Py 0.102 (0.010, 0.105)  0.130 (0.128, 0.133)  0.068 (0.067, 0.068)  0.073 (0.072, 0.073)
Ps 0.057 (0.055, 0.059)  0.084 (0.082, 0.087)  0.033 (0.033, 0.033)  0.035 (0.035, 0.036)
Ps 0.017 (0.016, 0.018)  0.043 (0.042, 0.045)  0.004 (0.004, 0.004)  0.004 (0.004, 0.004)

Note: The sample means of sensitivity indices and 95% bootstrap confidence intervals
(using 10,000 bootstrap samples) are calculated based on 500 replications. In each
replication, sensitivity indices are calculated using 500 random observations of the

inputs and outputs in Eq. .

finite element model.

5. Conclusion

In this paper, data-driven sensitivity indices for a model with dependent
inputs are proposed using the PCE without imposing any strong assumptions
on the model inputs. The modified Gram-Schmidt algorithm with the empirical
measure is utilized to construct orthonormal polynomials for a PCE model on
the merit of numerical stability. The proposed data-driven method yields the
full sensitivity indices and the uncorrelated sensitivity indices by constructing
ordered partitions of orthonormal polynomials of inputs for a PCE model. The
proposed conditional order-based sensitivity indices for a model with dependent
inputs help reduce the complexity of a PCE model while keeping the effect
hierarchy principle. Four numerical examples validate the proposed method.

The proposed method requires polynomials of inputs, which are fed into the
modified Gram-Schmidt algorithm, to be linearly independent. This suggests a
future research direction because there are multiple ways of constructing linearly

independent polynomials from a linearly dependent polynomial basis. How to
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build a theoretically and practically desirable basis warrants more investigation.

Appendix

A.1. List of sensitivity indices

STy, Total uncorrelated sensitivity index of the output Y with respect to the

input X;.
ST, Total Sobol index of the output Y with respect to the input Xj.

SY%, First-order uncorrelated sensitivity index of the output Y with respect to

the input Xj.
Sx, First-order Sobol index of the output Y with respect to the input X;.

S x, First-order full sensitivity index of the output Y with respect to the input
X;.

STx, Total full sensitivity index of the output Y with respect to the input X;.

S'kH’QW’k_l The k' order sensitivity index of the output Y with respect to the
inputs X after taking account of the first order sensitivity index through

the (k — 1)t" order sensitivity index.

A.2. Analytical method for calculating the sensitivity indices in Example 3 in

Section

The following lemma is used for the analytical method in Example 3 in

Section [4
Lemma 1. Suppose

2
X1 H1 o7 pPO102

NN y

2
Xo Ha2 po1oy O3

Then, Var(X1Xs) = pios + p30? + 0203 + 2uipapoi0s + p*oios.
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Proof. We can express X; and X as follows:

Nl=

X1 =p +roiZ+(1—1r*)320,Y1,

Nl

Xo = po + 710272 + (1 —1%)20,Ys,

where r = \/p, Z ~ N(0,1), and Y; ~ N(0,1),7 = 1,2. We have the covariance
among Z and Y;,i = 1,2 as follows:
Cov(Z,Y;) =0, fori=1,2,
Cou(Y1,Y3) =0.
Therefore, we have
Var(X1Xs) = B(X{X3) — [E(X1X2))?
= E(X})BE(X3) + Cov(X?, X3) — [B(X1) E(X2) + Cov(X1, X2)]?
= (0% + u2) (03 + p3) + Cov(r’oiZ? + 2uro1 Z, 1202 22 + 2uaro9 Z) —
(p1p2 + 1°0102)?
= (105 + P30t + 0105 + 2 paporos + pPoi o).
O
We now present how to analytically calculate the sensitivity indices in Exam-

ple 3. From @D, {X1, X2}, {X3, X4}, and {X5, X} are mutually independent.

We have
VO/I"(Y) = VCL’/’(XlXQ + X3X4 + X5X6)

= VCLT(Xng) + VaT(X3X4) + VCL’I“(X5X6).
Based on Lemma |1} we can easily obtain Var(X;Xz) and Var(XsXy4). As
for Var(X5Xs), X5 and Xg can be expressed as follows:
X5 = 01Uy + Uy,
Xo = 02Uy + 03U + Us,

where U; ~ U(0,1),i = 1,2,3 and U;’s are mutually independent for i = 1,2, 3.

Because
Var(XsXe) = BE(X2X3) — [E(X5X6)]?

= Cov(X3, X3) + B(X3)E(X§) — [Cov(X5, X6) + E(X5)E(Xs))?,
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using the property that U;’s are mutually independent for ¢ = 1,2,3, it is
straightforward to express Var(Xs;Xs) as a function of (61, 63,63) and the mo-
ments of U;,7 = 1,2, 3.

After calculating Var(X1Xs), Var(X3X4), and Var(Xs5Xe), we can calcu-
late STyx, x,}, STix,x,}, and STyx, x4} as follows:

ST _ Var(X1X5)

XX} = Vor (X1 X0) + Var(XsXy) + Var(Xs Xg)’
ST _ Var(XsX4)

P6Xa ™ Var (X1 X0) + Var(Xs Xy) + Var(Xs Xg)’
ST _ Var(XsXe)

{X5Xe} Var(X1Xz2) + Var(X3X4) + Var(XsXe)

A.3. The correlation matriz for the loads in Example 4 in Section [

The correlation matrix for the loads listed below is estimated using 108

random observations.

Table 5: A correlation matrix for the six loads estimated based on 10° random observations

generated based on the C-vine copula in Eq. .

P, Py Ps Py Ps Ps

P, | 1.000 0.172 0.173 0.171 0.176 0.173
P, | 0.172 1.000 0.032 0.031 0.033 0.032
P; | 0.173 0.032 1.000 0.032 0.034 0.031
Py | 0171 0.031 0.032 1.000 0.033 0.031
Ps | 0176 0.033 0.034 0.033 1.000 0.032
Ps | 0.173 0.032 0.031 0.031 0.032 1.000
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A.4. The response surface model used for simulating the output Y in Ezample

4 in Section [

The response surface model used to simulate the output Y is provided in

[39] as follows:

Y = 2.8070 + 1.2598E; + 0.2147E} + 1.2559 A + 0.2133A4% — 0.1510P; — 0.4238 Py—
0.6100P5 — 0.6100P; — 0.4238 P, — 0.1510P; — 0.1978 E2 — 0.0362E% — 0.2016 A2 —
0.0346 A% + 0.0023P;% 4+ 0.0008 Py? + 0.0036 P32 + 0.0036 P;> + 0.0008 P2 + 0.0023 P}* —
0.0042E7 B} — 0.3022E1 A} — 0.0110E} A + 0.0381E} P{ + 0.0871E| P + 0.1232F] Py+
0.1232E1 P, + 0.0871E} P + 0.0346 £} Pg + 0.0041E5 A} + 0.0110A7 A5 4 0.0261A7 Py +

0.0831A1 Py + 0.1172A] P + 0.1172 A Py + 0.0832 A7 P; + 0.0296 A} P,
(12)

where El,i = 1,2, A}, = 1,2, and P/,i = 1,2,3,4,5,6 are the standardized

E*HEl

inputs. For example, F| = o

, where g, is the mean of Ey and og, is the

standard deviation of F;.
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