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In 1977 the celebrated theorem of B. Dahlberg established 
that the harmonic measure is absolutely continuous with 
respect to the Hausdorff measure on a Lipschitz graph of 
dimension n − 1 in Rn, and later this result has been 
extended to more general non-tangentially accessible domains 
and beyond.
In the present paper we prove the first analogue of Dahlberg’s 
theorem in higher co-dimension, on a Lipschitz graph Γ of 
dimension d in Rn, d < n −1, with a small Lipschitz constant. 
We construct a linear degenerate elliptic operator L such 
that the corresponding harmonic measure ωL is absolutely 
continuous with respect to the Hausdorff measure on Γ. 
More generally, we provide sufficient conditions on the matrix 
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Harmonic measure in higher 
codimension

of coefficients of L which guarantee the mutual absolute 
continuity of ωL and the Hausdorff measure.

© 2019 Elsevier Inc. All rights reserved.

r é s u m é

Dans son célèbre théorème de 1977, B. Dahlberg a prouvé que 
pour les domaines de Rn bornés par un graphe lipschitzien 
de dimension n − 1, la mesure harmonique est absolument 
continue par rapport à la mesure de surface, résultat qui a 
ensuite été étendu aux domaines avec accès non-tangentiel, et 
au delà.
Dans ce papier on démontre le premier analogue de ce 
théorème pour le complémentaire d’un graphe lipschitzien Γ
de dimension d < n −1 avec une petite constante de Lipschitz. 
On construit un opérateur linéaire elliptique dégénéré L
dont la mesure harmonique associée ωL est absolument 
continue par rapport à la mesure de Hausdorff Hd sur Γ. 
Plus généralement, on donne des conditions suffisantes sur 
la matrice des coefficients de L pour que ωL et Hd

|Γ soient 
mutuellement absolument continues.

© 2019 Elsevier Inc. All rights reserved.
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1. Introduction

1.1. History and motivation

Dimension and structure of harmonic measure have attracted a lot of attention in the 
past 50 years, with a splash of remarkable new developments on uniformly rectifiable 
sets most recently.

Following the first results of Carleson [9], in 1985 the fundamental theorem of Makarov 
[46], [47] established that harmonic measure on any continuum on the plane has dimen-
sion exactly 1. More generally, for a domain Ω on the Riemann sphere whose complement 
has positive logarithmic capacity, the harmonic measure in Ω is supported in a subset of 
∂Ω whose Hausdorff dimension is at most 1, due to the result of Jones and Wolff [38]. In 
particular, if d ∈ (1, 2), 0 < Hd(E) < ∞, then ω is always singular with respect to Hd|E . 
In space, when the ambient dimension n is greater than or equal to 3, the situation is 
more complicated and less understood: on the one hand, Bourgain [6] proved that the 
dimension of harmonic measure always drops: dimH ω < n. On the other hand, even for 
connected E = ∂Ω, contrary to the planar case, dimH ω can be strictly bigger than n −1, 
due to a counterexample of Wolff [55] which is nowadays known as the Wolff’s snowflake.

Restricting the attention to integer dimensions, one is now bound to consider d = n −1
and ask on which sets with 0 < Hn−1(E) < ∞ the harmonic measure is absolutely 
continuous with respect to the surface measure. This is a very delicate issue, where 
dimension, regularity and topology all play an intricate role, and only the past few years 
and some outstanding developments in harmonic analysis on uniformly rectifiable sets 
have brought clarity. In short, the emerging philosophy is that the rectifiability of the 
boundary is necessary for the absolute continuity of ω with respect to Hn−1, and that 
rectifiability, along with suitable connectedness assumptions, is sufficient. Omitting for 
now precise definitions, let us recall the main results in this regard. The 1916 theorem 
of F.& M. Riesz has established the absolute continuity of the harmonic measure for 
a simply connected domain in the complex plane with a rectifiable boundary [50]. The 
quantifiable analogue of this result (the A∞ property of harmonic measure) was obtained 
by Lavrent’ev in 1936 [45] and the local version, pertaining to subsets of a rectifiable 
boundary, was proved by Bishop and Jones in 1990 [5]. In the latter work the authors 
also showed that some connectedness is necessary for the absolute continuity of ω with 
respect to H1, for there exists a planar set with a rectifiable boundary for which the 
harmonic measure is singular with respect to the Lebesgue measure.

In higher dimensions, the first breakthrough was the celebrated theorem of Dahlberg 
which established the absolute continuity of ω with respect to Hn−1 on Lipschitz graphs 
[13]. It was later extended to non-tangentially accessible, NTA, domains in [16], [51]. 
Roughly speaking, the non-tangential accessibility is an assumption of quantifiable con-
nectedness, which requires the presence of the interior and exterior corkscrew points, as 
well as Harnack chains. Similarly to the lower-dimensional case, counterexamples show 
that some topological restrictions are needed for the absolute continuity of ω with re-
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spect to Hn−1 [56], [57]. Much more recently, in [32], [33], [2], the authors proved that 
under a (weaker) 1-sided NTA assumption, the uniform rectifiability of the boundary is 
equivalent to the complete set of NTA conditions and hence, is equivalent to the absolute 
continuity of the harmonic measure with respect to the Lebesgue measure. Finally, in 
2015 the full converse, “free boundary” result was obtained and established that rectifia-
bility is necessary for the absolute continuity of harmonic measure with respect to Hn−1

in any dimension n ≥ 2, without any additional topological assumptions [3] (see also [31]
on Ahlfors regular sets). These results and problems have generated a large amount of 
activity and have been tightly intertwined with recent achievements in harmonic analysis 
on uniformly rectifiable sets, pertaining, in particular, to characterizations of uniform 
rectifiability via boundedness of singular integrals and, more specifically, Riesz trans-
forms [49], [48]. While avoiding for now precise definitions, we remind the reader that 
rectifiability basically concerns coverings of a set by countable unions of Lipschitz graphs 
and Dahlberg’s theorem for harmonic measure on Lipschitz graphs, much as boundedness 
of the Cauchy integral on Lipschitz curves [12], underpin the entire theory.

The main goal of the present paper is to establish the first analogue of Dahlberg’s 
theorem on sets of co-dimension higher than 1. As announced in [19], we construct a 
linear degenerate elliptic operator L such that the corresponding harmonic measure 
ωL is absolutely continuous with respect to the Hausdorff measure on a d-dimensional 
Lipschitz graph Γ, d < n −1, with a small Lipschitz constant. More generally, we provide 
sufficient conditions on the matrix of coefficients of L which guarantee mutual absolute 
continuity of ωL and the Hausdorff measure.

Turning to details, we assume that d is an integer and Γ is the graph of a Lipschitz 
function ϕ : Rd → Rn−d, with a small Lipschitz constant. We want to find an analogue 
of harmonic measure, that will be defined on Γ and associated to a divergence form 
operator on Ω = Rn \ Γ. We write the operator as L = −divA∇, with A : Ω → Mn(R), 
and put forward the ellipticity condition with a different homogeneity, i.e., we require 
that for some C1 ≥ 1,

dist(X, Γ)n−d−1A(X)ξ · ζ ≤ C1|ξ| |ζ| for X ∈ Ω and ξ, ζ ∈ Rn, (1.1)

dist(X, Γ)n−d−1A(X)ξ · ξ ≥ C−1
1 |ξ|2 for X ∈ Ω and ξ ∈ Rn. (1.2)

Under merely these assumptions, and even when d < n − 1 is not an integer and Γ
is merely Ahlfors-regular of dimension d, we have recently developed a fairly complete 
elliptic theory and in particular we can define a harmonic measure that satisfies, among 
others, the doubling property and the change of pole property (see [20]). In general, such 
a harmonic measure need not be absolutely continuous on Γ. Already in codimension 1, 
we know that the ellipticity and the boundedness of A are not enough to ensure abso-
lute continuity (see [7]). In higher codimension, we don’t expect that the assumptions 
(1.1)–(1.2) are sufficient either, even when A(X) is a multiple of the identity matrix, but 
we do not have a counter-example yet. Due to Dahlberg’s theorem, it is, however, the 
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case for the Laplacian when d = n −1. The goal of the present paper is to find one elliptic 
operator L = − divA∇ for which the harmonic measure is absolutely continuous with 
respect to the Hausdorff measure when d < n − 1. Ironically, it is not the one associated 
to the matrix of coefficients dist(X, Γ)n−d−1I which perhaps would be a natural first 
guess, at least not in higher dimensions.

We assume that A(X) = D(X)−n+d+1I for x ∈ Ω, with

D(X) =
{ˆ

Γ

|X − y|−d−αdHd(y)
}−1/α

(1.3)

for some constant α > 0. It is easy to see that D(X) is equivalent to dist(X, Γ) (and this 
would even stay true when Γ is an Ahlfors regular set). When d = 1 we can also take 
A(X) = dist(X, Γ)−n+d+1I, but when d ≥ 2, dist(X, Γ) does not appear to be smooth 
enough to make our proofs work, which is why we use (1.3) instead.

With these assumptions we will prove that the harmonic measure described above is 
absolutely continuous with respect to Hd

|Γ, with a density which is a Muckenhoupt A∞

weight.
This seems to be the first result of this nature in higher co-dimensional sets. Some 

aspects of pre-requisite elliptic theory developed in [20] existed before [26], [27], and some 
have even been recently proved for non-linear operators, most notably the p-Laplacian, 
on Reifenberg flat sets in [44]. One could conjecture that the p-harmonic measure for a 
suitable p is also absolutely continuous with respect to the Hausdorff measure but at the 
moment no result to this effect could be achieved.

To better imagine the properties of the operator L = − divA∇ above and associ-
ated advantages and challenges, one should notice that it is non-local (the solution in 
a given ball depends on far away features of the domain, because the distance D and 
hence, the operator L does). In fact, there may be connections with other non-local op-
erators, e.g., fractional Laplacian in Rn−1, as the famous Caffarelli–Silvestre extension 
transforms it into a degenerate operator in Rn

+ [8], though of course, with a different 
non-degeneracy and, hence, different features than ours. In this regard, one should also 
recall elliptic edge operators which recently enjoyed renewed interest in connection with 
the Kähler–Einstein edge metrics, see, e.g., [36]. However, beyond the general idea of 
treating higher co-dimensional features with elliptic degeneracies, it would be premature 
to draw connections with the present work.

The proof of our main result has two main steps:

(1) construct a nice bi-Lipschitz change of variables that sends Γ to a d-plane P0;
(2) show that for a large class of degenerate elliptic operators on Rn \ P0, including the 

one arising from the aforementioned change of variables, the square function/non-
tangential maximal function estimates hold for bounded solutions and further imply 
the absolute continuity of the associated harmonic measure with respect to the sur-
face measure on P0.



2736 G. David et al. / Journal of Functional Analysis 276 (2019) 2731–2820
This is not a surprising strategy, and our approach owes a lot to [41], [42], [21]. 
However, trying to execute it in higher co-dimension, one quickly learns that most of 
the methods developed in co-dimension one don’t work. There are three new major 
players. First, the matrix of coefficients suitable for (2) has to have a special structure 
in the portion responsible for the t variables (this was not a problem before because 
such a portion is just one entry in co-dimension 1). Secondly, as a result, one needs 
the aforementioned change of variables to be as close as possible to an isometry at 
many scales - a property missing in previously used mappings of Lipschitz domains to 
Rn−1 [40], and only appearing, albeit in a different form, in the analysis of Reifenberg 
flat sets [54], [22]. Finally, as the distance is now a factor of the matrix of coefficients, 
it turns out that we want the composition of D with our change of variable to be 
close to the distance to Rd (and this property would also be lost by previously used 
“vertical” changes of variables), which ultimately leads to our special choice of D. In 
some sense, a big advantage of Lipschitz graph domains of dimension n − 1 over more 
complicated rectifiable sets is the existence of one special direction, the vertical one. 
In higher co-dimensional sets this advantage is notoriously missing, and even working 
formally on a Lipschitz graph, we have to use some of the tools of geometric measure 
theory on uniformly rectifiable domains, such as X. Tolsa’s α-numbers related to the 
Wasserstein distance, to even construct the change of variables. In addition, we lose a 
possibility to test our intuition in the planar case, using conformal mapping techniques, 
as for n = 2 the only higher co-dimensional set could be a point. A good side of having 
to overcome all these challenges is a resulting indication that the results can be carried 
over to much more general sets and, indeed, we conjecture that the absolute continuity 
of harmonic measure associated to A(X) = D(X)−n+d+1I is absolutely continuous with 
respect to Hausdorff measure on all uniformly rectifiable domains, in contrast with the 
results for the Laplacian for d = n − 1 which requires extra topological restrictions due 
to [5]. For now though, we concentrate on Lipschitz graphs, and before passing on to a 
detailed description of main results, only mention that all aspects of the construction, 
pertaining to parts (1) or (2) above, are new even in co-dimension one.

1.2. Main results. Harmonic measure and the A∞ condition

We consider a Lipschitz function ϕ : Rd → Rn−d. Its Lipschitz constant is denoted 
by C0, and is defined as the quantity

C0 := sup
x,y∈R

d

x�=y

|ϕ(x) − ϕ(y)|
|x − y| = sup

x∈Rd

sup
h=(h1,...,hd)∈R

d

|h|=1

∣∣∣∣∣∑
i=1

hi∂xi
ϕ(x)

∣∣∣∣∣ . (1.4)

Here and throughout the paper, ∂xi
stands for the partial derivative with respect to the 

i-th coordinate of x ∈ Rd. We shall work with the graph of Γ, which is

Γ := {(x, ϕ(x)), x ∈ Rd} ⊂ Rn (1.5)
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(we shall almost systematically identify Rn with Rd × Rn−d) and denote

Ω = Rn \ Γ. (1.6)

Ahlfors The set Γ is d-Ahlfors regular, which means that there exists a measure σ on Γ
and a constant Cσ ≥ 1 such that

C−1
σ r−d ≤ σ(B(x, r)) ≤ Cσrd (1.7)

for x ∈ Γ and r > 0. Ahlfors regularity is really a property of the set Γ rather than of 
a particular measure σ, because it is not hard to see (but essentially irrelevant for the 
present paper) that if there is a measure σ on Γ that satisfies (1.7), then σ is equivalent 
to Hd

|Γ and Hd
|Γ satisfies (1.7) too (with a larger constant). We mention all this because 

many of the properties that we prove below do not use more than the Ahlfors regularity 
of Γ. We shall assume later that σ is close to Hd

|Γ.
We will need to use Corkscrew points for Ω. These are points Ax,r ∈ Ω, associated to 

x ∈ Γ and r > 0, such that (for some constant τ > 0)

τr ≤ dist(Ax,r, Γ) ≤ |Ax,r − x| ≤ r. (1.8)

Corkscrew points are very easy to find here, when Γ is a Lipschitz graph (try Ax,r =
(x, ϕ(x) + re) for any unit vector e ∈ Rn−d), but they also exist when Γ is any Ahlfors 
regular set of dimension d < n − 1, and we can take τ to depend only on n, d, and Cσ

from (1.7); see Lemma 11.46 in [20].
Since the set Γ satisfies (1.7), it enters the scope of the elliptic theory developed in 

[20]. Let us recall some of the main properties that will be needed.
Let L = − divA∇ be a degenerate elliptic operator for which A satisfies (1.1) and 

(1.2). We say that u is a weak solution of Lu = 0, if u ∈ W 1,2
loc (Ω) and

ˆ

Ω

A∇u · ∇v = 0 ∀v ∈ C∞
0 (Ω). (1.9)

Here, W 1,2
loc (Ω) is the set of functions u ∈ L2

loc(Ω) whose derivative (in the sense of 
distribution on Ω) also lies in L2

loc(Ω).
For each X ∈ Ω, we can define a (unique) probability measure ωX on Γ, with the 

following properties. For any bounded measurable function f on Γ, the function uf

defined by

uf (X) =
ˆ

Γ

f(y)dωX(y) (1.10)

is a weak solution. This is only stated in [20] when f ∈ C0
0 (Γ) is continuous and compactly 

supported in Γ (see Lemma 9.30 and (iii) of Lemma 9.23 there, and also (8.1) and (8.14) 
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for the definitions) and when f is a characteristic function of Borel set (see Lemma 9.38 
there); the general case would not be hard, but we do not need it anyway.

There is also a dense subclass on which we can say a little more. Denote by M(Γ) the 
set of measurable functions on Γ and then define the Sobolev space

H = Ḣ1/2(Γ) :=

⎧⎨⎩g ∈ M(Γ) :
ˆ

Γ

ˆ

Γ

|g(x) − g(y)|2
|x − y|d+1 dσ(x)dσ(y) < ∞

⎫⎬⎭ . (1.11)

The class H ∩ C0
0 (Γ) is dense in C0

0 (Γ) (see about 13 lines above (9.25) in [20] for the 
proof of density), and if f ∈ H ∩ C0

0 (Γ), the solution uf defined by (1.10) lies in the 
Sobolev space W 1,2(Ω, dist(X, Γ)d+1−ndX), which means that

ˆ

Ω

|∇u(X)|2 dist(X, Γ)d+1−ndX < +∞, (1.12)

and also

uf has a continuous extension to Rn, which coincides with f on Γ. (1.13)

See (i) of Lemma 9.23 in [20], together with its proof eight lines above (9.25).
It should be stressed that since ωX is a probability measure, uf is a nondecreasing 

function of f ≥ 0. This is of course a manifestation of the maximum principle. We will 
need some other properties of L and ωX when we prove Theorems 1.27 and 1.32, but 
these will be recorded later.

Our aim is to find at least one A satisfying (1.1)–(1.2) such that the harmonic measure 
(that is, any ωX as before) is absolutely continuous with respect to the Hausdorff measure 
σ on Γ, with A∞ estimates, and this will require additional assumptions.

First of all, we shall restrict to the case when d is an integer and Γ is the graph of a 
Lipschitz function (as in (1.5)), with a small enough Lipschitz constant, but also L will 
have the special form

L = − div D(X)d+1−n∇, (1.14)

where D(X) is defined as

D(X) = Dα(X) =
{ˆ

Γ

|X − y|−d−αdσ(y)
}−1/α

, (1.15)

for some constant α > 0. In fact, in (1.15) we can only use measures σ that do not differ 
much from the restriction of Hd to Γ; that is, we can for instance use the product of 
Hd

|Γ by any function, only if that function is sufficiently close, in L∞-norm, to 1. See 
Lemma 6.2, the rest of the argument is the same. When d = 1, we can also take
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D(X) = dist(X, Γ), (1.16)

but in higher dimensions, dist(X, Γ) does not seem to be smooth enough for our proof 
to work, roughly for the same reason as why the Jones’ β∞ coefficients are not suitable 
in high dimensions, so we’ll have to content ourselves with Dα.

Observe that (1.14) means that we chose A = D(X)d+1−nI, where I is the identity 
matrix. To be able to use the previous theory, we need to check that (1.1)–(1.2) are 
satisfied, and indeed,

C−1 dist(X, Γ) ≤ Dα(X) ≤ C dist(X, Γ) (1.17)

(see Lemma 5.1).
Our main result states the quantitative mutual absolute continuity of the harmonic 

measure ωX above and the surface measure σ, when Γ is a Lipschitz graph with small 
enough constant. We give the statement first, and then explain the A∞ condition in our 
context.

Theorem 1.18. Let Γ ⊂ Rn be, as in (1.5), the graph of a Lipschitz function ϕ : Rd →
Rn−d. Define L = − div Dd+1−n∇ as in (1.14), with D as in (1.15), or possibly, if 
d = 1, as in (1.16). Then the associated harmonic measure (defined near (1.10)) is A∞

with respect to σ = Hd
|Γ as soon as the Lipschitz constant C0 of (1.4) is small enough, 

depending only on n, d, and α > 0. This means for instance that for every choice of 
τ ∈ (0, 1) and ε ∈ (0, 1), there exists δ ∈ (0, 1), that depends only on τ , ε, n, d, and α, 
such that for each choice of x ∈ Γ, r > 0, a Borel set E ⊂ BΓ(x, r), and a corkscrew 
point X = Ax,r(Γ) (as in (1.8)),

ωX
Ω,L(E)

ωX
Ω,L(BΓ(x, r))

< δ ⇒ σ(E)
σ(BΓ(x, r)) < ε. (1.19)

Let us comment a little on the A∞ condition. In the general context of spaces of 
homogeneous type (metric spaces with a doubling measure μ), we say that the measure 
ω is A∞ with respect to the doubling measure μ when the following condition holds: 
for every ε ∈ (0, 1), there exists δ ∈ (0, 1) such that for any x ∈ Γ, any r > 0, and any 
E ⊂ B(x, r), we have the implication

ω(E)
ω(B(x, r)) < δ ⇒ μ(E)

μ(B(x, r)) < ε. (1.20)

We refer to [40, Theorem 1.4.13], [11, Lemma 5], [29], or [39] for proofs and additional 
information about the A∞ condition. It is not hard to show that under these conditions, 
ω also is doubling, and μ is A∞ with respect to ω. That is, the A∞ relation is symmetric.

For the harmonic measure, in our case or in the original context of co-dimension one, 
we cannot say that ωX is A∞ with respect to σ in the usual sense, because when X is 
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very close to the boundary (compared to r), ωX is very small on most of Γ ∩ B(x, r). 
To say this slightly differently, let X ∈ Ω be given and let x ∈ Γ be such that |X − x| =
dist(X, Γ). For any r > 0 large, we can find yr ∈ Γ such that 2r = |yr − x|. Then (1.20)
fails because

ωX
Ω,L(BΓ(yr, r))

ωX
Ω,L(BΓ(x, 3r))

→ 0 as r → +∞

while

σ(BΓ(yr, r))
σ(BΓ(x, 3r)) ≥ C−1

where C−1 depends only on the constant in (1.7). However, for any X ∈ Ω and any ball 
BΓ(x, R) in Γ, the restriction of ωX

Ω,L to BΓ(x, R) is in the class A∞ with respect to the 
restriction of σ to the same BΓ(x, R). This latter fact is a straightforward consequence 
of Theorem 1.18, the Harnack inequality, and the change of pole (see [20], Lemmas 8.42 
and 11.135). If desired, one can replace the corkscrew point Ax,r in our statement by 
any point of Ω \ B(x, 2r) at essentially no cost, and by any point X ∈ Ω, but with worse 
constants that depend on X.

1.3. Main results. Sufficient conditions on elliptic operators on Ω0 = Rn \ Rd for the 
absolute continuity of harmonic measure

The second main result of the present paper is absolute continuity of the harmonic 
measure with respect to the Hausdorff measure on Rd for a general class of elliptic 
operators in Rn \Rd, satisfying certain structural and Carleson measure conditions. This 
result is of independent interest (see [30] and [43] and the discussion below for some 
analogues in co-dimension one, but notice that our sufficient conditions are new even in 
co-dimension one and are weaker than in [43]). It is also a crucial step of the proof of 
Theorem 1.18, which uses a change of variables (discussed below) that sends us back to 
the case where Γ = Rd ⊂ Rn, at the expense of producing a new different operator L0.

We need some definitions. We shall continue to identify Γ0 = Rd with Rd × {0} ⊂ Rn, 
and we set Ω0 = Rn \ Rd. The running point of Rn will be denoted by X = (x, t) or 
Y = (y, s), with x, y ∈ Rd and s, t ∈ Rn−d. When t = 0, we may write x instead of 
(x, 0) ∈ Rn.

Definition 1.21. A Carleson measure on Ω0 is a positive measure μ on Ω0 such that for 
some constant C ≥ 0,

μ(Ω0 ∩ B(x, r)) ≤ Crd for x ∈ Γ0 and r > 0. (1.22)

We say that a function u defined on Ω0 satisfies the Carleson measure condition when



G. David et al. / Journal of Functional Analysis 276 (2019) 2731–2820 2741
|u(y, s)|2 dyds

|s|n−d
is a Carleson measure,

that is, when there is a constant Cu ≥ 0 such that

¨

(y,s)∈Ω0∩B(x,r)

|u(y, s)|2 dyds

|s|n−d
≤ Curd for x ∈ Γ0 and r > 0. (1.23)

When this happens, we shall more briefly write that u ∈ CM(Cu) and refer to the 
smallest possible Cu in (1.23) as the Carleson norm of u (even though it scales like a 
square).

The following result, which builds on the ideas from [41,42,21], says that for any 
matrix L0 satisfying (1.1) and (1.2), the A∞ absolute continuity of the corresponding 
harmonic measure follows from Carleson measure estimates (1.23) for bounded solutions. 
Let us simplify the notation, write A0 = A0(X) = A0(x, s) (instead of A(X)) for the 
degenerate elliptic matrix that defines our operator L0, and notice that since Γ0 = Rd, 
the conditions (1.1) and (1.2) become

|s|n−d−1A0(x, s)ξ · ζ ≤ C1|ξ| |ζ| for X = (x, s) ∈ Ω0 and ξ, ζ ∈ Rn, (1.24)

|s|n−d−1A0(x, s)ξ · ξ ≥ C−1
1 |ξ|2 for X = (x, s) ∈ Ω0 and ξ ∈ Rn. (1.25)

As before, the operator L0 = − div A0∇ satisfies the assumptions of [20], so we can 
construct harmonic measures on Γ0 that we denote by ωX = ωX

Ω0,L0
, X ∈ Ω0, which 

satisfies the properties described near (1.10). In particular, for every Borel set H ⊂ Γ0, 
we can define a weak solution uH by

uH(X) = ωX
Ω0,L0

(H) for X ∈ Ω0 (1.26)

(compare with (1.10)). Here is our sufficient condition for A∞ absolute continuity, which 
will be proved in Section 8.

Theorem 1.27. Let L0 = − div A0∇ be a degenerate elliptic operator (with real coeffi-
cients) on Ω0 = Rn \ Rd, and assume that A0 satisfies (1.24) and (1.25). Also assume 
that there is a constant CL such that for any Borel set H ⊂ Γ0 = Rd, the solution uH of 
(1.26) is such that

|t|∇uH ∈ CM(CL). (1.28)

Then the harmonic measure ωX
Ω0,L0

is A∞ (with the definition of Theorem 1.18) with 
respect to the Lebesgue measure on Rd.
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The next stage is to find reasonable conditions on A0 that imply the estimate (1.28), 
and hence the A∞-absolute continuity of ωΩ0,L0 . Recall from the discussion above that 
even in co-dimension 1 one does not expect the absolute continuity of the harmonic 
measure with respect to the Lebesgue measure to hold for all elliptic operators, due to 
the counterexamples in [7].

We need more notation. In the sequel, Q denotes a cube in Rd and l(Q) its sidelength. 
The truncated cone of approach to x ∈ Γ0 is

γQ(x) =
{

(y, s) ∈ Rn \ Rd : |y − x| ≤ a|s| and 0 < |s| < l(Q)
}

, (1.29)

where a > 0 is any given constant, and often we just take a = 1. The notation is slightly 
misleading, because γQ(x) merely depends on l(Q) rather than Q, but it is convenient 
and often used.

Then we define a localized square function SQu and a localized non-tangential maxi-
mal function N Q, both on Γ0, by

SQu(x) :=

⎛⎜⎝ ¨

(y,s)∈γQ(x)

|∇u(y, s)|2 dyds

|(y, s) − (x, 0)|n−2

⎞⎟⎠
1/2

(1.30)

and

NQu(x) := sup
(y,s)∈γQ(x)

|u(y, s)| (1.31)

for x ∈ Γ0. Our main theorem for elliptic operators on Rn \Rd, which yields square func-
tion/non-tangential maximal function estimates and ultimately A∞ property of harmonic 
measure, is the following.

Theorem 1.32. Let A0 be a degenerate elliptic matrix satisfying (1.24) and (1.25) in 
Ω0 = Rn \ Rd, and set then L0 = − div A0∇ as above. Define the rescaled matrix A
by A = |t|n−d−1A0, so that now L0 = − div |t|d+1−nA∇, and assume that A has the 
following block structure:

A(X) =
(

A1(X) A2(X)
C3(X) b(X)In−d + C4(X)

)
, (1.33)

where A1(X) is a matrix in Md×d, A2(X) is a matrix in Md×(n−d), b is a function on Ω0, 
In−d is the identity matrix in M(n−d)×(n−d), and in addition we can find constants M ≥ 0
and λ ≥ 1 such that

λ−1 ≤ b ≤ λ on Ω0, (1.34)

|t|∇b ∈ CM(M), (1.35)
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C3, C4 ∈ CM(M). (1.36)

Then there is a constant K > 0, that depends only on n, d, the elliptic parameter in 
(1.24) and (1.25), λ, M , and a (the aperture in (1.29)), and a constant k0 > 1 that 
depends only on the aperture a, such that if u is a weak solution to L0u = 0, then for 
every cube Q ⊂ Rd,

‖SQu‖2
L2(Q) ≤ K‖N2Qu‖2

L2(k0Q). (1.37)

Here k0Q stands for the cube with the same center as Q and sidelength k0l(Q).
Furthermore, under the same conditions on the matrix A, the harmonic measure 

ωX
Ω0,L0

is A∞ with respect to the Lebesgue measure on Rd (with the definition of Theo-
rem 1.18).

Here and throughout the paper, when we say in (1.36) that Cj ∈ CM(M), we mean 
that each entry Cj

i,k of Cj lies in CM(M); the fact that we take the sup norm on matrices 
rather than a more reasonable norm is irrelevant here.

The theorem will be proved in Sections 7 and 8, Theorem 7.10 and Corollary 8.11. Let 
us discuss some aspects of its statement. First, the finiteness of the quantities in (1.37)
is not guaranteed (but we do mean, as a part of the statement, that the finiteness of the 
right-hand side implies the finiteness of the left-hand side); but it holds in the following 
case. Let H be any Borel set on Rd and uH be the solution with data given by the 
characteristic function of H, defined in (1.26). Then (since ω is a probability measure) 
N2Q(uH) ≤ 1, which by (1.37) implies that for every cube Q ⊂ Rd

‖SQuH‖2
L2(Q) ≤ C|Q|. (1.38)

The latter, by Fubini’s theorem, yields (1.28) – see Remark 7.28. This is the reason why, 
having proved (1.37) and Theorem 1.27, we can conclude that for operators satisfying 
conditions of Theorem 1.32 the harmonic measure ωX

Ω0,L0
is A∞ with respect to the 

Lebesgue measure on Rd (with the definition of Theorem 1.18).
Turning to the conditions on A0 proposed in Theorem 7.10, we observe that we did 

not impose any condition on the first d-lines of the elliptic and bounded matrix A. In 
the case of co-dimension 1, the reader should compare to [43] where the full matrix A
is assumed to satisfy |t|∇A ∈ CM(M). One could always add to the latter a Carleson 
measure perturbation, that is, to treat A +C, with |t|∇A ∈ CM(M) and C ∈ CM(M) due 
to [25], but still imposing these conditions on the full matrix of coefficients (as opposed 
to our statement appealing only to the last n − d lines). On top of it, to be even more 
precise, both [43] and [25] require slightly stronger Carleson measure conditions, dealing 
with the suprema of coefficients on Whitney cubes, that is, (|t|∇A)W ∈ CM(M) and 
(C)W ∈ CM(M) where FW (x, t) = supB((x,t),t/2) |F |, (x, t) ∈ Rn. In all those directions, 
even in co-dimension one the result of Theorem 1.32 is new. Observe, for instance, that 
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it yields the A∞ property for the harmonic measure of an operator associated to a block 
matrix

A(X) =
(

A1(X) 0
0 In−d

)
, (1.39)

and for its Carleson measure perturbations, A + C, without any assumptions on A1. In 
the case when A1 is t-independent, this is a consequence of the resolution of the famous 
Kato problem [1], but the observation that one take any elliptic A1, to our knowledge, 
is new.

Note also that in the case of co-dimension 1 one could take B3 + C3 in place of C3, 
with |t|∇B ∈ CM(M), at the expense of a harmless drift term (this is the reason why 
our results include the aforementioned case |t|∇A ∈ CM(M)). A version of this should 
be also possible in our context, but we choose not to develop it here as strictly speaking 
one would have to revisit [20] for construction of solutions of operators with drift terms.

We remark, parenthetically, that in co-dimension 1 another important class of elliptic 
operators whose harmonic measure is absolutely continuous with respect to the Hausdorff 
measure on Rd (or on a Lipschitz graph) is the class of operators with t-independent 
coefficients [30]. Those do not make much sense in our context as the dependence on the 
distance to the boundary and hence, on |t|, is exactly the feature that allows us to access 
the higher codimension.

At this point, we see that in order to prove Theorem 1.18, we now want to construct 
a change of variables ρ that transforms the operator L in that theorem into an operator 
L0 that satisfies the assumptions of Theorem 1.32.

1.4. A bi-Lipschitz change of variables

Let us now say a few words about the change of variables that we will construct. This 
will be a bi-Lipschitz mapping ρ : Rn → Rn, with

ρ(Γ0) = Γ and (hence) ρ(Ω0) = Ω. (1.40)

When we conjugate our operator L by ρ, we obtain the operator Lρ = − div Aρ∇, which 
satisfies the conditions (1.1)–(1.2) relatively to the boundary Γ0 = Rd and the domain 
Ω0 = Rn\Rd. Besides, the harmonic measure associated to Ω and L is A∞ with respect to 
the measure σ when the harmonic measure associated to Ω and L is A∞ with respect to 
the Lebesgue measure λd on Γ0 = Rd, where the A∞-absolute continuity of the harmonic 
measure is taken as in Theorem 1.18. Indeed, since ρ is bi-Lipschitz, it is easy to check 
that for a Borel set H ⊂ Γ the Hausdorff measure of H is equivalent to the Lebesgue 

measure of ρ−1(H). Moreover, if X ∈ Ω, ωX
Ω,L(H) = ω

ρ−1(X)
Ω0,Lρ

(ρ−1(H)); and since again 
ρ is bi-Lipschitz, the fact that X = Ax,r(Γ) is a Corkscrew point implies that ρ−1(X)
is Corkscrew point of the form Aρ−1(x),r(Γ0). Theorem 1.18 will be thus proven if Lρ

satisfies the assumption of Theorem 1.32.
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The change of variables ρ will also be a differentiable mapping, with an invertible 
differential, denoted by Jac, such that

1
2 |v| ≤ | Jac(X) · v| ≤ 2|v| for X ∈ Ω0 and v ∈ Rn. (1.41)

For the moment, this is quite natural, and easy to obtain if the Lipschitz constant C0
for the mapping ϕ whose graph is Γ is small enough. Now the goal of the change of 
variables is to transform the operator L defined on Ω by the matrix A defined by (1.14), 
with a function D coming from (1.15) or perhaps (1.16), into an operator L0 on Ω0
that satisfies the assumptions of Theorem 1.32. A computation, that will be done in 
Lemma 6.17, shows that L0 is the operator associated to the normalized matrix A, 
where

A(x, t) =
(

|t|
D(ρ(x, t))

)n−d−1

| det(Jac(x, t))|(Jac(x, t)−1)T Jac(x, t)−1, (1.42)

where X = (x, t) is the running point of Ω0 and (Jac(x, t)−1)T denotes the transpose of 
the inverse of the differential Jac(x, t).

The general shape of the matrix, which is given by (Jac(x, t)−1)T Jac(x, t)−1, is sym-
metric, but since we want the block on the bottom right of A to be Carleson-close to a 
matrix b(X)In−d, we want the t-part of Jac(X) to be as close as possible to a multiple 
of an isometry. In addition, (1.35) tells us that we do not want to let b(X) vary too fast, 
which will force us to control the Jacobian determinants of the matrices. Let us say how 
these constraints influence our definition of ρ.

We shall use a smooth, nonnegative, radial function η : Rd → R, compactly supported 
in the unit ball and such that 

´
η(x)dx = 1, and its dilations ηr, r > 0, defined by

ηr(x) = 1
rd

η
(x

r

)
. (1.43)

Then we define functions ϕr : Rd → Rn−d by

ϕr = ϕ ∗ ηr, (1.44)

and then Φ and Φr, with values in Rn, by

Φ(x) = (x, ϕ(x)), and Φr(x) = (x, ϕr(x)) = (Φ ∗ ηr)(x) (1.45)

for x ∈ Rd. Thus Φ is the standard parameterization of Γ, and Φr parameterizes a graph 
Γr which is a nice approximation of Γ at the scale r.

Denote by X = (x, t) the running point of Rn, and also set r = |t|. We will take

ρ(x, 0) = Φ(x) = (x, ϕ(x)) for x ∈ Rd (1.46)
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and

ρ(x, t) = Φr(x) + h(x, t)Rx,r(0, t) = (x, ϕr(x)) + h(x, t)Rx,r(0, t) for (x, t) ∈ Ω0, (1.47)

where Rx,r is a linear isometry of Rn and h is a positive function on Ω0 such that 
C−1 ≤ h ≤ C for some positive constant C.

We shall construct Rx,r so that it maps Rd to the d-plane P (x, r) tangent to Γr

at the point Φr(x). In fact, we are even more interested by the fact that Rx,r maps 
Rn−d = (Rd)⊥ to the orthogonal plane to P (x, r) at Φr(x), but the two are equivalent 
anyway. Our function h will change slowly (in a way that is controlled by Carleson 
measures), so (1.47) is a way to make ρ close to an isometry in the t-variables. It is 
also important that the variations of ρ in the t variables are almost orthogonal to the 
approximate direction of the tangent plane, which is a property that other standard 
changes of variables do not have.

The role of h is a little more subtle. It is connected to the fact that we want to control 
the variations of the coefficient b(X) above. We will choose it to control the D-distance 
from ρ(X) to Γ, in such a way that

|t|
D(ρ(y, t)) − 1 satisfies the Carleson measure condition, (1.48)

and this in turn will allow us to control b.
The idea of changing variables to get a slightly more complicated operator in the sim-

pler domain Ω0 is classical. There are, however, only two changes of variables that have 
been used in this context before. The first one, ρ(x, t) = (x, t + ϕ(x)), (x, t) ∈ Rn, yields 
the operators with t-independent coefficients (see, e.g., [35], [41], [30]) and the second 
one, somewhat closer to ours, ρ(x, t) = Φr(x) + (0, t), (x, t) ∈ Rn, known as the Necas–
Kenig–Stein change of variables (see, e.g., [43]), yields the operators with coefficients 
whose gradient is a Carleson measure. However, both of them move points vertically and 
lack some of the delicate properties that we now require, almost an isometry for ρ and 
Carleson measure estimates for D ◦ ρ to mention only a few. Even in co-dimension 1, the 
present change of variables is new in the context of elliptic operators, and seems to be 
much more adapted because it tends to preserve the orthogonal direction. On the other 
hand, in the realm of Reifenberg flat sets, the idea of trying to preserve the orthogonal 
direction is not new; see for instance [54], and more closely [22] where somewhat similar 
problems arise.

Unfortunately, our construction does not work when the Lipschitz constant C0 is large 
(because injectivity fails), and this does not seem easy to fix. So we may need to find 
other ways to treat general Lipschitz graphs and other nice sets.

At this point our meticulously chosen ρ and D are good enough to apply Theorem 1.32
(we even get that the matrix A satisfies slightly stronger conditions, which will be de-
scribed in Lemma 6.22), and hence get Theorem 1.18.
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Let us also mention that some regularity of D is needed to establish (1.48). For the 
soft distance functions of (1.15), we will get the desired control on D, which in particular 
allows us to define ρ so that (1.48) holds, from a result of Tolsa [53] that controls some 
Wasserstein distances between σ and Lebesgue measures on d-planes. These distances 
control both the flatness of Γ and the repartition of σ on Γ; that is, both the regularity 
of Γ and D.

In the case of the Euclidean distance in (1.16), we need the L∞-based P. Jones num-
bers β, which we can only control well in dimension d = 1; otherwise, the distance does 
not seem to be regular enough for our method to apply.

1.5. Organization of the paper

In Section 2, we set the notation, and construct an orthonormal basis of the approxi-
mate tangent plane P (x, r), that will be used to define the linear isometries Rx,r. This 
completes the definition of ρ, modulo the choice of h which is left open for the moment.

In Section 3 we prove that if C0 is small enough, ρ is a locally smooth and globally 
bi-Lipschitz change of variable, with (1.40) and (1.41). The main point is the injectivity 
of ρ, which we prove with a simple topological argument. We do not give a formula 
for ρ−1.

In Section 4 we write the matrix | det(Jac(x, t))|(Jac(x, t)−1)T Jac(x, t)−1 that shows 
up in (1.42) in an appropriate form, and prove Carleson measure estimates for some of 
its coefficients. The estimates in this section come from elementary linear algebra (to 
decompose the matrix) and standard Littlewood–Paley theory for bounded functions 
(for the Carleson bounds).

In Section 5, we use P. Jones β-number and localized Wasserstein distances, together 
with the uniform rectifiability of Γ, to control the geometry of Γ and σ, choose the 
function h, and prove (1.48) in particular.

Once all this is done, we can check in Section 6 that the matrix of L0 of the conjugated 
operator satisfy stronger assumptions than needed for Theorem 1.32. As was explained 
above, this completes the proof of Theorem 1.18, modulo Theorems 1.32 and 1.27.

Theorem 1.32 and Theorem 1.27 are of independent interest, and their proofs, given 
in Section 7 and Section 8, can be read independently from the rest of this paper.

In the sequel, the letter C denotes a positive constant whose dependence is either 
recalled or obvious from the context, and that may change from one inequality to an-
other. The expression A � B, where A and B are two expressions depending on some 
parameters, means that there exists C > 0 such that A ≤ CB, and the dependence of 
C on the parameters will be either given by the context or recalled. In addition, A ≈ B

is used if A � B � A.
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2. Construction of a field of orthonormal bases of RRRn

In this section we use the Gram–Schmidt orthogonalization algorithm to construct an 
orthonormal basis of Rn that starts with an orthonormal basis of the tangent plane to 
Γr at Φr(x). The main result of the present section is Lemma 2.18, which gives a C1

control on the vectors of the constructed basis. The lemma will be used in Sections 3
and 4, to verify that our map ρ is indeed a change of variable, and to prove the Carleson 
bounds on the coefficients of the matrix A(x, t) defined in (1.42) needed for the use of 
Theorem 1.32.

For this section we only need to know that Γ is a Lipschitz graph, not that the 
Lipschitz constant C0 is small; the constants will be allowed to depend on C0, but if 
C0 ≤ 1 as in the next sections, they depend only on n and d.

We start with some amount of notation. We have our Lipschitz function ϕ, C0 as in 
(1.4), the graph Γ and its parameterization Φ, as in (1.5) and (1.45), and their approxi-
mations ϕr, Γr, and Φr.

Here is the notation for derivatives that we shall try to use systematically. If f is a 
function defined on Rd, on Rd × (0, +∞), or on Ω0 = Rd × (Rn−d \ {0})), then, for any 
i ∈ {1, . . . , d}, the notation ∂xi

f denotes the derivative of f with respect to the i-th
coordinate (of the first variable). We use ∂rf to denote the derivative of a function f
defined on Rd × (0, +∞) with respect to the second variable and, for j ∈ {d + 1, . . . , n}, 
the function ∂tj

f is the derivative of a function f defined on Rd × (Rn−d \ {0}) with 
respect to the (j − d)-th coordinate of the second variable (or the j-th coordinate, if f is 
seen as a function defined on a subset of Rn). When f takes value in Rn−d (resp. in Rn), 
then the quantities ∂xi

f , ∂rf and ∂tj
f are vectors, and |∂xi

f |, |∂rf | and |∂tj
f | denotes 

their classical Euclidean norm in Rn−d (resp. in Rn). The terms ∇xf , ∇x,rf and ∇x,rf

are used for

⎛⎝∂x1f
...

∂xd
f

⎞⎠ ,

⎛⎜⎜⎝
∂x1f

...
∂xd

f
∂rf

⎞⎟⎟⎠ , and

⎛⎜⎜⎜⎜⎜⎜⎜⎝

∂x1f
...

∂xd
f

∂td+1f
...

∂tn
f

⎞⎟⎟⎟⎟⎟⎟⎟⎠
(2.1)

respectively. Note that the latter quantities are matrices when f is vector valued. In 
addition, |∇xf |, |∇x,rf | and |∇x,tf | are respectively the quantities

(
d∑

i=1
|∂xi

f |2
) 1

2

,

(
d∑

i=1
|∂xi

f |2 + |∂rf |2
) 1

2

, and

⎛⎝ d∑
i=1

|∂xi
f |2 +

n∑
j=d+1

|∂tj
f |2

⎞⎠
1
2

.

(2.2)
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Finally, the set of second derivatives of f with respect to the x-variables is written ∇2
xf . 

If f takes values in R, it corresponds to the d ×d matrix ∇x(∇xf)T ; if f = (f1, . . . , fk) is 
vector valued, we see ∇2

xf as the collection of matrices {∇2
xfj}1≤j≤k. Besides, the norm 

|∇2
xf | denotes the quantity

⎛⎝ k∑
j=1

|∇x(∇xfj)T |2
⎞⎠

1
2

, (2.3)

which correspond to the �2-norm (
∑

i,�,j |∂xi
∂x�

fj |2) 1
2 . The definition above is modified 

accordingly to give sense to ∇2
x,rf , ∇2

x,tf or ∇x,r∇xf .
Recall that ρ will have the form (1.47), and Rx,r will be defined as the linear isometry 

that maps the canonical orthonormal basis Be of Rn to a new orthonormal basis Bvw

that we construct now.

Definition 2.4 (Coordinate basis). For any i ∈ {1, . . . , n}, we denote by ei the unit vector 
in Rn that has 1 in the i-th coordinate and 0 in the other coordinates. The family 
(e1, . . . , en) forms an orthonormal basis which we call Be.

By notation abuse, when i ∈ {1, . . . , d}, we also use ei for the unit vector in Rd that 
has 1 on the i-th coordinate and 0 on the other coordinates, and when j ∈ {d +1, . . . , n}, 
we use ej for the unit vector in Rn−d that has 1 on the (j − d)-th coordinate and 0 on 
the other ones.

Fix x ∈ Rd and r > 0, and denote by P (x, r) the tangent d-plane to Γr at Φr(x). 
Also call P ′(x, r) the vector d-plane parallel to P (x, r), and P ′(x, r)⊥ its orthogonal 
complement.

We start with a basis of P ′(x, r), which is given by the d vectors v̂i, 1 ≤ i ≤ d given 
by

v̂i(x, r) = ∂xi
Φr(x) = (ei, ∂xi

ϕr(x)), (2.5)

where we recall that Φr and ϕr are the ones defined in (1.44)–(1.45). We also have a 
basis of P ′(x, r)⊥, which is composed of the normal vectors ŵj, d + 1 ≤ j ≤ n, defined 
as

ŵj(x, r) = ((−∇xϕj
r)T , ej), (2.6)

where ϕj
r is the j-th coordinate of ϕr. Thus the d first coordinates of ŵj(x, r) are the 

partial derivatives −∂xi
ϕj

r. These vectors are clearly independent (because of their ej

part), and they are orthogonal to P ′(x, r) because

〈
v̂i, ŵj

〉
= −∂xi

ϕj
r

〈
ei, ei

〉
+
〈
∂xi

ϕr(x), ej
〉

= 0. (2.7)
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It will be useful to know that

|v̂i| ≤
√

1 + C2
0 and |ŵj | ≤

√
1 + C2

0 (2.8)

for 1 ≤ i ≤ d and d + 1 ≤ j ≤ n, just because |∇xϕ| ≤ C0.
Next we apply the Gram–Schmidt construction to replace the v̂i, 1 ≤ i ≤ d, by an 

orthonormal basis vi, 1 ≤ i ≤ d, of P ′(x, r). Since we want to have estimates on the 
various coefficients that arise, we recall how it goes.

We start with v1 = |v̂1|−1v̂1. Then, assuming that the v�, � ≤ i have already been 
chosen, we first replace v̂i+1 by

ṽi+1 = v̂i+1 −
i∑

�=1

〈
v̂i+1, v�

〉
v� (2.9)

and finally

vi+1 = |ṽi+1|−1 ṽi+1. (2.10)

It is well known that the procedure gives a new (and orthonormal) basis of P ′(x, r), 
which we call Bv. Notice that 

〈
v�, ei

〉
= 0 for � < i (because v� lies in the span of the 

v̂m, m ≤ �), hence

〈
ṽi+1, ei

〉
=

〈
v̂i+1, ei

〉
−

i∑
�=1

〈
v̂i+1, v�

〉 〈
v�, ei

〉
=

〈
v̂i+1, ei

〉
= 1, (2.11)

which in turn implies that |ṽi+1| ≥ 1 and

|ṽi+1| ≥ 1. (2.12)

When i = 1, we simply set ṽ1 = v̂1 and get that |ṽ1| ≥ 1 as well. This is reassuring: we 
get confirmation that we never have to divide by 0, but we knew that because the v�, 
1 ≤ � ≤ i, span the same space as the |v̂l|, 1 ≤ � ≤ i.

We now do the same thing with the ŵj : we apply the Gram–Schmidt process to 
construct an orthonormal basis Bw = (wd+1, . . . , wn) of P ′(x, r)⊥, with formulas like

w̃j+1 = ŵj+1 −
j∑

�=d+1

〈
ŵj+1, w�

〉
w� (2.13)

for d + 1 ≤ j < n and

wj = |w̃j |−1 w̃j (2.14)
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for d + 1 ≤ j ≤ n. The construction and estimates are exactly the same, except that we 
exchange the first and last sets of coordinates.

Finally we put Bv and Bw together to get an orthonormal basis Bvw = (v1, . . . vd, wd+1,

. . . , wn) of Rn. Finally, Rx,r is the linear mapping that sends Be to Bvw. That is,

Rx,r(y, u) =
d∑

i=1
yiv

i(x, r) +
n∑

j=d+1

tiw
j(x, r), (2.15)

where we now write the dependence on x and r because we shall start worrying on the 
variations of all these functions. Notice that Rx,r is a linear isometry because it maps 
an orthonormal basis to another one, and by construction and with a slight abuse of 
notation

Rx,r(Rd) = P ′(x, r) and Rx,r(Rn−d) = P ′(x, r)⊥. (2.16)

Now we worry about the smoothness of the vectors vi and wj . We start with the easy 
soft result.

Lemma 2.17. The vector fields vi, 1 ≤ i ≤ d, and wj, d + 1 ≤ j ≤ n, are C∞ functions 
on Rd × (0, +∞).

Proof. We start with the function (x, r) → ϕr(x) = ϕ ∗ ηr(x), which is C∞ on Rd ×
(0, +∞) by standard results (and we shall have ample opportunities to compute some 
of its derivatives). Then all the v̂i, ṽi, vi, and their w-counterparts are smooth too, by 
(2.9), (2.10), (2.13), (2.14), and an easy induction argument. The fact that by (2.12) and 
its analogue for w̃j we never divide by 0 helps here. �

The next result is the one announced in the beginning of the section.

Lemma 2.18. For any i ∈ {1, . . . , d}, there holds

|∇x,rvi| ≤ C|∇x,r∇xϕr|, (2.19)

and for any j ∈ {d + 1, . . . , d}, one has

|∇x,rwj | ≤ C|∇x,r∇xϕr|, (2.20)

where in both cases the constant C > 0 depends only on n and the Lipschitz constant C0. 
If we assume that C0 ≤ 1, C depends only on n.

Proof. We start with the vectors v̂i = (ei, ∂xi
ϕr) and ŵj = ((−∇xϕj

r)T , ej), for which 
the desired result holds because their coordinates are directly written in terms of ∇xϕr.
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Then we follow the Gram–Schmidt algorithm and observe that the coefficients of the 
vi and wj are obtained from those of the v̂i and ŵj by a bounded number of algebraic 
computations involving taking sums, products, and inverses of functions that are never 
smaller than 1 (see (2.12)). That is, each vi or wj has a simple algebraic expression 
in terms of ∇xϕr. We compute the derivatives of these expressions and get (2.19) and 
(2.20). A more detailed proof would work by induction on i or j − d and give precise 
bounds, but we decided not to do these computations. �
3. The change of variables ρ

The goal of this section is to prove that the map ρ defined by (1.47) is a bi-Lipschitz 
change of variable, and at the same time prove some estimates on its derivative Jac(x, t).

Recall that in addition to Rx,r, there is an auxiliary function h that appears in the 
definition of ρ. In this section, we only need to assume that there exist constants Ch1 ≥ 1
and Ch0 ≥ 0 such that

C−1
h1 ≤ h(x, t) ≤ Ch1 for (x, t) ∈ Ω0, (3.1)

h is continuously differentiable on Ω0, and

r|∇x,th(x, t)| ≤ Ch0 for (x, t) ∈ Ω0. (3.2)

Here we allow h to be a function of (x, t), but for our final choice, h will depend only on 
x and r = |t|. In later sections, some additional Carleson bounds on h will be required, 
and then specific choices of h will be taken, but not yet.

For this section to work all the way to the injectivity of ρ, we will need to assume that 
C0 – the Lipschitz constant of Γ defined in (1.4) – and Ch0 are small enough, depending 
on n, d, our choice of bump function η, and Ch1. We will denote by C any constant that 
depends only on n, d, η, Ch1, and an upper bound for C0 and Ch0. This last dependance 
is not important, because anyway we shall rapidly assume that C0 + Ch0 ≤ 1, say.

Recall from (1.47) and (2.15) that ρ is given by

ρ(x, t) = Φr(x) + h(x, t)Rx,r(0, t) = (x, ϕr(x)) + h(x, t)
n∑

j=d+1

tjwj(x, r) (3.3)

for (x, t) ∈ Ω0, and where we systematically let r = |t| > 0 and t = (td+1, . . . , tn). We 
will worry about the definition of ρ on Γ0 = Rd later; for the moment let us work on Ω0.

Because of Lemma 2.17, ρ is smooth on Ω0, and (3.3) gives the following formulas for 
the derivatives of ρ. For i ∈ {1, . . . , d} and (x, t) ∈ Ω0,

∂xi
ρ(x, t) = v̂i(x, r) + ∂xi

h(x, t)
n∑

tjwj(x, r) + h(x, t)
n∑

tj∂xi
wj(x, r), (3.4)
j=d+1 j=d+1
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(recall (2.5)) and for j ∈ {d + 1, . . . , n} and (x, t) ∈ Ω0,

∂tj
ρ = tj

r
∂rΦr(x) + h(x, t)wj(x, r)

+ ∂tj
h(x, t)

n∑
k=d+1

tkwk(x, r) + tj

r
h(x, t)

n∑
k=d+1

tk∂rwk(x, r).
(3.5)

The Jacobian matrix of ρ is written Jac. Note that Jac depends on (x, t) ∈ Ω0, but 
we shall not always write the argument. With the notation of the beginning of Section 2, 
the coefficients of Jac are given by

Jack� =
〈
∂xk

ρ, e�
〉

for 1 ≤ k ≤ d and 1 ≤ � ≤ n, (3.6)

Jack� =
〈
∂tk

ρ, e�
〉

for d + 1 ≤ k ≤ n and 1 ≤ � ≤ n. (3.7)

For the computations that follow, it will be useful to transform functions defined 
on Rd × (0, +∞) into functions defined in Ω0, and still give the same name to the new 
functions. That is, if f is defined on Rd×(0, +∞), we define f̃ on Ω0 by f̃(x, t) = f(x, |t|), 
and then simply write f instead of f̃ , like physicists.

We shall use, as a first approximation of Jac, the “simpler” matrix J = J(x, t) where 
in (3.6) and (3.7) we replace e� by v� when � ≤ d, and by w� when � > d. This gives the 
following matrix.

Definition 3.8 (The matrix J). The matrix J = (Jk�)1≤k,�≤n is defined on Ω0 as

Jk� :=
〈
∂xk

ρ, v�
〉

=
〈
v̂k, v�

〉
+ h

n∑
j=d+1

tj

〈
∂xk

wj , v�
〉

when 1 ≤ k ≤ d and 1 ≤ � ≤ d,

Jk� :=
〈
∂xk

ρ, w�
〉

= t�∂xk
h + h

n∑
j=d+1

tj

〈
∂xk

wj , w�
〉

when 1 ≤ k ≤ d and d + 1 ≤ � ≤ n,

Jk� :=
〈
∂tk

ρ, v�
〉

= tk

r

〈
∂rΦr, v�

〉
+ tk

r
h

n∑
j=d+1

tj

〈
∂rwj , v�

〉
when d + 1 ≤ k ≤ n and 1 ≤ � ≤ d, and

Jk� :=
〈
∂tk

ρ, w�
〉

= h δk� + tk

r

〈
∂rΦr, w�

〉
+ t� ∂tk

h + tk

r
h

n∑
tj

〈
∂rwj , w�

〉
,

j=d+1
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when d + 1 ≤ k ≤ n and d + 1 ≤ � ≤ n, setting δk� = 1 if k = � and δk� = 0
otherwise.

As previously, in the above expressions, t = (td+1, . . . , tn) ∈ Rn−d \ {0} is the value 
of the second variable where J is evaluated, and r = |t|.

Let Q = Q(x, t) denote the matrix of the change of basis from Bvw to Be; this is also 
the matrix of our isometry Rx,r – in the sense that Rx,t(y, u) = (y, u)Q(x, t) (recall that 
(y, u) is an horizontal vector in Rn) – and its coefficients are given by

Qk� =
〈
ek, v�

〉
for 1 ≤ k ≤ n and 1 ≤ � ≤ d, (3.9)

Qk� =
〈
ek, w�

〉
for 1 ≤ k ≤ n and d + 1 ≤ � ≤ n. (3.10)

Observe that (just from this and the initial definition of the Jk� as scalar products) J is 
the mutiplication of the matrix Jac with Q, that is

J = Jac Q (3.11)

We now decompose J into a sum of three matrices J = J ′ + H + M where J ′, H and 
M are defined as follows. All these matrices depend on (x, t) ∈ Ω0.

Definition 3.12 (The matrices J ′, H and M). Let J ′
1 be the d ×d matrix with coefficients 

(J ′
1)k� =

〈
v̂k, v�

〉
. Then define the n × n matrix J ′ by

J ′ =
(

J ′
1 0

0 h In−d

)
. (3.13)

Let H be the n × n matrix with coefficients

Hk� = 0 for � ≤ d,

Hk� = t� ∂xk
h for 1 ≤ k ≤ d < � ≤ n,

Hk� = t� ∂tk
h for k, � ∈ �d + 1, n�.

(3.14)

Finally set M = J − J ′ − H, that is

Mk� := h
n∑

j=d+1

tj

〈
∂xk

wj , v�
〉

for 1 ≤ k ≤ d and 1 ≤ � ≤ d,

Mk� := h
n∑

j=d+1

tj

〈
∂xk

wj , w�
〉

for 1 ≤ k ≤ d and d + 1 ≤ � ≤ n,

Mk� := tk

r

〈
∂rΦr, v�

〉
+ tk

r
h

n∑
j=d+1

tj

〈
∂rwj , v�

〉
for d + 1 ≤ k ≤ n and 1 ≤ � ≤ d

Mk� := tk

r

〈
∂rΦr, w�

〉
+ tk

r
h

n∑
j=d+1

tj

〈
∂rwj , w�

〉
for d + 1 ≤ k ≤ n and d + 1 ≤ � ≤ n.
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In the decomposition J = J ′ + H + M , we will see that the main term is J ′, which is 
close to the identity, and H + M is a small perturbation. We start with the size of M
and recall our convention that in the estimates that follow, C is allowed to depend on 
n, d, η, Ch1, and not Ch0 or C0 as long as they stay bounded.

Lemma 3.15. There exists C > 0 such that for 1 ≤ k, � ≤ n

|Mk�| ≤ C (|∂rϕr| + r|∇x,r∇xϕr|) . (3.16)

As previously, r denotes the norm of the second variable where Mkl is evaluated.

Proof. Recall that the vectors vi, 1 ≤ i ≤ d, and the vectors wj, d + 1 ≤ j ≤ n, are unit 
vectors. So with the definition of Mk� given in Definition 3.12, one immediately gets that

|Mk�| ≤ C

(
|∂rϕr| + sup

d<j≤n
rh|∇x,rwj |

)
.

We now use the assumption (3.1) on h and Lemma 2.18 to conclude. �
The coefficients of M in Lemma 3.15 can be controlled by the Lipschitz constant C0

with the help of the following result.

Lemma 3.17. There exists C > 0 such that for (x, r) ∈ Rd × (0, +∞),

|∂rϕr(x)| + r|∇x,r∇xϕr(x)| ≤ CC0. (3.18)

Proof. The lemma will be proven as soon as we establish the bounds

r|∂r∂xk
ϕr(x)| ≤ CC0 (3.19)

for k ∈ {1, . . . , d},

r|∂x�
∂xk

ϕr(x)| ≤ CC0 (3.20)

for �, k ∈ {1, . . . , d}, and

|∂rϕr(x)| ≤ CC0. (3.21)

Let k ∈ {1, . . . , d}. One has the relation

r∂r∂xk
ϕr(x) = (r∂rηr) ∗ (∂xk

ϕ)(x), (3.22)

and r∂rηr can be rewritten as
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r∂rηr(x) = r∂r

[
1
rd

η
(x

r

)]
= − 1

rd

[
dη

(x

r

)
+ x

r
· ∇η

(x

r

)]
= η̂r(x) (3.23)

where η̂(x) = −dη(x) − x · ∇η(x) and η̂r(x) = r−dη̂(x
r ). Hence

|r∂r∂xk
ϕr(x)| = |η̂r ∗ (∂xk

ϕ)(x)| ≤ sup
y∈Rd

|∂xk
ϕ(y)|

ˆ

Rd

|η̂r(y)|dy

≤ C0

ˆ

Rd

|η̂(y)|dy = CηC0.

The inequality (3.19) follows. Next, let 1 ≤ i, k ≤ d. In the same way as before,

|r∂xi
∂xk

ϕr(x)| ≤ |(r∂xi
ηr) ∗ (∂xk

ϕ)(x)| ≤ C0

ˆ

Rn

|r∂xi
ηr|.

Yet, for any r > 0, by a simple change of variable,
ˆ

Rd

|r∂xi
ηr| =

ˆ

Rd

|(∂xi
η)r| =

ˆ

Rd

|∂xi
η| = Cη.

The inequality (3.20) follows. Now we prove (3.21). We have

∂rϕr(x) = (∂rηr) ∗ ϕ(x),

and, with the help of (3.23), ∂rηr can be rewritten as

∂rηr(x) = − 1
rd+1

[
dη

(x

r

)
+ x

r
· ∇η

(x

r

)]
= divx η̃r(x)

where η̃(x) = −xη (x) and η̃r(x) = r−dη̃(x
r ). As a consequence, if ϕ = (ϕd+1, . . . , ϕn), 

we obtain that for j ∈ {d + 1, n},

∂rϕj
r(x) = (divx η̃r) ∗ ϕj(x) =

ˆ

Rd

ϕj(x − y) divx η̃r(y)dy

=
ˆ

Rd

〈
η̃r(y), ∇xϕj(x − y)

〉
dy

and then

|∂rϕr(x)| ≤ sup
y∈Rd

|∇xϕ(y)|
ˆ

Rd

|η̃r(y)|dy = C0

ˆ

Rd

|η̃(y)|dy = CηC0.

Lemma 3.17 follows. �
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The combination of Lemma 3.15 and Lemma 3.17 gives that

|Mk�(x, t)| ≤ CC0 (3.24)

whenever 1 ≤ k, � ≤ n and (x, t) ∈ Ω0. Here and in the next estimates, the constant C
in (3.24) depends on C0, but this is all right because C stays bounded when C0 ≤ 1.

The coefficients for H are easier to control, since (3.14) and (3.2) yield

|Hk�| ≤ Ch0 for 1 ≤ k, � ≤ n. (3.25)

We shall now estimate the determinant of Jac to prove the local invertibility of ρ. We 
start with J and J ′.

Lemma 3.26. Recall that J ′ is defined in Definition 3.12. Then

| det(J) − det(J ′)| ≤ C (|∂rϕr| + r|∇x,r∇xϕr| + r|∇x,th|) (3.27)

and

sup
1≤i≤d

∣∣〈v̂i, vi
〉

− 1
∣∣ + | det(J ′) − hn−d| ≤ CC2

0 . (3.28)

As a consequence, for any ε > 0, there exists cε > 0, depending only on Ch1, η and ε, 
such that if C0 + Ch0 ≤ cε, then

(1 − ε)hn−d ≤ det(J) ≤ (1 + ε)hn−d (3.29)

and

sup
1≤i≤d

∣∣〈v̂i, vi
〉

− 1
∣∣ ≤ ε. (3.30)

Proof. We will use the matrices J ′, H and M introduced in Definition 3.12. We have

det(J) = det(J ′ + H + M) =
∑

σ∈Sn

sgn(σ)
n∏

i=1
(J ′

i,σ(i) + Hi,σ(i) + Mi,σ(i)).

We develop the above formula and we decompose the sum into two parts: the terms that 
are products of coefficients of J ′ and the terms that contain at least one coefficient of 
M or H and we have

| det(J) − det(J ′)|

=

∣∣∣∣∣ ∑ sgn(σ)
n∏

(J ′
i,σ(i) + Hi,σ(i) + Mi,σ(i)) −

∑
sgn(σ)

n∏
J ′

i,σ(i)

∣∣∣∣∣

σ∈Sn i=1 σ∈Sn i=1
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≤ C

(
sup

1≤k,�≤n
|Mk�| + |Hk�|

)(
sup

1≤k,�≤n
|J ′

k�| + |Hk�| + |Mk�|
)n−1

. (3.31)

Recall from (3.24) and (3.25) that |Mk�| + |Hk�| ≤ CC0 + Ch0 ≤ C. Moreover,

sup
1≤k,l≤n

|J ′
kl| ≤ sup

1≤i≤d
|v̂i| ≤

√
1 + C2

0 ≤ C

by Definition 3.12 and (2.8). These two latter facts prove that

(
sup

1≤k,�≤n
|J ′

k�| + |Hk�| + |Mk�|
)n−1

≤ C,

and hence

| det(J) − det(J ′)| ≤ C sup
1≤k,�≤n

|Mk�| + |Hk�|.

Lemma 3.15 and the definition of H allows us to conclude

| det(J) − det(J ′)| ≤ C (|∂rϕr| + r|∇x,r∇xϕr| + r|∇x,th|) ,

which is exactly (3.27).
Let us turn to the proof of (3.28). Let i ∈ {1, . . . , d}. Since |vi| = 1, (2.8) yields

∣∣〈v̂i, vi
〉∣∣ ≤ |v̂i| ≤

√
1 + C2

0 . (3.32)

We also want a lower bound on 
〈
v̂i, vi

〉
. Since vi = |ṽi|−1 ṽi (by (2.10) for i > 1 and by 

convention for i = 1),

〈
v̂i, vi

〉
= |ṽi|−1 〈

ṽi, v̂i
〉

(3.33)

so we want a lower bound for 
〈
ṽi, v̂i

〉
and an upper bound for |ṽi|. The latter is

|ṽi|2 = |v̂i|2 −
i−1∑
�=1

|
〈
v̂i, v�

〉
|2 ≤ |v̂i|2 ≤ 1 + C2

0 ,

which follows from (2.9) because {v�}1≤�≤i−1 is an orthonormal family of vectors. More-
over, {v1, . . . , vi−1, ei} is also an orthonormal family (because all the v̂�, � < i, are 
orthogonal to ei), and so

|v̂i|2 ≥
〈
v̂i, ei

〉2 +
i−1∑〈

v̂i, vk
〉2
k=1



G. David et al. / Journal of Functional Analysis 276 (2019) 2731–2820 2759
and thus by (2.9) again

〈
ṽi, v̂i

〉
= |v̂i|2 −

i−1∑
k=1

〈
v̂i, vk

〉2 ≥
〈
v̂i, ei

〉2 +
i−1∑
k=1

〈
v̂i, vk

〉2 −
i−1∑
k=1

〈
v̂i, vk

〉2 = 1.

The previous inequalities prove that

1√
1 + C2

0
≤

〈
v̂i, vi

〉
≤

√
1 + C2

0

and hence, subtracting 1,

−C2
0

2 ≤ 1√
1 + C2

0
− 1 ≤

〈
v̂i, vi

〉
− 1 ≤

√
1 + C2

0 − 1 ≤ C2
0

2 . (3.34)

This proves the first half of (3.28), which will now be proved fully as soon as we show 
that | det(J ′) − hn−d| ≤ CC2

0 .
By (3.13), det(J ′) = hn−d det(J ′

1). Then recall that (J ′
1)k� =

〈
v̂k, v�

〉
by Defini-

tion 3.12. By construction of v� (see (2.9)), this vanishes when 1 ≤ k < � ≤ d. Therefore, 
J ′

1 is a lower triangular matrix and

det(J ′) = hn−d det(J ′
1) = hn−d

d∏
i=1

〈
v̂i, vi

〉
. (3.35)

Then by (3.34)

| det(J ′) − hn−d| = hn−d

∣∣∣∣∣1 −
d∏

i=1

〈
v̂i, vi

〉∣∣∣∣∣
≤ Chn−d

(
sup

1≤i≤d
|
〈
v̂i, vi

〉
− 1|

)(
sup

1≤i≤d
1 + |

〈
v̂i, vi

〉
|
)d−1

≤ CC2
0 . (3.36)

This completes the proof of (3.28). It remains to prove the second part of the lemma. 
The estimate (3.30) is immediate from (3.28). Next

| det(J) − det(J ′)| ≤ C (|∂rϕr| + r|∇x,r∇xϕr| + r|∇x,th|) ≤ C(C0 + Ch0)

by (3.27), Lemma 3.17, and (3.2); and where C > 0 is independent of C0 and Ch0

provided that, for instance, C0 + Ch0 ≤ 1. Together with (3.28), this yields

| det(J) − hn−d| ≤ C(C0 + Ch0) ≤ Chn−d(C0 + Ch0),

whenever C0 + Ch0 ≤ 1. The bound (3.29) follows. �
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From now on we assume that C0 + Ch0 is small enough (depending on n, d, η, and 
Ch1), so that (3.30) and (3.29) hold for some ε < 1. Similar additional conditions will be 
given soon.

Already with these conditions, (3.29) says that det(J(x, t)) �= 0 on Ω0. Then, since 
(3.11) says that J equals the product Jac Q for some orthogonal matrix Q,

det(Jac(x, t)) = det(J(x, t)) �= 0. (3.37)

That is, Jac(x, t) is invertible. We also know from Lemma 2.17 and the continuous 
differentiability of h that

ρ is continuously differentiable in Ω0, (3.38)

so the inverse function theorem says that there is a small neighborhood of (x, t) where ρ
is a diffeomorphism. In particular, ρ is an open mapping. In the next result, we prove – 
if C0 + Ch0 is small – that

ρ(Ω0) ⊂ Ω = Rn \ Γ. (3.39)

Recall that Φ : Rd → Γ is the Lipschitz function defined by Φ(x) := (x, ϕ(x)).

Lemma 3.40. Let ε ∈ (0, 1) be given. If C0 + Ch0 is small enough (depending on ε, n, d, 
η and Ch1), then for any (x, t) ∈ Ω0,

(1 − ε)rh(x, t) ≤ |ρ(x, t) − Φ(x)| ≤ (1 + ε)rh(x, t) (3.41)

and

dist(ρ(x, t), Γ) ≥ (1 − ε)rh(x, t) > 0, (3.42)

where as usual r = |t|.

Proof. Notice before we start that (3.42) implies (3.39). Now let (x, t) ∈ Ω0 be given, 
and write t = (td+1, . . . , tn) as usual. By (3.3),

ρ(x, t) − Φ(x) = Φr(x) − Φ(x) + h(x, t)Rx,r(0, t). (3.43)

Notice that since Φr(x) − Φ(x) = (0, ϕr(x) − ϕ(x)),

|Φr(x) − Φ(x)| = |ϕr(x) − ϕ(x)| ≤
ˆ

Rd

ηr(y)|ϕ(x − y) − ϕ(x)|dy

≤ C0

ˆ

Rd

|y|ηr(y)dy ≤ C0r

ˆ

Rd

ηr(y)dy = C0r

(3.44)

because ηr is supported in B(0, r) and 
´

ηr(y)dy = 1.
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Recall that Rx,r is an isometry, so |h(x, t)Rx,r(0, t)| = rh(x, t), and by (3.43)

∣∣|ρ(x, t) − Φ(x)| − rh(x, t)
∣∣ ≤ |Φr(x) − Φ(x)| ≤ C0r. (3.45)

Thus (3.41) as soon as C0 < C−1
h1 ε in (3.45).

It remains to prove (3.42), which is stronger than the lower bound in (3.41). We take 
any point Φ(y), y ∈ Rd, of Γ, and we want to show that

|ρ(x, t) − Φ(y)| ≥ (1 − ε)rh(x, t) > 0. (3.46)

The idea is roughly as follows. We know that h(x, t)Rx,r(0, t) lies in P ′(x, r)⊥ and that 
P ′(x, r) is almost parallel to Rd, so h(x, t)Rx,r(0, t) should be almost orthogonal to Rd. 
On the other hand, Φ(x) −Φ(y) is almost parallel to Rd, so the sum h(x, t)Rx,r(t) +Φ(x) −
Φ(y) should be larger or almost as large as h(x, t)Rx,r(t). Finally, we add Φr(x) − Φ(x)
which we know is much smaller, and we should get (3.46).

We first estimate the direction of the wj , j ≥ d +1. Observe that 
〈
w̃j , ej

〉
=

〈
ŵj , ej

〉
=

1 by the proof of (2.11) (but with the wj). Besides, |w̃j | ≤ |ŵj | because w̃j is an orthog-
onal projection of ŵj (see (2.13)), and |ŵj | ≤ (1 + C2

0 )1/2 by (2.8). Hence

〈
wj , ej

〉
= |w̃j |−1 〈w̃j , ej

〉
= |w̃j |−1 ≥ (1 + C2

0 )−1/2 (3.47)

by (2.14). Hence, since wj and ej are both unit vectors,

|wj − ej |2 = 2
(
1 −

〈
wj , ej

〉)
≤ 2

(
1 − (1 + C2

0 )−1/2
)

≤ C2
0 .

Since Rx,r(0, t) =
∑n

j=d+1 tjwj ,

∣∣∣∣∣∣Rx,r(0, t) −
n∑

j=d+1

tjej

∣∣∣∣∣∣ ≤

⎛⎝ n∑
j=d+1

|tj |2
⎞⎠

1
2
⎛⎝ n∑

j=d+1

|wj − ej |2
⎞⎠

1
2

≤ C0r. (3.48)

Set e(t) =
∑n

j=d+1 tjej . The definition (3.43) gives

|ρ(x, t) − Φ(x) − h(x, t)e(t)| ≤ |Φr(x) − Φ(x)| + h(x, t)|Rx,r(0, t) − e(t)|
≤ C0r + C0rh(x, t) ≤ (1 + Ch1)C0r

(3.49)

by (3.44), (3.48), and (3.1).
Now we control the vertical part of Φ(y) − Φ(x), i.e., ϕ(y) − ϕ(x). Denote by π⊥ the 

orthogonal projection on (Rd)⊥. Then |π⊥(Φ(y) − Φ(x))| ≤ C0|y − x|, just because ϕ is 
C0-Lipschitz. If |y − x| ≤ 2Ch1r, then
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|ρ(x, t) − Φ(y)| ≥ |π⊥(ρ(x, t) − Φ(y))|
≥ |π⊥(h(x, t)e(t))| − |π⊥(ρ(x, t) − h(x, t)e(t) − Φ(y))|
= h(x, t) − |π⊥(ρ(x, t) − h(x, t)e(t) − Φ(y))|
≥ h(x, t) − |ρ(x, t) − Φ(x) − h(x, t)e(t)| − |π⊥(Φ(y) − Φ(x))|
≥ h(x, t) − (1 + Ch1)C0r − C0|y − x| ≥ h(x, t) − CC0r, (3.50)

which implies (3.46) when C0 is small enough. If instead |y − x| ≥ 2Ch1r, then

|ρ(x, t) − Φ(y)| ≥ |Φ(x) − Φ(y)| − |ρ(x, t) − Φ(x)|
≥ |x − y| − (1 + ε)rh(x, t) ≥ 2Ch1r − (1 + ε)rh(x, t)

≥ (2Ch1 − (1 + ε)h(x, t))r ≥ (1 − ε)Ch1r ≥ (1 − ε)h(x, t)r (3.51)

by (3.41) and (3.1). This establishes (3.46) in our second case; (3.42) and Lemma 3.40
follow. �

Lemma 3.40 is useful, in particular because it allows us to control the inverse images 
of sets. Suppose from now on that C0 is chosen so small that the conclusion of the lemma 
holds with ε = 1/2. Then for (x, t) ∈ Ω0,

dist(ρ(x, t), Γ) ≤ |ρ(x, t) − Φ(x)| ≤ 2rh(x, t) ≤ 2Ch1r (3.52)

and

dist(ρ(x, t), Γ) ≥ 1
2 rh(x, t) ≥ r

2Ch1
. (3.53)

Thus, if Z = ρ(x, t) for some (x, t) ∈ Ω0, we get that

(2Ch1)−1 dist(Z, Γ) ≤ |t| ≤ 2Ch1 dist(Z, Γ) (3.54)

and then, writing Z = (y, s) ∈ Rd × Rn−d,

|x − y| ≤ |(x, ϕ(x)) − (y, s)| = |Φ(x) − ρ(x, t)| ≤ 2Ch1|t| (3.55)

by (3.52).
Thus, given Z = ρ(x, t) we get a good idea of where (x, t) lies. In fancy terms, ρ is 

proper, which means that for every compact set K ⊂ Rn \ Γ,

ρ−1(K) =
{

(x, t) ∈ Ω0 ; ρ(x, t) ∈ K
}

is a compact subset of Ω0. (3.56)

Indeed, the estimates above imply that ρ−1(K) lies in a bounded subset of Rn, and at 
distance at least (2Ch1)−1 dist(K, Γ) > 0 from Rd. Thus ρ−1(K) is relatively compact in 
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Ω0, and the fact that it is compact (or closed) follows because ρ is continuous. We are 
ready for the fun part of the argument.

Theorem 3.57. Assume that C0 and Ch0 are small enough, as before. Then ρ is a bijection 
from Ω0 to Ω = Rn \ Γ. Since it is also continuously differentiable and its Jacobian is 
invertible at every point (by (3.37)) of Ω it is also a diffeomorphism.

Proof. We will use a little bit of topology but, even though we are thinking about 
the degree of our function ρ, we shall not need more than connectedness and the inverse 
function theorem. Also, to make the argument more pleasant to read, elements of Ω or 
Ω0 will be called z or y, rather than Z or Y with our earlier convention.

Set ρ−1(z) =
{

y ∈ Ω0 ; ρϕ,h(y) = z
}

for z ∈ Ω. We introduce the function N defined 
on Ω by

N(z) =

⎧⎪⎨⎪⎩
0 if ρ−1(z) is empty,
1 if ρ−1(z) contains exactly one point,
2 if ρ−1(z) contains at least two points.

(3.58)

The quantity N is clearly inspired by the notion of degree of a map, but we shall not 
need to know more about that notion. We aim to prove that N is constant equal to 1, 
which is equivalent to the fact that ρ is bijective, and we shall proceed by (similar) steps.

The general idea is to show that N is constant, and later on we will compute its value. 
Consider the set

R2 := {z ∈ Ω, N(z) = 2}; (3.59)

we want to show that R2 is both open and closed in Ω. Since Ω is connected (we are in 
codimension > 1), we will deduce that

R2 = ∅ or R2 = Ω. (3.60)

First, R2 is open. Indeed choose z ∈ R2 and take y1, y2 ∈ Ω0, with y1 �= y2, such that 
ρ(y1) = ρ(y2) = z. Define B1 = B(y1, |y1 − y2|/3) and B2 = B(y2, |y1 − y2|/3). Since 
both Jac(y1) and Jac(y2) are invertible (see (3.37)), the inverse function theorem proves 
that there exist neighborhoods U1 ⊂ B1 ∩ Ω0, U2 ⊂ B2 ∩ Ω0 and V1, V2 ⊂ Ω of y1, y2, 
and z respectively, such that ρ is a bijection from U1 to V1 and from U2 to V2. Since 
U1 ∩ U2 ⊂ B1 ∩ B2 = ∅ by construction, we deduce N(w) = 2 for all w ∈ V1 ∩ V2, hence 
V1 ∩ V2 ⊂ R2.

The set R2 is closed. Indeed, choose a sequence (zj)j∈N of values in R2 that converges 
to some z ∈ Ω. Take two sequences (yj

1)j∈N and (yj
2)j∈N in Ω0, such that yj

1 �= yj
2 and 

ρ(yj
1) = ρ(yj

2) = zj for each j. Set K = {zj}j∈N∪{z}; this is compact set in Ω, so by (3.56)
K0 = ρ−1(K) is a compact subset of Ω0. The yj

1 lie in K0, so there is a subsequence of 
(yj

1) (that we still will denote by (yj
1)) that converges to some limit y1 ∈ K0 ⊂ Ω0. Since 
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ρ is continuous and the ρ(yj
1) = zj converge to z, ρ(y1) = z. Let us extract a further 

subsequence (still denoted the same way), so that the yj
2 converge to some y2 ∈ K0. 

Observe that ρ(y2) = z too.
If y1 �= y2, z ∈ R2 and we are happy. Otherwise, observe that since Jac(y1) is invertible, 

the inverse function theorem shows that there is a small ball centered on y1 where ρ is 
injective. This contradicts the fact that yj

1 �= yj
2 and both sequences converge to y1 = y2. 

So R2 is both open and closed in Ω and (3.60) holds.
Next we want to show that

R1 := {z ∈ Ω, N(z) = 1} is either empty or equal to Ω. (3.61)

Since this is trivial if R2 = Ω0, we may assume that R2 = ∅.
We proceed as for R2. First observe that R1 is open, because if z ∈ R1 and y ∈ ρ−1(z), 

then Jac(y) is invertible, so we can apply the inverse function theorem near y and find 
solutions of ρ−1(x) = z′ for z′ near z. Since none of these z′ lies in R2 (which is empty), 
they lie in R1, as needed.

The set R1 is closed. Indeed, let zj = ρ(yj) be a sequence in R1 that converges to some 
z ∈ Ω. As before, K = {zj}j∈N ∪ {z} is compact set in Ω, K0 = ρ−1(K) is a compact 
subset of Ω0, there is a subsequence of (yj

1) that converges to some limit y1 ∈ K0 ⊂ Ω0, 
and since ρ is continuous, ρ(y1) = z. Thus z ∈ ρ(Ω0), hence z ∈ R1 (because R2 = ∅), 
R1 is closed, and since Ω is connected, (3.61) holds.

Of course, R1 and R2 cannot be both empty. Indeed, it would mean that no point of 
Ω are in the range of ρ, and the later is not possible by (3.42). So we proved that

N is constant and equal to either 1 or 2 on Ω. (3.62)

We still need to compute its value; obviously Theorem 3.57 will follow as soon as we 
prove the next lemma.

Lemma 3.63. Let ϕ, h, and ρ be as in Theorem 3.57. Then Nϕ,h is constant equal to 1.

Proof. We decided to put this as a separate statement to cut the proof, and because the 
argument is of a different nature. We are now going to play with the way N depends 
on the functions ϕ and h, so we now write ρϕ,h for the mapping ρ that was constructed 
above, and similarly denote by Nϕ,h(z) the counting function N above. Also denote by 
N(ϕ, h) denote the constant value of Nϕ,h(z) on Ω. With all this notation, we want to 
prove that N(ϕ, h) = 1.

Step 1. We claim that if the pairs (ϕ1, h1) and (ϕ2, h2) both satisfy the assumptions of 
the theorem (with the same Ch1 in particular) and if ϕ1 = ϕ2 on B0 = B(0, 20C2

h1) ⊂ Rd

and h1 = h2 on B′
0 = B0 × B(0, 20C2

h1) ⊂ Rn, then N(ϕ1, h1) = N(ϕ2, h2).
This will be convenient, to replace (ϕ, h) by a pair for which we can compute the 

degree N more easily, but let us first prove our claim. Let (ϕ1, h1) and (ϕ2, h2) be as in 
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the claim. For i = 1, 2, denote by Γi the graph of ϕi, and set ρi = ρϕi,hi
. Consider the 

point z = (0, s), where s ∈ Rn−d is chosen such that |s − ϕ1(0)| = 1. By assumption, 
both functions ϕi are 1-Lipschitz, so 1

2 ≤ dist(z, Γi) ≤ 1.
Next let (xi, ti) ∈ Ω0 be any solution of ρi(xi, ti) = z, which exists thanks to (3.62). 

We know from (3.54) that |ti| ≤ 2Ch1 dist(z, Γi) ≤ 2Ch1, and then (3.55) says that 
|xi| ≤ 2Ch1|ti| ≤ 4C2

h1. Now the value of ρi(xi, ti) depends only on the values of ϕi and 
hi in B(xi, ti) (check with (3.3), and recall that η is supported in the unit ball). Since 
these functions coincide on B0 and B′

0 respectively, ρ1(xi, ti) = ρ2(xi, ti) = z. In other 
words, the equations ρi(x, t) = z have the same solutions, N(ϕ1, h1) = Nϕ1,h1(z) =
Nϕ2,h2(z) = N(ϕ2, h2), and our claim follows.

In fact, by translation invariance (or with the same proof), the claim is still valid if 
B0 is replaced with any ball of radius 20C2

h1.

Step 2. We modify ϕ in a faraway ball to make it simpler. Let ϕ and h be as in the 
theorem. We can find ϕ1, which is also C0-Lipschitz, coincides with ϕ in B0, while 
ϕ1 = ϕ(0) in some other ball B1 = B(x1, 20C2

h1).
Indeed, choose x1 ∈ Rd at distance 100C2

h1 from the origin, and decide that ϕ1 = ϕ

on B0 and ϕ1 = ϕ(0) on B1; it is easy to check that ϕ1 is C0-Lipschitz on B0 ∪ B1, 
because

|ϕ1(y) − ϕ1(z)| = |ϕ(y) − ϕ(0)| ≤ 20C2
h1C0 ≤ |z − y|C0

whenever y ∈ B0 and z ∈ B1; then we can use the Kirszbraun extension theorem (see 
[28, Theorem 2.10.43]) to define ϕ1 on the rest of Rd. Of course, we do not need to be 
that fancy; a Whitney-type extension theorem, or just setting ϕ1(x) = ψ(x)ϕ(x) + (1 −
ψ(x))ϕ(x0), with a smooth radial bump function ψ such that ψ = 1 on a neighborhood 
of B0 and ψ = 0 on Rd \3B0 would work as well, except that maybe ϕ1 is 2C0-Lipschitz. 
We can fix this problem by requiring in advance that C0 to be twice smaller in the 
statement of the theorem. By Step 1, N(ϕ, h) = N(ϕ1, h). In addition, let ϕ2 denote 
the constant function ϕ(0); then ϕ2 = ϕ1 on B1, so N(ϕ1, h) = N(ϕ2, h) by the small 
extension of Case 1. Thus it is enough to check that N(ϕ2, h) = 1 when our function ϕ2

is constant.

Step 3. At this point we could actually compute because (3.3) becomes much simpler, 
but let us cheat again and modify h now. Set R = 100Ch1 and let τ > 0 be small, to 
be chosen soon. Then find a smooth compactly supported function ψ on R, such that 
0 ≤ ψ ≤ 1 everywhere, ψ(r) = 1 for r ≤ R, and ψ′(r) ≤ τr−1. This is easy to find, 
because 

´ +∞
R

1
r diverges. Then set h1(x, t) = ψ(r)h(x, t) + (1 − ψ(r)). Observe that h1

satisfies (3.1) trivially, is continuously differentiable, and satisfies (3.2) because

r|∇x,th1| ≤ r|∇x,th|ψ + r|h − 1| |∂rψ|

≤ r|∇x,th| + Ch1‖rψ′‖∞ ≤ Ch0 + τCh1 ≤ 2Ch0 (3.64)
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if τ is chosen small enough. The pair (ϕ2, h1) satisfies the assumptions of the theorem 
(with the constant 2Ch0, but this is not a worry, we just need to require Ch0 to be 
twice smaller in that theorem), so we can use Step 1 again and we get that N(ϕ2, h) =
N(ϕ2, h1).

Finally we can compute N(ϕ2, h1) by computing Nϕ2,h1(z) for points that are very 
far. Let R1 be such that ψ(r) = 0 for r ≥ R1. Since ϕ2(x) = ϕ(0) everywhere, we get that 
for (x, t) ∈ Ω0, ϕr(x) = ϕ(0), v̂i = vi = ei for 1 ≤ i ≤ d, ŵj = wj = ej for d + 1 ≤ j ≤ n, 
Rx,r is the identity, and (3.3) yields

ρϕ2,h(x, t) = Φr(x) + h(x, t)Rx,r(t) = (x, ϕ(0)) + h(x, t)t. (3.65)

If in addition r = |t| ≥ R1, we get ρϕ2,h(x, t) = (x, ϕ(0)) + t = (x, t) + (0, ϕ(0)).
Now we compute N(ϕ2, h1) = Nϕ2,h1(z) at a point z which we take at distance larger 

than 2Ch1R1 from the graph Γ′ of ϕ2. If (x, t) ∈ Ω0 is any solution of ρϕ2,h1(x, t) = z, 
then by (3.52), dist(z, Γ′) ≤ 2Ch1 |t|, which forces |t| ≥ R1. Thus ρϕ2,h1(x, t) = (x, t) +
(0, ϕ(0)), and it is easy to see that there is at most one solution (x, t).

This proves that N(ϕ2, h1) = Nϕ2,h1 ≤ 1. But N(ϕ, h) = 0 is impossible, as ob-
served for (3.62) Altogether N(ϕ, h) = N(ϕ2, h1) = 1, and this completes the proof of 
Lemma 3.63, and at the same time Theorem 3.57. �
Remark 3.66. We would like to thank the referee for giving us another proof of 
Lemma 3.63, whose sketch is given here. For any two ϕi, hi, i = 1, 2, satisfying the 
hypothesis of Theorem 3.57, one can show that N is also constant along the “line” 
(ϕs, hs) = (sϕ1 + (1 − s)ϕ2, sh1 + (1 − s)h2). First, observe that ϕs and hs uniformly 
satisfies the necessary conditions, so the changes of variables ρs constructed from (ϕs, hs)
are uniformly C∞ and have uniform lower and upper bounds on their Jacobians (and 
even more, the modulus of continuity of the Jacobians are uniform, due to the compu-
tations of Sections 2 and 3). Thus, around any point (x, t) ∈ Ω0, we can find a uniform 
(in s) neighborhood on which ρs is a bijection onto its image. Arguing like in the be-
ginning of the proof of Theorem 3.57, one can prove that Nϕs,hs(z) has to be constant 
in s for any point z ∈ Ω \

⋃
s Γs, where Γs is as expected the graph of ϕs. Lemma 3.63

follows by (3.62) and by letting ϕ2 = 0 and h2 = 1.

We end this section with a remark which may not be useful for the rest of the paper, 
but is nonetheless reassuring. We complete our definition of ρ by taking

ρ(x, 0) = Φ(x) = (x, ϕ(x)) for x ∈ Rd, (3.67)

as announced in (1.46). Because of (3.41), ρ is continuous across Rd too. Since we have 
an upper bound on Jac, ρ is now globally Lipschitz on Rn. Since ρ defines a bijection 
from Rd to Γ, we get that ρ is a Lipschitz bijection on Rn. Finally, since the inverse of 
ρ is continuous (including across Γ, by (3.52) and (3.53)) and Lipschitz on Ω (because 
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we have bounds on Jac−1), we see that ρ is bi-Lipschitz on Rn, as promised in the 
introduction.

4. The Carleson measure condition for the Jacobian

We continue with the conventions and assumptions of the previous section, where we 
assume that C0 + Ch0 is small enough, depending on n, d, η, and Ch1, and C denotes 
any constant that depend on these parameters.

Recall from (1.42) that (we plan to show that) the normalized matrix A that is 
associated to our conjugate operator L0 is given by

A(x, t) =
(

|t|
D(ρ(x, t))

)n−d−1

| det(Jac(x, t))|(Jac(x, t)−1)T Jac(x, t)−1

=
(

|t|
D(ρ(x, t))

)n−d−1

| det(J(x, t))|(J(x, t)−1)T J(x, t)−1

(4.1)

where (Jac(x, t)−1)T denotes the transpose Jac(x, t)−1, J(x, t) is defined in Definition 3.8, 
and the second line comes from (3.11), which says that J(x, t) = Jac(x, t)Q(x, t) for some 
orthogonal matrix Q(x, t).

In this section we take care of

A(x, t) = | det(J(x, t))|(J(x, t)−1)T J(x, t)−1 (4.2)

which we try to put in a nice form (a nice block matrix, plus a perturbation that satisfies 

Carleson estimates). The additional multiplicative term 
(

|t|
D(ρ(x,t))

)n−d−1
will only be 

treated in the next section, because this will involve estimates on the regularity of Γ
and σ.

We do not reveal yet what is our choice of function h in the definition of ρ, but in 
addition to (3.1) and (3.2), we now assume that r∇x,th satisfies the Carleson measure 
condition, as in Definition 1.21, with some constant Ch2. In short,

r∇x,th ∈ CM(Ch2). (4.3)

The main result of this section is the following description of A.

Lemma 4.4. There exists c > 0, that depends only on n, d, η, and Ch1, such that if 
C0 + Ch0 ≤ c, then there is a decomposition A = A1 + A2, where

(1) both A and A1 are uniformly elliptic and bounded,
(2) both r∇x,tA

1 and A2 satisfy the Carleson measure condition,

(3) A1 =
(
A1

1 0
0 bIn−d

)
, where A1

1 is a d ×d (elliptic) matrix and b is a positive function, 

with
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C−1 ≤ b(x, t) ≤ C for (x, t) ∈ Ω0. (4.5)

In this context, bounded elliptic means that there exists C > 0 such that |Ak,�| ≤ C

for 1 ≤ k, � ≤ n and

A(x, t)ξ · ξ ≥ C−1|ξ|2 for (x, t) ∈ Ω0 and ξ ∈ Rn, (4.6)

and similarly for A1 (in Rn).
The constant C above depends only on n, d, η, and Ch1, and the Carleson constants 

for A and A1 depend on Ch2 too. Let us also observe that we will take

b = h−2 det(J ′) = hn−d−2 det(J ′
1), (4.7)

where J ′ and J ′
1 are defined in Definition 3.12. We put the second formula here because 

det(J ′
1) does not depend on h.

The proof will keep us busy for the rest of this section. We start with simple remarks 
on the Carleson condition. Recall from Definition 1.21 that we say that the function 
a(x, t), defined on Ω0, satisfies a Carleson measure condition when |a(x, t)|2 dxdt

|t|n−d is a 
Carleson measure on Ω0.

When a is defined on Rd × (0, +∞), we say that it satisfies a Carleson measure 
condition when |a(x, |t|)|2 dxdt

|t|n−d is a Carleson measure on Ω0; it is easy to check that 
this happens if and only if |a(x, r)|2 dxdr

r is a Carleson measure, in the usual sense, on 
Rd × (0, +∞). That is, if there is a constant C ≥ 0 such that

rˆ

0

ˆ

B(x,r)

|a(y, s)|2dy
ds

s
≤ Crd for x ∈ Rd and r > 0. (4.8)

In both cases, when a is matrix-valued, let us simply say that it satisfies a Carleson 
measure condition if each of its entries ak,� satisfies a Carleson measure condition; we do 
not care about which norm we would take on the spaces of matrices.

A very useful way to obtain Carleson measures is via the following result.

Lemma 4.9. Let m = 1 or m = d. Let θ be in the Schwartz space S(Rd, Rm) and such 
that 

´
Rd θ = 0. Define

θr(x) := 1
rd

θ
(x

r

)
.

Then there exists C > 0 such that for any f ∈ L2(Rd, Rm),

∞̂

‖θr ∗ f‖2
L2

dr

r
≤ C‖f‖2

L2 ,
0
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where θr ∗ f(x) =
´
R

θr(y)f(x − y)dy if m = 1 and θr ∗ f(x) =
´
Rd 〈θr(y), f(x − y)〉 dy if 

m = d.
Moreover, if θ is supported in B(0, 2) and f ∈ L∞(Rd, Rm), then (x, r) �→ θr ∗ f(x)

satisfies the Carleson measure condition.

Proof. The first part of the lemma (on the L2-boundedness of θr ∗ f) can be found in 
[52, Section I.6.3]. The second part is Theorem 3 in [52, Section IV.4.3]. �

We are now ready to prove various Carleson measure estimates for ρ and its compo-
nents.

Lemma 4.10. The quantities |∂rϕr| and r|∇x,r∇xϕr| satisfy the Carleson measure con-
dition, with a constant C > 0 that depends only upon n, d, and η.

Proof. According to Lemma 4.9, it suffices to prove that ∂rϕr, r∂r∂xk
ϕr and r∂xi

∂xk
ϕr

can be written as θr ∗ ∇ϕ with θ ∈ S(Rd), supp θ ⊂ B(0, 1) and 
´
Rd θ = 0.

First, we have that ∂rϕr = (∂rηr) ∗ ϕ where

∂rηr(x) = − d

rd+1 η
(x

r

)
− x

rd+2 · ∇η
(x

r

)
= divx ·

[
− x

rd+1 η
(x

r

)]
= divx θ1

r(x)

if θ1(x) := xη(x). Thus Since η is in S(R) and supported in B(0, 1), so is θ1. Besides, η
is even implies that θ1 is odd and thus 

´
θ1 = 0.

Second, r∂r∂xk
ϕr = (r∂rηr) ∗ ∂xk

ϕ = (r∂rηr) ∗ (∂xk
ϕ). In the same way, r∂rηr = θ2

r

with θ2 := divx θ1. Since θ1 is in S(R) and supported in B(0, 1), so is θ2. Moreover, θ2

is a derivative so 
´
Rd θ2 = 0.

Third, r∂xi
∂xk

ϕr = (r∂xi
ηr) ∗ ∂xk

ϕ = θ3
r ∗ ∂xk

ϕ with θ3(x) := ∂xi
η(x). Since η is in 

S(R) and supported in B(0, 1), so is θ3. Moreover, θ3 is a derivative so 
´
Rd θ3 = 0. �

The next lemma gives bounds on the quantities introduced in Definition 3.12.

Lemma 4.11. Let ε ∈ (0, 1). There exists cε > 0, that depends on ε, n, d, η and Ch1, such 
that if C0 + Ch0 ≤ cε, then

(i) the matrices J ′
1 − I, H and M have coefficients bounded by ε,

(ii) H ∈ CM(CCh2) and M ∈ CM(CC2
0 ),

(iii) r∇x,tJ
′
1 ∈ CM(CC2

0 ).

Proof. Let us start with (i). By (3.25), Hk� ≤ CCh0 ≤ ε if Ch0 is small enough. Similarly, 
Mk� ≤ CC0 ≤ ε by (3.24) if C0 is small enough. Recall from Definition 3.12 that the 
coefficients of J ′

1 are (J ′
1)k� =

〈
v̂k, v�

〉
. So the fact that |(J ′

1)kk − 1| ≤ ε for 1 ≤ k ≤ d
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follows from (3.30). It remains to check that |(J ′
1)k�| ≤ ε for k �= �. Observe that for any 

k ∈ {1, . . . , d},

0 ≤
d∑

�=1

〈
v̂k, v�

〉2 = |v̂k|2 ≤ 1 + C2
0

since {v�}1≤�≤d is an orthonormal basis and by (2.8). As a consequence, if � �= i, we have

|
〈
v̂i, v�

〉
|2 ≤

∑
1≤k≤d

k �=�

〈
v̂k, v�

〉2 ≤ 1 + C2
0 −

〈
v̂�, v�

〉2 ≤ 2C2
0 ,

where we used (3.34) for the last inequality. Point (i) follows.
The proof of (ii) is immediate from (4.3), Lemma 3.15 and Lemma 4.10.
To prove the last point, recall that (J ′

1)k� =
〈
v̂k, v�

〉
. Notice that

r|∇x,r

〈
v̂k, v�

〉
| ≤ r|∇x,rv̂k| + r

√
1 + C2

0 |∇x,rv�|

by (2.8). Thus r∇(J ′
1)k� satisfies the Carleson measure condition if r|∇x,rv̂k| =

r|∇x,r∂xk
ϕr| and r|∇x,rv�| do. Yet, the latter fact is a consequence of Lemmas 2.18

and 4.10. The lemma follows. �
Lemma 4.12. For any ε ∈ (0, 1), there exists cε > 0 (depending on n, d, ε, η and Ch1) 
such that if C0 + Ch0 ≤ cε, then

(i) | det(J) − det(J ′)| ≤ ε and | det(J ′) − hn−d| ≤ ε,
(ii) det(J) − det(J ′) ∈ CM(CC2

0 + CCh2),
(iii) r∇x,t det(J ′

1) ∈ CM(CC2
0 ) and r∇x,t det(J ′) ∈ CM(CC2

0 + CCh2).

Proof. The fact that | det(J) − det(J ′)| ≤ ε if C0 + Ch0 is small comes from (3.27), 
Lemma 3.17 and (3.2). The fact that det(J) − det(J ′) satisfies the Carleson measure 
condition is immediate from (3.27), Lemma 4.10 and (4.3). Similarly | det(J ′) −hn−d| ≤ ε

when C0 is small, by (3.28). It remains to prove (iii).

Recall that det(J ′
1) =

∑
σ∈Sd

sgn(σ) 
d∏

i=1
(J ′

1)i,σ(i). Then

r∇x,t det(J ′
1) =

∑
σ∈Sd

sgn(σ)
d∑

j=1
(r∇x,t(J ′

1)j,σ(j))
d∏

i=1
i�=j

(J ′
1)i,σ(i).

Since the coefficients of J ′
1 are bounded (see (i) in Lemma 4.11) and r∇x,t(J ′

1)kl sat-
isfies the Carleson measure condition for any 1 ≤ k, l ≤ d (see (iii) in Lemma 4.11), 
r∇x,t det(J ′

1) satisfies the Carleson measure condition.
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Finally observe that det(J ′) = hn−d det(J ′
1), hence

r∇x,t det(J ′) = (n − d)hn−d−1r∇x,th det(J ′
1) + hn−dr ∇x,t det(J ′

1).

Now r∇x,t det(J ′) ∈ CM(CC2
0 + CCh2) because r∇x,t det(J ′

1) ∈ CM(CC2
0 ) and (3.1), 

(4.3). �
In the sequel, we denote by J ′′(x, t), (x, t) ∈ Ω0, the diagonal matrix defined by

(J ′′)k�(x, t) :=

⎧⎪⎨⎪⎩
0 if k �= �

1 if 1 ≤ k = � ≤ d

h(x, t) if d + 1 ≤ k = � ≤ n.

(4.13)

Thus det(J ′′) = hn−d.

Lemma 4.14. For any ε ∈ (0, 1), there exists cε > 0 (depending on n, d, ε, η and Ch1) 
such that if C0 ≤ cε, then the matrices J and J ′ are invertible and

(i) J−1 − (J ′)−1 and (J ′)−1 − (J ′′)−1 have coefficients bounded by ε,
(ii) J−1 − (J ′)−1 ∈ CM(CC2

0 + CCh2),
(iii) r∇x,t(J ′)−1 ∈ CM(CC2

0 + CCh2).

Proof. First notice that by Lemma 3.26 (see in particular (3.29)), there exists cε > 0
(depending on n, d, η and Ch1) such that when C0 + Ch0 < cε,

det(J) and det(J ′) are both greater than 2−1Cd−n
h1 . (4.15)

In the sequel of the proof, we systematically assume that C0 +Ch0 is small enough for all 
the conditions above to be satisfied; in particular, the matrices J and J ′ are invertible.

Let prove (i). Cramer’s rule yields for k, � ∈ {1, . . . , n}

(J ′ −1)k� = det(J ′)−1
( ∑

σ∈Sn
σ(k)=�

sgn(σ)
n∏

i=1
i�=k

J ′
σ(i),i

)
(4.16)

and

(J−1)k� = det(J ′)−1
( ∑

σ∈Sn
σ(k)=�

sgn(σ)
n∏

i=1
i�=k

Jσ(i),i

)

=
(

det(J ′) + (det(J) − det(J ′))
)−1

×
( ∑

σ∈Sn

sgn(σ)
n∏

i=1
i�=k

(J ′
σ(i),i + Hσ(i),i + Mσ(i),i)

)
. (4.17)
σ(k)=�
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So the difference is bounded by (recall that (4.15) holds)

|(J−1)k� − (J ′ −1)k�|

≤ C| det(J ′) − det(J)|
(

sup
1≤i,j≤n

|Jij |
)n

+ C

(
sup

1≤i,j≤n
|Hij | + |Mij |

)(
sup

1≤i,j≤n
|Hij | + |Mij | + |J ′

ij |
)n−1

, (4.18)

where C > 0 depends only on Ch1. Thanks to (i) of Lemma 4.11 and (i) of Lemma 4.12, 
for all ε ∈ (0, 1), there exists cε such that if C0 + Ch0 ≤ cε,

|(J−1)k� − (J ′ −1)k�| ≤ ε.

The same argument can be repeated to prove that for all ε ∈ (0, 1), there exists cε

such that if C0 + Ch0 ≤ cε,

|(J ′ −1)k� − (J ′′ −1)k�| ≤ ε.

The bound (4.18), together with (ii) of Lemma 4.11 and (ii) of Lemma 4.12, implies 
in the same way that J−1 − (J ′)−1 satisfies the Carleson measure condition.

In order to prove (iii), observe first that J ′ is diagonal by blocs, hence (J ′)−1 is also 
diagonal by blocs. In particular, we have for k, � ∈ {1, . . . , d},

(J ′ −1)k� = det(J ′
1)−1

( ∑
σ∈Sd
σ(k)=�

sgn(σ)
d∏

i=1
i�=k

(J ′
1)σ(i),i

)
.

It follows that for k, � ∈ {1, . . . , d}

∇x,t(J ′ −1)k� = det(J ′
1)−1

( ∑
σ∈Sd
σ(k)=�

sgn(σ)
d∑

j=1
∇(J ′

1)σ(j),j

d∏
i=1

i�=j,k

(J ′
1)σ(i),i

− ∇x,t det(J ′
1)

det(J ′
1)2

( ∑
σ∈Sd
σ(k)=�

sgn(σ)
d∏

i=1
i�=k

J ′
σ(i),i

)
.

The property (iii) of Lemmata 4.11 and 4.12 implies that ∇(J ′ −1)k� satisfies the Carleson 
measure condition for any k, � ∈ {1, . . . , d}. The Carleson measure condition for the 
gradient of the other coefficients of J ′ −1 is either trivial or given by (4.3). �

In the following, if A is a matrix, we use the notation A−T for the transpose inverse 
matrix of A, that is, (A−1)T or equivalently (AT )−1.
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Lemma 4.19. For any ε ∈ (0, 1), there exists cε > 0 (that depends on ε, η and Ch1) such 
that for C0 + Ch0 ≤ cε,

(i) the matrices J−T J−1 − (J ′)−T (J ′)−1 and (J ′)−T (J ′)−1 − (J ′′)−2 have coefficients 
bounded by ε,

(ii) J−T J−1 − (J ′)−T (J ′)−1 ∈ CM(CC2
0 + CCh2),

(iii) r∇x,t[(J ′)−T (J ′)−1] ∈ CM(CC2
0 + CCh2).

Proof. Just for this proof, let us write A for J−1, A′ for J ′ −1 and A′′ for J ′′ −1. One has 
for 1 ≤ k, � ≤ n

(AT A)k� − (A′ T A′)k� =
n∑

i=1
AikAi� −

n∑
i=1

A′
ikA′

i� =
n∑

i=1
(AikAi� − A′

ikA′
i�)

=
n∑

i=1
Aik(Ai� − A′

i�) + (Aik − A′
ik)A′

i�.

(4.20)

Then, thanks to (i) of Lemma 4.14 (and assuming as usual that C0 + Ch0 is small), 
(AT A)k�−(A′ T A′)k� ≤ ε. In the same way, we can prove that (A′ T A′)k�−(A′′ T A′′)k� ≤ ε

if C0 + Ch0 is small enough.
The identity (4.20) and (ii) of Lemma 4.14 entail the Carleson measure condition for 

(AT A)k� − (A′ T A′)k�. Finally,

∇(A′ T A′)k� =
n∑

i=1
A′

i�∇A′
ik + A′

ik∇A′
i�,

which implies, by (iii) of Lemma 4.14, that ∇(A′ T A′) satisfies the Carleson measure 
condition. �

We are now ready to complete the proof of Lemma 4.4. Assume C0 + Ch0 is small 
enough, so that we can apply the previous lemmas for values of ε that we can decide 
along the way.

Thanks to Lemma 4.12, J ′ and J are both invertible, and furthermore the coefficients 
of our main matrix A = | det(J)|J−T J−1 of (4.2) are bounded. Observe also that det(J)
and det(J ′) are positive by Lemma 3.26 and so A = det(J)J−T J−1. Set

A1 = det(J ′) J ′ −T J ′ −1,

A2 = det(J)J−T J−1 − det(J ′)J ′ −T J ′ −1

= (det(J) − det(J ′))J−T J−1 + det(J ′)(J−T J−1 − J ′ −T J ′ −1),

and finally
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A3 = det(J ′)J ′ −T J ′ −1 − det(J ′′)J ′′ −2

= (det(J ′) − det(J ′′))J ′ −T J ′ −1 + det(J ′′)(J ′ −T J ′ −1 − J ′′ −2).

By Point (i) in Lemmas 4.12 and 4.19 (plus the fact that det(J ′′) = hn−d), the coefficients 
of A2 and A3 are as small as we want in L∞-norm. Since A1 = | det(J ′′)|J ′′ −2 −A3 and 
A = | det(J ′′)|J ′′ −2 −A2 −A3, A1 and A are both small perturbations of | det(J ′′)|J ′′ −2. 
But the diagonal matrix | det(J ′′)|J ′′ −2, where J ′′ comes from (4.13), is clearly bounded 
and elliptic (which means that (4.6) holds), with an ellipticity constant C in (4.6)
bounded by Cn−d−2

h1 . It easily follows that, if the perturbations are small enough, A1

and A are (uniformly) bounded and elliptic. This takes care of Point (1) of Lemma 4.4.
It is clear that A = A1 + A2. Concerning Point (2), notice that

∇x,tA
1 = det(J ′)∇x,t(J ′ −T J ′ −1) + (J ′ −T J ′ −1)∇x,t det(J ′)

and

A2 = det(J)(J−T J−1 − J ′ −T J ′ −1) + (det(J) − det(J ′))J ′ −T J ′ −1.

Lemmata 4.12 and 4.19 allow us to conclude that both r∇x,tA
1 and A2 satisfy the 

Carleson measure condition.
Now we check (3). Recall from Definition 3.12 that J ′ has the form 

(
J ′

1 0
0 hIn−d

)
. 

Thus

A1 = det(J ′)
(

(J ′
1)−T (J ′

1)−1 0
0 h−2In−d

)
. (4.21)

Let b = h−2 det(J ′); then (4.21) is the same as the representation of (3), and (4.7) holds 
too.

Lemma 4.12, point (i) entails that | det(J ′) − hn−d| ≤ ε, with ε as small as we want. 
Since h is bounded and bounded from below, we get (4.5). Lemma 4.4 follows. �
5. The α-numbers and the regularity of the soft distance D

In this section we use the α-numbers introduced by X. Tolsa to give some control 
on the geometry of our graph Γ, an Ahlfors-regular measure σ supported on Γ, and 
eventually the distance function D = Dα defined by (1.15).

The main estimate is Lemma 5.59, which gives some control on D in terms of an 
average density of the measure σ, and with errors controlled by a Carleson measure. 
This will lead to the estimate (1.48), for a suitable choice of auxiliary function h.

Here Γ is our Lipschitz graph, and for σ we start with any positive measure on Γ
that is Ahlfors-regular, i.e., satisfies (1.7) for some constant Cσ ≥ 1. For this section 
we need some known geometric estimates on Γ and σ, which happen to hold for any 
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uniformly rectifiable set, but which we may write slightly differently in the context of 
small Lipschitz graphs to simplify the exposition.

Later on, we shall need to restrict to measures σ that lie close enough to the surface 
measure, because otherwise the function h that corresponds to D may not satisfy the 
slow variation condition (3.2) with a small enough constant. But we shall only worry 
about this in the next section.

The generic constant C in this section is allowed to depend on n, d, Cσ, η, and another 
bump function θ that will be chosen later, and (later in the section) the exponent α in 
the definition of D.

We start with the proof of (1.17) promised in the Introduction.

Lemma 5.1. If Γ is Ahlfors-regular and σ satisfies (1.7),

C−1 dist(X, Γ) ≤ Dα(X) ≤ C dist(X, Γ) (5.2)

where C > 0 is a constant that depends only on n, d, α, and Cσ.

Proof. Proving (5.2) is the same as proving that D(X)−α is equivalent to dist(X, Γ)−α. 
Let us prove the latter fact. Let X ∈ Ω be given, set r = dist(X, Γ), pick x ∈ Γ such 
that |X − x| = r, and decompose then Dα(X)−α into contributions of annuli as

Dα(X)−α =
ˆ

|y−x|<2r

|X − y|−d−αdσ(y) +
∑
k≥1

ˆ

2kr≤|y−x|<2k+1r

|X − y|−d−αdσ(y)

≤ r−d−ασ(B(x, 2r)) +
∑
k≥1

((2k − 1)r)−d−ασ(B(x, 2k+1r))

≤ Cσr−d−α(2r)d + Cσ

∞∑
k=1

(2k − 1)−d−αr−d−α(2k+1r)d ≤ C−1r−α

by (1.7). The reverse inequality is easy too, since

Dα(X)−α ≥
ˆ

|y−x|<r

|X − y|−d−αdσ(y) ≥ (2r)−d−ασ(B(x, r)) ≥ C−1r−α,

where the last inequality uses the lower bound in (1.7). �
5.1. Wasserstein distances

Most of our estimates will be based on a result of X. Tolsa, [53, Theorem 1.1], which 
gives a good control on sums of squares of local Wasserstein distances to flat measures, 
for every Ahlfors-regular measure on a uniformly rectifiable set. Here our set is a small 
Lipschitz graph, which makes the verification of Tolsa’s theorem easier, but we will not 
really need the Lipschitz character of Γ.
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We first define flat measures and local Wasserstein distances. Denote by Ξ the set of 
affine d-planes in Rn, and for each plane P ∈ Ξ, denote by μP the restriction of Hd to P

(in other words, the Lebesgue measure on P ). By flat measure, we shall mean simply 
mean a measure μ = cμP , with c > 0 and P ∈ Ξ. We shall denote by F the set of flat 
measures.

Next we measure the distance between our measure σ and flat measures, locally in 
a ball B(z, r), which we shall often take centered on Γ because this way we know that 
σ(B(z, r)) is fairly large.

Definition 5.3. For z ∈ Rn and r > 0, denote by Lip(z, r) the set of Lipschitz functions 
f : Rn → R such that f(y) = 0 for y ∈ Rn \ B(z, r) and |f(y) − f(w)| ≤ |y − w| for 
y, w ∈ Rn. Then define the normalized Wasserstein distance between two measures σ
and μ by

distz,r(μ, σ) = r−d−1 sup
f∈Lip(z,r)

∣∣∣ ˆ fdσ −
ˆ

fdμ
∣∣∣. (5.4)

Then define the distance to flat measures by

α̃σ(z, r) = inf
μ∈F

distz,r(μ, σ). (5.5)

We normalized distz,r(μ, σ) with r−d−1 because this way, if μ(B(z, r)) ≤ Crd and 
σ(B(z, r)) ≤ Crd, then distz,r(μ, σ) ≤ 2C because

‖f‖∞ ≤ r for f ∈ Lip(z, r). (5.6)

Also observe that if B(y, s) ⊂ B(z, r), then Lip(y, s) ⊂ Lip(z, r); it follows that 
disty,s(μ, σ) ≤ (r/s)d+1 distz,r(μ, σ), and hence

α̃σ(y, s) ≤ (r/s)d+1α̃σ(z, r) when B(y, s) ⊂ B(z, r). (5.7)

In Theorem 1.1 of [53], the author uses slightly different numbers, defined as follows. 
For every dyadic cube Q in Rd, denote by zQ the center of Q, d(Q) its diameter, and set

α̃d
σ(Q) = α̃σ(zQ, 3d(Q)).

Then he proves the following Carleson measure estimate, valid when Γ is a Lipschitz 
graph (maybe with a large constant C0) and σ = gHd

|Γ for some bounded function g: for 
every dyadic cube R ⊂ Rn that meets the support of σ,∑

α̃d
σ(Q)2σ(Q) ≤ Cd(R)d, (5.8)
Q∈D(R)
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where D(R) denotes the collection of dyadic cubes contained in R, and the constant C
depends on n, d, C0, and ‖g‖∞.

The same statement, modulo cosmetic changes, stays true when Γ is a uniformly 
rectifiable set of dimension d and σ an Ahlfors-regular measure on Γ. This is even a 
characterization of uniform rectifiability. See Theorem 1.2 in [53]. We shall not need this 
fact here.

We want to turn (5.8) into a Carleson estimate of the usual type, with a function of 
x ∈ Rd and r > 0.

Lemma 5.9. For every Ahlfors-regular measure σ with support Γ, the function (x, r) →
α̃σ(Φ(x), r) (defined on Rd × (0, +∞)) satisfies the Carleson measure condition.

Proof. See (4.8) (or just (5.13) below) for the definition of the Carleson condition. Let 
B(x, r) ⊂ Rd be given, let k0 ∈ Z be such that 2r ≤ 2k0 < 4r, and the cover B(Φ(x), 2r)
by less than C disjoint dyadic cubes Rj of sidelength 2k0 . For each j and each dyadic 
subcube Q ∈ D(Rj), denote by H(Q) the set of pairs (y, s) such that Φ(y) ∈ Q and 
d(Q) < s ≤ 2d(Q). Notice that each pair (y, s), with y ∈ B(x, r) and 0 < s ≤ r, lies in 
one of these H(Q) (because Φ(y) ∈ B(Φ(x), 2r) ⊂ ∪jRj). In addition, if (y, r) ∈ H(Q), 
B(y, s) ≤ B(zQ, 3d(Q)), and hence by (5.7)

α̃σ(y, s) ≤ (3d(Q)/s)d+1α̃σ(zQ, 3d(Q)) = (3d(Q)/s)d+1α̃d
σ(Q). (5.10)

Hence

rˆ

0

ˆ

Rd∩B(x,r)

α̃σ(y, s)2 dxds

s
≤

∑
j

∑
Q∈D(Rj)

ˆ

(y,s)∈H(Q)

α̃σ(y, s)2 dxds

s

≤ C
∑

j

∑
Q∈D(Rj)

α̃d
σ(Q)2

ˆ

(y,s)∈H(Q)

dxds

s
(5.11)

by (5.10). Next

ˆ

(y,s)∈H(Q)

dxds

s
= |{y ∈ Rd ; Φ(y) ∈ Q}|

ˆ

d(Q)<s≤2d(Q)

ds

s
≤ C ln(2)σ(Q) (5.12)

because the pushforward by Φ of the Lebesgue measure on Rd is less than Cσ. Altogether

rˆ

0

ˆ

Rd∩B(x,r)

α̃σ(y, s)2 dxds

s
≤ C

∑
j

∑
Q∈D(Rj)

α̃d
σ(Q)2σ(Q)
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≤ C
∑

j

d(Rj)d ≤ Crd (5.13)

by (5.8). This is the desired Carleson measure estimate (compare with (4.8)). �
Here we shall work with a fixed measure σ on Γ, which we may drop from the notation, 

and it will be simpler to work with the function α defined by

α(x, r) = α̃σ(Φ(x), 4r) for x ∈ Rd and 0 < r < +∞. (5.14)

It easily follows from Lemma 5.9 that

(x, r) → α(x, r) satisfies the Carleson measure condition. (5.15)

5.2. The ensuing geometric control

Next we want to show that the numbers α(x, t) control the geometry of Γ and 
σ. In particular, the d-planes P (x, r) essentially minimize α(x, r) (see Lemma 5.22), 
and the normalized average density λ(x, r) defined by (5.20) is reasonably smooth (see 
Lemma 5.49).

For x ∈ Rd and r > 0, choose a flat measure μ̃x,r such that

distΦ(x),4r(μ̃x,r, σ) ≤ 2α̃σ(Φ(x), 4r) = 2α(x, r). (5.16)

Recall from (5.4) that this means that

∣∣∣ ˆ fdμ̃x,r −
ˆ

fdσ
∣∣∣ ≤ 2α(x, r)(4r)d+1 for f ∈ Lip(Φ(x), 4r). (5.17)

Since μ̃x,r is a flat measure,

μ̃x,r = c(x, r)μΛ(x,r) (5.18)

for some choice of c > 0 and affine d-plane Λ(x, r), but we would prefer to use constants 
and d-planes that we control better.

So our next task will be to replace Λ(x, r) with the approximating d-plane P (x, r) of 
Section 2, and c(x, r) with a number λ(x, r) that we define now.

Fix θ ∈ C∞(Rn) such that 0 ≤ θ ≤ 1, supp θ ⊂ B(0, 1) and θ = 1 on B(0, 12 ). Then 
set

θx,r(y) = θ
(Φr(x) − y

r

)
, (5.19)

where Φr(x) = (x, ϕr(x)) is as in Section 2, and finally
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λ(x, r) =
´

Γ θx,r(y)dσ(y)´
P (x,r) θx,r(y)dμP (x,r)

=
´

Γ θx,r(y)dσ(y)
rd
´
Rd θ(y)dHd(y)

, (5.20)

where the second identity uses the fact that we centered θx,r(y) at Φr(x) ∈ P (x, r). In 
other words, we normalize the measure

μx,r = λ(x, r)μP (x,r) (5.21)

by the fact that it has the same effect on a normalized bump θx,r as σ. Here is our 
replacement lemma.

Lemma 5.22. With the definitions above (and if C0 is small enough),

distΦ(x),r(μx,r, σ) ≤ Cα(x, r). (5.23)

Once this is proved, we will be able to forget about Λ(x, r) and c(x, r), because we 
have more explicit and convenient choice that does nearly as well.

Proof. Let x ∈ Rd and r > 0 be given. We may as well assume that

α(x, r) ≤ c1, (5.24)

where c1 > 0 will be chosen soon (depending on n, d, and Cσ) will be chosen later. This 
information will be used from time to time, to eliminate strange cases.

We first control the average distances from points of Γ to Λ(x, r). We claim that
ˆ

Γ∩B(Φ(x),2r)

dist(z, Λ(x, r))dσ(z) ≤ Crd+1α(x, r). (5.25)

Let us get rid of a minor potential problem first. It could happen a priori that the d-plane 
Λ(x, r) does not meet B(Φ(x), 4r). In fact this is impossible when (5.24) holds with a 
small c1, but let us not bother to prove this. When this happens, notice that 

´
fdμ̃x,r = 0

for every f ∈ Lip(Φ(x), 4r) (because f = 0 on Λ(x, r)), so distΦ(x),4r(μ̃x,r, σ) does not 
change if we replace Λ(x, r) with any d-plane Λ̃(x, r) that does not meet B(Φ(x), r) and 
μ̃(x, r) with any flat measure on Λ̃(x, r). For instance, we may choose Λ̃(x, r) so that it 
touches ∂B(Φ(x), 4r). Thus we may assume that Λ(x, r) was always chosen so that

dist(Φ(x), Λ(x, r)) ≤ 4r. (5.26)

In order to prove (5.25), we shall construct a function f ∈ Lip(Φ(x), 4r) and test it 
against (5.17). First define a Lipschitz function ψ by ψ(z) = 1

8 for z ∈ B(Φ(x), 2r) and

ψ(z) = 1 (4r − |z − Φ(x)|)+ = 1 max(0, 4r − |z − Φ(x)|) (5.27)
16r 16r
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otherwise. Then set f(z) = ψ(z) dist(z, Λ(x, r)). Notice that

|∇f(z)| ≤ ψ(z) + dist(z, Λ(x, r))|∇ψ(z)| ≤ 1
4 + 8r|∇ψ(z)| ≤ 1,

by (5.26), and since ψ(x) = 0 on Rn \ B(Φ(x), 4r), we get that f ∈ Lip(Φ(x), 4r) and 
(5.17) applies. This yields

ˆ

Γ∩B(Φ(z),2r)

dist(z, Λ(x, r))dσ ≤ 8
ˆ

Γ∩B(Φ(z),2r)

ψ(z) dist(z, Λ(x, r))dσ

= 8
ˆ

f(z)(dσ − dμx,r) ≤ Crd+1α(x, r) (5.28)

since 
´

fdμx,r = 0 because f vanishes on its support Λ(x, r). This proves our claim 
(5.25).

Next we estimate the distance from P (x, r) to Λ(x, r). We start with the position of 
the base point Φr(x) = ηr ∗ Φ(x) =

´
y∈B(x,r) ηr(x − y)Φ(y)dy. Simply observe that

dist(Φr(x), Λ(x, r)) ≤
ˆ

y∈B(x,r)

ηr(x − y) dist(Φ(y), Λ(x, r))dy

≤ r−d‖η‖∞

ˆ

y∈B(x,r)

dist(Φ(y), Λ(x, r))dy

≤ Cr−d‖η‖∞

ˆ

z∈Γ∩B(Φ(x),2r)

dist(z, Λ(x, r))dσ(z)

≤ Crα(x, r) (5.29)

because the pushforward by Φ of the Lebesgue measure dy is less than Cdσ, and by 
(5.25).

Then we control the direction P ′(x, r) of P (x, r). Recall from the discussion near 
(2.5) that P ′(x, r) is the d-dimensional vector space spanned by the v̂i(x, r) = ∂xi

Φr(x), 
1 ≤ i ≤ d. Denote by Π⊥ = Π⊥

x,r the orthogonal projection on the orthogonal complement 
of (the direction of) Λ(x, r). Thus Π⊥(Λ(x, r)) is a single point ξ. For 1 ≤ i ≤ d, 
∂xi

Φr = Φ ∗∂xi
(ηr) = r−1Φ ∗ψi

r, where we set ψi = ∂xi
η and as usual ψi

r(y) = r−dψi(y/r). 
Then, by the same sort of computation as before,

|Π⊥(v̂i(x, r))| = |Π⊥(∂xi
Φr(x))| = r−1∣∣Π⊥[Φ ∗ ψi

r(x)]
∣∣

= r−1
∣∣∣ ˆ

ψi
r(x − y)Π⊥(Φr(y))dy

∣∣∣

y∈B(x,r)
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= r−1
∣∣∣ ˆ

y∈B(x,r)

ψi
r(x − y)[Π⊥(Φr(y)) − ξ]dy

∣∣∣
≤ r−d−1‖ψi‖∞

ˆ

y∈B(x,r)

dist(Φr(y), Λ(x, r))dy (5.30)

≤ Cr−d−1‖ψi‖∞

ˆ

z∈Γ∩B(Φ(x),2r)

dist(z, Λ(x, r))dσ(z) ≤ Cα(x, r)

where the second line comes from the fact that 
´
Rd ψi = 0 because ψi = ∂xi

η, the third 
line from the fact |Π⊥(z) − ξ| = dist(z, Λ(x, r)), and then we continue as before. Now 
the v̂i(x, r) are a nearly orthonormal basis of P ′(x, r) (because they are as close as we 
want to the ei), so, if C0 is small enough, (5.30) actually implies that

|Π⊥(v)| ≤ Cα(x, r)|v| for v ∈ P ′(x, r). (5.31)

Denote by Λ′(x, r) the vector d-space parallel to Λ(x, r); we just showed that

dist(v, Λ′(x, r)) ≤ Cα(x, r)|v| for v ∈ P ′(x, r). (5.32)

It now follows from (5.32) and (5.29) that

dist(y, Λ(x, r)) ≤ Cα(x, r)[r + |y − Φr(x)|] for y ∈ P (x, r). (5.33)

Now we worry about the constants c(x, r) and λ(x, r). Notice that for C0 small

|Φr(x) − Φ(x)| = |ϕr(x) − ϕ(x)| ≤ C0r ≤ r

10 , (5.34)

because ϕr(x) is an average of ϕ(y), y ∈ B(x, r). In particular, Φr(x) ∈ B(Φ(x), r) and 
hence B(Φr(x), r) ≤ B(Φ(x), 2r). Let us apply now (5.17) to the function θx,r of (5.19). 
The support is right, because of (5.34), but the Lipschitz norm is r−1‖θ‖lip, so we divide 
θx,r by that number, apply (5.17), and get that∣∣∣ ˆ θx,rdμ̃x,r −

ˆ
θx,rdσ]

∣∣∣ ≤ Crdα(x, r), (5.35)

where C depends on θ but this is all right. Set

a0 =
ˆ

Rd

θ(y)dHd(y); (5.36)

One of the two terms of (5.35) is

Aσ =
ˆ

θx,rdσ = a0rdλ(x, r). (5.37)
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The other term is

Aμ =
ˆ

θx,rdμ̃x,r = c(x, r)
ˆ

θx,rdμΛ(x,r), (5.38)

which we shall write as an integral on P (x, r). Denote by π the orthogonal projection 
from P (x, r) to Λ(x, r); by (5.31) this is an affine bijection, and a very brutal estimate 
shows that its constant Jacobian determinant J is such that |J −1| ≤ Cα(x, r) (we could 
even get a square). We do the change of variables z = π(y) and find that

Aμ = c(x, r)
ˆ

Λ(x,r)

θx,r(z)dμΛ(x,r)(z) = c(x, r)J
ˆ

P (x,r)

θx,r(π(y))dμP (x,r)(y) (5.39)

By (5.33), |θx,r(π(y)) − θx,r(y)| ≤ r−1‖θ‖Lip|π(y) − y|1B(Φr(x),2r)(y) ≤ Cα(x, r); it is 
useful to observe that since c1 is small, then by (5.33) again, θ(π(y)) �= 0 implies that 
y ∈ B(Φr(x), 2r). But 

´
P (x,r) θx,r(y)dμP (x,r)(y) = a0rd (because θx,r is centered on 

P (x, r); we already did this computation in (5.20)), so

|Aμ − c(x, r)Ja0rd| ≤ Cc(x, r)J
ˆ

P (x,r)∩B(Φ(x),2r)

α(x, r)dμP (x,r) ≤ Cc(x, r)α(x, r)rd.

(5.40)

Since J is so close to 1, we also get that |Aμ − c(x, r)a0rd| ≤ Cc(x, r)α(x, r)rd. We now 
compare to Aσ, use (5.35), and get that

|a0rdλ(x, r) − c(x, r)a0rd| ≤ |Aσ − Aμ| + |Aμ − c(x, r)a0rd| ≤ C(1 + c(x, r))α(x, r)rd.

(5.41)

Notice that if c1 in (5.24) is small enough,

|λ(x, r) − c(x, r)| ≤ 1
2(1 + c(x, r)). (5.42)

Observe also that since 1B(Φ(x),r/2) ≤ θx,r ≤ 1B(Φ(x),r), (1.7) implies that (r/2)dC−1
σ rd ≤´

θx,rdσ ≤ Cσrd, and hence

C−1 ≤ λ(x, r) ≤ C for x ∈ Rd and r > 0. (5.43)

Thus (5.42) and (5.43) forbid c(x, r) to be to large, we may simplify (5.41), and we get 
that

|λ(x, r) − c(x, r)| ≤ Cα(x, r). (5.44)
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In particular, if c1 is small enough (our second and last condition on c1), we also get 
that C−1 ≤ c(x, r) ≤ C.

We are now ready to prove (5.23). Let f ∈ Lip(Φ(x, r) be given. By (5.18) and the 
same change of variables as for (5.39),

ˆ
f(z)dμ̃x,r(z) = c(x, r)

ˆ

Λ(x,r)

f(z)dμΛ(x,r)(z) = c(x, r)J
ˆ

P (x,r)

f(π(y))dμP (x,r)(y),

(5.45)

and since |f(π(y)) − f(y)| ≤ |π(y) − y| ≤ Crα(x, r) by (5.33) and |J − 1| ≤ Cα(x, r), we 
get that

∣∣∣ ˆ f(z)dμ̃x,r(z) − c(x, r)
ˆ

P (x,r)

f(y)dμP (x,r)(y)
∣∣∣ ≤ Crd+1α(x, r). (5.46)

Then (5.44) allows us to replace c(x, r) with λ(x, r), and since μx,r = λ(x, r)μP (x,r) by 
(5.21), we are left with

∣∣∣ ˆ fdμ̃x,r −
ˆ

P (x,r)

fdμx,r

∣∣∣ ≤ Crd+1α(x, r). (5.47)

We add this to (5.17) and get that

∣∣∣ ˆ fdσ −
ˆ

P (x,r)

fdμx,r

∣∣∣ ≤ Crd+1α(x, r). (5.48)

Finally we take the supremum over f ∈ Lip(Φ(x), r) and get (5.23). Lemma 5.22 fol-
lows. �

So we decided to work with the measures μx,r = λ(x, r)μP (x,r). Some regularity of 
the coefficients λ(x, r) will be helpful when we choose h(x, t) in the next section (see 
Lemma 6.2).

Lemma 5.49. There is a constant C ≥ 0 such that |r∇x,rλ(x, r)| ≤ Cα(x, r) for x ∈ Rd

and r > 0. Hence r∇x,rλ(x, r) is uniformly bounded and satisfies the Carleson measure 
condition.

Proof. Recall from (5.20), (5.36), and (5.19) that

λ(x, r) = (a0rd)−1
ˆ

θx,r(y)dσ(y) = a−1
0 r−d

ˆ
θ
(Φr(x) − y

r

)
dσ(y). (5.50)
Γ Γ
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We start with the derivatives in the xi variables, which are easier to treat. Denote by v̂i
j

the j-th coordinate of v̂i = ∂xi
Φr(x), and set θj = ∂θ

∂j ; then

r∂xi
λ(x, r) = a−1

0 r−d

ˆ

Γ

n∑
j=1

v̂i
jθj

(Φr(x) − y

r

)
dσ(y). (5.51)

It is rather easy to see that this is uniformly bounded, but what we really want is the 
Carleson measure estimate. Let us not stare at this formula for too long. If we started 
with

λ̃(x, r) = (a0rd)−1
ˆ

P (x,r)

θx,r(y)dμx,r(y) = a−1
0 r−d

ˆ

P (x,r)

θ
(Φr(x) − y

r

)
dμx,r(y), (5.52)

with just a change of measure, the same computation would yield

r∂xi λ̃(x, r) = a−1
0 r−d

ˆ

P (x,r)

n∑
j=1

v̂i
jθj

(Φr(x) − y

r

)
dμx,r(y). (5.53)

But λ̃(x, r) is a constant (by the usual dilation invariance computation, using the fact 
that Φr(x) ∈ P (x, r)), so the expression in (5.53) vanishes, and we can replace dσ(y)
with dσ(y) − dμx,r(y) in (5.51).

Set f̃(y) =
∑n

j=1 v̂i
jθj

(
Φr(x)−y

r

)
, and notice that f̃ is Cr−1-Lipschitz and supported 

in B(Φ(x), 2r) (by (5.34)). Thus we may apply (5.23) (or directly (5.46)) to f = C−1rf̃ , 
and get that ∣∣∣ˆ f [dσ − dμx,r]

∣∣∣ ≤ Crd+1α(x, r). (5.54)

We multiply this by Cr−1, replace in (5.51), and get that

|r∂xi
λ(x, r)| = a−1

0 r−d
∣∣∣ˆ f̃ [dσ − dμx,r](y)

∣∣∣ ≤ Cα(x, r). (5.55)

The radial derivative is treated in the same way, except that the formula is more 
complicated. That is,

r
∂λ(x, r)

∂r
= −da−1

0 r−d

ˆ
θ
(Φr(x) − y

r

)
dσ(y)

+ a−1
0 r−d

ˆ {∑
j

(∂rΦr(x))jθj

(Φr(x) − y

r

)
− r

r2

∑
θj

(Φr(x) − y

r

)
(Φr(x) − y)j

}
dσ(y).
j
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This looks ugly, but all we need to know is that we can write this as

r
∂λ(x, r)

∂r
= a−1

0 r−d

ˆ
F
(Φr(x) − y

r

)
dσ(y), (5.56)

where here it happens that F (w) = −dθ(w) +
∑

j(∂rΦr(x))jθj(w) −
∑

j θj(w)wj , but the 
main point is that F is C-Lipschitz (use Lemma 3.17 to bound ∂rΦr(x)) and supported 
in the unit ball.

As before, r ∂λ(x,r)
∂r is bounded by inspection, and since λ̃(x, r) is a constant and we 

can do the same computation for it, with σ replaced by μx,r, this allows us to replace 
dσ by [dσ − dμx,r] in the big integral, use Lemma 5.22, and get the same estimate as 
before.

Thus |r∇x,rλ(x, r)| ≤ Cα(x, r), and the desired Carleson measure estimate follows 
from (5.15). �
5.3. The soft distance function D

Fix α > 0 and let D be the distance function defined by (1.15); we want to use the 
α(x, r) to control the variations of D. Of course it will be simpler to study

D(z)−α =
ˆ

Γ

|z − y|−d−αdσ(y), (5.57)

and we shall need the normalizing constant

cα =
ˆ

Rd

(1 + |x|2)− d+α
2 dx. (5.58)

Lemma 5.59. Let C0 be small. For each constant C2 ≥ 1, we can find CD ≥ 1, that 
depends on n, d, η, θ, Cσ, α, and C2, such that if x ∈ Rd, r > 0, and z ∈ Rn is such 
that

|z − Φ(x)| ≤ C2r, and dist(z, Γ ∪ P (x, r)) ≥ C−1
2 r, (5.60)

then ∣∣D(z)−α − cαλ(x, r) dist(z, P (x, r))−α
∣∣ ≤ CDr−αa(x, r), (5.61)

where we set a(x, r) =
∑

k≥0 2−αkα(x, 2kr).

This is a good enough control, since we shall see in Lemma 5.89 that a(x, r) satisfies the 
Carleson condition. We will try not to create too much confusion between the exponent 
α and the Tolsa numbers α(x, 2kr).
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Proof. Let x, r, and z be given. We intend to cut the integral of (5.57) into pieces that 
live in annuli, so we introduce cut-off functions. We start with θ0, which is defined on 
Rn, radial, smooth, supported in B(0, r/2), such that 0 ≤ θ0 everywhere and θ0 = 1 on 
B(0, r/4), and finally is 3r−1-Lipschitz. Then we set

θk(y) = θ0(2−ky) − θ0(2−k+1y) (5.62)

for k ≥ 1 and y ∈ Rn, and translate all these functions by setting θ̃k(y) = θk(y − Φr(x)). 
Notice that ∑

k≥0
θ̃k = 1 (5.63)

(it is a telescopic sum),

θ̃k is supported in Bk = B(Φr(x), 2k−1r), (5.64)

and for k ≥ 1

θ̃k = 0 on Bk−2. (5.65)

We use (5.63) to write D(z)−α =
∑

k≥0 Ik, with

Ik =
ˆ

Γ

|z − y|−d−αθ̃k(y)dσ(y) =
ˆ

Γ

f̃k(y)dσ(y), (5.66)

with

f̃k(y) = |z − y|−d−αθ̃k(y). (5.67)

Our intention is to approximate Ik by

Jk =
ˆ

P (x,r)

f̃k(y)dμ0(y), (5.68)

where for convenience we put

μk = μx,2kr for k ≥ 0. (5.69)

There is no problem with the definition, because dist(z, Γ ∪ P (x, r)) > 0. It turns out 
that the sum is easy to compute. Indeed

∑
k≥0

Jk =
ˆ

|z − y|−d−α
(∑

k

θ̃k(y)
)
dμ0(y) =

ˆ
|z − y|−d−αdμ0(y); (5.70)
P (x,r) P (x,r)
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we can send P (x, r) to Rd by an isometry F , so that F (z) = (0, t) for some t ∈ Rn−d

such that |t| = dist(z, P (x, r)); the image of μ0 is λ(x, r) times the Lebesgue measure, 
so ∑

k≥0

Jk = λ(x, r)
ˆ

Rd

|F (z) − y|−d−αdy = λ(x, r)
ˆ

Rd

(|t|2 + |y|2)−(d+α)/2dy

= λ(x, r)|t|−α

ˆ

Rd

(1 + |u|2)−(d+α)/2du = cαλ(x, r) dist(z, P (x, r))−α (5.71)

by the change of variables y = |t|u. We recognize the same expression as in (5.61); thus 
we will just need to estimate |Ik − Jk|.

We intend to use Lemma 5.22 to play with measures, so we are interested in the 
Lipschitz properties of f̃k, and thus want lower bounds on |y − z| when θ̃k(y) �= 0. We 
claim that

|y − z| ≥ c32kr when y ∈ Γ ∪ P (x, r) is such that θ̃k(y) �= 0, (5.72)

with c3 = (16(C2 + 1)C2)−1.
We start with the case 2k−4 ≥ C2 + 1. If θ̃k(y) �= 0, then (5.65) says that y /∈ Bk−2, 

hence

|y − z| ≥ |y − Φr(x)| − |Φr(x) − Φ(x)| − |Φ(x) − z|
≥ 2k−3r − C0r − C2r ≥ 2k−3r − (1 + C0)r ≥ 2k−4r (5.73)

by (5.34), (5.60), and our assumption on k.
Now assume that 2k−4 < C2 + 1, and use the lower bound in (5.60) to get that

|y − z| ≥ dist(y, Γ ∪ P (x, r)) ≥ C−1
2 r ≥ (16(C2 + 1)C2)−12kr, (5.74)

as needed for (5.72). Now set

fk(y) = max(|z − y|, c32kr)−d−αθ̃k(y). (5.75)

We just proved that fk(y) = f̃k(y) for every y ∈ Γ ∪P (x, r). Since σ and μ0 are supported 
in Γ and P (x, r) respectively, we can replace f̃k with fk in the definition of Ik and Jk, 
and this will be convenient because fk is Lipschitz. Indeed the gradient of max(|z −
y|, c32kr)−d−α vanishes, unless |z − y| ≥ c32kr and then the gradient is the same as for 
|z − y|−d−α. Thus

|∇fk(y)| ≤ (c32kr)−d−α|∇θ̃k(y)|+(d+α)(c32kr)−d−α−1|θ̃k(y)| ≤ C(2kr)−d−α−1 (5.76)

because |∇θ̃k(y)| ≤ 6(2kr)−1 by (5.62). Notice also that
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‖fk‖∞ ≤ C(2kr)−d−α (5.77)

directly by (5.75). Set

J ′
k =

ˆ

P (x,2kr)

fk(y)dμk(y). (5.78)

Notice that fk is supported in Bk ⊂ B(Φ(x), 2kr) (by (5.34)), so [C(2kr)−d−α−1]−1fk ∈
Lip(Φ(x), 2kr), and Lemma 5.22 yields

|Ik − J ′
k| =

∣∣∣ ˆ fk(y)[dσ − dμk](y)
∣∣∣ ≤ [C(2kr)−d−α−1](2kr)d+1 distΦ(x),2kr(σ, μk)

= C2−kαr−α distΦ(x),2kr(σ, μk) ≤ C2−kαr−αα(x, 2kr) (5.79)

by (5.4), Lemma 5.22, and (5.69). This is still compatible with the right-hand side of 
(5.61), so we are left with J ′

k −Jk =
´

fk[dμk −dμ0] to estimate, obviously only for k ≥ 1
We write J ′

k − Jk =
∑

1≤j≤k δj,k, with

δj,k =
ˆ

fk[dμj − dμj−1], (5.80)

and recall that μj = μx,2jr = λ(x, 2jr)Hd
j , where we denote by Hd

j the restriction of Hd

to the plane Pj = P (x, 2jr) to simplify the notation. We want to know that Pj−1 lies 
close to Pj , so we return to the distance estimate (5.33) in the proof of Lemma 5.22. We 
claim that the same proof also shows that

dist(y, Pj) ≤ Cα(x, 2jr)[2jr + |y − Φ2jr(x)|] for y ∈ Pj−1, (5.81)

at least if α(x, 2jr) is small enough, as in (5.24). The logical way to see this is to 
observe that the proof of (5.33) for the position of Pj also gives the same estimates for 
the position of Pj−1, and then we compare the two. Another way is to observe that by 
Lemma 5.22, we can actually replace Λ(x, 2jr) with Pj in the whole proof of Lemma 5.22, 
and in particular of (5.33). This is formally more easy, except for the fact that it exactly 
works for Pj−2 rather than Pj−1 (because we lose a factor 4 in the scales when we prove 
Lemma 5.22). This would be easy to fix, for instance by setting α(x, r) = α̃σ(Φ(x), 8r) in 
(5.14) and proving a Lemma 5.22 with dist(Φ(x), 2r). We leave the details and consider 
(5.81) established.

Let us continue the estimate when α(x, 2jr) is small enough, so that Pj−1 and Pj

make a small angle, and we estimate 
´

fk[dHd
j − dHd

j−1] with the same projection trick 
as near (5.38). Denote by π the orthogonal projection from Pj−1 to Pj ; if α(x, 2jr) is 
small enough, this is an affine bijection, and the determinant J of its jacobian is such 
that |J − 1| ≤ Cα(x, 2jr). The change of variables z = π(y) yields
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ˆ

Pj

fk(z)dHd
j (z) = J

ˆ

Pj−1

fk(π(y))dHd
j−1(y) (5.82)

and hence, since fk is supported in Bk by (5.64),∣∣∣ ˆ fk[dHd
j − dHd

j−1]
∣∣∣

≤ |J − 1|
∣∣∣ ˆ
Pj−1

fk(π(y))dHd
j−1(y)

∣∣∣ +
ˆ

Pj−1

|fk(π(y)) − fk(y)|dHd
j−1(y)

≤ C‖fk‖∞Hd
j−1(Bk)α(x, 2jr) + ‖fk‖Lip

ˆ

Pj−1∩Bk+1

|π(y) − y|dHd
j−1(y)

≤ C‖fk‖∞(2kr)dα(x, 2jr) + C‖fk‖Lip(2kr)d+1α(x, 2jr) (5.83)

≤ C(2kr)−αα(x, 2jr)

by (5.81), (5.76), and (5.77).
When α(x, 2jr) is not small, simply observe that∣∣∣ˆ fk[dHd

j − dHd
j−1]

∣∣∣ ≤ ‖fk‖∞(Hd
j−1(Bk) + Hd

j (Bk)) ≤ C(2kr)−α (5.84)

by (5.77) and with no gain, but (5.83) also holds in this case because α(x, 2jr) ≥ C−1.
We also need to show that

|λ(x, 2jr) − λ(x, 2j−1r)| ≤ Cα(x, 2jr), (5.85)

and the simplest at this point is to observe that for 2j−1r ≤ ρ ≤ 2jr, ρ|∂λ(x,ρ)
∂ρ | ≤

Cα(x, ρ) ≤ C2d+1α(x, 2jr) by Lemma 5.49, (5.14), and (5.7). We integrate and get 
(5.85). We are now ready for our last estimate. Indeed

δj,k =
∣∣∣ˆ fk[dμj − dμj−1]

∣∣∣ =
∣∣∣ ˆ fk[λ(x, 2jr)dHd

j − λ(x, 2j−1r)dHd
j−1]

∣∣∣
≤ λ(x, 2jr)

∣∣∣ ˆ fk[Hd
j − Hd

j−1]
∣∣∣ + |λ(x, 2jr) − λ(x, 2j−1r)|

∣∣∣ ˆ fkdHd
j−1

∣∣∣
≤ C(2kr)−αα(x, 2jr) + Cα(x, 2jr)‖fk‖∞Hj−1(Bk)

≤ C(2kr)−αα(x, 2jr) (5.86)

by (5.84), (5.85), (5.43), and (5.77). We now sum over j and get that

|J ′
k − Jk| ≤

∑
1≤j≤k

|δj,k| ≤ C
∑

1≤j≤k

(2kr)−αα(x, 2jr). (5.87)

Then we sum over k and by Fubini’s lemma,



2790 G. David et al. / Journal of Functional Analysis 276 (2019) 2731–2820
∑
k

|J ′
k − Jk| ≤ C

∑
k

∑
j≤k

(2kr)−αα(x, 2jr)

≤ Cr−α
∑

j

α(x, 2jr)
∑
k≥j

2−αk ≤ Cr−α
∑

j

2−αjα(x, 2jr), (5.88)

which is compatible with (5.61). This last estimate completes our proof of
Lemma 5.59. �

We complete Lemma 5.59 with a Carleson control on the right-hand side.

Lemma 5.89. Let a(x, r) =
∑

k≥0 2−αkα(x, 2kr) be the same function as Lemma 5.59. 
Then a satisfies the Carleson condition.

Proof. We first apply Cauchy–Schwarz to estimate

a(x, r)2 ≤
{∑

k≥0

2−αkα2(x, 2kr)
}{∑

k≥0

2−αk
}

≤ C
∑
k≥0

2−αkα2(x, 2kr).

We need to compute

rˆ

0

ˆ

B(x,r)

a(y, s)2 dyds

s
≤ C

rˆ

0

ˆ

B(x,r)

∑
k≥0

2−αkα2(y, 2ks)dyds

s

= C
∑
k≥0

2−αk

rˆ

0

ˆ

B(x,r)

α2(y, 2ks)dyds

s
. (5.90)

Write
rˆ

0

ˆ

B(x,r)

α2(y, 2ks)dyds

s
= I1 + I2,

where I1 is the part of the integral where 0 < s < 2−kr, and I2 is the rest. Notice that 
α2(y, ρ) ≤ C for y ∈ Rd and ρ > 0, by the definition (5.14) and the remark above (5.6). 
Thus

I2 =
rˆ

2−kr

ˆ

B(x,r)

α2(y, 2ks)dyds

s
≤ C|B(x, r)|

rˆ

2−kr

ds

s
≤ Ckrd.

We are left with

I2 =
2−krˆ ˆ

α2(y, 2ks)dyds

s
=

rˆ ˆ
α2(y, u)dydu

u
≤ Crd
0 B(x,r) u=0 B(x,r)
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after setting u = 2ks in the integral, and because α satisfies the Carleson condition. We 
return to (5.90) and get that

rˆ

0

ˆ

B(x,r)

a(y, s)2 dyds

s
≤ C

∑
k≥0

2−αk(k + 1)rd ≤ Crd,

and Lemma 5.89 follows. �
6. We collect estimates and conclude

The goal of this section is to put ourselves in the framework of Theorem 1.32, at least 
for our soft distance Dα. Then it will remain only to prove the two results on degenerate 
elliptic operators on Ω0 = Rn \Rd (namely, Theorems 1.32 and 1.27) in order to establish 
Theorem 1.18.

That is, we choose the missing function h, use it to construct a change of variables 
ρ, compute the matrix of the conjugated operator L0 on Ω0, check that it satisfies the 
assumptions of Theorems 1.32 and 1.27, and conclude.

After this, we discuss the case of the usual distance in dimension d = 1, and rapidly 
discuss other choices of distance functions.

6.1. Our choice of h(x, t)

Recall that we still need to choose the function h that comes in the definition of ρ, 
and we should try to make D(ρ(x, t)) close to |t|. The discussion that follows shows that 
taking

h(x, t) = (cαλ(x, |t|))1/α, (6.1)

where λ is the quantity introduced in (5.20), is the most reasonable option. Thus we 
shall take h radial. Now we have to be a little bit careful, because we need to check that 
h satisfies the assumptions needed for the construction of ρ, and this is why we shall put 
an additional requirement, compared to the previous section.

Lemma 6.2. There exist small constants c0(n, d), that depends only on n and d, and 
c1(n, d, α), that depends only on n, d, and the exponent α in the definition of D = Dα, 
with the following properties.

Let Γ be a Lipschitz graph (as in (1.5)), and let C0 be as in (1.4). Assume that 
C0 ≤ c0(n, d), and let σ be an Ahlfors regular measure on Γ (as in (1.7)) such that

α̃σ(Φ(x), r) ≤ c1(n, d, α) for x ∈ Rd and r > 0, (6.3)
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where Φ(x) = (0, ϕ(x)), and the numbers α̃σ(Φ(x), r) are defined by (5.5). Choose h as 
in (6.1). Then the assumptions of the previous sections are satisfied, we can construct 
the bi-Lipschitz mapping ρ, and the Carleson measure condition (1.48) holds.

Let us rapidly comment the statement before we prove it. We do not mention η or θ
because we can choose them, once and for all. Our assumption that C0 be small enough is 
not new, and we use it very often in the construction. As we shall see soon, the additional 
assumption (6.3) is only used to check (3.2) for our choice of h; this makes sense because 
if h varies too wildly, ρ is unlikely to be injective.

We claim that if (C0 is small enough and) we choose σ sufficiently close to the surface 
measure on Γ, i.e., if

(1 − c2(n, d, α))Hd
|Γ ≤ σ ≤ (1 + c2(n, d, α))Hd

|Γ (6.4)

for a small enough c2(n, d, α), then σ is Ahlfors regular and (6.3) holds. But of course 
(6.3) may also hold for different reasons.

To prove the claim, we test α̃σ(Φ(x), r) on the flat measure μ = Hd
|Px

, where Px =
Rd + (0, ϕ(x)). Denote by π the orthogonal projection on Rd, by σ̃ the pushforward of σ
on P ′

x = Rd, and by μ̃ the pushforward of μ on P ′
x. With our assumptions, it is easy to 

check that

(1 − c2(n, d, α) − c0(n, d))μ̃ ≤ σ̃ ≤ (1 + c2(n, d, α) + c0(n, d))μ̃, (6.5)

and then, for any f ∈ Lip(Φ(x), r),
ˆ

Γ

fdσ −
ˆ

Px

fdμ =
ˆ

Rd

f(y, ϕ(y))dσ̃ −
ˆ

Rd

f(y, ϕ(0))dμ̃ = I + II, (6.6)

where

|I| =
∣∣∣ ˆ
Rd

[f(y, ϕ(y))−f(y, ϕ(0))]dσ̃(y)
∣∣∣ ≤

ˆ

Rd∩B(x,r)

|ϕ(y)−ϕ(x)|dσ̃(y) ≤ CC0rd+1, (6.7)

and

|II| =
∣∣∣ ˆ
Rd

f(y, ϕ(0))[dσ̃(y) − dμ̃(y)]
∣∣∣ ≤ ‖f‖∞(c2(n, d, α) + c0(n, d))

ˆ

Rd∩B(x,r)

dμ̃(y)

≤ C(c2(n, d, α) + c0(n, d))rd+1 (6.8)

by (6.5) and (5.6). We compare with Definition 5.3, get (6.3), and prove the claim.

Proof. Let us now prove the lemma. With our assumptions, we can define the planes 
P (x, r), and prove the results of Section 5; in particular C−1 ≤ λ(x, r) ≤ C (by (5.43)) 
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and Lemma 5.49 says that r|∇x,r|λ(x, r) ≤ Cα(x, r) = Cα̃σ(Φ(x), 4r) (by (5.14)) and 
satisfies the Carleson measure condition.

The first information gives (3.1), and the second one yields (3.2) and (4.3). The 
smallness condition in (3.2) really requires something like (6.3), while the other conditions 
would follow from Section 5.

At this point we can construct ρ, and we aim for (1.48). Set r = |t| as usual, and recall 
from (3.3) that ρ(x, t) = Φr(x) + h(x, t)Rx,r(0, t), where Φr(x) ∈ P (x, t) and Rx,r(0, t)
is orthogonal to P ′(x, t). Hence by (6.1)

dist(ρ(x, t), P (x, r)) = h(x, t)r = (cαλ(x, r))1/αr. (6.9)

We also know from (3.41) and (3.42) that

|ρ(x, t) − Φ(x)| ≤ 2rh(x, t) and dist(ρ(x, t), Γ) ≥ h(x, t)r/2. (6.10)

So, if we take the constant C2 in Lemma 5.59 larger than twice the constant C in (3.1), 
z = ρ(x, t) satisfies the assumption (5.60) of that lemma, and (5.61) says that∣∣D(ρ(x, t))−α − cαλ(x, r) dist(z, P (x, r))−α

∣∣ ≤ Cr−α
∑
k≥0

2−αkα(x, 2kr) = Cr−αa(x, r),

where a is the Carleson function of Lemma 5.89. We use (6.9) to replace dist(z, P (x, r))
and get that |D(ρ(x, t))−α − r−α| ≤ Cr−αa(x, r), or equivalently∣∣∣rαD(ρ(x, t))−α − 1| ≤ Ca(x, r). (6.11)

Recall from (5.2) that C−1 dist(z, Γ) ≤ D(z) ≤ C dist(z, Γ). Since dist(ρ(x, t), Γ) is also 
equivalent to |t| = r by (6.10), we see that

C−1|t| ≤ D(ρ(x, t)) ≤ C dist(z, Γ) ≤ C|t|. (6.12)

This allows us to apply the reciprocal of s → sα, which is Lipschitz in the range where 
rαD(ρ(x, t))−α lives, to deduce from (6.11) that∣∣∣ r

D(ρ(x, t)) − 1| ≤ Ca(x, r). (6.13)

The Carleson measure condition (1.48) now follows from Lemma 5.89. �
6.2. Computations for the conjugated operator L0

Recall that we started with an operator L on Ω = Rn \ Γ, formally defined as L =
− div Dd+1−n∇ (see (1.14)), and where D is either the soft distance given by (1.15) or 
(in dimension d = 1) the usual Euclidean distance (see (1.16)).
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We have defined a change of variables ρ : Ω → Ω0, and in this subsection we compute 
the conjugated operator of L by ρ, and then show that it satisfies the assumptions of 
theorems of the introduction.

For the rigorous definition of L, we refer to [20], where definitions and solutions were 
given in terms of the weight w defined on Ω by

w(z) = dist(z, Γ)d+1−n, (6.14)

and an accretive bilinear form on the Sobolev space

W (Ω) =

⎧⎨⎩u ∈ L1
loc(Ω),

¨

Ω

|∇u|2w < +∞

⎫⎬⎭ . (6.15)

Here and in the rest of the article, double integrals shall be used when integrating with 
respect to the n-dimensional Lebesgue measure over (subsets of) Ω and Ω0. Recall that 
we checked in (5.2) that

C−1D(z)d+1−n ≤ w(z) ≤ C−1D(z)d+1−n, (6.16)

where C > 0 depends only on the dimensions d and n and the parameter α. In the next 
lemma we compute the effect of ρ on that bilinear form.

Lemma 6.17. Let Γ, L, and ρ be as above; in particular assume that ρ is smooth and 
bi-Lipschitz. Then, for u, v ∈ W (Ω),

¨

X∈Ω

∇u(X) · ∇v(X) dX

D(X)n−d−1

=
¨

(x,t)∈Ω0

Aρ(x, t)∇[u ◦ ρ](x, t) · ∇[v ◦ ρ](x, t) dx dt, (6.18)

where Ω0 = Rd × [Rn−d \ {0}],

Aρ(x, t) =
(

1
D(ρ(x, t))

)n−d−1

| det(J(x, t))|(J(x, t)−1)T J(x, t)−1 (6.19)

for (x, t) ∈ Ω0, and J is defined in Definition 3.8.

Proof. First of all, since ρ is (smooth and) bi-Lipschitz, ũ = u ◦ ρ and ṽ = v ◦ ρ lie in 
the Sobolev space W (Ω0) associated to the domain Ω0 and the weight |t|d+1−n. Thus 
the right-hand side makes sense because Aρ(x, t) is bounded by |t|d+1−n (by (6.12) and 
directly Definition 3.8). We claim that
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∇ũ = Jac ([∇u] ◦ ρ) (6.20)

(the product of two matrices). Let us for a moment forget about the decomposition 
Rn = Rd × Rn−d, write X = (x1, . . . xn) for the generic point of Rn, and denote by ρ�

the �-th component of ρ. Thus Jack,� = ∂xk
ρ� (which is coherent with our definition 

(3.6)–(3.7)). The k-th component (line) of ∇ũ is

∂xk
[u ◦ ρ] =

∑
�

∂xk
ρ�[∂x�

u] ◦ ρ =
∑

�

Jack,�([∇u] ◦ ρ)�,

which proves (6.20). The substitution rule yields
¨

Z∈Ω

∇u(Z) · ∇v(Z) dZ

D(Z)n−d−1 =
¨

(x,t)∈Ω0

〈[∇u] ◦ ρ, [∇v] ◦ ρ〉 | det(Jac)| dxdt

(D ◦ ρ)n−d−1

=
¨

Ω0

〈
Jac−1 ∇ũ, Jac−1 ∇ṽ

〉
| det(Jac)| dxdt

D(ρ(x, t))n−d−1 .

(6.21)

But by (3.11), there exists an orthogonal matrix Q such that we have the matrix identity 
Jac = JQ−1. Thus | det(Jac)| = | det(J)|, and (setting U = ∇ũ and V = ∇ũ)〈

Jac−1 U, Jac−1 V
〉

=
〈
QJ−1U, QJ−1V

〉
=

〈
J−1U, J−1V

〉
=

〈
(J−1)T J−1U, V

〉
,

so that (6.21) is the same as
¨

Z∈Ω

∇u(Z) · ∇v(Z) dZ

D(Z)n−d−1 =
¨

Ω0

〈
(J−1)T J−1∇ũ, ∇ṽ

〉
| det(J)| dxdt

D(ρ(x, t))n−d−1 ;

the lemma follows. �
We now check that the matrix Aρ(x, t) given by (6.19) has an appropriate decompo-

sition, in fact a little stronger than the one required for Theorems 1.32 and 1.27.

Lemma 6.22. Let Γ, L, and ρ satisfy the assumptions above, let Aρ(x, t) be as in (6.19), 
and let

A(x, t) = |t|n−d−1Aρ(x, t)

=
(

|t|
D(ρ(x, t))

)n−d−1

| det(J(x, t))|(J(x, t)−1)T J(x, t)−1 (6.23)

be the corresponding normalized n × n matrix. Then A is uniformly bounded and elliptic 
(or equivalently, Aρ satisfies (1.24) and (1.25)), and we can write
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A(X) =
(

A1(X) + C1 C2(X)
C3(X) b(X)In−d + C4(X)

)
, (6.24)

where A1(X), C1(X) ∈ Md×d(R) are d × d matrices, C2(X) ∈ Md×(n−d)(R), C3(X) ∈
M(n−d)×d(R), b is a function on Ω0, In−d is the identity matrix on Rn−d, C4(X) ∈
Md×d(R),

C1, C2, C3, C4, and |t|∇x,tA1 satisfy the Carleson measure condition, (6.25)

C−1 ≤ b ≤ C on Ω0, (6.26)

and

|t|∇b satisfies the Carleson measure condition. (6.27)

These are the same conditions as for Theorem 1.32, except that we also give a de-
composition of the upper left block into a Carleson piece and a smooth piece, and that 
the upper right block satisfies a Carleson measure condition. The conditions for Theo-
rem 1.27 (regarding L0 and its matrix) are even weaker.

Thus A1 + C1 is uniformly bounded and elliptic (because A is), and of course the 
near-diagonal form of the lower right block, which comes from the fact that ρ is nearly 
isometric the t-variables, is important. The constant C (in (6.26) and implicit in the 
Carleson conditions) depends only on n and d (given that we already forced C0 and 
c1(n, d, α) – the constant in (6.3) – to be small).

Proof. First observe that A(x, t) =
(

|t|
D(ρ(x,t))

)n−d−1
A(x, t), where A(x, t) is the matrix 

of (4.2), and for which Lemma 4.4 gives a nice description. Set f(x, t) =
(

|t|
D(ρ(x,t))

)n−d−1

to save space. We know that

C−1 ≤ f ≤ C (6.28)

(by (6.12)), and that

|f − 1| satisfies the Carleson measure condition, (6.29)

by (1.48) (and because (6.12) allows us to take the (n − d − 1)-th power). We start from 
the decomposition A = A1 + A2 given by Lemma 4.4, which gives us the expression

A = fA = A1 + (f − 1)A1 + fA2. (6.30)

By Lemma 4.4, A2 satisfies the Carleson measure condition, hence also (f − 1)A1 + fA2, 

by (6.28) and (6.29). And we also have A1 =
(
A1

1 0
0 bI

)
for some function b.
n−d
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Let us write (f − 1)A1 + fA2 =
(

C1 C2

C3 C4

)
; This gives a decomposition of A as in 

(6.24), where we just need to take

b = b and A1 = A1
1, (6.31)

where A1
1 is the upper left block of A1.

The Carleson property (6.25) holds, by definition of the Cj and because Lemma 4.4
says that |t|∇A1 ∈ CM . The uniform bound (6.26) follows from (4.5). We still need to 
check (6.27), i.e., that |t|∇b ∈ CM . Recall that

b = b = hn−d−2 det(J ′
1) (6.32)

by (6.31) and (4.7). Observe that hn−d−2 and det(J ′
1) are both bounded (see (3.1)

concerning h). It was proved in (iii) of Lemma 4.11 that |t|∇x,t det(J ′
1) ∈ CM , and 

|t|∇hn−d−2 ∈ CM because |t|∇x,rh ∈ CM (by (3.2)) and h−1 is bounded. This proves 
(6.27), and Lemma 6.22 follows. �

At this point we completed the proof of Theorem 1.18, with our soft distance Dα, and 
modulo the two results on degenerate elliptic operators that will be treated in the last 
sections.

6.3. Other distance functions, Euclidean distance

We pulled out in (1.15) one formula for a distance function that works for our purpose, 
and looks reasonably natural. In this subsection, we give a sufficient condition, on a 
possibly different distance function D on Ω, for Theorem 1.18 to stay true when L is 
defined with this distance. This will include the special case of the Euclidean distance 
to Γ, but only when d = 1.

The sufficient condition that we give now is just chosen so that the proof above works. 
We are still given a Lipschitz graph Γ, with small enough constant C0, and a function 
D : Ω → (0, +∞), such that

C−1
4 dist(z, Γ) ≤ D(z) ≤ C4 dist(z, Γ) for z ∈ Ω (6.33)

for some constant C4 ≥ 1. We pick a function η as in Section 2, and use it to define Φr and 
the approximate tangent d-plane P (x, r). We assume that we have the following slightly 
weaker analogue of Lemma 5.59. We can find a function a defined on Rd × (0, +∞) and 
such that

a ∈ CM(C5), (6.34)

and a function λ̃, defined on Ω0 such that
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C−1
4 ≤ λ̃ ≤ C4 (6.35)

‖∇λ̃‖∞ ≤ ε, (6.36)

and

∇λ̃ ∈ CM(C5), (6.37)

with the following property. For x ∈ Rd, r > 0, and z ∈ Ω such that

C−1
4 r ≤ |z − Φr(x)| ≤ C4r and z − Φr(x) ⊥ P (x, r), (6.38)

we have ∣∣∣ D(z)
dist(z, P (x, r)) − λ̃(x, r)

∣∣∣ =
∣∣∣ D(z)
|z − Φr(x)| − λ̃(x, r)

∣∣∣ ≤ a(x, r). (6.39)

Of course it looks a little unpleasant that the condition depends on our construction 
of P (x, r), but this is not so complicated. The reader should not pay too much attention 
to the names of C4 and C5. We put the same constant C4 in (6.33) and (6.35) because 
we think they may be proved at the same time (and they look very similar), and gave 
a different name to C5, mostly for psychological reasons, because in practice they will 
probably depend on C4.

Theorem 6.40. For each choice of C4, C5 ≥ 1, we can find C0 > 0 and ε > 0, depending 
on n, d, our choice of η, C4, and C5, such that if Γ is a Lipschitz graph with Lipschitz 
constant less than C0, and D satisfies the assumptions above, then the operator L defined 
by (1.14) with this function D satisfies the conclusion of Theorem 1.18.

Proof. We prove this first, and then comment more. We shall just need to modify slightly 
the proof of Lemma 6.2. This time, we take h(x, t) = λ̃(x, t)−1; the assumptions (3.1), 
(3.2), and (4.3) follow from (6.35)–(6.37), and by taking ε small we can ensure that Ch0
in (3.2) is as small as we want (depending on the other constants). Since we also assume 
C0 to be small enough, we can construct the bi-Lipschitz change of variable ρ.

Now we want to show that (1.48) holds. Let (x, t) ∈ Ω0 be given, set r = |t|, recall 
that ρ(x, t) = Φr(x) + h(x, t)Rx,r(t) hence (as in (6.9))

dist(ρ(x, t), P (x, r)) = h(x, t)r = (λ̃(x, t))−1r. (6.41)

Now consider z = ρ(x, t), observe that z − Φr(x) ⊥ P ′(x, r) by definition of Rx,r, and 
C−1

4 r ≤ |z − Φr(x)| ≤ C4r by (6.35). Hence (6.38) holds and we have (6.39). Then, by 
(6.41),

∣∣∣ D(z)˜ −1
− λ̃(x, r)

∣∣∣ =
∣∣∣ D(z)

dist(z, P (x, r)) − λ̃(x, r)
∣∣∣ ≤ a(x, r). (6.42)
(λ(x, t)) r
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Because of (6.35), this implies that |r−1D(ρ(x, t)) −1| ≤ Ca(x, r), and then (1.48) follows, 
because (6.33) allows us to take inverses.

This was our analogue of Lemma 6.2; we may now continue the argument as in 
Subsection 6.2, where the specific form of D was not used, and conclude as before. �

We proved in Section 5 that the functions Dα satisfy the assumptions of Theorem 6.40, 
and this reflects nice regularity properties of our Lipschitz graph Γ, as well as Dα itself. 
We may use this work to prove that some other function D works as well, by controlling 
D−1

α D. That is, if D is equivalent to Dα (and the Euclidean distance to Γ) as in (6.33), 
and if we control D

Dα
a little bit like we controlled Dα

dist(z,P (x,r)) above, then we may be 
able to prove more easily that D satisfies the conditions above.

We could also observe that we could also define Dρ by the fact that Dρ(ρ(x, t)) = |t|. 
This defines a perfect function Dρ for the conditions above (with λ̃ = 1 and a = 0), 
but the reader may have thought that this was a very special choice, designed for the 
change of variables to work. Nonetheless, we could also say that the more natural Dα

work because they are close to Dρ.
We end this section with the case of the Euclidean distance function, defined as in 

(1.16) by

DE(z) = dist(z, Γ) for z ∈ Ω. (6.43)

Corollary 6.44. There exists C0 > 0 such that if Γ ⊂ Rn is a one-dimensional Lipschitz 
graph, with Lipschitz constant at most C0, then the operator L defined by (1.14) with this 
function DE of (6.43) satisfies the conclusion of Theorem 1.18.

Proof. We could prove this as a consequence of Theorem 6.40, which is a little unfair 
because some things are actually simpler in dimension 1, so we recall the main steps 
anyway.

As in the previous case, the main point is to compare dist(z, Γ) and dist(z, P (x, r))
for some z near x, and we shall use the function-theoretic analogue of the P. Jones 
β-numbers. The point is to measure how well our small Lipschitz function ϕ is approxi-
mated by affine functions.

Denote by A the set of affine functions a : R → Rn−1, and set

β(x, r) = 1
r

inf
a∈A

sup
y∈B(x,r)

|ϕ(y) − a(y)| (6.45)

for x ∈ R and r > 0. We divide by r to get a dimensionless number, which is clearly 
bounded by C0 (try a(y) = ϕ(x)). The name comes from a paper of P. Jones [37], where 
related numbers were used to quantify the distance from a set (like Γ) to lines or planes. 
A result of Dorronsoro [23] says that

β ∈ CM(CC2
0 ). (6.46)
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The reader may view it as a consequence of the so-called geometric lemma of P. Jones 
(which is also valid for more general sets), but it is in fact anterior. Also, unfortunately 
for us, it is only valid in dimension 1. This is related to the fact that in higher dimensions, 
+∞ is not a correct exponent for the Sobolev embedding theorem. In the context of sets 
and β numbers, this was an observation in X. Fang’s thesis under P. Jones [24]. The 
construction of this counterexample can be found as Example 1.16 in [4].

For our purpose, it is more convenient to use the following variant, where the approx-
imating function a is computed directly from ϕ as a reasonable guess. Let η and ηr be 
as in Section 2, define an affine function ax,r by

ax,r(y) = ϕr(x) + (y − x)∇xϕr(x), (6.47)

where in the present case ∇x is just a derivative, and then set

βη(x, r) = 1
r

sup
y∈B(x,r)

|ϕ(y) − ax,r(y)| (6.48)

for x ∈ R and r > 0. Of course βη(x, r) ≥ β(x, r) because ax,r ∈ A, but βη(x, r) is not 
much larger in general.

Lemma 6.49. There exists a constant C > 0, that depends only on η and n, such that for 
x ∈ Rd and r > 0,

βη(x, r) ≤ Cβ(x, r). (6.50)

As a consequence,

βη(x, r) ≤ CC0 for x ∈ Rd and r > 0, (6.51)

and (by (6.46))

βη ∈ CM(CC2
0 ). (6.52)

Proof. We only need to prove (6.50). This would also be true in higher dimensions, with 
the same proof, but (6.46) is not in general. Let x ∈ Rd and r > 0 be given, and pick an 
affine function a such that

sup
y∈B(x,r)

|ϕ(y) − a(y)| ≤ 2rβ(x, r). (6.53)

Since a is affine, we may write a(y) = (y − x)a + b; then

βη(x, r) = r−1 sup
y∈B(x,r)

|ϕ(y) − ax,r(y)| ≤ 2β(x, r) + r−1 sup
y∈B(x,r)

|a(y) − ax,r(y)|

≤ 2β(x, r) + |a − ∇xϕr(x)| + r−1|b − ϕr(x)|, (6.54)
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where we simply wrote the two affine functions and subtracted term by term. We now 
estimate the two terms. First, we use the fact that ηr is even with integral 1 to prove 
that

|b − ϕr(x)| =
∣∣∣b −
ˆ

R

ηr(x − y)ϕ(y)dy
∣∣∣ =

∣∣∣ ˆ
R

ηr(x − y)[ϕ(y) − b − (y − x)a]dy
∣∣∣

≤ sup
y∈B(x,r)

|ϕ(y) − b − (y − x)a|
ˆ

R

ηr(x − y)dy ≤ 2rβ(x, r) (6.55)

because η is supported in B(x, r) and by (6.53). Similarly, observe that 
´
R

∇xηr(x −
y)dy = 0 (because ηr is compactly supported) and 

´
R

∇ηr(x − y) · (y − x)dy is the 
identity matrix on Rn (integrate by parts), so

|a − ∇xϕr(x)| =
∣∣∣a −

ˆ

R

∇xηr(x − y)ϕ(y)dy
∣∣∣ =

∣∣∣ ˆ
R

∇xηr(x − y)(b + (y − x)a − ϕ(y)dy)
∣∣∣

≤ 2r‖∇xηr‖∞ sup
y∈B(x,r)

|b + (y − x)a − ϕ(y)| ≤ Cηβ(x, r). (6.56)

Lemma 6.49 follows from (6.54)–(6.56). �
We now proceed as with the preceding results, but with h = 1 (so (3.1), (3.2), and 

(4.3) hold trivially). Thus ρ(x, t) = Φr(x) +Rx,t(0, t) is a bi-Lipschitz mapping (as usual, 
if C0 is small enough) and (as in (6.9) or (6.41)),

dist(ρ(x, t), P (x, r)) = |ρ(x, t) − Φr(x)| = |t| = r. (6.57)

We want to compare this with dist(ρ(x, t), Γ), and more precisely show that

(1 − βη(x, r))r ≤ dist(ρ(x, t), Γ) ≤ (1 + βη(x, r))r. (6.58)

First observe that

dist(ρ(x, t), Γ) ≤ |ρ(x, t) − Φr(x)| + dist(Φr(x), Γ) ≤ r + |Φr(x) − Φ(x)|
= r + |ϕr(x) − ϕ(x)| = r + |ax,r(x) − ϕ(x)| ≤ r + rβη(x, r),

which proves the second inequality. Write ρ(x, r) = (y, s), with y ∈ R and s ∈ Rn−1. 
Observe that since P (x, r) is almost horizontal (because ϕr too is C0-Lipschitz), so 
|y−x| ≤ 2C0r (recall that Φr(x) = (x, ϕr(x)), and now the closest point(s) of Γ to ρ(x, r)
must be of the form ξ = (z, ϕ(z)), with |z − y| ≤ 2C0r too. Thus |z − x| ≤ 4C0r < r, 
and |ϕ(z) − ax,r(z)| ≤ rβη(x, r). Hence

r = dist(ρ(x, t), P (x, r)) ≤ |ρ(x, t) − (z, ax,r(z))| ≤ |ρ(x, t) − ξ| + |ξ − (z, ax,r(z))|
= dist(ρ(x, t), Γ) + |ϕ(z) − a (z)| ≤ dist(ρ(x, t), Γ) + rβ (x, r),
x,r η
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in particular because P (x, r) is the graph of ax,r. This completes our proof of (6.58), 
which itself implies that ∣∣∣∣ |t|n−d−1

dist(ρ(x, t), Γ)n−d−1 − 1
∣∣∣∣ ≤ 2βη(x, r) (6.59)

by (6.51), since C0 is small. Since βη ∈ CM by (6.52), this proves the crucial Carleson 
property (1.48) for D = DE .

At this point, we can follow the same route as above, i.e., use Lemma 6.17 to compute 
the matrix of L0, then Lemma 4.4 to put this matrix in the appropriate form, and finally 
observe that the assumptions of Theorems 1.32 and 1.27 are satisfied. This completes 
our proof of Corollary 6.44 modulo Theorems 1.32 and 1.27. �
7. Square function estimates

In this section we prove Theorem 1.32. Since we want the two last sections to be 
independent of the previous ones, we recall (or slightly modify) some of the notation.

Throughout this section, Ω0 = Rn \ Γ0 with Γ0 = Rd ⊂ Rn (with a small abuse 
of notation). We write X = (x, t) ∈ Rd × Rn−d for points in Ω0 = Rn, and similarly 
Y = (y, s).

For x ∈ Rd, let

γ(x) := {Y = (y, s) ∈ Ω0 : |y − x| < a|s|}

be the non-tangential cone of aperture a > 0 (it actually looks like a rotated cone, but 
we will keep referring to it simply as a cone throughout the discussion). Unless otherwise 
stated, the estimates hold for all a > 0 (fixed throughout a given theorem) and constants 
can depend on a. Also define the truncated cone γh(x), h > 0, by

γh(x) := {Y = (y, s) ∈ Ω0 : |y − x| < a|s|, 0 < |s| < h}. (7.1)

We often write γQ in place of γl(Q) when h = l(Q), the side-length of some cube Q (see 
(1.29)).

Going further, we denote the balls in Rn by Br(X) = B(X, r) = {Y ∈ Rn : |X −Y | <
r}, X ∈ Rn, r > 0, and denote the boundary balls by Δr(x) := {y ∈ Rd : |x − y| < r}, 
x ∈ Rd, r > 0. Sometimes we write B(x, t; r) in place of B(X, r) for X = (x, t). The tent 
region (which in our case looks like a punctured ball) is defined by

T (Δr(x)) := B(x, 0; r) ∩ Ω0.

Recall the definition of the Carleson measure condition given in Definition 1.21.

Definition 7.2. We say that a function u defined on Ω0 satisfies the Carleson measure 
condition (in short, u ∈ CM) if
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|u(y, s)|2 dy ds

|s|n−d

is a Carleson measure, that is, if

sup
balls Δ⊂Rd

1
|Δ|

¨

T (Δ)

|u(y, s)|2 dyds

|s|n−d
< +∞.

A matrix-valued function A satisfies the unweighted elliptic and bounded conditions 
if there exists C1 > 0 such that

|A(X)ξ · ζ| ≤ C1|ξ||ζ| for X ∈ Ω0 and ξ, ζ ∈ Rn, (7.3)

and

|A(X)ξ · ξ| ≥ C−1
1 |ξ|2 for X ∈ Ω0 and ξ ∈ Rn. (7.4)

Notice that if A satisfies (7.3)–(7.4), then the matrix A = |t|d+1−nA satisfies (1.1)–(1.2)
for the boundary Γ0 and the domain Ω0. We are interested in the operator

L0 = div |t|d+1−nA∇ = divA∇, (7.5)

where A satisfies the unweighted elliptic and bounded conditions (and some more).
We shall state the main result of this section in terms of weak solutions of L0u = 0, 

which we define now. Denote by W 1,2
loc (Ω0) the set of functions u ∈ L2

loc(Ω0) whose 
derivative (in the sense of distribution on Ω0) also lies in L2

loc(Ω0). A function u ∈
W 1,2

loc (Ω0) is called a weak solution of L0u = 0 if for ϕ ∈ C∞
0 (Ω0),

¨

(x,t)∈Ω0

A∇u · ∇ϕ
dxdt

|t|n−d−1 = 0. (7.6)

The heroes of this section are the following four functions, defined on Rd (but maybe 
infinite) for u ∈ W 1,2

loc (Ω0), namely the non-tangential maximal function Nu and its 
truncated version NQu, given by

Nu(x) = sup
Y ∈γ(x)

|u(Y )| and NQu(x) = sup
Y ∈γQ(x)

|u(Y )| (7.7)

for x ∈ Rd, the square function Su, defined by

Su(x) =

⎛⎜⎝¨ |∇u(Y )|2 dY

|Y − (x, 0)|n−2

⎞⎟⎠
1/2

, (7.8)

γ(x)
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and its truncated version defined by

SQu(x) =

⎛⎜⎝ ¨
γQ(x)

|∇u(Y )|2 dY

|Y − (x, 0)|n−2

⎞⎟⎠
1/2

. (7.9)

Theorem 7.10 below is just a restatement of Theorem 1.32.

Theorem 7.10. Let A be an elliptic matrix satisfying (7.3)–(7.4). Assume that A has the 
following structure:

A =
(

A1 A2

C3 bI(n−d) + C4

)
, (7.11)

where A1 and A2 can be any matrix valued measurable functions (in respectively Md×d

and Md×(n−d)), I(n−d) ∈ M(n−d)×(n−d) denotes the identity matrix, and

• |t|∇b satisfies the Carleson measure condition with a constant M ,
• λ−1 ≤ b ≤ λ for some constant λ > 0,
• both C3 and C4 satisfies the Carleson measure condition with a constant M .

Consider the elliptic operator L0 = div |t|d+1−nA∇. Then there exists k0 > 0, depending 
on the aperture a of the involved cones only and C > 0, depending on the ellipticity 
parameters of A, λ, the dimensions, a, and M only, such that for every weak solution u
of L0 and every cube Q ⊂ Rd, we have

‖SQu‖2
L2(Q) ≤ C‖N2Qu‖2

L2(k0Q), (7.12)

where k0Q, k0 > 0, stands for the cube with the same center as Q and sidelength k0l(Q).

Proof. For simplicity we will take a = 1 throughout the argument (a being the aperture 
of the access cones); the modifications for a general a are straightforward.

Let Φ ∈ C∞
0 (R) be such that 0 ≤ Φ ≤ 1, Φ = 1 on B(0, 1), and Φ is supported in 

B(0, 2). Let u be as in the statement, let a cube Q ⊂ Rd be given, denote by δ(x) the 
usual Euclidean distance from x ∈ Rd to Q, and define

Ψ(x, t) := Φ
(

δ(x)
|t|

)
Φ
(

|t|
l(Q)

)
Φ
(

2ε

|t|

)
for (x, t) ∈ Rn,

where ε � l(Q) will eventually tend to 0. Define

E1 := {(x, t) ∈ Ω0 : x ∈ 10 Q, |t| ≤ δ(x) ≤ 2|t|},

E2 := {(x, t) ∈ Ω0 : x ∈ 10 Q, l(Q) ≤ |t| ≤ 2l(Q)},
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E3 := {(x, t) ∈ Ω0 : x ∈ (1 + 8ε)Q, |t| ≤ 2ε ≤ 2|t|},

and observe that

|∇Ψ(x, t)| � 1
|t| 1E1(x, t) + 1

l(Q) 1E2(x, t) + 1
ε
1E3(x, t)

� 1
|t| (1E1(x, t) + 1E2(x, t) + 1E3(x, t)) (7.13)

for (x, t) ∈ Ω0. Set

J = J(ε) :=
¨

Ω0

1
|t|n−d−2 |∇u|2Ψ2 dxdt. (7.14)

This integral is finite, because ∇u ∈ L2
loc(Ω0) and we integrate over a subset of {x ∈

2Q, ε < |t| < 2l(Q)}, which is compact in Ω0. In addition, we claim that

‖SQu‖2
L2(Q) ≤ lim inf

ε→0
J(ε). (7.15)

Indeed, the definition (7.9) yields

‖SQu‖2
L2(Q) =

ˆ

x∈Q

¨

γQ(x)

|∇u(Y )|2 dY

|Y − (x, 0)|n−2 dx.

Let Y ∈ γQ(x) for some x ∈ Q. Write Y = (y, s); then

Y ∈ H :=
{

(y, s) ∈ Ω0 ; δ(y) ≤ |s| ≤ l(Q)
}

.

Then by Fubini,

‖SQu‖2
L2(Q) ≤

¨

(y,s)∈H

|∇u(y, s)|2
{ ˆ

x∈Δ(y,|s|)

dx

|(y, s) − (x, 0)|n−2

}
dyds

≤ C

¨

(y,s)∈H

|∇u(y, s)|2 dy ds

|s|n−d−2 .

Then observe that with our definitions, Φ 
(

δ(y)
|s|

)
Φ 
(

|s|
l(Q)

)
= 1 when (y, s) ∈ H, which 

means that Ψ(y, s) = 1 for ε small enough (depending on (y, s)); (7.15) follows.
We shall prove that for every ε > 0,

J ≤ C(AJ)1/2 + A, (7.16)

where
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A = ‖N2Q(u)‖2
L2(10Q). (7.17)

This implies, since J < +∞, that J ≤ CA, i.e.,

J(ε) ≤ C‖N2Q(u)‖2
L2(10Q).

Then (7.12) will follow from (7.15), by taking the limit when ε → 0. So it is enough to 
check (7.16).

To this end, since A is uniformly elliptic and b is bounded from above, we write

J �
¨ A∇u · ∇u

|t|n−d−1 Ψ2 |t| 1
b

dxdt

=
¨ A

|t|n−d−1 ∇u · ∇
(

uΨ2 |t| 1
b

)
dxdt +

¨ A
|t|n−d−1 ∇u · ∇b

b2 uΨ2 |t| dxdt

−
¨ A

|t|n−d−1 ∇u · ∇(|t|) uΨ2 1
b

dxdt − 2
¨ A

|t|n−d−1 ∇u · ∇Ψ uΨ |t| 1
b

dxdt

=: I0 + I1 + I2 + I3, (7.18)

where we just computed the four pieces of ∇ 
(
uΨ2 |t| 1

b

)
to get the main equality. The 

first integral I0 is zero, because u is a weak solution and Ψ is smooth and compactly 
supported in Ω0 (so that uΨ2 |t| 1b is a valid test function in (7.6) under our assumptions 
on u, Ψ, b; see [20, Lemma 8.16]).

Now, due to the boundedness of A, the fact that b ≥ λ−1 > 0, and the Cauchy–Schwarz 
inequality, we have

|I1| �
¨

|∇u| |∇b|uΨ2 |t|2 dx dt

|t|n−d
≤

(¨
|t|2|∇b|2u2Ψ2 dx dt

|t|n−d

) 1
2

J
1
2 .

The following estimate will be used a few times in the rest of the argument. Thanks 
to our first assumption on |t|∇b, dμ =

∣∣ |t|∇b
∣∣2 dx dt

|t|n−d is a Carleson measure on Ω0 (see 
Definition 7.2), and the Carleson inequality (see for instance [52]; the proof is only written 
in codimension 1 but it goes through) says that

¨
|t|2|∇b|2u2Ψ2 dx dt

|t|n−d
=
¨

u2Ψ2 dμ ≤ C‖μ‖CM ‖N(uΨ)‖2
L2(Rn),

where ‖μ‖CM = supballs Δ⊂Rd
1

|Δ|
˜

T (Δ)(|s| |∇b(y, s)|)2 dyds
|s|n−d is the Carleson norm of μ. 

Hence

|I1| � ‖N(uΨ)‖L2(Rd)J
1/2 ≤ ‖N2Q(u)‖L2(10 Q)J

1/2. (7.19)

The integral I3 contains ∇Ψ, which we estimate with (7.13), the boundedness of A
and b−1, and Cauchy–Schwarz inequality. This yields
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|I3| =
¨ A

|t|n−d−1 ∇u · ∇Ψ uΨ |t| 1
b

dxdt �
¨

E1∪E2∪E3

|∇u||u||Ψ| dx dt

|t|n−d−1

� J1/2

⎛⎝ ¨

E1∪E2∪E3

u2 dx dt

|t|n−d

⎞⎠1/2

. (7.20)

We will start with E2:
¨

E2

u2 dx dt

|t|n−d
≤ 1

|l(Q)|n−d

¨

E2

(
N2Qu(x)

)2
dxdt = C

ˆ

10 Q

(
N2Qu

)2
dx. (7.21)

Similarly,
¨

E3

u2 dx dt

|t|n−d
≤ 1

εn−d

¨

E3

(
N2Qu(x)

)2
dxdt = C

ˆ

10 Q

(
N2Qu

)2
dx. (7.22)

Finally,
¨

E1

u2 dx dt

|t|n−d
≤

¨

x∈10 Q, δ(x)/2≤|t|≤δ(x)

(
N2Qu(x)

)2 dx dt

|t|n−d

≤
ˆ

10 Q

(
N2Qu

)2

⎛⎜⎝ ˆ

δ(x)/2≤|t|≤δ(x)

dt

|t|n−d

⎞⎟⎠ dx ≤ C

ˆ

10 Q

(
N2Qu

)2
dx. (7.23)

At this point we are left with the most delicate term, I2. If the coordinates of t ∈ Rn−d

are (td+1, . . . , tn),

I2 = −
¨ A

|t|n−d−1 ∇u · ∇(|t|) uΨ2 1
b

dxdt

= −
¨ n∑

i=d+1

n∑
j=1

Aij

|t|n−d−1 ∂ju uΨ2 ti

|t|
1
b

dxdt. (7.24)

At this point use the special form of A. Notice that the upper part of A does not 
contribute to the sum, and denote by I21 the part that comes from bIn−d, and by I22
the remaining part, that comes from C3 and C4; thus

I21 = −
¨ n∑

i=d+1

1
|t|n−d−1 ∂iu uΨ2 ti

|t| dxdt,

where the two terms with b conveniently cancel, and
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I22 = −
¨ n∑

i=d+1

n∑
j=1

Cij

|t|n−d−1 ∂ju uΨ2 ti

|t|
1
b

dxdt,

where the Cij are the coefficients of C :=
(

0 0
C3 C4

)
and satisfy the Carleson condition.

The term I22 is estimated exactly like I1, only using the Carleson condition on the 
Cij , in place of the Carleson condition for |t|∇b. We are left with I21, which we write as

I21 = −1
2

¨ n∑
i=d+1

1
|t|n−d−1 ∂i(u2Ψ2) ti

|t| dxdt

+ 1
2

¨ n∑
i=d+1

1
|t|n−d−1 u2∂i(Ψ2) ti

|t| dxdt =: I211 + I212. (7.25)

For the first term, observe that 
∑n

i=d+1 ∂i(u2Ψ2) ti

|t| = ∂r(u2Ψ2) (the derivative in the 
radial direction). We switch to polar coordinates, abusing the notation slightly by writing 
u and Ψ to mean a composition of the corresponding functions with the mapping of the 
change of the coordinates, use Fubini and our assumptions on u and Ψ, integrate by 
parts in polar coordinates, and get that

I211 = C

ˆ

Rd

ˆ

Sn−d−1

∞̂

ε

∂r(u2Ψ2) drdωdx = 0. (7.26)

For the remaining integral I212, observe that by (7.13), and then (7.21)–(7.23),

|I212| ≤ C

¨ 1
|t|n−d−1 u2Ψ|∇Ψ| dxdt ≤

¨

E1∪E2∪E3

1
|t|n−d

u2 dxdt

≤ C

ˆ

10 Q

(
N2Qu

)2
dx = CA (7.27)

The main estimate (7.16), and then Theorem 7.10, follow. �
Remark 7.28. As pointed out after the statement of Theorem 1.32, the S vs. N estimate 
(1.37) has a version for characteristic functions of Borel sets, which says that if H is a 
Borel subset of Γ0 = Rd, uH is the weak solution defined by (1.26), and Q ⊂ Rd is any 
cube, we have

‖SQuH‖2
L2(Q) ≤ C|Q|, (7.29)

which is enough for Section 8, and follows at once from Theorem 1.32, again because 
|uH | ≤ 1.
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Here we prove, as promised in the Introduction, that the Carleson measure estimate 
(1.28) follows from (7.29). Let x ∈ Γ0 and r > 0 be given, and let Q denote the cube 
centered on x and with sidelength l(Q) = 2r. Set

I = ‖SQuH‖2
L2(Q) =

ˆ

z∈Q

SQuH(z)2dz

=
ˆ

z∈Q

ˆ

(y,s)∈γQ(z)

|∇uH(y, s)|2 dyds

|(y, s) − (z, 0)|n−2 dz, (7.30)

and observe that by (1.29), |(y, s) − (z, 0)| ≤ (1 + a)|s| when (y, s) ∈ γQ(z). Thus by 
Fubini

I ≥ (1 + a)2−n

ˆ

z∈Q

ˆ

(y,s)∈γQ(z)

|∇uH(y, s)|2|s|2−ndydsdz

= (1 + a)2−n

ˆ

y∈Rd

l(Q)ˆ

s=0

|∇uH(y, s)|2θ(y, s)|s|2−ndyds, (7.31)

where (by (1.29) again)

θ(y, s) =
∣∣{z ∈ Q : (y, s) ∈ γQ(z)

}∣∣ =
∣∣Q ∩ B(y, as)

∣∣. (7.32)

Notice that θ(y, s) ≥ C−1(as)d for y ∈ Q, so

I ≥ C−1(1 + a)2−nad

ˆ

y∈Q

l(Q)ˆ

s=0

|∇uH(y, s)|2|s|d+2−ndyds. (7.33)

For (1.28) we need to estimate

ˆ

(y,s)∈Ω0∩B(x,r)

(
|s|∇uH(y, s)

)2 dyds

|s|n−d
≤
ˆ

y∈Q

l(Q)ˆ

s=0

|∇uH(y, s)|2 dyds

|s|n−d+2 ≤ CaI (7.34)

by (7.33). But I ≤ C|Q| ≤ Crd by (7.29), so (1.28) really follows from (7.29).

8. From Carleson measure estimates for solutions to A∞ property of harmonic 
measure

Throughout this section, like the previous one, Γ0 = Rd and Ω0 = Rn\Γ0. We consider 
an operator L0 = − div |t|d+1−nA∇, where A is a matrix-valued function defined on Ω0
satisfying the ellipticity and boundedness conditions (7.3)–(7.4).
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For X ∈ Ω0, ωX = ωX
Ω0,L0

is the harmonic measure defined near (1.10). The existence 
of the harmonic measure, the fact that the harmonic measure is a probability measure, 
and the fact that the function uH defined as uH(X) = ωX(H), with H ⊂ Rd a Borel 
set, is a weak solution to L0uH = 0 can be found in [20, Section 9]; see Lemmata 9.23 
and 9.30 in particular. We need the Harnack inequality and Hölder continuity of uH at 
the boundary (see [20, Section 8], Lemmas 8.42 and 8.106).

Lemma 8.1 (Harnack). Let H ⊂ Rd be a Borel set. Let the function uH defined as above 
by uH(X) = ωX(H), X ∈ Ω0. Let B be a ball such that 2B ⊂ Ω0, then

sup
B

uH ≤ C inf
B

uH , (8.2)

where C > 0 depends only on the dimensions d, n and the ellipticity constants.

Lemma 8.3 (Hölder at the boundary). Let H ⊂ Rd be a Borel set. If the ball Δ :=
Δr(x) ⊂ Rd doesn’t intersect H, then for any s < r

sup
B(x,0;s)

uH ≤ C
(s

r

)α

,

where C, α are two positive constants that depend only on the dimensions d and n and 
the ellipticity constants of L0.

Given some Δ = Δr(x), x ∈ Rd, r > 0, as above, a point AΔr(x) = (x, t) in Ω0
such that |t| = r is referred to as a corkscrew point of Δr(x). Here we use the special 
shape of Γ0 to get a corkscrew constant 1 (i.e. we can choose τ = 1 in (1.8)), but this 
does not matter; AΔr(x) is clearly not uniquely defined for n − d > 1 and whenever we 
write AΔr(x) we mean that any such point is suitable. The following three properties of 
the harmonic measure, whose proof can be found in [20, Section 11], will also be used 
repeatedly throughout the section.

Lemma 8.4 (Nondegeneracy). For any x ∈ Rd and r > 0,

ωAΔr(x)(Δr(x)) ≥ C,

where C > 0 depends on n, d, and the ellipticity constants of L0 only.

Lemma 8.5 (Doubling). For any x ∈ Rd, r > 0, and Y ∈ Ω0 \ B4r(x, 0),

ωY (Δ2r(x)) ≤ C ωY (Δr(x)),

where C > 0 depends on n, d, and the ellipticity constants only. In particular, if Δ ⊂ Rd

is a ball satisfying 2Δ ⊂ Δr(x), then
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ωAΔr(x)(2Δ) ≤ C ωAΔr(x)(Δ).

Lemma 8.6 (Change of Pole). For any x ∈ Rd, r > 0, any Y ∈ Ω0 \ B2r(x, 0), and any 
Borel set E ⊂ Δ := Δr(x),

ωY (E)
ωY (Δ) ≈ ωAΔ(E),

where the implicit constants depend on n, d, and the ellipticity constants only.

We recall what we mean by absolute continuity (or A∞ property) in our context.

Definition 8.7. We say that the harmonic measure is A∞ (with respect to the Lebesgue 
measure) on Rd if for every ε > 0, there exists δ > 0 such that for every ball Δ ⊂ Rd, 
every ball Δ′ ⊂ Δ and every Borel set E ⊂ Δ′,

if ωAΔ(E)
ωAΔ(Δ′) < δ then |E|

|Δ′| < ε. (8.8)

Here is the main result of this section.

Theorem 8.9. Let L0 = − div |t|d+1−nA∇, where the real matrix-valued function A sat-
isfies the ellipticity and boundedness conditions (7.3)–(7.4). Assume that we can find 
K ≥ 0 such that for any Borel set H ⊂ Rd, the solution u defined by u(X) = ωX(H), 
X ∈ Ω0, satisfies a Carleson measure estimate

sup
balls Δ⊂Rd

1
|Δ|

¨

T (Δ)

(|t||∇u|)2 dydt

|t|n−d
≤ K. (8.10)

Then the harmonic measure is A∞ with respect to the Lebesgue measure on Rd in the 
sense of Definition 8.7.

With our usual convention, (8.10) means that |t| |∇u| satisfies the Carleson measure 
condition, with constant at most K. Before we prove the theorem, we combine Theo-
rem 8.9 with Theorem 7.10.

Corollary 8.11. Let A be an elliptic matrix satisfying (7.3), (7.4) in Ω0 = Rn \ Γ0 with 
Γ0 = Rd. Assume that A has the following structure:

A =
(

A1 A2

C3 bI(n−d) + C4

)
, (8.12)

where A1 and A2 can be any matrix valued measurable functions (in respectively Md×d

and Md×(n−d)), I(n−d) ∈ M(n−d)×(n−d) denotes the identity matrix, and
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• |t|∇b satisfies the Carleson measure condition with a constant M ,
• λ−1 ≤ b ≤ λ for some constant λ > 0,
• both C3 and C4 satisfies the Carleson measure condition with a constant M .

Then the harmonic measure associated with L0 = − div |t|d+1−nA∇ is A∞ with respect 
to the Lebesgue measure on Rd in the sense of Definition 8.7, with the implicit constants 
depending on n, d, ellipticity constants of A, M , and λ.

Proof. We have already given the proof in the Introduction. The Corollary follows from 
Theorems 8.9 and 7.10 combined with Remark 7.28 – see the discussion following The-
orem 1.32. �
Proof of Theorem 8.9. Now we pass to the proof of Theorem 8.9. Much of the argument 
follows the lines of [42], and even more so [21], but we will aim for a self-contained 
exposition.

Step I: ε0-good cover and construction of functions with large oscillations on small sets.
Let R > 0 and x ∈ Rd be given, and consider the ball Δ = ΔR(x). Just as in [21], 
we start by observing that ωAΔ is positive and doubling near Δ, by Lemma 8.5 and 
Lemma 8.1. Here the geometry is fairly simple, and it is not hard to check that

ωAΔ(Δ(y, t)) ≤ CωAΔ(Δ(y, t) ∩ Δ) for y ∈ Δ and 0 < t < R. (8.13)

From this it is also easy to deduce that Δ, with the Euclidean distance and the (restriction 
to Δ of the) measure ω = ωAΔ , is a space of homogeneous type.

This is pleasant, because we can use [10] directly, to construct a dyadic system of 
pseudo-cubes on Δ associated to ω and satisfying the following properties. Otherwise, 
we could always have followed the construction near Δ, and replaced Δ with a finite 
union of initial cubes to start the argument.

There exist constants 0 < c < 1 and M > 1, that depend only the doubling constant 
of ω, and then a collection D = ∪k≥k0Dk of Borel subsets of Δ, with the following 
properties. For each integer k ≥ k0, we write

Dk := {Qk
j ⊂ Δ : j ∈ Ik},

where Ik denotes some index set depending on k, but some times we will forget about 
the indices and just write Q ∈ Dk for any of the Qk

j , and refer to Q as a pseudo-cube of 
generation k. These pseudo-cubes have properties that are very similar to the properties 
of the usual dyadic cubes of Rd, as follows:

(i) Δ = ∪jQk
j for any k ≥ k0.

(ii) If m > k then either Qm
i ⊆ Qk

j or Qm
i ∩ Qk

j = ∅.
(iii) Qm

i ∩ Qm
j = ∅ if i �= j.
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(iv) Each pseudo-cube Q ∈ Dk has a “center” xQ ∈ Δ such that

Δ(xQ, 2−k) ⊂ Q ⊂ Δ(xQ, M2−k). (8.14)

(v) If Qm
i � Qk

j , then ω(Qm
i ) < c ω(Qk

j ).
(vi) ω(∂Qm

i ) = 0 for all i, m.
(vii) Dk0 is composed of a single pseudo-cube, which we often call Q0, but is equal to 

Δ.

Let us make a few comments about these cubes. We decided to use a dyadic scaling 
(by opposition to a scaling where the ratio of the sizes between a pseudo-cube and its 
parent is, in average, ε < 1

2) because it is convenient. The price to pay for forcing a 
dyadic scaling is that if Q ∈ Dk+� and R is the cube of Dk that contains Q (it is unique 
by (ii), and it is called an ancestor of Q) is not necessarily strictly larger (as a set) 
than Q.

We also decided to use Borel sets so that the pseudo-cubes of a same generation are 
disjoint; another option would have been to take closed pseudo-cubes that are almost 
disjoint (by (vi)).

The condition (vi) is a slightly weaker version of a condition that says that small 
neighborhoods of ∂Qm

i have a small ω-measure. This is the same “small boundary con-
dition” that gives the existence of a center xQ.

Condition (v) is usually not stated, but it follows from the doubling condition, and 
the fact that since Qm

i � Qk
j it has a sibling (another pseudo-cube of generation m, 

which is contained in the parent of Qm
i ) which is therefore contained in Qk

j \ Qm
i , and 

has a comparable ω-measure by (8.14).
Because of (8.14), we know that 2−k0 ≈ R.
In the setting of a general space of homogeneous type, this decomposition was obtained 

by Christ [10], with the dyadic parameter 1/2 replaced by some constant δ ∈ (0, 1)
(which allows him to take different cubes at each generation). In fact, one may always 
take δ = 1/2 (cf. [34, Proof of Proposition 2.12]). In the presence of the Ahlfors regularity 
property, the result already appears in [17,18]. Some predecessors of this construction 
have appeared in [14] and [15].

We can use the pseudo-cubes to do a Whitney decomposition of any open set O ⊂ Δ; 
we get that

O =
⋃
i,m

Qm
i , (8.15)

where the Qm
i are pairwise disjoint and for each Qm

i in this decomposition, dist{Qm
i , Δ \

O} ≈ diam Qm
i ≈ 2−m. Simply take the largest (i.e., of the earliest generations) pseudo-

cubes Qm
i such that dist(Qm

i , Δ \Qm
i ) ≥ C2−m (for some large constant C), and proceed 

as usual.
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We denote by k(Q) the generation of the pseudo-cube Q (i.e., the integer k such that 
Q ∈ Dk), and set �(Q) = 2−k(Q); thus �(Q) ≈ diam(Q) by (8.14). By analogy, we call 
�(Q) the length of Q.

Definition 8.16. Fix any small ε0 > 0 and any Borel set E ⊂ Δr ⊆ Δ. We say that a 
collection of nested open sets {Oi}k

i=1 is a good ε0-cover for E of length k ∈ N if

E ⊆ Ok ⊆ Ok−1 ⊆ ... ⊆ O0 = Δr,

and for every l = 1, ..., k

Ol =
⋃

i∈I(l)

Sl
i (8.17)

where the Sl
i, i ∈ I(l), are disjoint elements of D and for all 1 ≤ l ≤ k and i ∈ I(l − 1),

ω(Ol ∩ Sl−1
i ) ≤ ε0 ω(Sl−1

i ). (8.18)

Observe that we changed the notation for our pseudo-cubes from Q to S in order to 
not confuse the numerology: Qm

i is always an element of Dm, that is, a pseudo-cube of 
generation m, and in particular has length 2−m, while Sl

i is an element of a decomposition 
of an open set Ol into pseudo-cubes.

Notice also that if j ∈ I(l) and i ∈ I(l − 1) are such that Sl
j ∩ Sl−1

i �= ∅, then the
property (ii) above gives that Sl

j ⊂ Sl−1
i ; as a consequence, (8.18) forces Sl

j to be a 
pseudo-cube of higher generation than Sl−1

i . In particular, by (8.14)

�(Sm
j ) ≤ 2l−m�(Sl

i) (8.19)

if m > l and Sm
j ∩ Sl

i �= ∅.
When k is large, we expect ω(E) to be quite small. The next proposition, which we 

take from [42,21], says that some converse is true too.

Proposition 8.20. [42,21] For every ε0 > 0 sufficiently small there exists δ0 > 0 such that 
if E ⊂ Δr ⊆ Δ and

ω(E)
ω(Δr) ≤ δ (8.21)

for some δ ≤ δ0, then E has a good ε0 cover of length k ≥ C−1 log δ
log ε0

.

Here and below, unless specified otherwise, “for any ε0 sufficiently small” is to be 
interpreted in the sense that there exists a numerical constant (that may also depend 
on the doubling constant for ω) such that for all ε0 smaller than this constant a certain 
property holds. The same applies to certain parameters being “sufficiently large”.
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Recall that the goal is to prove (8.8). To this end, we fix some ε > 0 and take 
E ⊂ Δ′ = Δr ⊂ Δ satisfying (8.21), with δ to be defined later. Consider a good ε0-cover 
of E (ε0 to be determined below as well) relative to Δr and the doubling measure 
ω = ωAΔ , as in Definition 8.16. For each Sl

i in the dyadic decomposition (8.17) of Ol, we 
denote by Δl

i = Δ(xl
i, r

l
i) the Euclidean ball on Rd guaranteed by (8.14), i.e., such that 

Δl
i ⊂ Sl

i ⊂ MΔl
i. Thus rl

i = �(Sl
i). Then select in Δl

i two roughly equal parts

Δ̂l
i := Δ(xl

i, rl
i/2) and Δ̃l = Δ(yl

i, rl
i/10), (8.22)

for some yl
i ∈ Δl that we chose so that Δ(yl

i, r
l
i/5) ⊂ Δl

i \ Δ̂l
i. Following a similar 

construction in [21], set Ôl :=
⋃

i Δ̂l
i ⊂ Ol for 0 ≤ l ≤ k, then, for 0 ≤ l ≤ k, l even, take

fl(y) = 1Ôl
and fl+1 = −fl 1Ol+1 = −1Ôl∩Ol+1

. (8.23)

Thus fl + fl+1 = 1Ôl\Ol+1
≤ 1Ol\Ol+1 . Finally we set

f =
k∑

l=0

fl. (8.24)

One can observe that f is a characteristic function of a Borel set, because the Ôl \ Ol+1
are disjoint, and also disjoint from Ôk if k is even. Let u be the weak solution of the 
Dirichlet problem associated to f , as in (1.10) (but for Ω0 and L0), i.e., set u(X) =´

Γ0
f(x)dωX

Ω0,L0
(x). The point of the upcoming discussion is to show that u exhibits large 

oscillations in Whitney cubes (cubes in Ω0 of side-length roughly comparable to their 
distance to Γ0) which yields a large square function on E, and hence, an estimate from 
below on the quantity under the supremum in (8.10) by a large multiples of |E|/|Δr|. 
Then, invoking (8.10), we will arrive at (8.8).

Step II: the solution with data f exhibits large oscillations on Whitney cubes. Take any 
x ∈ E and for 0 ≤ l ≤ k, pick i ∈ I(l) such that x ∈ Sl

i. Then simply set Sl = Sl
i. Write 

Δl = Δ(xl, rl) for the Euclidean ball given by (8.14). Denote by Âl a corkscrew point 
of Δ̂l, which we take such that Âl = (xl, tl) with |tl| = rl/2. We have ωÂl(Δ̂l) � 1 by 
Lemma 8.4. To fix the notation, we specify that there exists η1 ∈ (0, 1) depending on n, 
d, and the ellipticity constants only, such that

ωÂl

(Δ̂l) ≥ η1 (8.25)

Also,

u(Âl) :=
ˆ

Δ

f dωÂl ≥
ˆ

Δ

(fl + fl+1) dωÂl ≥
ˆ

Δl

(fl + fl+1) dωÂl

= ωÂl

(Δ̂l) − ωÂl

(Δ̂l ∩ Ol+1), (8.26)
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where each integral is to be interpreted simply as a harmonic measure of the corre-
sponding Borel set (as all integrands are characteristic functions of Borel sets), and both 
inequalities are due to the fact that the left-hand side is a harmonic measure of a bigger 
set than the right-hand side. Now, by Lemma 8.6 and then Lemma 8.5

ωÂl

(Δ̂l ∩ Ol+1) � ωAΔ(Δ̂l ∩ Ol+1)
ωAΔ(Δ̂l)

� ωAΔ(Sl ∩ Ol+1)
ωAΔ(MΔl) ≤ ωAΔ(Sl ∩ Ol+1)

ωAΔ(Sl) ≤ ε0, (8.27)

where in the last inequality we used (8.18). Hence, ωÂl(Δ̂l ∩Ol+1) < Cε0 for some C > 0
depending on n, d, and ellipticity constants only. Combining this with (8.26) and (8.25), 
we conclude that for

ε0 < η1/(2C), (8.28)

we have u(Âl) ≥ η1/2. Moreover, by the interior Hölder continuity of solutions 
(Lemma 8.40 in [20]), there exists C1 > 0, depending on n, d, and ellipticity constants 
only, such that

u(x, t) ≥ η1/4 for (x, t) ∈ B(Âl, C−1
1 rl). (8.29)

This shows that u is large in a part of the Whitney box associated with Sl.
Let us now show that there is another part of a (somewhat fattened) Whitney box 

on which u is small. Recall the definition of Δ̃l = Δ̃l
i = B(yl

i, r
l
i/10) in (8.22), set g =

χ
Rd\[Δl\Δ̂l], and denote by v the solution with data g, i.e., set g(X) =

´
g(x)dωX(x) =

ωX(Rd \ [Δl \ Δ̂l]) for X ∈ Ω0. We claim that

g + 1Ol+1∩Δl ≥ f. (8.30)

If x ∈ Rd \ [Δl \ Δ̂l], then g(x) ≥ 1 ≥ f(x). So we may assume that x ∈ Δl \ Δ̂l, and also 
in Δl \ Ol+1, because otherwise 1Ol+1∩Δl(x) ≥ 1 ≥ f(x). But then x does not lie on Ôl

(because Ôl ∩ Δl = Δ̂l (since the Sl
i are disjoint), so fl(x) ≤ 0; we also have fm(x) ≤ 0

for m > l because Ôm ⊂ Ol+1, and the previous fm do not contribute either because 
they are supported away from Ol. The claim follows.

As before, the inequality in (8.30) implies the corresponding inequality for the Dirich-
let solutions, because each ωX is a probability measure.

Since the boundary data of v is zero on 2Δ̃l, Lemma 8.3 yields

v(y, s) ≤ Cρα for y ∈ Δ̃l and |s| ≤ ρ rl, (8.31)

where C and α depend only on the ellipticity constants and dimension, and the small 
ρ < 1 will be chosen soon.
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It remains to control the solution with data 1Ol+1∩Δl . However, by the same argument 
as for (8.27), ωAΔ̃l (Ol+1 ∩ Δl) ≤ C ε0, and hence, for any (y, s) such that y ∈ Δ̃l and 
|s| = ρ rl,

ω(y,s)(Ol+1 ∩ Δl) ≤ Cρ ε0,

by Lemma 8.1. Here Cρ depends on the length of the Harnack chain from AΔ̃l to (y, s), 
which, in turn, depends on ρ. Combining (8.31) with the inequality above and applying 
the Harnack inequality again, we deduce that there is C2 > 0, that depends on ρ, the 
ellipticity constants, and the dimension only, such that

u(y, s) ≤ 2(C ρα + Cρε0), whenever |y − yl| <
rl

C2
and

∣∣|s| − ρ rl
∣∣ <

rl

C2
, (8.32)

where yl = yl
i is the center of Δ̃l.

Now we make the following choices. Having fixed η1 > 0 as above, depending on the 
ellipticity constants, n, and d only, we choose ρ so that 2 Cρα < η1/16 and then ε0 so 
that

2Cρε0 < η1/16 (8.33)

and so that (8.28) is satisfied.
We conclude that there exist η1, ρ, C1, C2 and ε0 in (0, 1), all depending on the ellip-

ticity constants, n, and d only, so that (8.29) holds and simultaneously

u(y, s) ≤ η1/8 whenever |y − yl| <
rl

C2
and

∣∣|s| − ρ rl
∣∣ <

rl

C2
. (8.34)

In other words, u oscillates by at least η1/8 within any ball that contains the two sets 
of (8.29) and (8.34).

Step III: large oscillations near the Sl yield a large square function. First of all, we take 
the aperture of cones a in the definition of the square function large enough (depending, 
in particular, on ρ, C1, C2) so that for all x ∈ Sl the sets in (8.34) and (8.29) are contained 
in γr(x) (see the definition (7.1)). The solutions are locally in Sobolev spaces and hence 
are absolutely continuous on lines, and so the integral of ∇u between points of the sets 
of (8.29) and (8.34) is not too small. We average and use the Cauchy–Schwarz inequality 
to get that

(η1/8)2 �
¨

(y,s)∈γr(x):(ρ−C−1
2 )rl≤|s|≤(1/2+C−1

1 )rl

|∇u|2 dyds

|(y, s) − (x, 0)|n−2 (8.35)

for any x ∈ Sl.
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Choose a ‘real’ cube Qr ⊃ Δr with sidelength l(Qr) ≈ r. Let x ∈ E be given. For each 
l, x lies in Ol, hence by (8.17) we can find Sl = Sl

i that contains x. We want to sum the 
inequalities (8.35) over l, and even though the sets Zl(x) =

{
(y, s) ∈ γr(x) ; (ρ −C−1

2 )rl ≤
|s| ≤ (1/2 + C−1

1 )rl
}

where we integrate are not disjoint, thanks to (8.19), their overlap 
is bounded with a bound that depends on C1, C2, ρ, n, and d only. Thus

k (η1/8)2 � SQr (x)2 for every x ∈ E. (8.36)

Recall from Proposition 8.20 that k, the length of the good ε0-cover, is at least 
C−1 log δ

log ε0
, at least if ε0 and δ were chosen small enough. Hence

log δ

log ε0
� SQr (x)2 (8.37)

for x ∈ E and Qr as above, with implicit constants that depend on the ellipticity 
constants and the dimension only.

Step IV: conclusion. Let Qr ⊃ Δr ⊃ E be the cube chosen in Step III. It follows from 
(8.37) that

log δ

log ε0
|E| �

ˆ

E

SQr(x)(x)2 dx �
ˆ

Qr

SQr (x)2 dx ≤ CK|Qr| ≤ C|Δr|, (8.38)

by (8.10). Therefore,

|E|
|Δr| ≤ C

log ε0

log δ
,

for some constant C that depends on the ellipticity constants and the dimension only. 
Recalling that we started from E such that ω(E) ≤ δω(Δr) as in (8.21), and we want to 
prove that |E| < ε|Δr| as in (8.8). Thus it only remains to choose δ, small enough, and 
such that C log ε0

log δ < ε. �
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