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Harmonic measure in higher of coefficients of L which guarantee the mutual absolute
codimension continuity of wyz and the Hausdorff measure.
© 2019 Elsevier Inc. All rights reserved.
RESUME
Dans son célebre théoréme de 1977, B. Dahlberg a prouvé que
pour les domaines de R™ bornés par un graphe lipschitzien
de dimension n — 1, la mesure harmonique est absolument
continue par rapport a la mesure de surface, résultat qui a
ensuite été étendu aux domaines avec acces non-tangentiel, et
au dela.
Dans ce papier on démontre le premier analogue de ce
théoréme pour le complémentaire d’un graphe lipschitzien I'
de dimension d < n—1 avec une petite constante de Lipschitz.
On construit un opérateur linéaire elliptique dégénéré L
dont la mesure harmonique associée wj est absolument
continue par rapport & la mesure de Hausdorff H? sur I
Plus généralement, on donne des conditions suffisantes sur
la matrice des coefficients de L pour que wy, et Hi’lr soient
mutuellement absolument continues.
© 2019 Elsevier Inc. All rights reserved.
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1. Introduction
1.1. History and motivation

Dimension and structure of harmonic measure have attracted a lot of attention in the
past 50 years, with a splash of remarkable new developments on uniformly rectifiable
sets most recently.

Following the first results of Carleson [9], in 1985 the fundamental theorem of Makarov
[46], [47] established that harmonic measure on any continuum on the plane has dimen-
sion exactly 1. More generally, for a domain €2 on the Riemann sphere whose complement
has positive logarithmic capacity, the harmonic measure in €2 is supported in a subset of
0 whose Hausdorff dimension is at most 1, due to the result of Jones and Wolff [38]. In
particular, if d € (1,2), 0 < H4(E) < oo, then w is always singular with respect to H%|g.
In space, when the ambient dimension n is greater than or equal to 3, the situation is
more complicated and less understood: on the one hand, Bourgain [6] proved that the
dimension of harmonic measure always drops: dimy w < n. On the other hand, even for
connected F = 0f), contrary to the planar case, dimy w can be strictly bigger than n—1,
due to a counterexample of Wolff [55] which is nowadays known as the Wolff’s snowflake.

Restricting the attention to integer dimensions, one is now bound to consider d = n—1
and ask on which sets with 0 < H""!(E) < oo the harmonic measure is absolutely
continuous with respect to the surface measure. This is a very delicate issue, where
dimension, regularity and topology all play an intricate role, and only the past few years
and some outstanding developments in harmonic analysis on uniformly rectifiable sets
have brought clarity. In short, the emerging philosophy is that the rectifiability of the
boundary is necessary for the absolute continuity of w with respect to %"~ !, and that
rectifiability, along with suitable connectedness assumptions, is sufficient. Omitting for
now precise definitions, let us recall the main results in this regard. The 1916 theorem
of F.& M. Riesz has established the absolute continuity of the harmonic measure for
a simply connected domain in the complex plane with a rectifiable boundary [50]. The
quantifiable analogue of this result (the A* property of harmonic measure) was obtained
by Lavrent’ev in 1936 [45] and the local version, pertaining to subsets of a rectifiable
boundary, was proved by Bishop and Jones in 1990 [5]. In the latter work the authors
also showed that some connectedness is necessary for the absolute continuity of w with
respect to H!, for there exists a planar set with a rectifiable boundary for which the
harmonic measure is singular with respect to the Lebesgue measure.

In higher dimensions, the first breakthrough was the celebrated theorem of Dahlberg
which established the absolute continuity of w with respect to H"~! on Lipschitz graphs
[13]. It was later extended to non-tangentially accessible, NTA, domains in [16], [51].
Roughly speaking, the non-tangential accessibility is an assumption of quantifiable con-
nectedness, which requires the presence of the interior and exterior corkscrew points, as
well as Harnack chains. Similarly to the lower-dimensional case, counterexamples show
that some topological restrictions are needed for the absolute continuity of w with re-
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spect to H" ™1 [56], [57]. Much more recently, in [32], [33], [2], the authors proved that
under a (weaker) 1-sided NTA assumption, the uniform rectifiability of the boundary is
equivalent to the complete set of NTA conditions and hence, is equivalent to the absolute
continuity of the harmonic measure with respect to the Lebesgue measure. Finally, in
2015 the full converse, “free boundary” result was obtained and established that rectifia-
bility is necessary for the absolute continuity of harmonic measure with respect to H" !
in any dimension n > 2, without any additional topological assumptions [3] (see also [31]
on Ahlfors regular sets). These results and problems have generated a large amount of
activity and have been tightly intertwined with recent achievements in harmonic analysis
on uniformly rectifiable sets, pertaining, in particular, to characterizations of uniform
rectifiability via boundedness of singular integrals and, more specifically, Riesz trans-
forms [49], [48]. While avoiding for now precise definitions, we remind the reader that
rectifiability basically concerns coverings of a set by countable unions of Lipschitz graphs
and Dahlberg’s theorem for harmonic measure on Lipschitz graphs, much as boundedness
of the Cauchy integral on Lipschitz curves [12], underpin the entire theory.

The main goal of the present paper is to establish the first analogue of Dahlberg’s
theorem on sets of co-dimension higher than 1. As announced in [19], we construct a
linear degenerate elliptic operator L such that the corresponding harmonic measure
wy, is absolutely continuous with respect to the Hausdorff measure on a d-dimensional
Lipschitz graph I', d < n—1, with a small Lipschitz constant. More generally, we provide
sufficient conditions on the matrix of coefficients of L which guarantee mutual absolute
continuity of wy, and the Hausdorff measure.

Turning to details, we assume that d is an integer and I' is the graph of a Lipschitz
function ¢ : R? — R" %, with a small Lipschitz constant. We want to find an analogue
of harmonic measure, that will be defined on I" and associated to a divergence form
operator on 2 = R™ \ I'. We write the operator as L = —divV, with 2 : Q — M, (R),
and put forward the ellipticity condition with a different homogeneity, i.e., we require
that for some C7 > 1,

dist(X, )"~ 471A(X)E - ¢ < C1[€[[¢] for X € Q and €,¢ € R™, (1.1)

dist(X, )"~ 471A(X)¢ - € > CTHEP? for X € Q and € € R™. (1.2)

Under merely these assumptions, and even when d < n — 1 is not an integer and I'
is merely Ahlfors-regular of dimension d, we have recently developed a fairly complete
elliptic theory and in particular we can define a harmonic measure that satisfies, among
others, the doubling property and the change of pole property (see [20]). In general, such
a harmonic measure need not be absolutely continuous on I'. Already in codimension 1,
we know that the ellipticity and the boundedness of A are not enough to ensure abso-
lute continuity (see [7]). In higher codimension, we don’t expect that the assumptions
(1.1)—(1.2) are sufficient either, even when 2((X) is a multiple of the identity matrix, but
we do not have a counter-example yet. Due to Dahlberg’s theorem, it is, however, the
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case for the Laplacian when d = n—1. The goal of the present paper is to find one elliptic
operator L = —div2V for which the harmonic measure is absolutely continuous with
respect to the Hausdorff measure when d < n — 1. Tronically, it is not the one associated
to the matrix of coefficients dist(X,T)"~9~'I which perhaps would be a natural first
guess, at least not in higher dimensions.

We assume that A(X) = D(X)~"+4+1] for x € Q, with

o) = { [1x -yl eani)} (1.3

T

for some constant o > 0. It is easy to see that D(X) is equivalent to dist(X,I") (and this
would even stay true when I' is an Ahlfors regular set). When d = 1 we can also take
A(X) = dist(X,T)" "4+, but when d > 2, dist(X,I') does not appear to be smooth
enough to make our proofs work, which is why we use (1.3) instead.

With these assumptions we will prove that the harmonic measure described above is
absolutely continuous with respect to H|drv with a density which is a Muckenhoupt A
weight.

This seems to be the first result of this nature in higher co-dimensional sets. Some
aspects of pre-requisite elliptic theory developed in [20] existed before [26], [27], and some
have even been recently proved for non-linear operators, most notably the p-Laplacian,
on Reifenberg flat sets in [44]. One could conjecture that the p-harmonic measure for a
suitable p is also absolutely continuous with respect to the Hausdorff measure but at the
moment no result to this effect could be achieved.

To better imagine the properties of the operator L. = —divV above and associ-
ated advantages and challenges, one should notice that it is non-local (the solution in
a given ball depends on far away features of the domain, because the distance D and
hence, the operator L does). In fact, there may be connections with other non-local op-
erators, e.g., fractional Laplacian in R"~!, as the famous Caffarelli-Silvestre extension
transforms it into a degenerate operator in R’ [8], though of course, with a different
non-degeneracy and, hence, different features than ours. In this regard, one should also
recall elliptic edge operators which recently enjoyed renewed interest in connection with
the Kéhler—Einstein edge metrics, see, e.g., [36]. However, beyond the general idea of
treating higher co-dimensional features with elliptic degeneracies, it would be premature
to draw connections with the present work.

The proof of our main result has two main steps:

(1) construct a nice bi-Lipschitz change of variables that sends I" to a d-plane Pp;

(2) show that for a large class of degenerate elliptic operators on R™ \ Py, including the
one arising from the aforementioned change of variables, the square function/non-
tangential maximal function estimates hold for bounded solutions and further imply
the absolute continuity of the associated harmonic measure with respect to the sur-
face measure on Fj.
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This is not a surprising strategy, and our approach owes a lot to [41], [42], [21].
However, trying to execute it in higher co-dimension, one quickly learns that most of
the methods developed in co-dimension one don’t work. There are three new major
players. First, the matrix of coefficients suitable for (2) has to have a special structure
in the portion responsible for the ¢ variables (this was not a problem before because
such a portion is just one entry in co-dimension 1). Secondly, as a result, one needs
the aforementioned change of variables to be as close as possible to an isometry at
many scales - a property missing in previously used mappings of Lipschitz domains to
R™~! [40], and only appearing, albeit in a different form, in the analysis of Reifenberg
flat sets [54], [22]. Finally, as the distance is now a factor of the matrix of coefficients,
it turns out that we want the composition of D with our change of variable to be
close to the distance to R? (and this property would also be lost by previously used
“vertical” changes of variables), which ultimately leads to our special choice of D. In
some sense, a big advantage of Lipschitz graph domains of dimension n — 1 over more
complicated rectifiable sets is the existence of one special direction, the vertical one.
In higher co-dimensional sets this advantage is notoriously missing, and even working
formally on a Lipschitz graph, we have to use some of the tools of geometric measure
theory on uniformly rectifiable domains, such as X. Tolsa’s a-numbers related to the
Wasserstein distance, to even construct the change of variables. In addition, we lose a
possibility to test our intuition in the planar case, using conformal mapping techniques,
as for n = 2 the only higher co-dimensional set could be a point. A good side of having
to overcome all these challenges is a resulting indication that the results can be carried
over to much more general sets and, indeed, we conjecture that the absolute continuity
of harmonic measure associated to 2(X) = D(X)~"*9+1T is absolutely continuous with
respect to Hausdorff measure on all uniformly rectifiable domains, in contrast with the
results for the Laplacian for d = n — 1 which requires extra topological restrictions due
to [5]. For now though, we concentrate on Lipschitz graphs, and before passing on to a
detailed description of main results, only mention that all aspects of the construction,
pertaining to parts (1) or (2) above, are new even in co-dimension one.

1.2. Main results. Harmonic measure and the A condition

We consider a Lipschitz function ¢ : R? — R"~%, Its Lipschitz constant is denoted
by Co, and is defined as the quantity

Cp := sup (@) = o)l = sup sup Zhiarigo(x) . (1.4)
z,ycR? |z — y z€RY p=(hy,...,hq)eR? |5=1
TFY |h|=1

Here and throughout the paper, 0., stands for the partial derivative with respect to the
i-th coordinate of € R%. We shall work with the graph of I', which is

[ := {(z,0(x)), 2 € R} CR" (1.5)
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(we shall almost systematically identify R™ with R? x R"~9) and denote
Q=R"\T. (1.6)

Ahlfors The set I" is d-Ahlfors regular, which means that there exists a measure o on I'
and a constant C, > 1 such that
Clr=% < o(B(x,r)) < Cyr? (1.7)

for x € T" and r > 0. Ahlfors regularity is really a property of the set I' rather than of
a particular measure o, because it is not hard to see (but essentially irrelevant for the
present paper) that if there is a measure o on I' that satisfies (1.7), then ¢ is equivalent
to Hﬁ“ and %Tir satisfies (1.7) too (with a larger constant). We mention all this because
many of the properties that we prove below do not use more than the Ahlfors regularity
of I'. We shall assume later that o is close to Hﬁ“

We will need to use Corkscrew points for (2. These are points A, , € (2, associated to
xz € I and r > 0, such that (for some constant 7 > 0)

Tr < dist(Agr,I') < |Azyr — 2| <7 (1.8)

Corkscrew points are very easy to find here, when I' is a Lipschitz graph (try A, , =
(z, p(z) + re) for any unit vector e € R"~%), but they also exist when T is any Ahlfors
regular set of dimension d < n — 1, and we can take 7 to depend only on n, d, and C,
from (1.7); see Lemma 11.46 in [20].

Since the set T' satisfies (1.7), it enters the scope of the elliptic theory developed in
[20]. Let us recall some of the main properties that will be needed.

Let L = —div2AV be a degenerate elliptic operator for which 2 satisfies (1.1) and
(1.2). We say that u is a weak solution of Lu = 0, if u € W,.%(Q) and

/Q(Vu -Vu=0 Yv € C3° (). (1.9)
Q

Here, W,52(Q) is the set of functions u € L} () whose derivative (in the sense of
distribution on ©) also lies in L? ().

For each X € Q, we can define a (unique) probability measure w™ on I', with the
following properties. For any bounded measurable function f on I', the function uy
defined by

up(X) = / F () (y) (1.10)
T

is a weak solution. This is only stated in [20] when f € C{(T) is continuous and compactly
supported in I' (see Lemma 9.30 and (iii) of Lemma 9.23 there, and also (8.1) and (8.14)
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for the definitions) and when f is a characteristic function of Borel set (see Lemma 9.38
there); the general case would not be hard, but we do not need it anyway.

There is also a dense subclass on which we can say a little more. Denote by M(I") the
set of measurable functions on I" and then define the Sobolev space

H=H/T):={geM{): //|g|(§)_7ygd(+yl)|2da(x)da(y) <00 . (1.11)
T

r

The class H N CY(T) is dense in CJ(T) (see about 13 lines above (9.25) in [20] for the
proof of density), and if f € H N CY(T), the solution uf defined by (1.10) lies in the
Sobolev space W12(Q, dist(X,I')4+1~"dX), which means that

/ IVu(X)[2 dist(X, T) 1" dX < +oo, (1.12)
Q

and also
uy has a continuous extension to R™, which coincides with f on I'. (1.13)

See (i) of Lemma 9.23 in [20], together with its proof eight lines above (9.25).

It should be stressed that since w*

is a probability measure, uy is a nondecreasing
function of f > 0. This is of course a manifestation of the maximum principle. We will
need some other properties of L and w® when we prove Theorems 1.27 and 1.32, but
these will be recorded later.

Our aim is to find at least one 2 satisfying (1.1)—(1.2) such that the harmonic measure
(that is, any w™ as before) is absolutely continuous with respect to the Hausdorff measure
o on I', with A estimates, and this will require additional assumptions.

First of all, we shall restrict to the case when d is an integer and I' is the graph of a
Lipschitz function (as in (1.5)), with a small enough Lipschitz constant, but also L will
have the special form

L = —div D(X)¥1=ny, (1.14)

where D(X) is defined as

D) = DalX) = { [ 1X =y} (1.15)
r

for some constant « > 0. In fact, in (1.15) we can only use measures ¢ that do not differ
much from the restriction of H¢ to I'; that is, we can for instance use the product of
’HldF by any function, only if that function is sufficiently close, in L*°-norm, to 1. See
Lemma 6.2, the rest of the argument is the same. When d = 1, we can also take
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D(X) = dist(X,T), (1.16)

but in higher dimensions, dist(X,I") does not seem to be smooth enough for our proof
to work, roughly for the same reason as why the Jones’ 8, coefficients are not suitable
in high dimensions, so we’ll have to content ourselves with D,,.

Observe that (1.14) means that we chose 2 = D(X)4"1="], where I is the identity
matrix. To be able to use the previous theory, we need to check that (1.1)-(1.2) are
satisfied, and indeed,

C~1dist(X,T) < Do(X) < Cdist(X,T) (1.17)

(see Lemma 5.1).

Our main result states the quantitative mutual absolute continuity of the harmonic
measure w*X above and the surface measure o, when T is a Lipschitz graph with small
enough constant. We give the statement first, and then explain the A condition in our
context.

Theorem 1.18. Let I' C R™ be, as in (1.5), the graph of a Lipschitz function ¢ : R4 —
R4, Define L = —divD¥1="V as in (1.14), with D as in (1.15), or possibly, if
d =1, as in (1.16). Then the associated harmonic measure (defined near (1.10)) is A
with respect to o = ”H‘dr as soon as the Lipschitz constant Cy of (1.4) is small enough,
depending only on n, d, and o« > 0. This means for instance that for every choice of
7€ (0,1) and € € (0,1), there exists § € (0,1), that depends only on 7, €, n, d, and «,
such that for each choice of x € T, r > 0, a Borel set E C Br(z,r), and a corkscrew
point X = A, (T) (as in (1.8)),

wh L (B) o(E)
B Bewr) "7 a B < (1.19)

Let us comment a little on the A® condition. In the general context of spaces of
homogeneous type (metric spaces with a doubling measure ), we say that the measure
w is A with respect to the doubling measure p when the following condition holds:
for every € € (0,1), there exists ¢ € (0,1) such that for any « € T', any r > 0, and any
E C B(x,r), we have the implication

w(E)
S(Br) <7 WBam) ~© (1:20)
We refer to [40, Theorem 1.4.13], [11, Lemma 5], [29], or [39] for proofs and additional
information about the A°° condition. It is not hard to show that under these conditions,
w also is doubling, and p is A with respect to w. That is, the A* relation is symmetric.
For the harmonic measure, in our case or in the original context of co-dimension one,
we cannot say that wX is A% with respect to ¢ in the usual sense, because when X is
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very close to the boundary (compared to r), w¥ is very small on most of I' N B(x,7).

To say this slightly differently, let X € Q be given and let € I" be such that | X — z| =
dist(X,I'). For any r > 0 large, we can find y, € I' such that 2r = |y, — |. Then (1.20)
fails because

X
wq, 1, (Br(yr, T
: —0 —
wX7 (Br(z,3r as T e
while
U(BF(yT7 T )

where C~! depends only on the constant in (1.7). However, for any X € © and any ball
Br(z, R) in T, the restriction of wg ; to Br(z, R) is in the class A> with respect to the
restriction of o to the same Br(z, R). This latter fact is a straightforward consequence
of Theorem 1.18, the Harnack inequality, and the change of pole (see [20], Lemmas 8.42
and 11.135). If desired, one can replace the corkscrew point A, , in our statement by
any point of Q\ B(x, 2r) at essentially no cost, and by any point X € £, but with worse
constants that depend on X.

1.3. Main results. Sufficient conditions on elliptic operators on Qo = R™ \ R¢ for the
absolute continuity of harmonic measure

The second main result of the present paper is absolute continuity of the harmonic
measure with respect to the Hausdorff measure on R¢ for a general class of elliptic
operators in R™\ R?, satisfying certain structural and Carleson measure conditions. This
result is of independent interest (see [30] and [43] and the discussion below for some
analogues in co-dimension one, but notice that our sufficient conditions are new even in
co-dimension one and are weaker than in [43]). It is also a crucial step of the proof of
Theorem 1.18, which uses a change of variables (discussed below) that sends us back to
the case where I' = R? C R”, at the expense of producing a new different operator L.

We need some definitions. We shall continue to identify 'y = R? with R? x {0} C R,
and we set g = R™ \ R%. The running point of R” will be denoted by X = (z,t) or
Y = (y,s), with z,y € R? and s,t € R"~% When t = 0, we may write = instead of
(x,0) € R™.

Definition 1.21. A Carleson measure on () is a positive measure p on €2y such that for
some constant C' > 0,

w(Qo N B(x,7)) < Cr? for x € Tg and r > 0. (1.22)

We say that a function u defined on €2y satisfies the Carleson measure condition when
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dyd
lu(y, s)|? | ‘?i_sd is a Carleson measure,
s

that is, when there is a constant C, > 0 such that

dyd
// lu(y, s)|? ‘S‘Z;fd < Cur? for x €Ty and r > 0. (1.23)

(y,8)€QoNB(z,r)

When this happens, we shall more briefly write that v € CM(C,) and refer to the
smallest possible C,, in (1.23) as the Carleson norm of u (even though it scales like a
square).

The following result, which builds on the ideas from [41,42,21], says that for any
matrix Lo satisfying (1.1) and (1.2), the A® absolute continuity of the corresponding
harmonic measure follows from Carleson measure estimates (1.23) for bounded solutions.
Let us simplify the notation, write Ag = Ag(X) = Ap(z,s) (instead of A(X)) for the
degenerate elliptic matrix that defines our operator Lo, and notice that since I'g = R,
the conditions (1.1) and (1.2) become

‘8|n7d—1A0(x7s)€ ¢ < ChlEl[¢] for X = (z,5) € Qo and &, € R", (1.24)

|s[" " Ag(x,8)E - € > CTEPP for X = (,5) € Qo and € € R™. (1.25)

As before, the operator Ly = —div AgV satisfies the assumptions of [20], so we can
construct harmonic measures on I'y that we denote by wX = wém Ly X € Qo, which
satisfies the properties described near (1.10). In particular, for every Borel set H C Ty,
we can define a weak solution uy by

up(X) =wl, 1, (H) for X € Qy (1.26)

(compare with (1.10)). Here is our sufficient condition for A% absolute continuity, which
will be proved in Section 8.

Theorem 1.27. Let Ly = —div AoV be a degenerate elliptic operator (with real coeffi-
cients) on Qo = R™ \ R?, and assume that Ag satisfies (1.24) and (1.25). Also assume
that there is a constant Cp, such that for any Borel set H C Tg = R, the solution ug of
(1.26) is such that

It Vug € CM(CL). (1.28)

Then the harmonic measure wémLO is A% (with the definition of Theorem 1.18) with

respect to the Lebesgue measure on R?.
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The next stage is to find reasonable conditions on Aj that imply the estimate (1.28),
and hence the A*-absolute continuity of wq,,r,. Recall from the discussion above that
even in co-dimension 1 one does not expect the absolute continuity of the harmonic
measure with respect to the Lebesgue measure to hold for all elliptic operators, due to
the counterexamples in [7].

We need more notation. In the sequel, @ denotes a cube in R? and [(Q) its sidelength.
The truncated cone of approach to z € I'y is

79(x) = {(y,5) €R"\R: |y — 2| < als| and 0 < || < 1(Q)}, (1.29)

where a > 0 is any given constant, and often we just take a = 1. The notation is slightly
misleading, because v?(z) merely depends on I(Q) rather than @, but it is convenient
and often used.

Then we define a localized square function S®u and a localized non-tangential maxi-
mal function N'?, both on Iy, by

1/2
dyds
SQu(x) = // |Vu(y, s)|? (1.30)
|(y,5) = (2, 0)["—2
(9,5)€79 ()
and
N@u(z):= sup |u(y,s)| (1.31)

(y,8)€79 (2)

for € Tg. Our main theorem for elliptic operators on R™\ R?, which yields square func-
tion/non-tangential maximal function estimates and ultimately A® property of harmonic
measure, is the following.

Theorem 1.32. Let Ay be a degenerate elliptic matriz satisfying (1.24) and (1.25) in
Qo = R* \ RY, and set then Ly = —div AV as above. Define the rescaled matriz A
by A = [t|""971 Ay, so that now Ly = —div|t|¢T1 " AV, and assume that A has the
following block structure:

AL(X) A2(X) ) | (1.33)

AX) = <C3(X) b(X) g+ CHX)

where AY(X) is a matriz in Mgxq, A*(X) is a matriz in Mgy (n—a), b is a function on Qo,
Iy, —q is the identity matriz in M(,_qyx (n—d), and in addition we can find constants M > 0
and X\ > 1 such that

AE<bhb< A on Q, (1.34)
t|Vb € CM (M), (1.35)
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c3,Ct e CM(M). (1.36)

Then there is a constant K > 0, that depends only on n, d, the elliptic parameter in
(1.24) and (1.25), \, M, and a (the aperture in (1.29)), and a constant ko > 1 that
depends only on the aperture a, such that if u is a weak solution to Lou = 0, then for
every cube Q C R?,

159ull72(g) < KIN??ull72(k00)- (1.37)

Here koQ stands for the cube with the same center as Q and sidelength kol(Q).

Furthermore, under the same conditions on the matriz A, the harmonic measure
ng’LO is A with respect to the Lebesgue measure on RY (with the definition of Theo-
rem 1.18).

Here and throughout the paper, when we say in (1.36) that C/ € CM (M), we mean
that each entry ka of C7 lies in C' M (M); the fact that we take the sup norm on matrices
rather than a more reasonable norm is irrelevant here.

The theorem will be proved in Sections 7 and 8, Theorem 7.10 and Corollary 8.11. Let
us discuss some aspects of its statement. First, the finiteness of the quantities in (1.37)
is not guaranteed (but we do mean, as a part of the statement, that the finiteness of the
right-hand side implies the finiteness of the left-hand side); but it holds in the following
case. Let H be any Borel set on R% and uy be the solution with data given by the
characteristic function of H, defined in (1.26). Then (since w is a probability measure)
N2Q(ug) < 1, which by (1.37) implies that for every cube Q C R?

1S%um 320 < ClQI- (1.38)

The latter, by Fubini’s theorem, yields (1.28) — see Remark 7.28. This is the reason why,
having proved (1.37) and Theorem 1.27, we can conclude that for operators satisfying
conditions of Theorem 1.32 the harmonic measure wf}l{o, L, 18 A% with respect to the
Lebesgue measure on R? (with the definition of Theorem 1.18).

Turning to the conditions on Ay proposed in Theorem 7.10, we observe that we did
not impose any condition on the first d-lines of the elliptic and bounded matrix A. In
the case of co-dimension 1, the reader should compare to [43] where the full matrix A
is assumed to satisfy [¢|V.A € CM(M). One could always add to the latter a Carleson
measure perturbation, that is, to treat A+C, with [t|VA € CM (M) and C € CM (M) due

o [25], but still imposing these conditions on the full matrix of coefficients (as opposed
to our statement appealing only to the last n — d lines). On top of it, to be even more
precise, both [43] and [25] require slightly stronger Carleson measure conditions, dealing
with the suprema of coefficients on Whitney cubes, that is, (|t|VA)w € CM(M) and
(C)w € CM (M) where Fyy (2,t) = Suppg(4,1).1/2) | Fl; (x,t) € R". In all those directions,
even in co-dimension one the result of Theorem 1.32 is new. Observe, for instance, that
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it yields the A property for the harmonic measure of an operator associated to a block
matrix

1
A(X) = <A (()X) Ino_d> , (1.39)

and for its Carleson measure perturbations, A + C, without any assumptions on A'. In
the case when A; is t-independent, this is a consequence of the resolution of the famous
Kato problem [1], but the observation that one take any elliptic A', to our knowledge,
is new.

Note also that in the case of co-dimension 1 one could take B2 4+ C? in place of C3,
with [¢t|VB € CM (M), at the expense of a harmless drift term (this is the reason why
our results include the aforementioned case [t|V.A € CM(M)). A version of this should
be also possible in our context, but we choose not to develop it here as strictly speaking
one would have to revisit [20] for construction of solutions of operators with drift terms.

We remark, parenthetically, that in co-dimension 1 another important class of elliptic
operators whose harmonic measure is absolutely continuous with respect to the Hausdorff
measure on R? (or on a Lipschitz graph) is the class of operators with t-independent
coefficients [30]. Those do not make much sense in our context as the dependence on the
distance to the boundary and hence, on [¢|, is exactly the feature that allows us to access
the higher codimension.

At this point, we see that in order to prove Theorem 1.18, we now want to construct
a change of variables p that transforms the operator L in that theorem into an operator
Lg that satisfies the assumptions of Theorem 1.32.

1.4. A bi-Lipschitz change of variables

Let us now say a few words about the change of variables that we will construct. This
will be a bi-Lipschitz mapping p : R™ — R", with

p(To) =T and (hence) p(p) = Q. (1.40)

When we conjugate our operator L by p, we obtain the operator L, = —div A,V, which
satisfies the conditions (1.1)-(1.2) relatively to the boundary I'y = R¢ and the domain
Qo = R™\RR?. Besides, the harmonic measure associated to Q and L is A% with respect to
the measure ¢ when the harmonic measure associated to 2 and L is A* with respect to
the Lebesgue measure A4 on I'y = RY, where the A>-absolute continuity of the harmonic
measure is taken as in Theorem 1.18. Indeed, since p is bi-Lipschitz, it is easy to check
that for a Borel set H C I" the Hausdorff measure of H is equivalent to the Lebesgue
measure of p~!(H). Moreover, if X € Q, wg (H) = wg:éf)(pfl(H)); and since again
p is bi-Lipschitz, the fact that X = A, (') is a Corkscrew point implies that p~!(X)
is Corkscrew point of the form A,-1(;,(I'0). Theorem 1.18 will be thus proven if L,
satisfies the assumption of Theorem 1.32.
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The change of variables p will also be a differentiable mapping, with an invertible
differential, denoted by Jac, such that

1
§|v| <|Jac(X) - v| < 2|v| for X € Qp and v € R™. (1.41)

For the moment, this is quite natural, and easy to obtain if the Lipschitz constant Cjy
for the mapping ¢ whose graph is I' is small enough. Now the goal of the change of
variables is to transform the operator L defined on € by the matrix 2 defined by (1.14),
with a function D coming from (1.15) or perhaps (1.16), into an operator Ly on
that satisfies the assumptions of Theorem 1.32. A computation, that will be done in
Lemma 6.17, shows that Lg is the operator associated to the normalized matrix A,
where

Az, t) = i o det(Jac(z, t))|(Jac(z,t) ") " Jac(z, )~ 1.42
@)= (pogy)  det(acte )l ac(e ) ducle ) (12)

where X = (x,t) is the running point of ¢ and (Jac(z,t)~!)” denotes the transpose of
the inverse of the differential Jac(z,t).

The general shape of the matrix, which is given by (Jac(z,t)~1)? Jac(x, )}, is sym-
metric, but since we want the block on the bottom right of A to be Carleson-close to a
matrix b(X)I,_4, we want the t-part of Jac(X) to be as close as possible to a multiple
of an isometry. In addition, (1.35) tells us that we do not want to let b(X) vary too fast,
which will force us to control the Jacobian determinants of the matrices. Let us say how
these constraints influence our definition of p.

We shall use a smooth, nonnegative, radial function 7 : R* — R, compactly supported
in the unit ball and such that [7(z)dx = 1, and its dilations 7,, r > 0, defined by

nr(x) = rid 7 (%) : (1.43)

Then we define functions ¢, : R? — R"~¢ by
Pr =0y, (1.44)

and then ® and ®,., with values in R™, by

O(z) = (z,90(x)), and @,(x) = (z,¢r(x)) = (P * 7 )() (1.45)

for € R?. Thus ® is the standard parameterization of ', and ®, parameterizes a graph
I', which is a nice approximation of I' at the scale r.
Denote by X = (x,t) the running point of R™, and also set r = [t|. We will take

p(z,0) = ®(x) = (z,0(x)) for z € R? (1.46)
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and
plz,t) = @,.(z) + h(x,t) Ry (0,8) = (z, r(x)) + h(x,t) Ry (0,t) for (z,t) € Qo, (1.47)

where R, is a linear isometry of R™ and h is a positive function on {2y such that
C~! < h < C for some positive constant C.

We shall construct R, , so that it maps R? to the d-plane P(x,r) tangent to I,
at the point ®,(x). In fact, we are even more interested by the fact that R, , maps
R"~?4 = (R?)~ to the orthogonal plane to P(z,r) at ®,(z), but the two are equivalent
anyway. Our function h will change slowly (in a way that is controlled by Carleson
measures), so (1.47) is a way to make p close to an isometry in the ¢-variables. It is
also important that the variations of p in the ¢ variables are almost orthogonal to the
approximate direction of the tangent plane, which is a property that other standard
changes of variables do not have.

The role of h is a little more subtle. It is connected to the fact that we want to control
the variations of the coefficient b(X) above. We will choose it to control the D-distance
from p(X) to T, in such a way that

i

—————— — 1 satisfies the Carleson measure condition, (1.48)
D(p(y, 1))

and this in turn will allow us to control b.

The idea of changing variables to get a slightly more complicated operator in the sim-
pler domain 2 is classical. There are, however, only two changes of variables that have
been used in this context before. The first one, p(z,t) = (z,t + ¢(x)), (z,t) € R", yields
the operators with t-independent coefficients (see, e.g., [35], [41], [30]) and the second
one, somewhat closer to ours, p(x,t) = ®.(x) + (0,t), (z,t) € R™, known as the Necas—
Kenig—Stein change of variables (see, e.g., [43]), yields the operators with coefficients
whose gradient is a Carleson measure. However, both of them move points vertically and
lack some of the delicate properties that we now require, almost an isometry for p and
Carleson measure estimates for D o p to mention only a few. Even in co-dimension 1, the
present change of variables is new in the context of elliptic operators, and seems to be
much more adapted because it tends to preserve the orthogonal direction. On the other
hand, in the realm of Reifenberg flat sets, the idea of trying to preserve the orthogonal
direction is not new; see for instance [54], and more closely [22] where somewhat similar
problems arise.

Unfortunately, our construction does not work when the Lipschitz constant Cj is large
(because injectivity fails), and this does not seem easy to fix. So we may need to find
other ways to treat general Lipschitz graphs and other nice sets.

At this point our meticulously chosen p and D are good enough to apply Theorem 1.32
(we even get that the matrix A satisfies slightly stronger conditions, which will be de-
scribed in Lemma 6.22), and hence get Theorem 1.18.
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Let us also mention that some regularity of D is needed to establish (1.48). For the
soft distance functions of (1.15), we will get the desired control on D, which in particular
allows us to define p so that (1.48) holds, from a result of Tolsa [53] that controls some
Wasserstein distances between o and Lebesgue measures on d-planes. These distances
control both the flatness of I and the repartition of o on I'; that is, both the regularity
of I"and D.

In the case of the Euclidean distance in (1.16), we need the L*°-based P. Jones num-
bers 3, which we can only control well in dimension d = 1; otherwise, the distance does
not seem to be regular enough for our method to apply.

1.5. Organization of the paper

In Section 2, we set the notation, and construct an orthonormal basis of the approxi-
mate tangent plane P(z,r), that will be used to define the linear isometries R, ,. This
completes the definition of p, modulo the choice of h which is left open for the moment.

In Section 3 we prove that if Cy is small enough, p is a locally smooth and globally
bi-Lipschitz change of variable, with (1.40) and (1.41). The main point is the injectivity
of p, which we prove with a simple topological argument. We do not give a formula
for p~1.

In Section 4 we write the matrix | det(Jac(z,t))|(Jac(z,t)~1)T Jac(x,t)~! that shows
up in (1.42) in an appropriate form, and prove Carleson measure estimates for some of
its coefficients. The estimates in this section come from elementary linear algebra (to
decompose the matrix) and standard Littlewood—Paley theory for bounded functions
(for the Carleson bounds).

In Section 5, we use P. Jones S-number and localized Wasserstein distances, together
with the uniform rectifiability of I', to control the geometry of I' and o, choose the
function h, and prove (1.48) in particular.

Once all this is done, we can check in Section 6 that the matrix of Ly of the conjugated
operator satisfy stronger assumptions than needed for Theorem 1.32. As was explained
above, this completes the proof of Theorem 1.18, modulo Theorems 1.32 and 1.27.

Theorem 1.32 and Theorem 1.27 are of independent interest, and their proofs, given
in Section 7 and Section 8, can be read independently from the rest of this paper.

In the sequel, the letter C' denotes a positive constant whose dependence is either
recalled or obvious from the context, and that may change from one inequality to an-
other. The expression A < B, where A and B are two expressions depending on some
parameters, means that there exists C' > 0 such that A < C'B, and the dependence of
C on the parameters will be either given by the context or recalled. In addition, A ~ B
isusedif A S B S A
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2. Construction of a field of orthonormal bases of R™

In this section we use the Gram—Schmidt orthogonalization algorithm to construct an
orthonormal basis of R™ that starts with an orthonormal basis of the tangent plane to
I, at ®,(x). The main result of the present section is Lemma 2.18, which gives a C*
control on the vectors of the constructed basis. The lemma will be used in Sections 3
and 4, to verify that our map p is indeed a change of variable, and to prove the Carleson
bounds on the coefficients of the matrix A(z,t) defined in (1.42) needed for the use of
Theorem 1.32.

For this section we only need to know that I' is a Lipschitz graph, not that the
Lipschitz constant C is small; the constants will be allowed to depend on Cjy, but if
Coy <1 as in the next sections, they depend only on n and d.

We start with some amount of notation. We have our Lipschitz function ¢, Cy as in
(1.4), the graph T" and its parameterization ®, as in (1.5) and (1.45), and their approxi-
mations ¢,., [',., and ®,..

Here is the notation for derivatives that we shall try to use systematically. If f is a
function defined on R%, on R% x (0, +0oc), or on 2y = R4 x (R"~¢\ {0})), then, for any
i € {1,...,d}, the notation J,,f denotes the derivative of f with respect to the i-th
coordinate (of the first variable). We use 9, f to denote the derivative of a function f
defined on R? x (0, +00) with respect to the second variable and, for j € {d+1,...,n},
the function 9y, f is the derivative of a function f defined on R? x (R"~%\ {0}) with
respect to the (j — d)-th coordinate of the second variable (or the j-th coordinate, if f is
seen as a function defined on a subset of R™). When f takes value in R"~% (resp. in R™),
then the quantities 0., f, 0, f and 0y, f are vectors, and |0y, f|, [0, f| and |0y, f| denotes
their classical Euclidean norm in R"~¢ (resp. in R"). The terms V. f, Varfand V. f
are used for

811]0
Or. f Ot :
. : s
: , : , and o, dff (2.1)
a'vdf d+1
Ouaf orf
o, f

respectively. Note that the latter quantities are matrices when f is vector valued. In
addition, |V, f|, |V, f| and |V, . f| are respectively the quantities

1
1 1
3 2

d % d d n
(zmz) | (zwzifuw) Cad [SlsPe S o, g
=1 =1 =1

j=d+1

(2.2)
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Finally, the set of second derivatives of f with respect to the z-variables is written V2 f.
If f takes values in R, it corresponds to the d x d matrix V. (V. f)T;if f = (f1,..., fr) is
vector valued, we see V2 f as the collection of matrices {V2 f;}1<;<k. Besides, the norm
|V2 f| denotes the quantity

2

k
Z'vw(vwf])T|2 ) (23)
j=1

which correspond to the (*-norm (37, , ; |, 02, £;]2) 2. The definition above is modified
accordingly to give sense to V2 f, V2, f or V,,V,f.

Recall that p will have the form (1.47), and R, , will be defined as the linear isometry
that maps the canonical orthonormal basis B, of R™ to a new orthonormal basis B,
that we construct now.

Definition 2.4 (Coordinate basis). For any i € {1,...,n}, we denote by e’ the unit vector
in R™ that has 1 in the i-th coordinate and 0 in the other coordinates. The family

(el,...,e") forms an orthonormal basis which we call B..
By notation abuse, when i € {1,...,d}, we also use ¢’ for the unit vector in R? that
has 1 on the i-th coordinate and 0 on the other coordinates, and when j € {d+1,...,n},

we use e’ for the unit vector in R"~% that has 1 on the (j — d)-th coordinate and 0 on
the other ones.

Fix # € R% and r > 0, and denote by P(z,7) the tangent d-plane to ', at ®,(z).
Also call P’'(z,r) the vector d-plane parallel to P(z,r), and P’(x,r)* its orthogonal
complement.

We start with a basis of P’(z,r), which is given by the d vectors ©¢, 1 < i < d given
by

@i(xar) = 0y, P (2) = (eiuazi%“(x))a (2.5)

where we recall that ®, and ¢, are the ones defined in (1.44)—(1.45). We also have a
basis of P’(x,r)*, which is composed of the normal vectors @/, d + 1 < j < n, defined
as

wj(a:,r) = ((fvmcpf;)T,ej), (2.6)

where ¢ is the j-th coordinate of .. Thus the d first coordinates of w7 (x,r) are the
partial derivatives —0,,p%. These vectors are clearly independent (because of their e’
part), and they are orthogonal to P’(z,r) because

<f1i, ﬁjj> = —0,, ¢ <ei, ei> + <3Iigor(x), ej> =0. (2.7)
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It will be useful to know that

|07 <\/1+C2 and |07 <\/1+C? (2.8)

for 1 <i<dand d+1<j <n, just because |V p| < Cy.

Next we apply the Gram-Schmidt construction to replace the ¢¢, 1 < 3 < d, by an
orthonormal basis v?, 1 < i < d, of P'(z,r). Since we want to have estimates on the
various coefficients that arise, we recall how it goes.

We start with v* = |#'|~!'9'. Then, assuming that the v’, £ < i have already been
chosen, we first replace 9**! by

%

ol = ottt — Z (" vf) o (2.9)
(=1
and finally
vt = T i (2.10)

It is well known that the procedure gives a new (and orthonormal) basis of P’(x,r),
which we call B,. Notice that (v,e’) = 0 for £ < i (because v* lies in the span of the
9™, m < £), hence

%

@6ty = (7,6 = 3 () (o) = ey =1 )

(=1

which in turn implies that [0°T!] > 1 and
[0t > 1. (2.12)

When i = 1, we simply set 0! = 9! and get that [0'| > 1 as well. This is reassuring: we
get confirmation that we never have to divide by 0, but we knew that because the v’
1 < ¢ < i, span the same space as the [9!|, 1 < ¢ <.

We now do the same thing with the %@’: we apply the Gram-Schmidt process to
construct an orthonormal basis B, = (w9t!,... w") of P'(z,r)*, with formulas like

J
@ =@t = Y (@ w) w (2.13)
l=d+1

ford+1<j<nand

w! = |w! |7t @’ (2.14)
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for d4+ 1 < j < n. The construction and estimates are exactly the same, except that we

exchange the first and last sets of coordinates.

Finally we put B, and B,, together to get an orthonormal basis B,,, = (v!,...v%, wat!,

...,w™) of R Finally, R, , is the linecar mapping that sends Be to By,,. That is,
d n
R, (y,u) = Zyivl(x, r)+ Z tiw’ (z,r), (2.15)
i=1 j=d+1

where we now write the dependence on = and r because we shall start worrying on the
variations of all these functions. Notice that R, , is a linear isometry because it maps
an orthonormal basis to another one, and by construction and with a slight abuse of
notation

R.,(R?) = P'(z,7) and R,,(R""%) = P'(z,r)*. (2.16)

Now we worry about the smoothness of the vectors v* and w?. We start with the easy
soft result.

Lemma 2.17. The vector fields v, 1 < i <d, and w?, d+1 < j < n, are C*> functions
on R? x (0, +00).

Proof. We start with the function (z,7) — ¢.(z) = ¢ * n.(z), which is C* on R? x
(0, 400) by standard results (and we shall have ample opportunities to compute some
of its derivatives). Then all the 9%, ¥, v%, and their w-counterparts are smooth too, by
(2.9), (2.10), (2.13), (2.14), and an easy induction argument. The fact that by (2.12) and
its analogue for @’ we never divide by 0 helps here. O
The next result is the one announced in the beginning of the section.

Lemma 2.18. For any i € {1,...,d}, there holds

V0| < C| Ve Vaprl, (2.19)
and for any j € {d+1,...,d}, one has

|VI,ij| S C|vz,rvz<ﬂr|a (220)

where in both cases the constant C' > 0 depends only on n and the Lipschitz constant Cy.
If we assume that Cy < 1, C' depends only on n.

Proof. We start with the vectors 9 = (e, 0,,¢,) and W’ = ((—=V,¢l)T,e), for which
the desired result holds because their coordinates are directly written in terms of V¢,
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Then we follow the Gram—Schmidt algorithm and observe that the coefficients of the
v* and w’ are obtained from those of the ¢* and @’ by a bounded number of algebraic
computations involving taking sums, products, and inverses of functions that are never
smaller than 1 (see (2.12)). That is, each v or w’ has a simple algebraic expression
in terms of V,¢,. We compute the derivatives of these expressions and get (2.19) and
(2.20). A more detailed proof would work by induction on ¢ or j — d and give precise
bounds, but we decided not to do these computations. O

3. The change of variables p

The goal of this section is to prove that the map p defined by (1.47) is a bi-Lipschitz
change of variable, and at the same time prove some estimates on its derivative Jac(z, t).

Recall that in addition to R, ., there is an auxiliary function h that appears in the
definition of p. In this section, we only need to assume that there exist constants Cp; > 1
and Cho > 0 such that

Cgll < h(z,t) < Cpy for (z,t) € Qo, (3.1)
h is continuously differentiable on €2y, and
|V h(z,t)] < Cho for (z,t) € Qp. (3.2)

Here we allow h to be a function of (x,t), but for our final choice, h will depend only on
x and r = |t|. In later sections, some additional Carleson bounds on h will be required,
and then specific choices of h will be taken, but not yet.

For this section to work all the way to the injectivity of p, we will need to assume that
Cop — the Lipschitz constant of I" defined in (1.4) — and Cpg are small enough, depending
on n, d, our choice of bump function n, and C};. We will denote by C' any constant that
depends only on n, d, n, Cp1, and an upper bound for Cy and Cpg. This last dependance
is not important, because anyway we shall rapidly assume that Cy + Cpo < 1, say.

Recall from (1.47) and (2.15) that p is given by

p(z,t) = @, (x) + h(z,t) Ry »(0,t) = (z, o (x)) + h(z, 1) Z tyw! (z,7) (3.3)
Jj=d+1

for (z,t) € Qp, and where we systematically let r = |t| > 0 and t = (¢tg41,...,tn). We
will worry about the definition of p on Ty = R¢ later; for the moment let us work on €.

Because of Lemma 2.17, p is smooth on g, and (3.3) gives the following formulas for
the derivatives of p. For i € {1,...,d} and (z,t) € Qo,

n

Op,p(x,t) = 9 (2, 7) + Oy, h(x, 1) Z tjw? (z,7) + h(x,t) Z ti0p,w? (z,7), (3.4)
j=d+1 j=d+1



G. David et al. / Journal of Functional Analysis 276 (2019) 2731-2820 2753
(recall (2.5)) and for j € {d+1,...,n} and (x,t) € Qo,

B, p = %a@ (@) + h(z, yw (z, )

n 3.5)
n ) (
+ 0 h(z, 1) E trw® (z,7) Th(a: t) E tpOrw" (x, ).
k=d+1 k=d+1

The Jacobian matrix of p is written Jac. Note that Jac depends on (z,t) € Qp, but
we shall not always write the argument. With the notation of the beginning of Section 2,
the coeflicients of Jac are given by

Jacp, = <8zkp, e€> forl<k<dand1</<n, (3.6)
Jacyy = <8tkp, ee> ford+1<k<nandl1</{<n. (3.7)

For the computations that follow, it will be useful to transform functions defined
on R? x (0, +oc0) into functions defined in €, and still give the same name to the new
functions. That is, if f is defined on R x (0, +00), we define fon Qo by f(x, t) = f(=,|t]),
and then simply write f instead of f, like physicists.

We shall use, as a first approximation of Jac, the “simpler” matrix J = J(z,t) where
in (3.6) and (3.7) we replace e’ by v’ when ¢ < d, and by w® when £ > d. This gives the
following matrix.

Definition 3.8 (The matriz J). The matrix J = (Jie)1<ke<n is defined on Qg as

Jpe = <8x,€p,ve> = <f/k,vz> +h Z t; <8kaj,vz>
j=d+1

when 1 <k <dand1</<d,

Jre = <(9$kp,w > =10y h+ R Z 8ka w£>
j=d+1

when 1 <k<dandd+1</<n,
Je == <8tkp, Ue> = <8 D,.,v >—|— t:h Z 6 w! v£>

Jj=d+1

whend+1<k<nand1l</<d, and

Jre = <6tkp,w£> h5k4+—<8 D, w* >+tg8tkh+ 7nh Z 8w w£>
j=d+1
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when d+1 < k <nandd+1 < /¢ < n, setting dpy = 1 if k. = £ and dpy = 0
otherwise.

As previously, in the above expressions, t = (tg41,...,t,) € R*74\ {0} is the value
of the second variable where .J is evaluated, and r = |¢].

Let Q = Q(x,t) denote the matrix of the change of basis from B,,, to Be; this is also
the matrix of our isometry R, , — in the sense that R, ;(y,u) = (y,u)Q(x,t) (recall that
(y,u) is an horizontal vector in R™) — and its coefficients are given by

Qre = <e U€> for1<k<nandl1l</¢<d, (3.9)
ng:<ek,wf> forl<k<nandd+1</{<n. (3.10)

Observe that (just from this and the initial definition of the Jy, as scalar products) J is
the mutiplication of the matrix Jac with @, that is

J =JacQ (3.11)

We now decompose J into a sum of three matrices J = J' + H + M where J', H and
M are defined as follows. All these matrices depend on (z,t) € .

Definition 3.12 (The matrices J', H and M ). Let J; be the d x d matrix with coefficients
(J)ke = <v v£> Then define the n x n matrix J’ by

! J{ 0
J' = (0 Wi, 4] (3.13)
Let H be the n x n matrix with coefficients

Hpy =0 for £ < d,
Hyo =t105,h for1<k<d<{<n, (3.14)
Hyp =te O, h for k,£ € [d+1,n].

Finally set M = J — J' — H, that is

n

My :=h Z tj<8wkwj,vz> forl<k<dand1</¢<d,

My :=h Z tj (B w’ W) forl<k<dandd+1</¢<n,

j=d+1
My = <8<I>T,v + = hz 8w ve ford+1<k<nand1</¢<d
j=d+1
t n
My = <8<I>T,w>+ khz 8w we> ford+1<k<nandd+1</¢<n.

j=d+1
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In the decomposition J = J' + H + M, we will see that the main term is J’, which is
close to the identity, and H + M is a small perturbation. We start with the size of M
and recall our convention that in the estimates that follow, C' is allowed to depend on
n, d, 1, Ch1, and not Cpgy or Cy as long as they stay bounded.

Lemma 3.15. There exists C' > 0 such that for 1 <k, { <n
|Mk£| <C (|8T$DT| + T|vm,rvm80r|) . (316)

As previously, r denotes the norm of the second variable where My, is evaluated.

Proof. Recall that the vectors v?, 1 < i < d, and the vectors w?, d+1 < J < n, are unit
vectors. So with the definition of My, given in Definition 3.12, one immediately gets that

Myl < C <|8T<,0T| + sup rh|V,;,ij|> .
d<j<n

We now use the assumption (3.1) on h and Lemma 2.18 to conclude. 0O

The coefficients of M in Lemma 3.15 can be controlled by the Lipschitz constant Cf
with the help of the following result.

Lemma 3.17. There exists C > 0 such that for (z,r) € R% x (0, 4+00),

Proof. The lemma will be proven as soon as we establish the bounds

7100z, 0 (7)] < CCo (3.19)
for k e {1,...,d},
710z, 02, pr (2)| < CCy (3.20)
for £,k € {1,...,d}, and
|0rpr ()] < CCo. (3.21)

Let k € {1,...,d}. One has the relation

70r0z, or(x) = (r0pny) * Oz, ) (), (3.22)

and 70,7, can be rewritten as
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rpm, (x) = ro, [:dn (x)} = [ (B)+Z v (2)] =it

r rd

where 7)(z) = —dn(z) — - Vn(z) and 9, (z) = r~99(Z£). Hence

|r0r O, r ()] = |fir * (O, ) ()] < Suﬂglaw(y)\/lﬁr(y)ldy
ye
Rd

<y / [1(y)|dy = C;,Co.
Rd

The inequality (3.19) follows. Next, let 1 <4,k < d. In the same way as before,

11D, 0y 0 ()] < |(FOu,r) * (B, ) ()] < Co / 1.1
]Rn

Yet, for any r > 0, by a simple change of variable,

/ B0, 11s] = / (@2 ),| = / 00| = C.
R4 Rd R4

The inequality (3.20) follows. Now we prove (3.21). We have

Orpr(z) = (0rmy) * (),

and, with the help of (3.23), 0,1, can be rewritten as

O () = _rd% [dn (%) - g -V (g)} = div, 7, (2)

where 7j(z) = —zn (z) and 7,(z) = r~9(£). As a consequence, if ¢ = (¢

we obtain that for j € {d + 1,n},
0.61(a) = (div, )+ ! (a) = [ (o~ y) div, o)y
Rd

- / (7r(y), Va’ (x — y)) dy

Rd

and then

y€ER4

10,00 (2)] < sup Vo] / 7 () ldy = Co / ()ldy = C,Co.
]Rd Rd

Lemma 3.17 follows. O

d+1
yeen

(3.23)
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The combination of Lemma 3.15 and Lemma 3.17 gives that
|Mie(z,t)] < CCo (3.24)

whenever 1 < k,¢ < n and (z,t) € Q. Here and in the next estimates, the constant C
in (3.24) depends on Cp, but this is all right because C' stays bounded when Cp < 1.
The coefficients for H are easier to control, since (3.14) and (3.2) yield

‘de S ChO for 1 S k,f S n. (325)

We shall now estimate the determinant of Jac to prove the local invertibility of p. We
start with J and J’.

Lemma 3.26. Recall that J' is defined in Definition 3.12. Then

|det(J) — det(J)| < C (|0r0r| + 7|V r Vapr| + 7|V ih|) (3.27)
and
sup |(9%,v") — 1| 4| det(J') — "% < CC3. (3.28)
1<i<d

As a consequence, for any € > 0, there exists ce > 0, depending only on Cr1, n and e,
such that if Co + Cho < ce, then

(1—e)h" 4 < det(J) < (1+e)hn 4 (3.29)
and
sup ‘<ﬁi,vi> - 1’ <e. (3.30)
1<i<d

Proof. We will use the matrices J’, H and M introduced in Definition 3.12. We have
det(J) =det(J' + H+ M) = > sgn(o) [[(J o) + Hiot) + Miog)-

oceG, =1

We develop the above formula and we decompose the sum into two parts: the terms that
are products of coefficients of J’ and the terms that contain at least one coefficient of
M or H and we have

| det(J) — det(J")]

=Y sen(o) [T oy + Hioty + Mig)) = Y sen(o) [[ 71,
=1

ce6, i=1 ceS,,
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<k,< <k,

n—1
<C < sup | Mpye| + |Hkg> ( sup ‘Jl/d‘ + |Hye| + |ng|> . (3.31)
1 n 1<k <n

Recall from (3.24) and (3.25) that |Mye| + |Hye| < CCo + Cho < C. Moreover,

sup [ Jy| < sup [0 <4/1+CF<C
1<i<d

1<k,I<n

by Definition 3.12 and (2.8). These two latter facts prove that

n—1
( sup 1Jhel + Hial + [Miel) <,
1<k,0<n

and hence

|det(J) —det(J')| < C sup |Mpye| + |Hgel-
1<k,0<n

Lemma 3.15 and the definition of H allows us to conclude
| det(J) — det(J/)| < C([0rpr] + r|vr,rvr90r‘ + 7«|Va:,th|) )

which is exactly (3.27).
Let us turn to the proof of (3.28). Let i € {1,...,d}. Since |[v| = 1, (2.8) yields

o' oty < |9 < /14 C2. (3.32)
| 0

We also want a lower bound on (%%, v"). Since v* = [0°|7* ¥* (by (2.10) for i > 1 and by
convention for i = 1),

(0", 0") = [o'|7" (¥, 0") (3.33)

so we want a lower bound for (2%,9%) and an upper bound for [0%|. The latter is
i—1
‘51‘2 — ‘@1‘2 _ Z | <1A}1,’U€> ‘2 < |@z|2 <1+ 037
=1

which follows from (2.9) because {v‘}1<¢<;—1 is an orthonormal family of vectors. More-

over, {vl,... ,v"1 e’} is also an orthonormal family (because all the ¥, ¢ < i, are

orthogonal to e;), and so

1—1
o' > (0%, e)” + 3 (0", 0h)”
k=1
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and thus by (2.9) again

i—1 i—1 i—1

<5@'7@i> — |®i|2 _ Z <’lA}i,’Uk>2

k=1 k=1 k=1

v
~
=
(9]
-
~—
N
_|_
~
>
S
<
e
~
N
I
~
>
<
<
B
~
N
I
—

The previous inequalities prove that

1 AT 0
\/ﬁ§<v,v>§\/l+cg
0

and hence, subtracting 1,

_C_3<¥—1<<@ivi>—1< 1+02—1<C—3 (3.34)
2~ J1+cz TV - ¢ T2 '

This proves the first half of (3.28), which will now be proved fully as soon as we show
that |det(J’) — h"~?| < CC2.

By (3.13), det(J’) = h"~%det(J}). Then recall that (J{)re = (9 v*) by Defini-
tion 3.12. By construction of v’ (see (2.9)), this vanishes when 1 < k < ¢ < d. Therefore,
Ji is a lower triangular matrix and

d
det(J') = "~ det(J)) = B4 [T (8", 07) . (3.35)
i=1
Then by (3.34)

|det(J’) — R = pn—d

d
1-— H<ﬁi,vi>
i=1
BN
< Chnd < sup | (0, v") — 1|) ( sup 1+ [(8",0") |)

1<i<d 1<i<d

<cck. (3.36)

This completes the proof of (3.28). It remains to prove the second part of the lemma.
The estimate (3.30) is immediate from (3.28). Next

|det(J) — det(J")| < C (|0rpr| + 7|Var Vaor| + 7|V th]) < C(Co+ Cho)

by (3.27), Lemma 3.17, and (3.2); and where C' > 0 is independent of Cy and Cp,
provided that, for instance, Cy + Cro < 1. Together with (3.28), this yields

|det(J) - hn7d| < C(Co + Ch()) < Chnid(CO + Cho),

whenever Cy + Cho < 1. The bound (3.29) follows. O
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From now on we assume that Cy + Chg is small enough (depending on n, d, n, and
Cha), so that (3.30) and (3.29) hold for some € < 1. Similar additional conditions will be
given soon.

Already with these conditions, (3.29) says that det(J(x,t)) # 0 on Q. Then, since
(3.11) says that J equals the product Jac @ for some orthogonal matrix @,

det(Jac(x,t)) = det(J(x,t)) # 0. (3.37)

That is, Jac(z,t) is invertible. We also know from Lemma 2.17 and the continuous
differentiability of h that

p is continuously differentiable in g, (3.38)

so the inverse function theorem says that there is a small neighborhood of (x,t) where p
is a diffeomorphism. In particular, p is an open mapping. In the next result, we prove —
if Cy 4+ Chyo is small — that

p(Q) € Q=R"\T. (3.39)
Recall that ® : R? — T is the Lipschitz function defined by ®(x) := (x, p(z)).

Lemma 3.40. Let € € (0,1) be given. If Coy + Chro is small enough (depending on €, n, d,
n and Cpy ), then for any (x,t) € o,

(1 — )rh(z,t) < |plz, t) — d(x)| < (1+ €)rh(z, t) (3.41)
and
dist(p(z,1),T) > (1 — e)rh(z, t) > 0, (3.42)
where as usual v = |{.

Proof. Notice before we start that (3.42) implies (3.39). Now let (z,t) € Q be given,
and write ¢t = (t441,...,tn) as usual. By (3.3),

plz,t) — ®(x) = D,.(z) — ®(x) + h(x,t) Ry (0, 1). (3.43)

Notice that since ®,.(x) — ®(x) = (0, () — p(z)),

|, (2) — ()] = [pr(z) — p(2)] < /nr(y)|<P(SU —y) — o(z)|dy
e (3.44)

<Gy / ly|n. (y)dy < Cor/nr(y)dy = Cyr
R4 R4

because 7, is supported in B(0,r) and [ n,(y)dy = 1.
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Recall that R, , is an isometry, so |h(z,t) Ry (0,t)| = rh(z,t), and by (3.43)
oG, 1) — B(2)| - rh(,1)] < |®,(x) — ()] < Cor. (3.45)
Thus (3.41) as soon as Cy < C,'e in (3.45).

It remains to prove (3.42), which is stronger than the lower bound in (3.41). We take
any point ®(y), y € R%, of ', and we want to show that

lp(x,t) — ®(y)| > (1 —e)rh(z,t) > 0. (3.46)

The idea is roughly as follows. We know that h(z,t)R, (0,t) lies in P’(z,7)* and that
P'(z,r) is almost parallel to R?, so h(z,t)Ry,(0,t) should be almost orthogonal to R®.
On the other hand, ®(z)—®(y) is almost parallel to R%, so the sum h(x,t)R, . (t)+®(z)—
®(y) should be larger or almost as large as h(z,t)R; ,(t). Finally, we add ®,(z) — ®(z)
which we know is much smaller, and we should get (3.46).

We first estimate the direction of the w?, j > d-+1. Observe that <1E-7, ej> = <1I)j, ej> =
1 by the proof of (2.11) (but with the w?). Besides, |w’| < || because @’ is an orthog-
onal projection of @7 (see (2.13)), and 7| < (1 4+ C2)Y/? by (2.8). Hence

(w?,el) =@’ | (@, e) = |0/ | 7" > (1+CF)~ 1/2 (3.47)
by (2.14). Hence, since w’ and e/ are both unit vectors,
w! — /P =2 (1 - (w),e)) <2 (1 (1+C)"2) < 3.

Since Ry, (0,t) = 3274, tjw,

1
R, -(0,1) Z tiel| < Z It;]? Z lw? —el? | < Cor. (3.48)
j=d+1 j=d+1 j=d+1

Set e(t) = 3_7_44, t'¢/. The definition (3.43) gives

p(z, 1) — (x) = h(z, )e(t)] < [Pr(z) — ()| + h(2,t)|Ra,r (0, ) — e(t)] (3.49)
< Cor + Corh(z,t) < (1 + Ch1)Cor .
by (3.44), (3.48), and (3.1).
(y) — ¢(x). Denote by 7+ the
orthogonal projection on (R%)+. Then |7+ (®(y) — ®(z))| < Coly — x|, just because ¢ is
Co-Lipschitz. If |y — x| < 2Ch17, then

Now we control the vertical part of ®(y) — ®(x), i.e.,
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lp(z,t) = 2(y)| > [7 (p(x, 1) — 2(y))]
> | (h(x, t)e(t)| — |7+ (p(z, t) — h(z, t)e(t) — 2(y))|

= h(z,t) — |7 (p(x,t) — h(z, t)e(t) — @(y))]
h(w,t) —|p(x,t) — ®(z) — h(z,t)e(t)| — |7 (D(y) — @ ()]
> h(z,t) — (1 + Ch1)Cor — Coly — z| > h(x,t) — CCyr, (3.50)

which implies (3.46) when Cj is small enough. If instead |y — x| > 2C}; 7, then

p(z,t) — @(y)| = [@(x) — (y)| — |p(2,t) — ()]
>z —yl— (1 +e)rh(z,t) > 2Cr — (1+ €)rh(z,t)
> (2Ch1 — (1 + e)h(x,t))r > (1 — €)Cpir > (1 — e)h(x, t)r (3.51)

by (3.41) and (3.1). This establishes (3.46) in our second case; (3.42) and Lemma 3.40
follow. O

Lemma 3.40 is useful, in particular because it allows us to control the inverse images
of sets. Suppose from now on that Cj is chosen so small that the conclusion of the lemma
holds with e = 1/2. Then for (z,t) € Qo,

dist(p(z,t),T) < |p(z,t) — ®(x)] < 2rh(z,t) < 2C)1r (3.52)
and
dist(p(z,t),T) > 1 rh(z,t) > (3.53)
PR =g = 20 '
Thus, if Z = p(z,t) for some (z,t) € Qo, we get that
(2C}1) "t dist(Z,T) < |t| < 2Cp; dist(Z,T) (3.54)
and then, writing Z = (y, s) € R x R4,
[z =yl <|(z,90(x) = (y,9)] = [®(x) — p(z,t)] < 2C)t| (3.55)

by (3.52).
Thus, given Z = p(z,t) we get a good idea of where (z,t) lies. In fancy terms, p is
proper, which means that for every compact set K C R*\ T,

p N (K) = {(z,t) € Q; p(z,t) € K} is a compact subset of Q. (3.56)

Indeed, the estimates above imply that p~!(K) lies in a bounded subset of R™, and at
distance at least (2C41) ! dist(K,T') > 0 from R%. Thus p~1(K) is relatively compact in
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Qo, and the fact that it is compact (or closed) follows because p is continuous. We are
ready for the fun part of the argument.

Theorem 3.57. Assume that Cy and Crg are small enough, as before. Then p is a bijection
from Qo to Q = R™\ . Since it is also continuously differentiable and its Jacobian is
invertible at every point (by (3.37)) of Q it is also a diffeomorphism.

Proof. We will use a little bit of topology but, even though we are thinking about
the degree of our function p, we shall not need more than connectedness and the inverse
function theorem. Also, to make the argument more pleasant to read, elements of 2 or
Qo will be called z or y, rather than Z or Y with our earlier convention.

Set p~1(z) = {y € Qo; ppn(y) = z} for z € Q. We introduce the function N defined
on €2 by

0 if p~1(2) is empty,
N(z) =< 1 if p71(2) contains exactly one point, (3.58)
2 if p~!(z) contains at least two points.

The quantity N is clearly inspired by the notion of degree of a map, but we shall not
need to know more about that notion. We aim to prove that N is constant equal to 1,
which is equivalent to the fact that p is bijective, and we shall proceed by (similar) steps.

The general idea is to show that IV is constant, and later on we will compute its value.
Consider the set

Ry :={2€Q, N(z) =2} (3.59)

we want to show that Rs is both open and closed in €. Since © is connected (we are in
codimension > 1), we will deduce that

Ry =0 or Ry = Q. (3.60)

First, Ry is open. Indeed choose z € Ry and take y1,y2 € ¢, with y; # yo, such that
p(y1) = p(y2) = z. Define By = B(y1, |y1 — y2|/3) and By = B(yz,|y1 — y2|/3). Since
both Jac(y1) and Jac(yz) are invertible (see (3.37)), the inverse function theorem proves
that there exist neighborhoods Uy C By N Qgy, Uy C Bo N Qg and Vi, Vo C Q of y1, yo,
and z respectively, such that p is a bijection from U; to V; and from Us to V5. Since
Uy NUy C By N By = by construction, we deduce N(w) = 2 for all w € V; N V3, hence
VinNV, C Rs.

The set Ry is closed. Indeed, choose a sequence (27) jen of values in Ry that converges
to some z € Q. Take two sequences (y])jen and (¥3)jen in Qo, such that y] # v} and
p(yl) = p(y}) = 27 for each j. Set K = {27} ;enU{z}; this is compact set in €2, so by (3.56)
Ko = p~1(K) is a compact subset of Qg. The y{ lie in Ky, so there is a subsequence of
(y7) (that we still will denote by (y7)) that converges to some limit y; € Ko C €. Since
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p is continuous and the p(y?) = 27 converge to z, p(y1) = z. Let us extract a further
subsequence (still denoted the same way), so that the y% converge to some ys € Kjy.
Observe that p(y2) = z too.

If y1 # yo, z € Ro and we are happy. Otherwise, observe that since Jac(y1) is invertible,
the inverse function theorem shows that there is a small ball centered on y; where p is
injective. This contradicts the fact that y{ #+ y% and both sequences converge to y; = ys.
So Rs is both open and closed in © and (3.60) holds.

Next we want to show that

Ry :={z€Q, N(z2) =1} is either empty or equal to 2. (3.61)

Since this is trivial if Ry = Qg, we may assume that Ry = ().

We proceed as for Ry. First observe that R; is open, because if z € Ry and y € p~1(2),
then Jac(y) is invertible, so we can apply the inverse function theorem near y and find
solutions of p~!(z) = 2’ for 2’ near z. Since none of these 2’ lies in Ry (which is empty),
they lie in R;, as needed.

The set R is closed. Indeed, let 2/ = p(y’) be a sequence in R; that converges to some
z € Q. As before, K = {27} ey U {2} is compact set in Q, Ky = p~!(K) is a compact
subset of g, there is a subsequence of (y{) that converges to some limit y; € Ky C o,
and since p is continuous, p(y1) = z. Thus z € p(Q), hence z € Ry (because Ry = ),
R; is closed, and since € is connected, (3.61) holds.

Of course, Ry and Ry cannot be both empty. Indeed, it would mean that no point of
Q are in the range of p, and the later is not possible by (3.42). So we proved that

N is constant and equal to either 1 or 2 on €. (3.62)

We still need to compute its value; obviously Theorem 3.57 will follow as soon as we
prove the next lemma.

Lemma 3.63. Let o, h, and p be as in Theorem 5.57. Then N, j, is constant equal to 1.

Proof. We decided to put this as a separate statement to cut the proof, and because the
argument is of a different nature. We are now going to play with the way N depends
on the functions ¢ and h, so we now write p, 5, for the mapping p that was constructed
above, and similarly denote by N, 5(z) the counting function N above. Also denote by
N(p,h) denote the constant value of Ny ;(2) on . With all this notation, we want to
prove that N (¢, h) = 1.

Step 1. We claim that if the pairs (1, h1) and (p2, ha) both satisfy the assumptions of
the theorem (with the same C},; in particular) and if 1 = (2 on By = B(0,20C%,) C R?
and hy = hy on By = By x B(0,20C%,) C R", then N(¢1,h1) = N(p2,h).

This will be convenient, to replace (y,h) by a pair for which we can compute the
degree N more easily, but let us first prove our claim. Let (¢1,h1) and (¢2, ha) be as in
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the claim. For i = 1,2, denote by I'; the graph of ¢;, and set p; = p,, n,. Consider the
point z = (0,s), where s € R"~? is chosen such that |s — ¢1(0)| = 1. By assumption,
both functions ; are 1-Lipschitz, so % < dist(z,T;) < 1.

Next let (z;,t;) € Qo be any solution of p;(z;,t;) = z, which exists thanks to (3.62).
We know from (3.54) that [t;| < 2Ch1dist(z,I;) < 2Ch1, and then (3.55) says that
|z;] < 2Ch1|t;] < 4CE,. Now the value of p;(;,t;) depends only on the values of ¢; and
h; in B(z;,t;) (check with (3.3), and recall that » is supported in the unit ball). Since
these functions coincide on By and B| respectively, p1(x;,¢;) = pa(zi,t;) = z. In other
words, the equations p;(x,t) = z have the same solutions, N(p1,h1) = Ny, p,(2) =
Ny, ny(2) = N(p2, ha), and our claim follows.

In fact, by translation invariance (or with the same proof), the claim is still valid if
By is replaced with any ball of radius 20C?,.

Step 2. We modify ¢ in a faraway ball to make it simpler. Let ¢ and h be as in the
theorem. We can find ¢;, which is also Cy-Lipschitz, coincides with ¢ in By, while
1 = (0) in some other ball By = B(x1,20C%,).

Indeed, choose z; € R? at distance 100C3, from the origin, and decide that ¢ = ¢
on By and ¢1 = ¢(0) on Bj; it is easy to check that o is Co-Lipschitz on By U By,
because

lo1(y) — ¢1(2)] = |e(y) — (0)] < 20C7,Co < |2 —y|Co

whenever y € By and z € By; then we can use the Kirszbraun extension theorem (see
[28, Theorem 2.10.43]) to define ¢ on the rest of R Of course, we do not need to be
that fancy; a Whitney-type extension theorem, or just setting ¢1(z) = ¥ (z)p(z) + (1 —
¥(x))p(xg), with a smooth radial bump function v such that ) = 1 on a neighborhood
of By and ¢ = 0 on R?\ 3B, would work as well, except that maybe ¢; is 2Cy-Lipschitz.
We can fix this problem by requiring in advance that Cy to be twice smaller in the
statement of the theorem. By Step 1, N(¢,h) = N(p1,h). In addition, let o denote
the constant function ¢(0); then g2 = 1 on By, so N(p1,h) = N(p2,h) by the small
extension of Case 1. Thus it is enough to check that N(¢2, h) =1 when our function ¢
is constant.

Step 3. At this point we could actually compute because (3.3) becomes much simpler,
but let us cheat again and modify h now. Set R = 100C}; and let 7 > 0 be small, to
be chosen soon. Then find a smooth compactly supported function ¢ on R, such that
0 < 9 < 1 everywhere, ¥(r) = 1 for r < R, and '(r) < 7r~1. This is easy to find,
because f;oo 1 diverges. Then set hy(z,t) = ¢(r)h(z,t) + (1 — 9(r)). Observe that hy
satisfies (3.1) trivially, is continuously differentiable, and satisfies (3.2) because

r|Vahi| < 7|Vah|Y +r|h — 1[04
<7|Vath| 4+ Crallrdloo < Cho + 7Chi < 2Cho (3.64)
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if 7 is chosen small enough. The pair (9, h1) satisfies the assumptions of the theorem
(with the constant 2C}g, but this is not a worry, we just need to require Cjo to be
twice smaller in that theorem), so we can use Step 1 again and we get that N(pq, h) =
N(p2,ha).

Finally we can compute N(p2,hq) by computing Ny, 5, (2) for points that are very
far. Let Ry be such that ¢(r) = 0 for » > R;. Since ¢3(z) = ¢(0) everywhere, we get that
for (z,t) € Qo, pr(x) = p(0), ' =vi =€l for 1 <i<d, W =wl =l ford+1<j<mn,
R, , is the identity, and (3.3) yields

Posn(@,t) = @r(2) + h(z,t)Ry r(t) = (,¢(0)) + h(z, t)t. (3.65)

If in addition = [t| > Ry, we get py, n(x,t) = (2,¢(0)) +t = (z,t) + (0,9(0)).

Now we compute N (¢2,h1) = N, 1, (2) at a point z which we take at distance larger
than 2Cp, Ry from the graph I' of ¢o. If (2,t) € § is any solution of py, s, (z,t) = z,
then by (3.52), dist(z,I") < 2Cp, |t|, which forces [t| > Ry. Thus py, n, (z,t) = (x,t) +
(0,(0)), and it is easy to see that there is at most one solution (z,t).

This proves that N(¢2,h1) = Ny, pn, < 1. But N(¢,h) = 0 is impossible, as ob-
served for (3.62) Altogether N(¢,h) = N(p2,h1) = 1, and this completes the proof of
Lemma 3.63, and at the same time Theorem 3.57. O

Remark 3.66. We would like to thank the referee for giving us another proof of
Lemma 3.63, whose sketch is given here. For any two ¢;, h;, i = 1,2, satisfying the
hypothesis of Theorem 3.57, one can show that N is also constant along the “line”
(p®,h°) = (sp1 + (1 — s)pa, shy + (1 — s)hg). First, observe that ¢® and h® uniformly
satisfies the necessary conditions, so the changes of variables p* constructed from (¢*, h*)
are uniformly C*° and have uniform lower and upper bounds on their Jacobians (and
even more, the modulus of continuity of the Jacobians are uniform, due to the compu-
tations of Sections 2 and 3). Thus, around any point (z,t) € Qp, we can find a uniform
(in s) neighborhood on which p® is a bijection onto its image. Arguing like in the be-
ginning of the proof of Theorem 3.57, one can prove that Nys 4+ (z) has to be constant
in s for any point z € '\ @, where I'? is as expected the graph of ¢°. Lemma 3.63
follows by (3.62) and by letting ¢o = 0 and he = 1.

We end this section with a remark which may not be useful for the rest of the paper,
but is nonetheless reassuring. We complete our definition of p by taking

p(xz,0) = &(x) = (z,0(z)) for z € RY, (3.67)

as announced in (1.46). Because of (3.41), p is continuous across R? too. Since we have
an upper bound on Jac, p is now globally Lipschitz on R™. Since p defines a bijection
from R? to I, we get that p is a Lipschitz bijection on R™. Finally, since the inverse of
p is continuous (including across T', by (3.52) and (3.53)) and Lipschitz on © (because
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we have bounds on Jac_l), we see that p is bi-Lipschitz on R", as promised in the
introduction.

4. The Carleson measure condition for the Jacobian

We continue with the conventions and assumptions of the previous section, where we
assume that Cy + Cjg is small enough, depending on n, d, n, and Cj1, and C denotes
any constant that depend on these parameters.

Recall from (1.42) that (we plan to show that) the normalized matrix A that is
associated to our conjugate operator L is given by

P N I R Jac(e 1117 Jac(a. £1-1
(x,t)-(m) | det(Jac(z,t))|(Jac(z, t)™")" Jac(x,t)

(4.1)
- <¥|)ndl | det(J (z, )| (J (z, £) ") T (2, £) 7"
D(p(x. 1)) ’ ’ ’

(z,t
where (Jac(z,t)~1)T denotes the transpose Jac(z,t) "1, J(x,t) is defined in Definition 3.8,
and the second line comes from (3.11), which says that J(z,t) = Jac(z,t)Q(x, t) for some
orthogonal matrix Q(z,t).
In this section we take care of

A(z,t) = |det(J(z, )| (J (@, t) DT J (2, 1) (4.2)

which we try to put in a nice form (a nice block matrix, plus a perturbation that satisfies

Carleson estimates). The additional multiplicative term (%)n - will only be
treated in the next section, because this will involve estimates on the regularity of I'
and o.

We do not reveal yet what is our choice of function h in the definition of p, but in
addition to (3.1) and (3.2), we now assume that rV, ;h satisfies the Carleson measure

condition, as in Definition 1.21, with some constant Cj». In short,
rvmh S CM(ChQ) (43)
The main result of this section is the following description of A.

Lemma 4.4. There exists ¢ > 0, that depends only on n, d, n, and Ch1, such that if
Co + Cho < ¢, then there is a decomposition A = A" + A2, where

(1) both A and A' are uniformly elliptic and bounded,
(2) both vV, Al and A? satisfy the Carleson measure condition,

o a= (4

0 bl d), where Al is a dxd (elliptic) matriz and b is a positive function,
n—
with
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C7 ' <b(x,t) <C for (z,t) € Q. (4.5)

In this context, bounded elliptic means that there exists C' > 0 such that |Ay | < C
for 1 <k,/<nand

Az, )¢ - &> CHEP for (z,t) € Qp and & € R™, (4.6)

and similarly for A! (in R").
The constant C above depends only on n, d, n, and Cj1, and the Carleson constants
for A and A' depend on Cjs too. Let us also observe that we will take

b=h"2det(J) = A" 942 det(J}), (4.7)

where J’ and Jj are defined in Definition 3.12. We put the second formula here because
det(J7) does not depend on h.

The proof will keep us busy for the rest of this section. We start with simple remarks
on the Carleson condition. Recall from Definition 1.21 that we say that the function

2 dzdt
| i is a

a(x,t), defined on €y, satisfies a Carleson measure condition when |a(z,t)
Carleson measure on 2.
When a is defined on R? x (0,4+0c), we say that it satisfies a Carleson measure

condition when |a(z, [t])|? lﬁﬁ‘ﬁi is a Carleson measure on Qg; it is easy to check that

pw
T

this happens if and only if |a(z,r) is a Carleson measure, in the usual sense, on
R? x (0,+00). That is, if there is a constant C' > 0 such that

T

/ / |a(y,s)|2dy% < Cr? for x € R and r > 0. (4.8)

0 B(z,r)

In both cases, when a is matrix-valued, let us simply say that it satisfies a Carleson
measure condition if each of its entries ay, ¢ satisfies a Carleson measure condition; we do
not care about which norm we would take on the spaces of matrices.

A very useful way to obtain Carleson measures is via the following result.

Lemma 4.9. Let m = 1 or m = d. Let § be in the Schwartz space S(RY,R™) and such
that [, 0 = 0. Define

0. (x) :== Tidﬁ (;) .

Then there exists C > 0 such that for any f € L*>(R? R™),

T dr
1657127 < cl
0
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where 0, % f(z) = [ 0-(y)f(x —y)dy if m =1 and 0, x f(x) = [pa (0r(y), f(x —y)) dy if
m=d.

Moreover, if 6 is supported in B(0,2) and f € L>(R% R™), then (x,r) — 6, * f(x)
satisfies the Carleson measure condition.

Proof. The first part of the lemma (on the L2-boundedness of 6,  f) can be found in
[52, Section 1.6.3]. The second part is Theorem 3 in [52, Section IV.4.3]. O

We are now ready to prove various Carleson measure estimates for p and its compo-

nents.

Lemma 4.10. The quantities |0r@,| and 7|V »Vaor| satisfy the Carleson measure con-
dition, with a constant C > 0 that depends only upon n, d, and 7.

Proof. According to Lemma 4.9, it suffices to prove that 0,¢,, 70,04, ¢r and 10,04, ¢r
can be written as 6, x Vo with § € S(R?), suppf C B(0,1) and [, 6 = 0.
First, we have that 0,¢, = (0;1,) * ¢ where

oo =~ (2) = -0 (2) = [ ()]

= div, 0} (x)

if 01(z) := an(x). Thus Since 7 is in S(R) and supported in B(0,1), so is 6*. Besides, n
is even implies that 6! is odd and thus [ 6' = 0.

Second, 70,0y, 0r = (10p1) * Oz, p = (rOpmy) x (9, ). In the same way, 79,1, = 02
with 62 := div, 6*. Since 0! is in S(R) and supported in B(0,1), so is 62. Moreover, 6>
is a derivative so [, 0% = 0.

Third, 70y, 0u, or = (10s,my) % O, o = 02 % Oy, p with 63(z) := 0,,m(x). Since 7 is in
S(R) and supported in B(0,1), so is 2. Moreover, 62 is a derivative so fRd 6=0. O

The next lemma gives bounds on the quantities introduced in Definition 3.12.

Lemma 4.11. Let € € (0,1). There exists ce > 0, that depends on €, n, d, n and Cp1, such
that if Co + Cho < ce, then

(i) the matrices J| — I, H and M have coefficients bounded by e,
(i) H € CM(CChe) and M € CM(CC?),
(iii) TV J] € CM(CC3).

Proof. Let us start with (i). By (3.25), Hxe < CCho < € if Chp is small enough. Similarly,
My, < CCy < € by (3.24) if Cy is small enough. Recall from Definition 3.12 that the
coefficients of J{ are (J{)re = (9%,v%). So the fact that |[(J{)w — 1] < efor 1 <k <d
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follows from (3.30). It remains to check that |(J])ke| < € for k # £. Observe that for any
ke{l,...,d},

M&

’U v> = |t <1+ C?
=1

since {v’}1<r<q is an orthonormal basis and by (2.8). As a consequence, if £ # i, we have

(P s 3 () <1+ (o0t)? <203,
1<k<d
]
where we used (3.34) for the last inequality. Point (i) follows.
The proof of (ii) is immediate from (4.3), Lemma 3.15 and Lemma 4.10.
To prove the last point, recall that (J{)ze = (8%, v*). Notice that

7|V (88, 05) | < 7|Vy, 08|+ 74/1 + C3| V4 0|

by (2.8). Thus rV(Jj)r, satisfies the Carleson measure condition if 7|V, 9% =
7|V rOg, or| and 7‘|Vx,rv£| do. Yet, the latter fact is a consequence of Lemmas 2.18
and 4.10. The lemma follows. O

Lemma 4.12. For any € € (0,1), there exists cc > 0 (depending on n, d, €, n and Cp1)
such that if Co + Cho < ce, then

(i) | det(J) — det(J')| < € and |det(J') — h"~9| < ¢,
(ii) det(J) — det(J") € CM(CCE + CCha),
(iii) vV det(J]) € CM(CCE) and rV 1 det(J") € CM(CCE + CCha).

Proof. The fact that |det(J) — det(J’)| < € if Cp + Chp is small comes from (3.27),
Lemma 3.17 and (3.2). The fact that det(J) — det(J’) satisfies the Carleson measure
condition is immediate from (3.27), Lemma 4.10 and (4.3). Similarly | det(J')—h""¢| < €

when Cp is small, by (3.28). It remains to prove (iii).
d

Recall that det(J7) = Z sgn(o) H(J{)Z-,U(i). Then

ceSGy =1

d
(Vi (1)j0) [ TDi0 -

i=1
1#]

M&

TV det(J7) = Z sgn(o

oceGy j:l

Since the coefficients of J; are bounded (see (i) in Lemma 4.11) and 7V (J])k sat-
isfies the Carleson measure condition for any 1 < k,I < d (see (iii) in Lemma 4.11),
Vg, det(J]) satisfies the Carleson measure condition.
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Finally observe that det(J’) = h"~?det(J]), hence
rVeidet(J) = (n — d)h" 419V, 1h det(J]) + h" " V., det(J]).

Now 1V, ¢det(J') € CM(CC2 + CChz) because 1V, det(J]) € CM(CC2) and (3.1),
(4.3). O

In the sequel, we denote by J"(z,t), (z,t) € Q, the diagonal matrix defined by

0 if k£ 0
(J ke(, 1) = { 1 if1<k=(<d (4.13)
hMz,t) ifd+1<k={(<n.

Thus det(J”) = hn~4.

Lemma 4.14. For any € € (0,1), there exists ¢ > 0 (depending on n, d, €, n and Ch)
such that if Cy < c, then the matrices J and J' are invertible and

(i) J71 = (J) 7t and (J')7t — (J")~! have coefficients bounded by e,
(i) J~1 = (J)"1 € CM(CCE + CCha),
(ii3) 7V (J)7L € CM(CCZ + CCha).

Proof. First notice that by Lemma 3.26 (see in particular (3.29)), there exists ¢. > 0
(depending on n, d, n and Cj1) such that when Cy + Chg < ¢,

det(J) and det(.J’) are both greater than 271Cy ™. (4.15)

In the sequel of the proof, we systematically assume that Cy+ C} is small enough for all
the conditions above to be satisfied; in particular, the matrices J and J’ are invertible.
Let prove (i). Cramer’s rule yields for k,¢ € {1,...,n}

(J’_I)M:det(J’)_1< Y sen(o ﬁJ; ) (4.16)
SGrze iZk

and

(77 = det(7) 7 (3 sgn(e) [] o)

gg(i)G:% 37:5’%
= (det(.J") + (det(J) — det(J'))) "
(3 sanlo) [T+ Hoy+ Moo)). - (417
ceS, =1

o(k)=¢ 1¢k
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So the difference is bounded by (recall that (4.15) holds)

(T ke = ("~ e

< C|det(J") — det(J)| ( sup |Jij|)

1<i,j<n

n—1
+C ( sup |Hij| + |M1]|> (1 sup |Hj| + | M| + |JZ/J|> ) (4.18)

1<i,j<n <i,j<n

where C' > 0 depends only on Cf;. Thanks to (i) of Lemma 4.11 and (i) of Lemma 4.12,
for all € € (0,1), there exists ¢ such that if Cy 4+ Chro < ¢,

(T ke = (J' " Hel < e

The same argument can be repeated to prove that for all € € (0,1), there exists c.
such that if Cy + Cho < c,

(T e = (J" el < e

The bound (4.18), together with (ii) of Lemma 4.11 and (ii) of Lemma 4.12, implies
in the same way that J—! — (J')~! satisfies the Carleson measure condition.

In order to prove (iii), observe first that J’ is diagonal by blocs, hence (J')~! is also
diagonal by blocs. In particular, we have for k, ¢ € {1,...,d},

d
(7 ke = det() 7 (Y sen(o H T o)

€6 =
;(k;):dz z#

It follows that for k,¢ € {1,...,d}

d d
Vx,t(Jlfl)ké:det(J{)fl( > sen(0) > V(Iow). H (D)o (i.i
Jj=1

;(%)sze z;éj k
Vm,t det(J{)
det(J])? g@; sgn(o H :
o (k)= 7k

The property (iii) of Lemmata 4.11 and 4.12 implies that V(.J’ 1), satisfies the Carleson
measure condition for any k,¢ € {1,...,d}. The Carleson measure condition for the
gradient of the other coefficients of J’ =1 is either trivial or given by (4.3). O

In the following, if A is a matrix, we use the notation A~T for the transpose inverse
matrix of A, that is, (A~1)T or equivalently (AT)~!
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Lemma 4.19. For any € € (0,1), there exists cc > 0 (that depends on €, n and Chy) such
that for Co + Cho < c,

(i) the matrices J-TJ~1 — (J)~T(J)~t and (J')~T(J)~t — (J”)~2 have coefficients
bounded by €,
(is) J-TJ=L —(J)"T(J)"t € CM(CCZ + CCha),
(iii) vV . [(J)"T(J) 7 € CM(CCE + CCha).

Proof. Just for this proof, let us write A for J=1, A’ for J’ ~! and A” for J” 1. One has
for 1<k, l<n

(AT Ay — (A'T AT, Z A Asr — Z Al ALy = Z (A Aie — Aj Ajy)
=t (4.20)
= Z A (Aie — Ajp) + (Air — Ay) Al

Then, thanks to (i) of Lemma 4.14 (and assuming as usual that Cy + Cpg is small),
(AT A)pp—(A’T A" < e. In the same way, we can prove that (A’ T A") g, — (A" TA" )y < €
if Cy + Cho is small enough.

The identity (4.20) and (ii) of Lemma 4.14 entail the Carleson measure condition for
(AT Ay — (AT A" gy Finally,

v(A'TAY, Z ANV AL + AV AL,

which implies, by (iii) of Lemma 4.14, that V(A’T A’) satisfies the Carleson measure
condition. O

We are now ready to complete the proof of Lemma 4.4. Assume Cy + Cjg is small
enough, so that we can apply the previous lemmas for values of ¢ that we can decide
along the way.

Thanks to Lemma 4.12, J' and J are both invertible, and furthermore the coefficients
of our main matrix A = |det(J)|J~TJ~! of (4.2) are bounded. Observe also that det(.J)
and det(.J’) are positive by Lemma 3.26 and so A = det(J)J~7J~1. Set

Al =det(J)J ~TJ'~
=det(J)J Tt —det(J)J ~TJ !
= (det(J) — det(J")J Tt +det(J)(JTI =g -1,

and finally
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A% =det(J)J' T Tt — det(J")J" 2
= (det(J") — det(J"))J' ~TT ~t - det(J") (S T T = "2,

By Point (i) in Lemmas 4.12 and 4.19 (plus the fact that det(J”) = h"~%), the coefficients
of A? and A3 are as small as we want in L>-norm. Since A! = |det(.J")[J"” =2 — A3 and
A =|det(J")|J" 72— A% — A3 A and A are both small perturbations of | det(.J")|.J" =2,
But the diagonal matrix | det(J”)|J” =2, where J” comes from (4.13), is clearly bounded
and elliptic (which means that (4.6) holds), with an ellipticity constant C' in (4.6)
bounded by C}'; 4=2 Tt easily follows that, if the perturbations are small enough, Al
and A are (uniformly) bounded and elliptic. This takes care of Point (1) of Lemma 4.4.
It is clear that A = Al + A2. Concerning Point (2), notice that

Ve iAl = det(J )V (J 77T 71 + (I 71T YV, i det(JT)
and
A? =det(N)(JTT7 =7 7T 7Y 4 (det(J) — det(J))J ~ T 1.

Lemmata 4.12 and 4.19 allow us to conclude that both er,tAl and A? satisfy the
Carleson measure condition.

!

Now we check (3). Recall from Definition 3.12 that J’ has the form (”61 A IO d).
n—

Thus

Al = det(J) ((J{)Z(J{)l h_Q(}n_d> . (4.21)

Let b = h=2det(J'); then (4.21) is the same as the representation of (3), and (4.7) holds
too.

Lemma 4.12, point (i) entails that |det(J') — A"~ 9| < ¢, with € as small as we want.
Since h is bounded and bounded from below, we get (4.5). Lemma 4.4 follows. O

5. The a-numbers and the regularity of the soft distance D

In this section we use the a-numbers introduced by X. Tolsa to give some control
on the geometry of our graph I', an Ahlfors-regular measure o supported on I', and
eventually the distance function D = D, defined by (1.15).

The main estimate is Lemma 5.59, which gives some control on D in terms of an
average density of the measure o, and with errors controlled by a Carleson measure.
This will lead to the estimate (1.48), for a suitable choice of auxiliary function h.

Here I' is our Lipschitz graph, and for o we start with any positive measure on I"
that is Ahlfors-regular, i.e., satisfies (1.7) for some constant C, > 1. For this section
we need some known geometric estimates on I' and o, which happen to hold for any
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uniformly rectifiable set, but which we may write slightly differently in the context of
small Lipschitz graphs to simplify the exposition.

Later on, we shall need to restrict to measures ¢ that lie close enough to the surface
measure, because otherwise the function h that corresponds to D may not satisfy the
slow variation condition (3.2) with a small enough constant. But we shall only worry
about this in the next section.

The generic constant C' in this section is allowed to depend on n, d, C, 1, and another
bump function 6 that will be chosen later, and (later in the section) the exponent « in
the definition of D.

We start with the proof of (1.17) promised in the Introduction.

Lemma 5.1. If T is Ahlfors-reqular and o satisfies (1.7),
C~1dist(X,T') < Do (X) < Odist(X,T) (5.2)
where C' > 0 is a constant that depends only on n, d, a, and C,.

Proof. Proving (5.2) is the same as proving that D(X )~ is equivalent to dist(X,T")~*.
Let us prove the latter fact. Let X € Q be given, set r = dist(X,T"), pick = € T such
that |X — z| = r, and decompose then D, (X)™® into contributions of annuli as

D)= [ Xyt Y [ Xy

ly—z|<2r k212k7‘§|y7m\<2k+17’

<r % (B(x,2r) + > (2F — Dr) "o (B(x, 28 )
k>1

(oo}
< Cor~ = (2r)? + C, Z(2k — 1)~ drapmdmaghtlyyd < o= lpma
k=1
by (1.7). The reverse inequality is easy too, since
Da(X)™" > / X — |~ do(y) > (2r) o (Bla,r) = Clr e,
ly—z|<r

where the last inequality uses the lower bound in (1.7). O
5.1. Wasserstein distances

Most of our estimates will be based on a result of X. Tolsa, [53, Theorem 1.1], which
gives a good control on sums of squares of local Wasserstein distances to flat measures,
for every Ahlfors-regular measure on a uniformly rectifiable set. Here our set is a small
Lipschitz graph, which makes the verification of Tolsa’s theorem easier, but we will not
really need the Lipschitz character of T'.
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We first define flat measures and local Wasserstein distances. Denote by = the set of
affine d-planes in R™, and for each plane P € Z, denote by pp the restriction of H? to P
(in other words, the Lebesgue measure on P). By flat measure, we shall mean simply
mean a measure i = cpp, with ¢ > 0 and P € Z. We shall denote by F the set of flat
measures.

Next we measure the distance between our measure o and flat measures, locally in
a ball B(z,r), which we shall often take centered on I' because this way we know that
o(B(z,r)) is fairly large.

Definition 5.3. For z € R™ and r > 0, denote by Lip(z,r) the set of Lipschitz functions

f : R™ — R such that f(y) =0 for y € R™\ B(z,7) and |f(y) — f(w)| < |y — w] for
y,w € R™ Then define the normalized Wasserstein distance between two measures o

/fdo—/fdu‘. (5.4)

and p by

dist, (g, 0) =774 sup

feLip(z,r)

Then define the distance to flat measures by

ay(z,m) :ﬁrelff dist, ,(u, o). (5.5)

We normalized dist. (i1, 0) with r=9=1 because this way, if u(B(z,7)) < Cr? and
o(B(z,r)) < Cr¢, then dist, ,(u,0) < 2C because

Iflloec <7 for f € Lip(z,r). (5.6)

Also observe that if B(y,s) C B(zr), then Lip(y,s) C Lip(z,r); it follows that
disty s (1, 0) < (r/s)¥* 1 dist, - (u, o), and hence

a,(y,s) < (T/s)d+1&'g(z,r) when B(y, s) C B(z,r). (5.7)

In Theorem 1.1 of [53], the author uses slightly different numbers, defined as follows.
For every dyadic cube @ in R?, denote by zg the center of @, d(Q) its diameter, and set

a3(Q) = a(2q,3d(Q)).

Then he proves the following Carleson measure estimate, valid when I' is a Lipschitz
graph (maybe with a large constant Cp) and o = gH‘dF for some bounded function g¢: for
every dyadic cube R C R™ that meets the support of o,

Y ak@)?e(Q) < Cd(R)", (5.8)

Q€eD(R)
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where D(R) denotes the collection of dyadic cubes contained in R, and the constant C
depends on n, d, Cp, and ||g]|co-

The same statement, modulo cosmetic changes, stays true when I' is a uniformly
rectifiable set of dimension d and o an Ahlfors-regular measure on I'. This is even a
characterization of uniform rectifiability. See Theorem 1.2 in [53]. We shall not need this
fact here.

We want to turn (5.8) into a Carleson estimate of the usual type, with a function of
z € R?and r > 0.

Lemma 5.9. For every Ahlfors-reqular measure o with support T', the function (z,r) —
Qo (®(x),7) (defined on R x (0,+00)) satisfies the Carleson measure condition.

Proof. See (4.8) (or just (5.13) below) for the definition of the Carleson condition. Let
B(xz,7) C R be given, let kg € Z be such that 2r < 2% < 47 and the cover B(®(z),2r)
by less than C disjoint dyadic cubes R; of sidelength 2k For each j and each dyadic
subcube @ € D(R;), denote by H(Q) the set of pairs (y,s) such that ®(y) € @ and
d(Q) < s < 2d(Q). Notice that each pair (y,s), with y € B(x,r) and 0 < s < r, lies in
one of these H(Q) (because ®(y) € B(®(x),2r) C U;R;). In addition, if (y,r) € H(Q),
B(y, s) < B(zqg,3d(Q)), and hence by (5.7)

Ao (y,5) < (3d(Q)/9)™ n (2, 3d(Q)) = (3d(Q)/5)" a5 (Q). (5.10)

Hence

™

/' /’ aAu@gwaSE: S /’ &Awsfd?“

0 RINB(x,r) 7 QED(R))(y s)cH(Q)
. dxds
<cy ¥ oa@er [ FE s
7 QED(Ry) (y,5)€H(Q)

by (5.10). Next

ds

S

dxds
[ EE-lwertoweol
(y,5)€H(Q) d(Q)<s<2d(Q)

<Cl(2)0(Q)  (5.12)

because the pushforward by ® of the Lebesgue measure on R? is less than Co. Altogether

r

/ / Gl B <0 Y Q@)

0 RINB(z,r) J QED(R;)
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<C> d(R)t < Crt (5.13)
= J = .
J

by (5.8). This is the desired Carleson measure estimate (compare with (4.8)). O

Here we shall work with a fixed measure o on I'; which we may drop from the notation,
and it will be simpler to work with the function « defined by

alz,r) = Gy (®(x),4r) for x € R and 0 < r < +oo0. (5.14)
It easily follows from Lemma 5.9 that
(x,7) = a(x,r) satisfies the Carleson measure condition. (5.15)
5.2. The ensuing geometric control

Next we want to show that the numbers a(xz,t) control the geometry of I' and
o. In particular, the d-planes P(z,r) essentially minimize «(z,r) (see Lemma 5.22),
and the normalized average density A(z,r) defined by (5.20) is reasonably smooth (see
Lemma 5.49).

For z € R% and r > 0, choose a flat measure fz.r such that
diste (z),4r (fa,r, 0) < 200 (P(x),47) = 20(2, 7). (5.16)

Recall from (5.4) that this means that

‘/fdﬁ:w —/fda‘ < 2a(x,r)(4r)?t for f € Lip(®(x),4r). (5.17)
Since fig » is a flat measure,

ﬁa:,r = C(xar)MA(m,r) (518)

for some choice of ¢ > 0 and affine d-plane A(x,r), but we would prefer to use constants
and d-planes that we control better.

So our next task will be to replace A(z,r) with the approximating d-plane P(x,r) of
Section 2, and ¢(z,r) with a number A(x,r) that we define now.

Fix § € C>(R") such that 0 < 6 < 1, suppf C B(0,1) and 6 = 1 on B(0,1). Then
set

O2,r(y) = O(W), (5.19)

r

where ®,.(z) = (z,¢,-(z)) is as in Section 2, and finally
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Jober@)do(y) [ Ozr(y)do(y)
Jotem o Wdipery 19 [oa 0(y)dHA(y)’

Az,r) = (5.20)

where the second identity uses the fact that we centered 6, ,(y) at ®,.(z) € P(z,r). In
other words, we normalize the measure

P = AT, T) P () (5.21)

by the fact that it has the same effect on a normalized bump 6, , as 0. Here is our
replacement lemma.

Lemma 5.22. With the definitions above (and if Cy is small enough),
diste(q),r(Hz,r, 0) < Calz, 7). (5.23)

Once this is proved, we will be able to forget about A(x,r) and ¢(x,r), because we
have more explicit and convenient choice that does nearly as well.

Proof. Let 2 € R¢ and > 0 be given. We may as well assume that
a(z,r) < e, (5.24)

where ¢; > 0 will be chosen soon (depending on n, d, and C,) will be chosen later. This
information will be used from time to time, to eliminate strange cases.
We first control the average distances from points of I" to A(z,r). We claim that

dist(z, A(x,7))do(z) < Critla(z,r). (5.25)

I'NB(®(x),2r)

Let us get rid of a minor potential problem first. It could happen a priori that the d-plane
A(z,r) does not meet B(®(x),4r). In fact this is impossible when (5.24) holds with a
small ¢y, but let us not bother to prove this. When this happens, notice that [ fdf, , =0
for every f € Lip(®(x),4r) (because f = 0 on A(z,7)), so diste(g)ar (fa,r, o) does not
change if we replace A(x,r) with any d-plane 1~\(m, r) that does not meet B(®(x),r) and
i(x,r) with any flat measure on /~\(x, r). For instance, we may choose K(x, r) so that it
touches OB(®(x),4r). Thus we may assume that A(z,r) was always chosen so that

dist(®(x), Az, r)) < 4r. (5.26)

In order to prove (5.25), we shall construct a function f € Lip(®(x),4r) and test it
against (5.17). First define a Lipschitz function 1 by ¢(z) = § for z € B(®(x),2r) and

L (4r — |z — ®(z)])+ = 1 max(0,4r — |z — ®(x)|) (5.27)

vz = 16 167
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otherwise. Then set f(z) = ¢(z)dist(z, A(x,r)). Notice that

IVI(2)] < 9(2) + dist(z, Az, 7)) [V (2)] < i +8r|[V(z)] < 1,

by (5.26), and since ¥(z) = 0 on R™ \ B(®(x),4r), we get that f € Lip(®(x),4r) and
(5.17) applies. This yields

/ dist(z, A(z,7))do < 8 / ¥(z) dist(z, Az, r))do

I'NB(®(z),2r) I'nB(®(z),2r)

= S/f —dpy,) < Critla(z,r)  (5.28)

since [ fdu;, = 0 because f vanishes on its support A(z,r). This proves our claim
(5.25).

Next we estimate the distance from P(z,r) to A(z,r). We start with the position of
the base point ®,.(z) = n, * &(z) = fyeB(w " Nr(z — y)@(y)dy. Simply observe that

dist(®,(z), Az, 7)) < / nr(z — y) dist(®(y), Az, 7))dy

yeB(z,r)

oo / dist(®(y), Az, r))dy

yeB(z,r)

<Crilale [ distte Aen)do(:)

z€I'NB(®(x),27)

< Cra(z,r) (5.29)

because the pushforward by ® of the Lebesgue measure dy is less than C'do, and by
(5.25).

Then we control the direction P’(z,r) of P(x,r). Recall from the discussion near
(2.5) that P’(z,7) is the d-dimensional vector space spanned by the ¥ (z,7) = 8,,®, (),
1 < i < d. Denote by IT+ = HZ{T the orthogonal projection on the orthogonal complement
of (the direction of) A(x,r). Thus II*-(A(xz,r)) is a single point &. For 1 < i < d,
Op, @, = ®x0,,(n,) = r~1®x1p?, where we set 1! = 9,,n and as usual Y: (y) = r =i (y/r).
T hen, by the same sort of computation as before,

(0" ()| = \HL(axfI)r(x))l = r I @ x g (2)]|

/ Ui — )T (. (1)

yEB(z,r)
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= / Yi(e — y) [T (@, (y)) — E]dy

yEB(z,7)

<ty o, / dist(@, (y), Az, r))dy (5.30)

yeB(z,r)

< Cr~ Yo / dist(z, A(z,7))do(z) < Ca(z,r)

z€I'NB(®(x),2r)

where the second line comes from the fact that f]Rd ' = 0 because 1’ = 9,7, the third
line from the fact [II+(z) — ¢| = dist(z, A(z,7)), and then we continue as before. Now
the 9(z,r) are a nearly orthonormal basis of P’(z,r) (because they are as close as we
want to the e?), so, if C is small enough, (5.30) actually implies that
[T+ (v)| < Cal(z,r)|v| forve P'(z,7). (5.31)
Denote by A’(x,r) the vector d-space parallel to A(x,r); we just showed that
dist(v, A'(z, 7)) < Ca(z,r)|v| for v e P'(z,r). (5.32)
It now follows from (5.32) and (5.29) that
dist(y, Az, 7)) < Ca(z,r)[r + |y — D,.(z)|] fory € P(z,r). (5.33)
Now we worry about the constants ¢(z,r) and A(x,r). Notice that for Cy small
r
@7 (2) = ()] = |or(2) = @(2)] < Cor < 15, (5.34)
because ¢, (x) is an average of ¢(y), y € B(z,r). In particular, ®,(x) € B(®(z),r) and
hence B(®,(x),r) < B(®(x),2r). Let us apply now (5.17) to the function 6, , of (5.19).

The support is right, because of (5.34), but the Lipschitz norm is 7=||0||;;, so we divide
0, by that number, apply (5.17), and get that

‘/0$7Tdﬁx7T —/ngda}‘ < Crdoz(x,r), (5.35)

where C' depends on 6 but this is all right. Set

a0 = / 0(y)dH (y); (5.36)
Rd

One of the two terms of (5.35) is

A, = /ﬁw,rdo = aori\(z, ). (5.37)



2782 G. David et al. / Journal of Functional Analysis 276 (2019) 2731-2820

The other term is
A, = /Qz,rdﬁz,r = c(x,r)/&xvrduj\(xm), (5.38)

which we shall write as an integral on P(x,r). Denote by 7 the orthogonal projection
from P(z,7) to A(z,r); by (5.31) this is an affine bijection, and a very brutal estimate
shows that its constant Jacobian determinant .J is such that |J —1] < Ca(z,r) (we could
even get a square). We do the change of variables z = 7(y) and find that

A,u = C(.’E, T) / em,r(z)d/iA(x,r) (Z) = C(.’[, T)J / ez,r(ﬂ(y))d:up(a:,r)(y) (539)
A(z,r) P(z,r)

By (5.33), [0z (7(y)) = Our ()] < M 0llLiplm(y) = Yl lB@, (2).20) () < Calz,r); it is
useful to observe that since ¢; is small, then by (5.33) again, 0(7(y)) # 0 implies that
y € B(®.(x),2r). But fP(z,r) Orr(Y)dpip(zr)(y) = aor? (because 0, is centered on
P(z,7); we already did this computation in (5.20)), so

|A, — c(x,7)Jagr?| < Cc(z,r)J / a(z,r)dppery < Ce(z,r)a(z, r)rd.
P(z,r)NB(®(x),2r)
(5.40)

Since J is so close to 1, we also get that |A, — c(z,7)aor?| < Ce(z,r)a(z,r)r?. We now
compare to A,, use (5.35), and get that

|a0rd)\(:1:,7") — c(x,r)aord\ <|Ay — A+ A, — c(x77“)a0rd| <C(+e(z,r))a(z, r)rd.

(5.41)

Notice that if ¢; in (5.24) is small enough,

(I+c(z,1)). (5.42)

|~

Az, r) — ez, r)| <

Observe also that since 1 g(@(2),r/2) < Oz, < LB(@(a),r)» (1.7) implies that (r/2)dC1rd <
[0, ,do < Cyr?, and hence

C™l <\, r) <C forz € R and 7 > 0. (5.43)

Thus (5.42) and (5.43) forbid c(z,r) to be to large, we may simplify (5.41), and we get
that

Az, 1) — c(z,r)] < Cafx,r). (5.44)
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In particular, if ¢; is small enough (our second and last condition on ¢;), we also get
that C~1 < ¢(x,r) < C.

We are now ready to prove (5.23). Let f € Lip(®(x,r) be given. By (5.18) and the
same change of variables as for (5.39),

[ 1@ =cler) [ Hn () = o) /f Do (e (1)
Az,r)

P(z,r)

(5.45)

and since |/(n(y)) ~ f(y)| < |7(y) — y| < Cra(z,r) by (5.33) and |J — 1| < Cafe,r), we
get that

| [ 10 = ctwr) [ f@dpan )] < O atwn). 6a0
P(z,r)

Then (5.44) allows us to replace c(x,r) with A(x,r), and since pizr = XN, 7)p(z,) by
(5.21), we are left with

’/fdﬁgw — / fdpg | < Critla(a,r). (5.47)
P(z,r)
We add this to (5.17) and get that
‘/fda — / fdpg | < Critla(a,r). (5.48)

P(z,r)

Finally we take the supremum over f € Lip(®(x),r) and get (5.23). Lemma 5.22 fol-
lows. O

So we decided to work with the measures pi;, = A(%,7)ip (s ). Some regularity of
the coefficients A(z,r) will be helpful when we choose h(z,t) in the next section (see
Lemma 6.2).

Lemma 5.49. There is a constant C > 0 such that |rV, A(z,7)| < Ca(z,r) for v € R4
and r > 0. Hence vV Az, r) is uniformly bounded and satisfies the Carleson measure
condition.

Proof. Recall from (5.20), (5.36), and (5.19) that

Ner) = aor) [ Oot) = a0V ao). 50

T T
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We start with the derivatives in the x; variables, which are easier to treat. Denote by f);
the j-th coordinate of ¥* = 9,,®,(z), and set 6; = g—?; then

rOp, N, 1) = ay 1r_d/§n:A; (T;w)da(y). (5.51)

It is rather easy to see that this is uniformly bounded, but what we really want is the
Carleson measure estimate. Let us not stare at this formula for too long. If we started
with

X('L T) = (aord)il / 9w,7'(y)dﬂ'z,r(y) = aalrid / G(W)dﬂz,r(y)v (5'52)

P(z,r) P(z,r)
with just a change of measure, the same computation would yield
n
r@ml)\(a: r)=agtr” / Z (7y)d,ux,r(y). (5.53)
P(z,r) 7 =1

But A(z,7) is a
that ®,.(z) € P(x,r)), so the expression in (5.53) vanishes, and we can replace do(y)
with do(y) — dps »(y) in (5.51).

Set f(y) Z 06, (M), and notice that f is Cr~1-Lipschitz and supported
in B(®(z),2r) (by (5.34)). Thus we may apply (5.23) (or directly (5.46)) to f = C~'rf,

and get that
| / fldo — dyts ]

We multiply this by Cr~!, replace in (5.51), and get that

constant (by the usual dilation invariance computation, using the fact

< Crttla(z,r). (5.54)

|10, M, )| = ag* _d‘ /f [do — dpg.»|(y )‘ < Ca(z,r). (5.55)

The radial derivative is treated in the same way, except that the formula is more
complicated. That is,

ra)\g;’r) = —dag'r —d/a(w)do(y)

+ aalr*d/{z(ar@r(l’))joj (w>

J

L30T @) - ), o),
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This looks ugly, but all we need to know is that we can write this as

r EM(@?T) = aolr—d/F(L(? —)do(y), (5.56)

where here it happens that F(w) = —df(w)+3_;(9,®,(2));0;(w) — >, 8;(w)w;, but the
main point is that F' is C-Lipschitz (use Lemma 3.17 to bound 0,®,(z)) a
in the unit ball.

As before, r % is bounded by inspection, and since X(m, r) is a constant and we

nd supported

can do the same computation for it, with o replaced by p ., this allows us to replace
do by [do — dy, ] in the big integral, use Lemma 5.22, and get the same estimate as
before.

Thus |rV, Az, 7)] < Ca(z,r), and the desired Carleson measure estimate follows
from (5.15). O

5.8. The soft distance function D

Fix a > 0 and let D be the distance function defined by (1.15); we want to use the
a(z,r) to control the variations of D. Of course it will be simpler to study

D(z)® = / | — 2 do(y), (5.57)
N

and we shall need the normalizing constant

o = /(1+ [2)~ 5" da. (5.58)

Rd
Lemma 5.59. Let Cy be small. For each constant Co > 1, we can find Cp > 1, that
depends on n, d, n, 0, Cy, a, and Cy, such that if € R, r > 0, and z € R™ is such

that
|z — ®(x)| < Cor, and dist(z, T U P(x,r)) > Cy'r, (5.60)

then
|D(z)_o‘ — caA(z,r) dist(z, P(z, 7"))_0‘| < Cpr~%a(z,r), (5.61)

where we set a(z,7) =3, 27k (x, 2kr).

This is a good enough control, since we shall see in Lemma 5.89 that a(x, r) satisfies the

Carleson condition. We will try not to create too much confusion between the exponent
« and the Tolsa numbers a(x, 28r).
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Proof. Let z, r, and z be given. We intend to cut the integral of (5.57) into pieces that
live in annuli, so we introduce cut-off functions. We start with 6y, which is defined on
R™, radial, smooth, supported in B(0,7/2), such that 0 < 6, everywhere and 6y = 1 on
B(0,7/4), and finally is 3r~!-Lipschitz. Then we set

Ok (y) = 00(27%y) — 6o (27" y) (5.62)

for k> 1 and y € R", and translate all these functions by setting (y) = Op(y — @ ().
Notice that

do=1 (5.63)
k>0
(it is a telescopic sum),
0y, is supported in By = B(®,(z), 25 1r), (5.64)
and for k >1
6, = 0 on Bj_s. (5.65)

We use (5.63) to write D(2)™% = ;5 Ik, with

I =/Iz—y|‘d‘°‘5k(y)d0(y) =/fk(y)d0(y)= (5.66)
I N
with
Fe(y) = |z =y~ (y). (5.67)

Our intention is to approximate Ij by

Jy, = / Fe@)dpo(y), (5.68)
P(z,r)
where for convenience we put
Pk = fhy ok, for k> 0. (5.69)

There is no problem with the definition, because dist(z,I" U P(z,r)) > 0. It turns out
that the sum is easy to compute. Indeed

Z Jp = / |z — y|’d7“(zgk(y))d,ug(y) = / |z =y~ *dpo(y); (5.70)
k

k=0 P(z,r) P(z,r)
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we can send P(z,r) to R? by an isometry F, so that F(z) = (0,t) for some ¢t € R"~¢
such that [t| = dist(z, P(z,7)); the image of pg is A(z,r) times the Lebesgue measure,
o

S = Mar) [ 1FG) — iy = M) [+ ly2) 442y
k>0 Ra Rd
= Az, 7)[t| /(1 + |u?) =@ 24y = coN(x, ) dist(z, P(z, 7)) (5.71)
R4
by the change of variables y = |t|u. We recognize the same expression as in (5.61); thus
we will just need to estimate |I, — Ji|.
We intend to use Lemma 5.22 to play with measures, so we are interested in the

Lipschitz properties of fx, and thus want lower bounds on ly — z| when gk(y) # 0. We
claim that

ly — 2| > c32Fr when y € I U P(x,r) is such that 6 (y) # 0, (5.72)
with c3 = (16(Cy + 1)Cy) L.

We start with the case 2574 > Cy + 1. If 8 (y) # 0, then (5.65) says that y ¢ Bj_o,
hence

ly = z[ = |y = o (2)] = [@r(2) = P(2)] = [®(2) - 7]
> 283 — Cor — Cor > 2873 — (1 + Co)r > 2" (5.73)

by (5.34), (5.60), and our assumption on k.
Now assume that 2F=% < Cy + 1, and use the lower bound in (5.60) to get that

ly — 2| > dist(y, DU P(z,7)) > Cy'r > (16(Cy + 1)Cy) 2k, (5.74)

as needed for (5.72). Now set
Jily) = max(|z — y|, s2"r) "G (y). (5.75)
We just proved that fi(y) = fk(y) for every y ENI‘UP(:E, r). Since o and pg are supported

in ' and P(xz,r) respectively, we can replace fj with f; in the definition of I} and Jg,

and this will be convenient because fj is Lipschitz. Indeed the gradient of max(|z —

y|, c32Fr) =9~ vanishes, unless |z — y| > c32r and then the gradient is the same as for

|z —y|~9*. Thus
IV £i(®)] < (325r) =4 VBi(y)] + (d+ ) (ex25r) =42 H0r(y)] < C(2Fr) =" (5.76)

because |V (y)| < 6(287)~! by (5.62). Notice also that
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[ frlloe < C(2Fr) 70 (5.77)
directly by (5.75). Set
h= [ ) (5.78)
P(z,2kr)

Notice that fy, is supported in By C B(®(x),2%r) (by (5.34)), so [C(2Fr)=d-a=1~1f €
Lip(®(x),2%r), and Lemma 5.22 yields

I — Ji| = ‘/fk(y)[da - duk}(y)’ < [C(2Fr) 7o (25r) T dista(py 00r (0, k)

= 02 kayp—a dist e (z),26r (0, pr) < C27kar=aq(x, 2%r) (5.79)

by (5.4), Lemma 5.22, and (5.69). This is still compatible with the right-hand side of
(5.61), so we are left with J;, — Ji = [ fi[dur — dpo) to estimate, obviously only for k > 1
We write Ji, — Jk = 32 << 0jk, With

Ok = /fk[dﬂ,j — dpj-1], (5.80)

and recall that jo; = py 25, = M@, 2%)7—[?, where we denote by 7—[}1 the restriction of H?
to the plane P; = P(z,2’r) to simplify the notation. We want to know that P;_; lies
close to P;, so we return to the distance estimate (5.33) in the proof of Lemma 5.22. We
claim that the same proof also shows that

dist(y, P;) < Ca(z,27r)[27r + |y — ®ys,.(z)|] for y € Pj_q, (5.81)

at least if a(wx,2’r) is small enough, as in (5.24). The logical way to see this is to
observe that the proof of (5.33) for the position of P; also gives the same estimates for
the position of P;_1, and then we compare the two. Another way is to observe that by
Lemma 5.22, we can actually replace A(x, 27r) with P; in the whole proof of Lemma 5.22,
and in particular of (5.33). This is formally more easy, except for the fact that it exactly
works for Pj_s rather than P;_; (because we lose a factor 4 in the scales when we prove
Lemma 5.22). This would be easy to fix, for instance by setting a(x,r) = &, (®(z), 8r) in
(5.14) and proving a Lemma 5.22 with dist(®(x), 2r). We leave the details and consider
(5.81) established.

Let us continue the estimate when a(z,2’r) is small enough, so that P;_; and P;
make a small angle, and we estimate [ f [d?-[? — d?—[;ﬂl] with the same projection trick
as near (5.38). Denote by 7 the orthogonal projection from P;_; to Pj; if a(x,27r) is
small enough, this is an affine bijection, and the determinant J of its jacobian is such
that |J — 1] < Ca(w,27r). The change of variables z = 7(y) yields
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d
/ fu(z)am / Felm () dHI_ (1) (5.52)

and hence, since fi is supported in By by (5.64),

| [ fulans - d%?_ﬂ\

<17 -1 / il / (W) ~ eW)ldH, ()
< Cllfillso Sy (Br)ala, 27r) + || fill ip / |7 (y) — yldHi_1 (y)
P; _1NBri1
< Cllfulloe (28 7) (2, 277) + O fill Lip (2°r) T+ (2, 277) (5.83)

< C(2r)a(x, 2r)

by (5.81), (5.76), and (5.77).
When a(z,27r) is not small, simply observe that

| [ uland g )] < 15 (B + B < P (50)

by (5.77) and with no gain, but (5.83) also holds in this case because a(z,2/r) > C~1.
We also need to show that

M, 277) — Nz, 277 1r)| < Cal(z, 277), (5.85)
and the simplest at this point is to observe that for 2/=1r < p < 2ir, p|

r
Ca(z,p) < 029 'a(z,2'r) by Lemma 5.49, (5.14), and (5. ) We integrate and get
(5.85). We are now ready for our last estimate. Indeed

OA(z,p)
op | <

b3 =| [ Sulay — ds] = | [ 5N 2ryarg — w2

g)\(x,2jr)’/fk[?l?—%?,1]’+|)\(:c72jr)—)\(m,2j—1r)|‘/fkd7-[‘f,1

< C(2*)"%a(z,2'r) + Calx, 2jr)||fk||mHj_1(Bk)
< C(2Fr)y~a(z, 297) (5.86)

by (5.84), (5.85), (5.43), and (5.77). We now sum over j and get that

T =Tl < >0 16kl <C >0 (@) a(z, 2r). (5.87)

1<j<k 1<j<k

Then we sum over k and by Fubini’s lemma,
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Z [T, — Jk| < CZZ(2kT)_aa(1‘, 297)

k k <k
<Cr @ Z afx,27r) Z 27k < O Z 27 %a(x,27r), (5.88)
J k>j J

which is compatible with (5.61). This last estimate completes our proof of
Lemma 5.59. O

We complete Lemma 5.59 with a Carleson control on the right-hand side.

Lemma 5.89. Let a(z,r) = 3,5 27kq(x,2r) be the same function as Lemma 5.59.
Then a satisfies the Carleson condition.

Proof. We first apply Cauchy—Schwarz to estimate

a(z,r)? < { Z 27 a2 (x, 2’“7“)}{ Z 2_"’“} < C’Z 27k a2 (x, 2%r).

k>0 k>0 k>0

We need to compute

dyd dyd
aly, 57 U= < ¢ / 3 2 ka2 (y, 2ks) W
0 B(z,r) 0 B(z,r) k20
/ dyd
:02270"“/ / aQ(y,ka)%. (5.90)
k>0 0 B(z,r)

Write

dyds
a2(y,2ks)—y8 =1+ I,
0 B(z,r)
where I is the part of the integral where 0 < s < 277, and I, is the rest. Notice that

a?(y,p) < C for y € R? and p > 0, by the definition (5.14) and the remark above (5.6).
Thus

dyd [d
I = / / a2(y,2ks)£ < C|B(z,r)] / & < Ckre.
s s

2=kr B(z,r) o—Fkp
We are left with

27k T

dyd dyd
Iy = / / o?(y,2%s) yas _ / / o?(y,u) yuu < crt
0

S
B(z,r) u=0 B(z,r)
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after setting u = 2¥s in the integral, and because « satisfies the Carleson condition. We
return to (5.90) and get that

T

/ / a(y,8)2 dyds S CZQ—ak(k 4 1)7,,(1 S Crd’

S
k>0
0 B(wf") -

and Lemma 5.89 follows. O
6. We collect estimates and conclude

The goal of this section is to put ourselves in the framework of Theorem 1.32, at least
for our soft distance D,,. Then it will remain only to prove the two results on degenerate
elliptic operators on Qg = R™\R? (namely, Theorems 1.32 and 1.27) in order to establish
Theorem 1.18.

That is, we choose the missing function h, use it to construct a change of variables
p, compute the matrix of the conjugated operator Ly on g, check that it satisfies the
assumptions of Theorems 1.32 and 1.27, and conclude.

After this, we discuss the case of the usual distance in dimension d = 1, and rapidly
discuss other choices of distance functions.

6.1. Our choice of h(x,t)

Recall that we still need to choose the function h that comes in the definition of p,
and we should try to make D(p(x,t)) close to |¢|. The discussion that follows shows that
taking

h(z,t) = (cal(a, [t])"/, (6.1)

where A is the quantity introduced in (5.20), is the most reasonable option. Thus we
shall take h radial. Now we have to be a little bit careful, because we need to check that
h satisfies the assumptions needed for the construction of p, and this is why we shall put
an additional requirement, compared to the previous section.

Lemma 6.2. There exist small constants co(n,d), that depends only on n and d, and
c1(n,d, «), that depends only on n, d, and the exponent a in the definition of D = D,,
with the following properties.

Let T' be a Lipschitz graph (as in (1.5)), and let Cy be as in (1.4). Assume that
Co < ¢o(n,d), and let o be an Ahlfors regular measure on I (as in (1.7)) such that

Ao (®(z),7) < c1(n,d,a) forx € RY and r > 0, (6.3)
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where ®(x) = (0,¢(x)), and the numbers &, (®(x),r) are defined by (5.5). Choose h as
n (6.1). Then the assumptions of the previous sections are satisfied, we can construct
the bi-Lipschitz mapping p, and the Carleson measure condition (1.48) holds.

Let us rapidly comment the statement before we prove it. We do not mention 7 or 6
because we can choose them, once and for all. Our assumption that Cy be small enough is
not new, and we use it very often in the construction. As we shall see soon, the additional
assumption (6.3) is only used to check (3.2) for our choice of h; this makes sense because
if h varies too wildly, p is unlikely to be injective.

We claim that if (Cy is small enough and) we choose o sufficiently close to the surface
measure on [ i.e., if

(1= ca(n,d,0)) M < 0 < (14 ca(n,d, a)) M (6.4)
for a small enough ca(n,d, a), then o is Ahlfors regular and (6.3) holds. But of course
(6.3) may also hold for different reasons.

To prove the claim, we test a,(®(x),r) on the flat measure p = Hlsz’ where P, =
RZ + (0, ¢(z)). Denote by 7 the orthogonal projection on R?, by & the pushforward of o
on P!, =R? and by ji the pushforward of u on P,. With our assumptions, it is easy to
check that

(1—ca(n,d, ) —co(n,d))p <o < (1+ca(n,d,a) + co(n, d))i, (6.5)

and then, for any f € Lip(®(x),r),

/fda—/fdu /fygp da—/fycp Ydpp =1+ 11, (6.6)

where

1] = \ / (v, W) —f(y, so(O))]dﬁ(y)\ < / o (y)—p(@)|da(y) < CCor?*!, (6.7)
RiNB(z,r)

and

111 = | [ 00 d5(0) — )| < [ Fle(ealmid ) + colnd) [ diy)
Rd

RINB(z,r)

< Cea(n, d, @) + co(n, d))r**! (6.8)
by (6.5) and (5.6). We compare with Definition 5.3, get (6.3), and prove the claim.

Proof. Let us now prove the lemma. With our assumptions, we can define the planes
P(z,7), and prove the results of Section 5; in particular C~1 < X(z,7) < C (by (5.43))
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and Lemma 5.49 says that 7|V, .|A(@,7) < Ca(z,r) = Ca,(®(x),4r) (by (5.14)) and
satisfies the Carleson measure condition.

The first information gives (3.1), and the second one yields (3.2) and (4.3). The
smallness condition in (3.2) really requires something like (6.3), while the other conditions
would follow from Section 5.

At this point we can construct p, and we aim for (1.48). Set r = |¢| as usual, and recall
from (3.3) that p(z,t) = ®,.(z) + h(z,t)Rs +(0,t), where ®,.(x) € P(z,t) and R ,-(0,t)
is orthogonal to P’(x,t). Hence by (6.1)

dist(p(x,t), P(x, 7)) = h(z, t)r = (caX(z, 7))/ (6.9)
We also know from (3.41) and (3.42) that
lp(x,t) — ®(x)| < 2rh(x,t) and dist(p(z,t),T) > h(z,t)r/2. (6.10)

So, if we take the constant Cs in Lemma 5.59 larger than twice the constant C' in (3.1),
z = p(z,t) satisfies the assumption (5.60) of that lemma, and (5.61) says that

|D(p(,t))™* — caA(z,7) dist(z, P(z,r)) " < Cr~® Z 2= %a(x,2%r) = Cr~%a(z,r),
k>0

where a is the Carleson function of Lemma 5.89. We use (6.9) to replace dist(z, P(x,r))
and get that |D(p(x,t))”* —r~®| < Cr~“a(z,r), or equivalently

r*D(p(x,t))™* — 1] < Ca(x,r). (6.11)

Recall from (5.2) that C~1dist(z, ') < D(z) < Cdist(z,T). Since dist(p(x,t),T) is also
equivalent to |¢| = r by (6.10), we see that

C~Ht| < D(p(z,t)) < Cdist(z,T') < OJt|. (6.12)

This allows us to apply the reciprocal of s — s, which is Lipschitz in the range where
r*D(p(x,t))~ lives, to deduce from (6.11) that

Do) 1] < Ca(z, 7). (6.13)

The Carleson measure condition (1.48) now follows from Lemma 5.89. 0O

6.2. Computations for the conjugated operator L

Recall that we started with an operator L on @ = R™ \ T, formally defined as L =
—div D417V (see (1.14)), and where D is either the soft distance given by (1.15) or
(in dimension d = 1) the usual Euclidean distance (see (1.16)).
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We have defined a change of variables p : 0 — g, and in this subsection we compute
the conjugated operator of L by p, and then show that it satisfies the assumptions of
theorems of the introduction.

For the rigorous definition of L, we refer to [20], where definitions and solutions were
given in terms of the weight w defined on 2 by

w(z) = dist(z, )41, (6.14)

and an accretive bilinear form on the Sobolev space

W(Q)={ueL,.(Q), //|Vu|2w < +o00p. (6.15)
Q

Here and in the rest of the article, double integrals shall be used when integrating with
respect to the n-dimensional Lebesgue measure over (subsets of) € and €. Recall that
we checked in (5.2) that

C™ID(2) " <w(z) < C7'D(2)4 7, (6.16)

where C' > 0 depends only on the dimensions d and n and the parameter a. In the next
lemma we compute the effect of p on that bilinear form.

Lemma 6.17. Let I', L, and p be as above; in particular assume that p is smooth and
bi-Lipschitz. Then, for u,v € W(Q),

// Vu(X) - Vo(X )%

Xen

- // A (e, 8)V[uo p)(a,t) - V]vo pl(e,t) dedt, (6.18)
(z,t)EQo

where Qo = R? x [R*~9\ {0}],

A(a,t) = (1>nd1 | det(J (z, 8))|(J (z, )T J(z, )" (6.19)
=\ Dol ) R | |

for (z,t) € Qo, and J is defined in Definition 3.8.

Proof. First of all, since p is (smooth and) bi-Lipschitz, @ = w0 p and ¥ = v o p lie in
the Sobolev space W ({)g) associated to the domain Qg and the weight [¢|?*1=". Thus
the right-hand side makes sense because A,(z,t) is bounded by [¢|4T1=™ (by (6.12) and
directly Definition 3.8). We claim that
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Vu = Jac ([Vu] o p) (6.20)

(the product of two matrices). Let us for a moment forget about the decomposition
R™ = R? x R"%, write X = (x1,...x,) for the generic point of R”, and denote by p,
the ¢-th component of p. Thus Jack¢ = Oy, p¢ (which is coherent with our definition
(3.6)—(3.7)). The k-th component (line) of Vu is

Onuop] = OupelOz,ul 0 p = Jack o[V 0 p)e,
I4 0

which proves (6.20). The substitution rule yields

dxdt
[ v g = [ (9 Ol et
ZeQ (z,t)€Q0
dxdt
— -1 2 -1 bl 7 /7 i \\o 1
_ // (Jac™! Vi, dae™! V) | det(Jac)| o=
Qo
(6.21)

But by (3.11), there exists an orthogonal matrix @ such that we have the matrix identity
Jac = JQ~'. Thus | det(Jac)| = |det(.J)|, and (setting U = Vu and V = V)

(Jac' U, Jac™' V) = {(QJ'U,QJ V) = (J'U, T V) = (s HTT U, V),
so that (6.21) is the same as

//Vu (2) (Z(;{f_d_l ://<(J_1)TJ—1VE,VE7>|det(J)|W,

ZeQ Qo

the lemma follows. O

We now check that the matrix A,(z,t) given by (6.19) has an appropriate decompo-
sition, in fact a little stronger than the one required for Theorems 1.32 and 1.27.

Lemma 6.22. Let I', L, and p satisfy the assumptions above, let A,(x,t) be as in (6.19),
and let

A(z,t) = [t]* 17 Ap(z, 1)

_ |t| n—d—1 det(] ; J t_l TJ t_l 6.23
_(W) | det(J (2, ))|(J (@, ) =) I (x,1) (6.23)

be the corresponding normalized n x n matriz. Then A is uniformly bounded and elliptic
(or equivalently, A, satisfies (1.24) and (1.25)), and we can write
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ALX) + ¢! C*(X)

X)= 6.24
AX) ( G(X) (X)Lt (X)) (624
where A'(X),CH(X) € Maxa(R) are d x d matrices, C*(X) € Mgy (n—a)(R), C}(X) €
Mn—ayxa(R), b is a function on Qq, I,_q is the identity matriz on R4, C*(X) €

Maxa(R),
C,C?,C%,C*, and |t|V, A" satisfy the Carleson measure condition, (6.25)
C™1<bh<C onQy, (6.26)

and

[t|Vb satisfies the Carleson measure condition. (6.27)

These are the same conditions as for Theorem 1.32, except that we also give a de-
composition of the upper left block into a Carleson piece and a smooth piece, and that
the upper right block satisfies a Carleson measure condition. The conditions for Theo-
rem 1.27 (regarding Ly and its matrix) are even weaker.

Thus A! + C! is uniformly bounded and elliptic (because A is), and of course the
near-diagonal form of the lower right block, which comes from the fact that p is nearly
isometric the t-variables, is important. The constant C' (in (6.26) and implicit in the
Carleson conditions) depends only on n and d (given that we already forced Cy and
c1(n, d, @) — the constant in (6.3) — to be small).

n—d—1
Proof. First observe that A(z,t) = (%) A(xz,t), where A(z,t) is the matrix

n—d—1
of (4.2), and for which Lemma 4.4 gives a nice description. Set f(x,t) = (%)

to save space. We know that
cl<f<co (6.28)
(by (6.12)), and that
|f — 1| satisfies the Carleson measure condition, (6.29)

by (1.48) (and because (6.12) allows us to take the (n —d — 1)-th power). We start from
the decomposition A = A" + A2 given by Lemma 4.4, which gives us the expression

A= fA=A"+(f - 1A' + fA% (6.30)

By Lemma 4.4, A? satisfies the Carleson measure condition, hence also (f —1)Al + fA2

1
by (6.28) and (6.29). And we also have Al = (%1 bIO d) for some function b.
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1 2
Let us write (f — 1)A! + fA? = ((Cj?’ g4); This gives a decomposition of A as in

(6.24), where we just need to take
b="b and A' = A], (6.31)

where A{ is the upper left block of Al.

The Carleson property (6.25) holds, by definition of the C? and because Lemma 4.4
says that |t|{VA! € CM. The uniform bound (6.26) follows from (4.5). We still need to
check (6.27), i.e., that [t|Vb € CM. Recall that

b=b=h""9"2det(J7) (6.32)

by (6.31) and (4.7). Observe that A"~9"2 and det(J]) are both bounded (see (3.1)
concerning h). It was proved in (iii) of Lemma 4.11 that [t|V,,det(J]) € CM, and
[t|]Vh"=4=2 € CM because |t|V, ,h € CM (by (3.2)) and h~! is bounded. This proves
(6.27), and Lemma 6.22 follows. O

At this point we completed the proof of Theorem 1.18, with our soft distance D, and
modulo the two results on degenerate elliptic operators that will be treated in the last
sections.

6.3. Other distance functions, Euclidean distance

We pulled out in (1.15) one formula for a distance function that works for our purpose,
and looks reasonably natural. In this subsection, we give a sufficient condition, on a
possibly different distance function D on 2, for Theorem 1.18 to stay true when L is
defined with this distance. This will include the special case of the Euclidean distance
to I', but only when d = 1.

The sufficient condition that we give now is just chosen so that the proof above works.
We are still given a Lipschitz graph I', with small enough constant Cp, and a function
D : Q — (0,+00), such that

Cyldist(2,T) < D(z) < Cydist(2,T) for z € Q (6.33)
for some constant Cy > 1. We pick a function 7 as in Section 2, and use it to define ®,. and
the approximate tangent d-plane P(z,r). We assume that we have the following slightly
weaker analogue of Lemma 5.59. We can find a function a defined on R? x (0, 4+00) and
such that

a € CM(Cs), (6.34)

and a function X, defined on Qg such that
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crl<a<a (6.35)
VAo < €, (6.36)

and
Ve CM(Cs), (6.37)

with the following property. For z € R, 7 > 0, and 2 € € such that
CZIT <|z—=®.(z)| < Cyr and z — ®.(z) L P(z,r), (6.38)

we have

D |- P 5| < aen
dist(z, P(z,1)) A, )‘ ’|Z—<I>T(CC)| Az, )| < alx,r). (6.39)

Of course it looks a little unpleasant that the condition depends on our construction
of P(x,r), but this is not so complicated. The reader should not pay too much attention
to the names of Cy and C5. We put the same constant Cy in (6.33) and (6.35) because
we think they may be proved at the same time (and they look very similar), and gave
a different name to Cs, mostly for psychological reasons, because in practice they will
probably depend on Cj.

Theorem 6.40. For each choice of Cy,C5 > 1, we can find Cy > 0 and € > 0, depending
on n, d, our choice of n, Cy, and Cs, such that if I' is a Lipschitz graph with Lipschitz
constant less than Cy, and D satisfies the assumptions above, then the operator L defined
by (1.14) with this function D satisfies the conclusion of Theorem 1.18.

Proof. We prove this first, and then comment more. We shall just need to modify slightly
the proof of Lemma 6.2. This time, we take h(x,t) = X(x,t)’l; the assumptions (3.1),
(3.2), and (4.3) follow from (6.35)—(6.37), and by taking e small we can ensure that Chg
in (3.2) is as small as we want (depending on the other constants). Since we also assume
Cy to be small enough, we can construct the bi-Lipschitz change of variable p.

Now we want to show that (1.48) holds. Let (z,t) € Qo be given, set r = |t|, recall
that p(x,t) = ®,(z) + h(z,t)R; - (t) hence (as in (6.9))

dist(p(z,t), P(z,7)) = h(z, t)r = (A(z,t)) " 'r. (6.41)

Now consider z = p(z,t), observe that z — ®,(xz) L P'(z,r) by definition of R, ,, and
Ci'r < |z — ®,(z)| < Cyr by (6.35). Hence (6.38) holds and we have (6.39). Then, by
(6.41),

_ D(z) - X(m r (2)

D -
Az, )7 )‘ B )m — Ma,r)| < al@,7). (6.42)
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Because of (6.35), this implies that [r=*D(p(x,t))—1| < Ca(z,r), and then (1.48) follows,
because (6.33) allows us to take inverses.

This was our analogue of Lemma 6.2; we may now continue the argument as in
Subsection 6.2, where the specific form of D was not used, and conclude as before. O

We proved in Section 5 that the functions D, satisfy the assumptions of Theorem 6.40,
and this reflects nice regularity properties of our Lipschitz graph I', as well as D,, itself.
We may use this work to prove that some other function D works as well, by controlling
D;'D. That is, if D is equivalent to D, (and the Euclidean distance to I') as in (6.33),
and if we control D%, a little bit like we controlled W above, then we may be
able to prove more easily that D satisfies the conditions above.

We could also observe that we could also define D, by the fact that D,(p(z,t)) = |t|.
This defines a perfect function D, for the conditions above (with X=1landa = 0),
but the reader may have thought that this was a very special choice, designed for the
change of variables to work. Nonetheless, we could also say that the more natural D,
work because they are close to D,.

We end this section with the case of the Euclidean distance function, defined as in
(1.16) by

Dg(z) = dist(2,T') for z € Q. (6.43)

Corollary 6.44. There exists Cy > 0 such that if T C R"™ is a one-dimensional Lipschitz
graph, with Lipschitz constant at most Cy, then the operator L defined by (1.14) with this
function Dy of (6.43) satisfies the conclusion of Theorem 1.18.

Proof. We could prove this as a consequence of Theorem 6.40, which is a little unfair
because some things are actually simpler in dimension 1, so we recall the main steps
anyway.

As in the previous case, the main point is to compare dist(z,T') and dist(z, P(x,r))
for some z near z, and we shall use the function-theoretic analogue of the P. Jones
B-numbers. The point is to measure how well our small Lipschitz function ¢ is approxi-
mated by affine functions.

Denote by 2 the set of affine functions a : R — R”~!, and set

1.
B(z,r) = —inf sup [p(y) —a(y)] (6.45)
T aed yEB(z,r)

for x € R and r > 0. We divide by r to get a dimensionless number, which is clearly
bounded by Cj (try a(y) = ¢(x)). The name comes from a paper of P. Jones [37], where
related numbers were used to quantify the distance from a set (like I') to lines or planes.
A result of Dorronsoro [23] says that

B €CM(CCY). (6.46)
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The reader may view it as a consequence of the so-called geometric lemma of P. Jones
(which is also valid for more general sets), but it is in fact anterior. Also, unfortunately
for us, it is only valid in dimension 1. This is related to the fact that in higher dimensions,
400 is not a correct exponent for the Sobolev embedding theorem. In the context of sets
and § numbers, this was an observation in X. Fang’s thesis under P. Jones [24]. The
construction of this counterexample can be found as Example 1.16 in [4].

For our purpose, it is more convenient to use the following variant, where the approx-
imating function a is computed directly from ¢ as a reasonable guess. Let 1 and 7, be
as in Section 2, define an affine function a, , by

azr(y) = or(@) + (y — 2)Vaipr(2), (6.47)
where in the present case V, is just a derivative, and then set

1
By(z,r) == sup |o(y) =tz (y)] (6.48)
r yEB(z,r)

for x € R and r > 0. Of course §,(z,r) > B(z,r) because a,, € 2, but f,(z,r) is not
much larger in general.

Lemma 6.49. There exists a constant C' > 0, that depends only on n and n, such that for
zeR andr >0,

Bz, r) < CB(x,T). (6.50)
As a consequence,
By(xz,r) < CCy forz e R? and r > 0, (6.51)
and (by (6.46))
B, € CM(CCY). (6.52)

Proof. We only need to prove (6.50). This would also be true in higher dimensions, with
the same proof, but (6.46) is not in general. Let z € R? and r > 0 be given, and pick an
affine function a such that

swp Jp(y) — aly)| < 208z ). (6.53)
yEB(z,r)

Since a is affine, we may write a(y) = (y — x)a + b; then

Bo(w,r) =171 sup p(y) — apr(y)] < 28(z,7) +r71 sup a(y) —ag . (y)]
yEB(z,r) yEB(z,r)

< Qﬁ(x,r)—i- ‘a_vﬂpr(x)l+T_1|b_90r(x)|a (6'54)
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where we simply wrote the two affine functions and subtracted term by term. We now
estimate the two terms. First, we use the fact that 7, is even with integral 1 to prove
that

b=l = o= [ o= ewis] = | [ 1= 0)letw) - b~ v~ 2)aldy
R

R

< swp lp(y) b (y—2)al / m(z—y)dy <2Bz,r)  (6.55)
yEB(x,r) 5

because 7 is supported in B(z,r) and by (6.53). Similarly, observe that [, Van,(z —
y)dy = 0 (because 7, is compactly supported) and fR Vi (x —y) - (y — z)dy is the
identity matrix on R™ (integrate by parts), so

0= Vaor@)l = o [ Vano—y)et)ds| = | [ Tomo =)o+ (= )a~ olu)dy)
R R
< 20|V |loo S b+ (y —z)a—oy)| < Cyb(z, 7). (6.56)

Lemma 6.49 follows from (6.54)—(6.56). O

We now proceed as with the preceding results, but with h = 1 (so (3.1), (3.2), and
(4.3) hold trivially). Thus p(z,t) = ®,(x)+ R ,(0,t) is a bi-Lipschitz mapping (as usual,
if Cy is small enough) and (as in (6.9) or (6.41)),

dist(p(x,t), P(x,r)) = |p(x,t) — ()| = |t| = r. (6.57)
We want to compare this with dist(p(z,t),I"), and more precisely show that

(1= By(x,r))r < dist(p(z,t),T) < (1 + By (x,r))r (6.58)
First observe that

dist(p(z,£),T) < [ple,£) — B, (2)] + dist(®,(2),T) < 7 + |&,(z) — ()|
=7+ lpr(@) — @) = +lazr(z) — ()| <7478, (2,7),
which proves the second inequality. Write p(z,7) = (y,s), with y € R and s € R"~1.
Observe that since P(x,r) is almost horizontal (because ¢, too is Cp-Lipschitz), so
ly—z| < 2Cyr (recall that ®,.(z) = (z, ¢ (2)), and now the closest point(s) of I" to p(x,r)

must be of the form & = (z,(z)), with |z — y| < 2Cyr too. Thus |z — z| < 4Cyr < T,
and |p(2) — az . (2)| < rBy(z,r). Hence

r = dist(p(z,8), P(2,7) < [p(21) — (2 Gar ()] < |9(,1) — €] + € — (2 ()
= dist(p(z,t),T) + |o(2) — azr(2)| < dist(p(z,t),T) + By (2, 1),
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in particular because P(x,r) is the graph of a,,. This completes our proof of (6.58),
which itself implies that

|t‘n—d—1
dist(p(z,t),T)n—d-1

-1 <25, (z,r) (6.59)

by (6.51), since Cy is small. Since (8, € CM by (6.52), this proves the crucial Carleson
property (1.48) for D = Dg.

At this point, we can follow the same route as above, i.e., use Lemma 6.17 to compute
the matrix of Ly, then Lemma 4.4 to put this matrix in the appropriate form, and finally
observe that the assumptions of Theorems 1.32 and 1.27 are satisfied. This completes
our proof of Corollary 6.44 modulo Theorems 1.32 and 1.27. O

7. Square function estimates

In this section we prove Theorem 1.32. Since we want the two last sections to be
independent of the previous ones, we recall (or slightly modify) some of the notation.

Throughout this section, Q9 = R \ I'y with Ty = R? C R (with a small abuse
of notation). We write X = (z,t) € R? x R*~% for points in Qy = R", and similarly
Y = (y,s)-

For z € R?, let

V(@) =LY = (y,5) € Qo : [y — 2| < als[}

be the non-tangential cone of aperture a > 0 (it actually looks like a rotated cone, but
we will keep referring to it simply as a cone throughout the discussion). Unless otherwise
stated, the estimates hold for all @ > 0 (fixed throughout a given theorem) and constants
can depend on a. Also define the truncated cone v"(x), h > 0, by

Y (x) =Y = (y,8) € Qo : |y — x| <als|, 0 <|s| <h}. (7.1)

We often write v2 in place of 4/ (?) when h = I(Q), the side-length of some cube Q (see
(1.29)).

Going further, we denote the balls in R” by B.(X) = B(X,r) ={Y e R": | X-Y| <
r}, X € R, r > 0, and denote the boundary balls by A,.(z) := {y € R%: |z —y| < 7},
r € RY r > 0. Sometimes we write B(z,¢;7) in place of B(X,r) for X = (x,t). The tent
region (which in our case looks like a punctured ball) is defined by

T(A(z)) := B(x,0;7) N Q.
Recall the definition of the Carleson measure condition given in Definition 1.21.

Definition 7.2. We say that a function u defined on € satisfies the Carleson measure
condition (in short, u € CM) if
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is a Carleson measure, that is, if

s // lu(y, s)|? dyds <+
up u\y, s — Q.
balls ACR? |A] \ [s[n=d

A matrix-valued function A satisfies the unweighted elliptic and bounded conditions
if there exists C7 > 0 such that

[AX)E - ¢ < Crlg]¢] for X € Qp and &, ¢ € R”, (7.3)
and
JA(X)E - €| > Crhe) for X € Qp and & € R™. (7.4)

Notice that if A satisfies (7.3)—(7.4), then the matrix 2 = |¢|4+1 " A satisfies (1.1)-(1.2)
for the boundary I'y and the domain €. We are interested in the operator

Lo = div [t|*"1 7" AV = divaV, (7.5)

where A satisfies the unweighted elliptic and bounded conditions (and some more).

We shall state the main result of this section in terms of weak solutions of Lou = 0,
which we define now. Denote by Wloc () the set of functions u € LZ (£2) whose
derivative (in the sense of distribution on ) also lies in L2 (Q). A function u €
W2(Qp) is called a weak solution of Lou = 0 if for ¢ € C5°(Qp),

dadt
// AVu - Vi mnxd - =0, (7.6)
(z,t)€Qo

The heroes of this section are the following four functions, defined on R? (but maybe
infinite) for v € W)

fyl %(Qp), namely the non-tangential maximal function Nu and its

truncated version N@u, given by

Nu(z) = sup |u(Y)| and N%u(z)= sup |u(Y) (7.7)
Yey(z) YeyQ(x)

for x € R?, the square function Su, defined by

1/2

/ |Vu(Y (acYO)|" 5 , (7.8)
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and its truncated version defined by
1/2
dy
/ e = (7.9)
0 (@)

Theorem 7.10 below is just a restatement of Theorem 1.32.

Theorem 7.10. Let A be an elliptic matriz satisfying (7.3)—(7.4). Assume that A has the

following structure:
Al A?
= 7.11
A <CS bl(nfd) +C4> 9 ( )

where A' and A% can be any matriz valued measurable functions (in respectively Mgxq
and Mgy n—ay), Itn—a) € M(n—dyx(n—ay denotes the identity matriz, and

o [t|Vb satisfies the Carleson measure condition with a constant M,
o AL < b <A for some constant A > 0,
e both C® and C* satisfies the Carleson measure condition with a constant M.

Consider the elliptic operator Lo = div [t|*T1=" AV. Then there exists ko > 0, depending
on the aperture a of the involved cones only and C' > 0, depending on the ellipticity
parameters of A, A\, the dimensions, a, and M only, such that for every weak solution u
of Lo and every cube Q C R%, we have

15%ull72(q) < CIN?ulZ2 (ko0 (7.12)
where koQ, ko > 0, stands for the cube with the same center as Q and sidelength kol(Q).

Proof. For simplicity we will take a = 1 throughout the argument (a being the aperture
of the access cones); the modifications for a general a are straightforward.

Let ® € C§°(R) be such that 0 < ® <1, ® =1 on B(0,1), and ® is supported in
B(0,2). Let u be as in the statement, let a cube Q C R¢ be given, denote by §(z) the
usual Euclidean distance from 2 € R? to Q, and define

5(z) 2] 2e
U(z,t) = <I>( ><I>< o | — | for (z,t) e R,
I Q) |
where e < 1(Q) will eventually tend to 0. Define

By = {(0,1) € Qs 2 €10Q, [t < 8(x) < 2Jt]},
Ey:={(z,t) € Qo: 2€10Q, 1(Q) < [|t| <2(Q)},
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Es:={(x,t) € Q: z € (1+8)Q, [t| < 2e < 2Jt|},

and observe that

1 1 1
)\ 1 —1 -1
V0] S L)+ s Baant) + 2 1, ()
1
< |t| (1g, (z,t) + 1g,(z,t) + 1g, (z, 1)) (7.13)
for (z,t) € Qp. Set
1
Qo

This integral is finite, because Vu € L% (£y) and we integrate over a subset of {z €
2Q, e < |t| < 21(Q)}, which is compact in . In addition, we claim that

Q. 112 ..
5% ull72(q) < hg(r)lf J(g). (7.15)

Indeed, the definition (7.9) yields

Y
Q112 —

z€Q 2 (z)
Let Y € v9(z) for some x € Q. Write Y = (y, s); then
Ve H:={(y,s) € Q;dy) <ls| <UQ)}

Then by Fubini,

1% <[] o] [ s s

(y,8)€H zE€A(y,|s])
dy ds
2
=C // Vu(y, s) ||nd2
(y,s)eH

Then observe that with our definitions, ® ( ‘( R) o (l(%)) = 1 when (y,s) € H, which

means that ¥(y,s) =1 for € small enough (depending on (y, s)); (7.15) follows.
We shall prove that for every € > 0,
J < C(AT)Y? + A, (7.16)

where
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A= IN*?(W)[I2210q)- (7.17)

This implies, since J < +o00, that J < CA, i.e.,

J(e) < OHNQQ(“)H%2(10Q)~

Then (7.12) will follow from (7.15), by taking the limit when ¢ — 0. So it is enough to
check (7.16).
To this end, since A is uniformly elliptic and b is bounded from above, we write

AVu - Vu 1
< MRS Sl /2 P
J N/ a1 |t] bdxdt

Vb
2 2
://|t|” 5 Vu-V (u\IJ |t] )dmdt+//|t|n — Vv " —uP* |t| dadt

A )1 A 1
= I0+11+IQ+I3, (7]‘8)

where we just computed the four pieces of V (u¥? || %) to get the main equality. The
first integral Iy is zero, because u is a weak solution and ¥ is smooth and compactly
supported in Qq (so that u¥? |¢| ¢ is a valid test function in (7.6) under our assumptions
on u, ¥, b; see [20, Lemma 8.16]).

Now, due to the boundedness of A, the fact that b > A~! > 0, and the Cauchy-Schwarz
inequality, we have

1
d dt dx dt \ 2
L] < |vuuvmuw2m2 T~ 12|V 22w S2 ) g
|n d ‘t|" d

The following estimate will be used a few times in the rest of the argument. Thanks

to our first assumption on [t|Vb, du = | |t|Vb’2|f‘”f% is a Carleson measure on Qg (see

Definition 7.2), and the Carleson inequality (see for instance [52]; the proof is only written

in codimension 1 but it goes through) says that

dx dt
[ wevepe e 2 = [ e i < Clulioas 1N @) ey,

where ||u|lcam = SUPpans AcRe ﬁ Jray s IVE(y, 5)1)? gf{fifd is the Carleson norm of y.

Hence

11| S IN ()| g2y I ? < IN?P ()] 2220 0) /- (7.19)

The integral I3 contains V¥, which we estimate with (7.13), the boundedness of A
and b~ !, and Cauchy-Schwarz inequality. This yields
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dx dt
|Is| = //|t|” - Vu- V\I/u\Il|t| dxdt< // |Vul|u||[¥] —— T

E1UE>UES
1/2

J1/2 2 dx dt

(7.2
g | (720

1 UEQ UE3

We will start with Fs:

dx dt
2 2Q,, 2Q
// s 7 < o d/ N dxdt C’/ N ) dx. (7.21)

10Q
Similarly,
d dt 1
// ’ |t|:fz a5 nd //(Nmu(sc))2 dxdt = C / (NQQU)Z . (7.22)
Es 10Q
Finally,

// i < I (V2u@)” 5

€10 Q, 5(x) /2<[t|<5(x)

< / (N2Qu)* / H‘i—td dr < C / (NQuw)? dz. (7.23)

10Q 3(2)/2< |t <6 (x) 10Q

At this point we are left with the most delicate term, I5. If the coordinates of t € R*~¢
are (tgq1,---,tn),

= —//W%VU-V(H)U\I!Q %dmdt
// Z Z \tI" - Djuuw? ‘t| 2d dt. (7.24)

i=d+1 j=1

At this point use the special form of A. Notice that the upper part of A does not
contribute to the sum, and denote by I, the part that comes from bl, _4, and by I
the remaining part, that comes from C? and C*; thus

Auud? =~ b
// Z |t|" [t[n—d=1 ||

i=d+1

where the two terms with b conveniently cancel, and



2808 G. David et al. / Journal of Functional Analysis 276 (2019) 2731-2820

n n
Iy = — Z Ziauu\lﬂﬂldxdt
2 , [¢[n=d=1 " o

i=d+1j=1

where the C;; are the coeflicients of C := (?3 (?4) and satisfy the Carleson condition.

The term Iss is estimated exactly like 7, only using the Carleson condition on the
Cij, in place of the Carleson condition for |¢|Vb. We are left with I5;, which we write as

1 = 1 t;
Iog = —= E T 9(uPw?)
= 2// 2 et O dadt

1=d+1

1 - 1 2 2y Li
— ————u*0;(V*) — dxdt =: I Ir10. (7.25
#3372

For the first term, observe that Y\, 8i(u2\112)% = 0,(u*¥?) (the derivative in the
radial direction). We switch to polar coordinates, abusing the notation slightly by writing
u and ¥ to mean a composition of the corresponding functions with the mapping of the
change of the coordinates, use Fubini and our assumptions on v and ¥, integrate by

parts in polar coordinates, and get that

Iz = C/ / /8T(u21112) drdwdz = 0. (7.26)

Rd §Sn—d—1 ¢
For the remaining integral I512, observe that by (7.13), and then (7.21)—(7.23),

1 1
|Io12| < C//WuQ\IIW\I/detg // i u? dadt

FE1UE;UES3

<C / (N29u)* dz = CA (7.27)
10Q

The main estimate (7.16), and then Theorem 7.10, follow. O

Remark 7.28. As pointed out after the statement of Theorem 1.32, the S vs. N estimate
(1.37) has a version for characteristic functions of Borel sets, which says that if H is a
Borel subset of 'y = RY, uy is the weak solution defined by (1.26), and Q@ C R? is any
cube, we have

15%ur 72 (q) < ClQI, (7.29)

which is enough for Section 8, and follows at once from Theorem 1.32, again because
|UH| <1.
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Here we prove, as promised in the Introduction, that the Carleson measure estimate
(1.28) follows from (7.29). Let « € I'y and r > 0 be given, and let @ denote the cube
centered on z and with sidelength I(Q) = 2r. Set

I= ||SQuHH%2(Q) = / SQup(2)%dz
z€Q

dyds
dz, 7.30
)~ (02 (7.30)

- / / Vur(y, s)?
2€Q (y,5)€79(2)

and observe that by (1.29), |(y,s) — (2,0)| < (1 + a)|s| when (y,s) € y9(z). Thus by
Fubini

I>(1+a)?™ / / |V (y, s)|?|s|* " dydsdz

2€Q (y,5)€79(2)

Q)
= (14a)> / / Vs (y, 5) 200y, 5)| s> "dyds, (7.31)
yeRd s=0
where (by (1.29) again)
6(y.5) = [{z € Q: (1.5) €4°(2)}| = [@N By, as)]. (7.32)

Notice that 6(y, s) > C~!(as)? for y € Q, so

Q)

I>C7 Y14 a)?> "a? / / Vg (y, s)|?|s|4T2 " dyds. (7.33)
yeQ s=0
For (1.28) we need to estimate
dyd @ dyd
2 dyds yds
[ ) B < [ Vunto? i <o (730
(y,8)€QoNB(z,r) yeQ s=0

by (7.33). But I < C|Q| < Cr by (7.29), so (1.28) really follows from (7.29).

8. From Carleson measure estimates for solutions to A°° property of harmonic
measure

Throughout this section, like the previous one, I'y = R4 and Qg = R™\T'y. We consider
an operator Ly = — div [t|4*1~" AV, where A is a matrix-valued function defined on Qg
satisfying the ellipticity and boundedness conditions (7.3)—(7.4).
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For X € Qq, w* = wém L, is the harmonic measure defined near (1.10). The existence
of the harmonic measure, the fact that the harmonic measure is a probability measure,
and the fact that the function uy defined as ug(X) = wX(H), with H C R? a Borel
set, is a weak solution to Lougy = 0 can be found in [20, Section 9]; see Lemmata 9.23
and 9.30 in particular. We need the Harnack inequality and Hoélder continuity of uy at
the boundary (see [20, Section 8], Lemmas 8.42 and 8.106).

Lemma 8.1 (Harnack). Let H C RY be a Borel set. Let the function ug defined as above
by ug(X) = wX(H), X € Q. Let B be a ball such that 2B C €y, then

supuyg < Cinfugy, (8.2)
B B

where C' > 0 depends only on the dimensions d, n and the ellipticity constants.

Lemma 8.3 (Hélder at the boundary). Let H C R? be a Borel set. If the ball A :=
A, (x) C R? doesn’t intersect H, then for any s <r

S «
sup uyg < C (—) ,
B(x,0;s) r

where C, a are two positive constants that depend only on the dimensions d and n and
the ellipticity constants of Ly.

Given some A = A,(z), z € R% r > 0, as above, a point Ap () = (z,1) in Qo
such that |t| = r is referred to as a corkscrew point of A,(x). Here we use the special
shape of T'y to get a corkscrew constant 1 (i.e. we can choose 7 = 1 in (1.8)), but this
does not matter; Aa (,) is clearly not uniquely defined for n —d > 1 and whenever we
write A, (») we mean that any such point is suitable. The following three properties of
the harmonic measure, whose proof can be found in [20, Section 11], will also be used
repeatedly throughout the section.

Lemma 8.4 (Nondegeneracy). For any x € R* and r > 0,
W (A,(x)) 2 .
where C' > 0 depends on n, d, and the ellipticity constants of Lo only.
Lemma 8.5 (Doubling). For any x € RY, r >0, and Y € Qq \ By, (,0),
WY Az (@) < Cw (Ap(2)),

where C > 0 depends on n, d, and the ellipticity constants only. In particular, if A C R?
is a ball satisfying 2A C A, (z), then
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wlar@ (2A) < Cwar@ (A).

Lemma 8.6 (Change of Pole). For any x € R, v > 0, any Y € Qg \ Ba,(z,0), and any
Borel set E C A := A,(x),

where the implicit constants depend on n, d, and the ellipticity constants only.
We recall what we mean by absolute continuity (or A property) in our context.

Definition 8.7. We say that the harmonic measure is A* (with respect to the Lebesgue
measure) on R? if for every & > 0, there exists § > 0 such that for every ball A C R¢,
every ball A’ C A and every Borel set £ C A/,

£
————= < § th . .
wAA(A’)< then |A’|<€ (8.8)

Here is the main result of this section.

Theorem 8.9. Let Ly = — div |t|¢*1 " AV, where the real matriz-valued function A sat-
isfies the ellipticity and boundedness conditions (7.3)—(7.4). Assume that we can find
K > 0 such that for any Borel set H C R%, the solution u defined by u(X) = wX(H),
X € Q, satisfies a Carleson measure estimate

dydt
sup // (|t]|Vul)? — < K. (8.10)
balls Acre |A] Ve [¢]=4

Then the harmonic measure is A® with respect to the Lebesque measure on R in the
sense of Definition 8.7.

With our usual convention, (8.10) means that |¢||Vu| satisfies the Carleson measure
condition, with constant at most K. Before we prove the theorem, we combine Theo-
rem 8.9 with Theorem 7.10.

Corollary 8.11. Let A be an elliptic matriz satisfying (7.3), (7.4) in Qo = R™\ Ty with
I'o = RY. Assume that A has the following structure:

Al A2
A= ( C3 bl(_g) +C ) ’ (8.12)

where A* and A% can be any matriz valued measurable functions (in respectively Myxq
and Mgy (n—ay), In—d)y € M(n—ad)x(n—a) denotes the identity matriz, and
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o [t|Vb satisfies the Carleson measure condition with a constant M,
o AL < b < A for some constant A > 0,
o both C® and C* satisfies the Carleson measure condition with a constant M.

Then the harmonic measure associated with Ly = — div [t|9T1~" AV is A with respect
to the Lebesgue measure on RY in the sense of Definition 8.7, with the implicit constants
depending on n, d, ellipticity constants of A, M, and X.

Proof. We have already given the proof in the Introduction. The Corollary follows from
Theorems 8.9 and 7.10 combined with Remark 7.28 — see the discussion following The-
orem 1.32. O

Proof of Theorem 8.9. Now we pass to the proof of Theorem 8.9. Much of the argument
follows the lines of [42], and even more so [21], but we will aim for a self-contained
exposition.

Step I: £9-good cover and construction of functions with large oscillations on small sets.
Let R > 0 and z € R? be given, and consider the ball A = Ag(z). Just as in [21],
we start by observing that w?2 is positive and doubling near A, by Lemma 8.5 and
Lemma 8.1. Here the geometry is fairly simple, and it is not hard to check that

wia (A(y,t)) < Cw?a(A(y,t)NA) fory e Aand 0 <t < R. (8.13)

From this it is also easy to deduce that A, with the Euclidean distance and the (restriction
to A of the) measure w = w?2, is a space of homogeneous type.

This is pleasant, because we can use [10] directly, to construct a dyadic system of
pseudo-cubes on A associated to w and satisfying the following properties. Otherwise,
we could always have followed the construction near A, and replaced A with a finite
union of initial cubes to start the argument.

There exist constants 0 < ¢ < 1 and M > 1, that depend only the doubling constant
of w, and then a collection D = Ug>g,D; of Borel subsets of A, with the following
properties. For each integer k > kg, we write

Dk::{Q?CA:jejk},

where Jj denotes some index set depending on k, but some times we will forget about
the indices and just write @ € Dy, for any of the Q?, and refer to @ as a pseudo-cube of
generation k. These pseudo-cubes have properties that are very similar to the properties
of the usual dyadic cubes of R, as follows:

(i) A =U;QF for any k > ko.
(i) If m > k then either Q}" C Q% or Q" N QY = 0.
(iii) QP AQ™ =0 if i # .



G. David et al. / Journal of Functional Analysis 276 (2019) 2731-2820 2813

(4v) Each pseudo-cube @ € D, has a “center” xg € A such that
Azg,27%) c Q C A(zg, M27F). (8.14)

(0) I Q" € QF, then w(Q") < cw(Qh).
(vi) w(0QT") =0 for all i,m.
(vii) Dy, is composed of a single pseudo-cube, which we often call Qg, but is equal to
A.

Let us make a few comments about these cubes. We decided to use a dyadic scaling
(by opposition to a scaling where the ratio of the sizes between a pseudo-cube and its
parent is, in average, € < %) because it is convenient. The price to pay for forcing a
dyadic scaling is that if Q) € Dg1, and R is the cube of Dy that contains @ (it is unique
by (ii), and it is called an ancestor of Q) is not necessarily strictly larger (as a set)
than Q.

We also decided to use Borel sets so that the pseudo-cubes of a same generation are
disjoint; another option would have been to take closed pseudo-cubes that are almost
disjoint (by (vi)).

The condition (vi) is a slightly weaker version of a condition that says that small
neighborhoods of Q7" have a small w-measure. This is the same “small boundary con-
dition” that gives the existence of a center xq.

Condition (v) is usually not stated, but it follows from the doubling condition, and
the fact that since Q" C Qf it has a sibling (another pseudo-cube of generation m,
which is contained in the parent of Q;"*) which is therefore contained in Q% \ Q7", and
has a comparable w-measure by (8.14).

Because of (8.14), we know that 2750 ~ R.

In the setting of a general space of homogeneous type, this decomposition was obtained
by Christ [10], with the dyadic parameter 1/2 replaced by some constant 6 € (0,1)
(which allows him to take different cubes at each generation). In fact, one may always
take 0 = 1/2 (cf. [34, Proof of Proposition 2.12]). In the presence of the Ahlfors regularity
property, the result already appears in [17,18]. Some predecessors of this construction
have appeared in [14] and [15].

We can use the pseudo-cubes to do a Whitney decomposition of any open set O C A;
we get that

o=aer (8.15)

where the Q7" are pairwise disjoint and for each Q7 in this decomposition, dist{@Q"", A\
O} ~ diam Q" ~ 2~™. Simply take the largest (i.e., of the earliest generations) pseudo-
cubes Q7" such that dist(QT*, A\QT*) > C2~™ (for some large constant C'), and proceed
as usual.
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We denote by k(Q) the generation of the pseudo-cube @ (i.e., the integer k such that
Q € Dy), and set £(Q) = 27¥(@); thus £(Q) ~ diam(Q) by (8.14). By analogy, we call
£(Q) the length of Q.

Definition 8.16. Fix any small ¢g > 0 and any Borel set £ C A, C A. We say that a
collection of nested open sets {O;}%_, is a good gq-cover for E of length k € N if

ECO,COr1C...C0=A,,
and for every I =1,.... k

o= J s (8.17)
i€l(l)

where the S!, i € I(l), are disjoint elements of D and for all 1 <1 <k and i € I(l — 1),
w(O NS < gpuw(SiH). (8.18)

Observe that we changed the notation for our pseudo-cubes from @ to S in order to
not confuse the numerology: Q7" is always an element of D,,, that is, a pseudo-cube of
generation m, and in particular has length 27, while Sf» is an element of a decomposition
of an open set O; into pseudo-cubes.

Notice also that if j € I(l) and ¢ € I(I — 1) are such that Sé- NSt £, then the
property (ii) above gives that Sé. C S!71; as a consequence, (8.18) forces Sg to be a
pseudo-cube of higher generation than Sffl. In particular, by (8.14)

oSy < 287m(s)) (8.19)

if m >l and S7" NS} # 0.
When k is large, we expect w(E) to be quite small. The next proposition, which we
take from [42,21], says that some converse is true too.

Proposition 8.20. [/2,21] For every ey > 0 sufficiently small there exists 69 > 0 such that
if ECA, CA and

w(E)
w(Ar)

< (8.21)

for some § < dg, then E has a good €y cover of length k > C‘lﬁfg%.

Here and below, unless specified otherwise, “for any g( sufficiently small” is to be
interpreted in the sense that there exists a numerical constant (that may also depend
on the doubling constant for w) such that for all £y smaller than this constant a certain
property holds. The same applies to certain parameters being “sufficiently large”.
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Recall that the goal is to prove (8.8). To this end, we fix some ¢ > 0 and take
E C A’ = A, C A satisfying (8.21), with ¢ to be defined later. Consider a good ey-cover
of E (g9 to be determined below as well) relative to A, and the doubling measure
w = w?2  as in Definition 8.16. For each S! in the dyadic decomposition (8 17) of O, we
denote by Al = A(x!, Z) the Euclidean ball on R? guaranteed by (8.14), i.e., such that
Al c St ¢ MAL Thus 7! = £(S!). Then select in Al two roughly equal parts

Al:= Azl rt/2) and Al = A(yl,r1/10), (8.22)

for some y! € Al that we chose so that A(yl,r!/5) C Al\ Al. Following a similar
construction in [21], set O; := |J, AL C O, for 0 < < k, then, for 0 <1 < k, [ even, take

fily) =1g, and fiyr = —filo,, = —15,0,,,- (8.23)

Thus fi + fiy1 = ]l@l\ol+1 <1op)\0,,,- Finally we set

k
=Xt (8.24)

=0

One can observe that f is a characteristic function of a Borel set, because the (51 \ O111
are disjoint, and also disjoint from @k if k is even. Let u be the weak solution of the
Dirichlet problem associated to f, as in (1.10) (but for  and L), i.e., set u(X) =
fr deo Lo( x). The point of the upcoming discussion is to show that u exhibits large
oscillations in Whitney cubes (cubes in g of side-length roughly comparable to their
distance to I'g) which yields a large square function on E, and hence, an estimate from
below on the quantity under the supremum in (8.10) by a large multiples of |E|/|A,].
Then, invoking (8.10), we will arrive at (8.8).

Step II: the solution with data f exhibits large oscillations on Whitney cubes. Take any
x € E and for 0 <1 <k, pick i € I(I) such that x € S!. Then simply set S' = S!. Write
Al = A(z!,7!) for the Euclidean ball given by (8.14). Denote by Al a corkscrew point
of Al, which we take such that Al = (2!, ') with |t!| = r!/2. We have w (Al) 2 1 by
Lemma 8.4. To fix the notation, we specify that there exists 1; € (0,1) depending on n,
d, and the ellipticity constants only, such that

~

wh (Al > (8.25)

Also,

w A = [ faw? > [ (fi+ fr) do® > [ (fi+ firr) dw
[ret=] /

=AY — A (A N OL),  (8.26)
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where each integral is to be interpreted simply as a harmonic measure of the corre-
sponding Borel set (as all integrands are characteristic functions of Borel sets), and both
inequalities are due to the fact that the left-hand side is a harmonic measure of a bigger
set than the right-hand side. Now, by Lemma 8.6 and then Lemma 8.5

wAA (AL N Op1) _ w2 (S' N Op) _ w2 (SN Oy
wAa (Al ~oowAs(MAY T wAa(SY

WA (AN O) < < e, (8.27)

where in the last inequality we used (8.18). Hence, wA' (ﬁl NOi41) < Ceg for some C' > 0
depending on n, d, and ellipticity constants only. Combining this with (8.26) and (8.25),
we conclude that for

go < 771/(20), (828)

we have u(A!) > 1,/2. Moreover, by the interior Hélder continuity of solutions
(Lemma 8.40 in [20]), there exists C; > 0, depending on n, d, and ellipticity constants
only, such that

w(z,t) > m /4 for (z,t) € B(A, crrh. (8.29)

This shows that u is large in a part of the Whitney box associated with S’.

Let us now show that there is another part of aN(someWhat fattened) Whitney box
on which u is small. Recall the definition of Al = Al = B(y!,7r!/10) in (8.22), set g =
Xga\ (AN A and denote by v the solution with data g, i.e., set g(X) = [ g(z)dw™ (z) =
wX (RE\ [AL\ Al]) for X € Q. We claim that

g + ILOH_lﬂAl Z f (830)

If z € R\ [A! \ﬁl], then g(z) > 1 > f(x). So we may assume that x € Al \ﬁl, and also
in A\ O;, 1, because otherwise Lo, ,nat(r) > 1> f(z). But then x does not lie on 0,
(because O; N Al = Al (since the S! are disjoint), so fi(z) < 0; we also have f,,(z) <0
for m > [ because @m C Oj4+1, and the previous f,, do not contribute either because
they are supported away from O;. The claim follows.

As before, the inequality in (8.30) implies the corresponding inequality for the Dirich-
let solutions, because each wX is a probability measure.

Since the boundary data of v is zero on 2&1, Lemma 8.3 yields

v(y,s) < Cp* fory e A! and ls| < prt, (8.31)

where C' and « depend only on the ellipticity constants and dimension, and the small
p < 1 will be chosen soon.
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It remains to control the solution with data 1o, ,na:. However, by the same argument
as for (8.27), wAa (O;11 N AY) < Cep, and hence, for any (y, s) such that y € Al and
|s| = pr,

w®) (011N Al) < C, e,

by Lemma 8.1. Here C, depends on the length of the Harnack chain from Az, to (y, s),
which, in turn, depends on p. Combining (8.31) with the inequality above and applying
the Harnack inequality again, we deduce that there is Cy; > 0, that depends on p, the
ellipticity constants, and the dimension only, such that

! !
u(y,s) < 2(Cp*+ C,e0), whenever |y —y'| < g— and |s| — prl‘ < 2—7 (8.32)
2 2
where y! = yﬁ is the center of Al
Now we make the following choices. Having fixed n; > 0 as above, depending on the
ellipticity constants, n, and d only, we choose p so that 2Cp® < 1;/16 and then ¢ so
that

2C,e0 < 11/16 (8.33)

and so that (8.28) is satisfied.
We conclude that there exist 71, p, C1,C2 and &g in (0, 1), all depending on the ellip-
ticity constants, n, and d only, so that (8.29) holds and simultaneously

rt

1
u(y,s) <m/8 whenever |y —y!| < L and |[s] — prl| <
C Cy

(8.34)
In other words, u oscillates by at least 1;/8 within any ball that contains the two sets
of (8.29) and (8.34).

Step III: large oscillations near the S’ yield a large square function. First of all, we take
the aperture of cones a in the definition of the square function large enough (depending,
in particular, on p, Cy, Cy) so that for all x € S! the sets in (8.34) and (8.29) are contained
in v"(z) (see the definition (7.1)). The solutions are locally in Sobolev spaces and hence
are absolutely continuous on lines, and so the integral of Vu between points of the sets
of (8.29) and (8.34) is not too small. We average and use the Cauchy—Schwarz inequality
to get that

(1 /8)" < /| (P p— (8.35)

I(y,s) — (z,0)["—2
(y,9)Ev():(p—C3 " )ri<|s|<(1/24+CT Myrt

for any x € S°.
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Choose a ‘real’ cube @, D A, with sidelength I(Q,) = r. Let = € E be given. For each
I, x lies in Oy, hence by (8.17) we can find S' = S! that contains #. We want to sum the
inequalities (8.35) over [, and even though the sets Z;(z) = {(y,s) € v"(z); (p—C5 ")r! <
|s| < (1/2+ C;")r'} where we integrate are not disjoint, thanks to (8.19), their overlap
is bounded with a bound that depends on C7, Co, p, n, and d only. Thus

k(n1/8)* < 89 (x)? for every x € E. (8.36)

Recall from Proposition 8.20 that k, the length of the good eg-cover, is at least

c! lzoggsi, at least if g and § were chosen small enough. Hence

log d
< QQr ()2
Togeg ~ S«r(x) (8.37)

for x € F and @, as above, with implicit constants that depend on the ellipticity
constants and the dimension only.

Step IV: conclusion. Let ), D A, D E be the cube chosen in Step III. It follows from
(8.37) that

1
%m < /sQr@)(x)?dx < /sQr(x)de < CK|Q,| < C|A,], (8.38)
0
Qr
by (8.10). Therefore,
Bl _ log50’
[A,] = Togs

for some constant C' that depends on the ellipticity constants and the dimension only.
Recalling that we started from E such that w(E) < dw(A,) as in (8.21), and we want to
prove that |E| < €|A,| as in (8.8). Thus it only remains to choose d, small enough, and
such that C lﬁfﬁ <e. O
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